1//
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions
4// are met:
5// * Redistributions of source code must retain the above copyright
6// notice, this list of conditions and the following disclaimer.
7// * Redistributions in binary form must reproduce the above copyright
8// notice, this list of conditions and the following disclaimer in the
9// documentation and/or other materials provided with the distribution.
10// * Neither the name of NVIDIA CORPORATION nor the names of its
11// contributors may be used to endorse or promote products derived
12// from this software without specific prior written permission.
13//
14// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
15// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
18// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
22// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25//
26// Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved.
27// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
28// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
29
30#ifndef PXFOUNDATION_PXQUAT_H
31#define PXFOUNDATION_PXQUAT_H
32
33/** \addtogroup foundation
34@{
35*/
36
37#include "foundation/PxVec3.h"
38#if !PX_DOXYGEN
39namespace physx
40{
41#endif
42
43/**
44\brief This is a quaternion class. For more information on quaternion mathematics
45consult a mathematics source on complex numbers.
46
47*/
48
49class PxQuat
50{
51 public:
52 /**
53 \brief Default constructor, does not do any initialization.
54 */
55 PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat()
56 {
57 }
58
59 //! identity constructor
60 PX_CUDA_CALLABLE PX_INLINE PxQuat(PxIDENTITY r) : x(0.0f), y(0.0f), z(0.0f), w(1.0f)
61 {
62 PX_UNUSED(r);
63 }
64
65 /**
66 \brief Constructor from a scalar: sets the real part w to the scalar value, and the imaginary parts (x,y,z) to zero
67 */
68 explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat(float r) : x(0.0f), y(0.0f), z(0.0f), w(r)
69 {
70 }
71
72 /**
73 \brief Constructor. Take note of the order of the elements!
74 */
75 PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat(float nx, float ny, float nz, float nw) : x(nx), y(ny), z(nz), w(nw)
76 {
77 }
78
79 /**
80 \brief Creates from angle-axis representation.
81
82 Axis must be normalized!
83
84 Angle is in radians!
85
86 <b>Unit:</b> Radians
87 */
88 PX_CUDA_CALLABLE PX_INLINE PxQuat(float angleRadians, const PxVec3& unitAxis)
89 {
90 PX_SHARED_ASSERT(PxAbs(1.0f - unitAxis.magnitude()) < 1e-3f);
91 const float a = angleRadians * 0.5f;
92 const float s = PxSin(a);
93 w = PxCos(a);
94 x = unitAxis.x * s;
95 y = unitAxis.y * s;
96 z = unitAxis.z * s;
97 }
98
99 /**
100 \brief Copy ctor.
101 */
102 PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat(const PxQuat& v) : x(v.x), y(v.y), z(v.z), w(v.w)
103 {
104 }
105
106 /**
107 \brief Creates from orientation matrix.
108
109 \param[in] m Rotation matrix to extract quaternion from.
110 */
111 PX_CUDA_CALLABLE PX_INLINE explicit PxQuat(const PxMat33& m); /* defined in PxMat33.h */
112
113 /**
114 \brief returns true if quat is identity
115 */
116 PX_CUDA_CALLABLE PX_FORCE_INLINE bool isIdentity() const
117 {
118 return x==0.0f && y==0.0f && z==0.0f && w==1.0f;
119 }
120
121 /**
122 \brief returns true if all elements are finite (not NAN or INF, etc.)
