| 1 | // |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions |
| 4 | // are met: |
| 5 | // * Redistributions of source code must retain the above copyright |
| 6 | // notice, this list of conditions and the following disclaimer. |
| 7 | // * Redistributions in binary form must reproduce the above copyright |
| 8 | // notice, this list of conditions and the following disclaimer in the |
| 9 | // documentation and/or other materials provided with the distribution. |
| 10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
| 11 | // contributors may be used to endorse or promote products derived |
| 12 | // from this software without specific prior written permission. |
| 13 | // |
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | // |
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 29 | |
| 30 | #ifndef PXFOUNDATION_PXQUAT_H |
| 31 | #define PXFOUNDATION_PXQUAT_H |
| 32 | |
| 33 | /** \addtogroup foundation |
| 34 | @{ |
| 35 | */ |
| 36 | |
| 37 | #include "foundation/PxVec3.h" |
| 38 | #if !PX_DOXYGEN |
| 39 | namespace physx |
| 40 | { |
| 41 | #endif |
| 42 | |
| 43 | /** |
| 44 | \brief This is a quaternion class. For more information on quaternion mathematics |
| 45 | consult a mathematics source on complex numbers. |
| 46 | |
| 47 | */ |
| 48 | |
| 49 | class PxQuat |
| 50 | { |
| 51 | public: |
| 52 | /** |
| 53 | \brief Default constructor, does not do any initialization. |
| 54 | */ |
| 55 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat() |
| 56 | { |
| 57 | } |
| 58 | |
| 59 | //! identity constructor |
| 60 | PX_CUDA_CALLABLE PX_INLINE PxQuat(PxIDENTITY r) : x(0.0f), y(0.0f), z(0.0f), w(1.0f) |