123 */
124 PX_CUDA_CALLABLE bool isFinite() const
125 {
126 return PxIsFinite(f: x) && PxIsFinite(f: y) && PxIsFinite(f: z) && PxIsFinite(f: w);
127 }
128
129 /**
130 \brief returns true if finite and magnitude is close to unit
131 */
132 PX_CUDA_CALLABLE bool isUnit() const
133 {
134 const float unitTolerance = 1e-4f;
135 return isFinite() && PxAbs(a: magnitude() - 1) < unitTolerance;
136 }
137
138 /**
139 \brief returns true if finite and magnitude is reasonably close to unit to allow for some accumulation of error vs
140 isValid
141 */
142 PX_CUDA_CALLABLE bool isSane() const
143 {
144 const float unitTolerance = 1e-2f;
145 return isFinite() && PxAbs(a: magnitude() - 1) < unitTolerance;
146 }
147
148 /**
149 \brief returns true if the two quaternions are exactly equal
150 */
151 PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxQuat& q) const
152 {
153 return x == q.x && y == q.y && z == q.z && w == q.w;
154 }
155
156 /**
157 \brief converts this quaternion to angle-axis representation
158 */
159 PX_CUDA_CALLABLE PX_INLINE void toRadiansAndUnitAxis(float& angle, PxVec3& axis) const
160 {
161 const float quatEpsilon = 1.0e-8f;
162 const float s2 = x * x + y * y + z * z;
163 if(s2 < quatEpsilon * quatEpsilon) // can't extract a sensible axis
164 {
165 angle = 0.0f;
166 axis = PxVec3(1.0f, 0.0f, 0.0f);
167 }
168 else
169 {
170 const float s = PxRecipSqrt(a: s2);
171 axis = PxVec3(x, y, z) * s;
172 angle = PxAbs(a: w) < quatEpsilon ? PxPi : PxAtan2(x: s2 * s, y: w) * 2.0f;
173 }
174 }
175
176 /**
177 \brief Gets the angle between this quat and the identity quaternion.
178
179 <b>Unit:</b> Radians
180 */
181 PX_CUDA_CALLABLE PX_INLINE float getAngle() const
182 {
183 return PxAcos(f: w) * 2.0f;
184 }
185
186 /**
187 \brief Gets the angle between this quat and the argument
188
189 <b>Unit:</b> Radians
190 */
191 PX_CUDA_CALLABLE PX_INLINE float getAngle(const PxQuat& q) const
192 {
193 return PxAcos(f: dot(v: q)) * 2.0f;
194 }
195
196 /**
197 \brief This is the squared 4D vector length, should be 1 for unit quaternions.
198 */
199 PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitudeSquared() const
200 {
201 return x * x + y * y + z * z + w * w;
202 }
203
204 /**
205 \brief returns the scalar product of this and other.
206 */
207 PX_CUDA_CALLABLE PX_FORCE_INLINE float dot(const PxQuat& v) const
208 {
209 return x * v.x + y * v.y + z * v.z + w * v.w;
210 }
211
212 PX_CUDA_CALLABLE PX_INLINE PxQuat getNormalized() const
213 {
214 const float s = 1.0f / magnitude();
215 return PxQuat(x * s, y * s, z * s, w * s);
216 }
217
218 PX_CUDA_CALLABLE PX_INLINE float magnitude() const
219 {
220 return PxSqrt(a: magnitudeSquared());
221 }
222
223 // modifiers:
224 /**
225 \brief maps to the closest unit quaternion.
226 */
227 PX_CUDA_CALLABLE PX_INLINE float normalize() // convert this PxQuat to a unit quaternion
228 {
229 const float mag = magnitude();
230 if(mag != 0.0f)
231 {
232 const float imag = 1.0f / mag;
233
234 x *= imag;
235 y *= imag;
236 z *= imag;
237 w *= imag;
238 }
239 return mag;
240 }
241
242 /*
243 \brief returns the conjugate.
244
245 \note for unit quaternions, this is the inverse.
246 */
247 PX_CUDA_CALLABLE PX_INLINE PxQuat getConjugate() const
248 {
249 return PxQuat(-x, -y, -z, w);
250 }
251
252 /*
253 \brief returns imaginary part.
254 */
255 PX_CUDA_CALLABLE PX_INLINE PxVec3 getImaginaryPart() const
256 {
257 return PxVec3(x, y, z);
258 }
259
260 /** brief computes rotation of x-axis */
261 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getBasisVector0() const
262 {
263 const float x2 = x * 2.0f;
264 const float w2 = w * 2.0f;
265 return PxVec3((w * w2) - 1.0f + x * x2, (z * w2) + y * x2, (-y * w2) + z * x2);
266 }
267
268 /** brief computes rotation of y-axis */
269 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getBasisVector1() const
270 {
271 const float y2 = y * 2.0f;
272 const float w2 = w * 2.0f;
273 return PxVec3((-z * w2) + x * y2, (w * w2) - 1.0f + y * y2, (x * w2) + z * y2);
274 }
275
276 /** brief computes rotation of z-axis */
277 PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getBasisVector2() const
278 {
279 const float z2 = z * 2.0f;
280 const float w2 = w * 2.0f;
281 return PxVec3((y * w2) + x * z2, (-x * w2) + y * z2, (w * w2) - 1.0f + z * z2);
282 }
283
284 /**
285 rotates passed vec by this (assumed unitary)
286 */
287 PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3 rotate(const PxVec3& v) const
288 {
289 const float vx = 2.0f * v.x;
290 const float vy = 2.0f * v.y;
291 const float vz = 2.0f * v.z;
292 const float w2 = w * w - 0.5f;
293 const float dot2 = (x * vx + y * vy + z * vz);
294 return PxVec3((vx * w2 + (y * vz - z * vy) * w + x * dot2), (vy * w2 + (z * vx - x * vz) * w + y * dot2),
295 (vz * w2 + (x * vy - y * vx) * w + z * dot2));
296 }
297
298 /**
299 inverse rotates passed vec by this (assumed unitary)
300 */
301 PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3 rotateInv(const PxVec3& v) const
302 {
303 const float vx = 2.0f * v.x;
304 const float vy = 2.0f * v.y;
305 const float vz = 2.0f * v.z;
306 const float w2 = w * w - 0.5f;
307 const float dot2 = (x * vx + y * vy + z * vz);
308 return PxVec3((vx * w2 - (y * vz - z * vy) * w + x * dot2), (vy * w2 - (z * vx - x * vz) * w + y * dot2),
309 (vz * w2 - (x * vy - y * vx) * w + z * dot2));
310 }
311
312 /**
313 \brief Assignment operator
314 */
315 PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator=(const PxQuat& p)
316 {
317 x = p.x;
318 y = p.y;
319 z = p.z;
320 w = p.w;
321 return *this;
322 }
323
324 PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator*=(const PxQuat& q)
325 {
326 const float tx = w * q.x + q.w * x + y * q.z - q.y * z;
327 const float ty = w * q.y + q.w * y + z * q.x - q.z * x;
328 const float tz = w * q.z + q.w * z + x * q.y - q.x * y;
329
330 w = w * q.w - q.x * x - y * q.y - q.z * z;
331 x = tx;
332 y = ty;
333 z = tz;
334
335 return *this;
336 }
337
338 PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator+=(const PxQuat& q)
339 {
340 x += q.x;
341 y += q.y;
342 z += q.z;
343 w += q.w;
344 return *this;
345 }
346
347 PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator-=(const PxQuat& q)
348 {
349 x -= q.x;
350 y -= q.y;
351 z -= q.z;
352 w -= q.w;
353 return *this;
354 }
355
356 PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator*=(const float s)
357 {
358 x *= s;
359 y *= s;
360 z *= s;
361 w *= s;
362 return *this;
363 }
364
365 /** quaternion multiplication */
366 PX_CUDA_CALLABLE PX_INLINE PxQuat operator*(const PxQuat& q) const
367 {
368 return PxQuat(w * q.x + q.w * x + y * q.z - q.y * z, w * q.y + q.w * y + z * q.x - q.z * x,
369 w * q.z + q.w * z + x * q.y - q.x * y, w * q.w - x * q.x - y * q.y - z * q.z);
370 }
371
372 /** quaternion addition */
373 PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator+(const PxQuat& q) const
374 {
375 return PxQuat(x + q.x, y + q.y, z + q.z, w + q.w);
376 }
377
378 /** quaternion subtraction */
379 PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator-() const
380 {
381 return PxQuat(-x, -y, -z, -w);
382 }
383
384 PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator-(const PxQuat& q) const
385 {
386 return PxQuat(x - q.x, y - q.y, z - q.z, w - q.w);
387 }
388
389 PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator*(float r) const
390 {
391 return PxQuat(x * r, y * r, z * r, w * r);
392 }
393
394 /** the quaternion elements */
395 float x, y, z, w;
396};
397
398#if !PX_DOXYGEN
399} // namespace physx
400#endif
401
402/** @} */
403#endif // #ifndef PXFOUNDATION_PXQUAT_H
404

source code of qtquick3dphysics/src/3rdparty/PhysX/pxshared/include/foundation/PxQuat.h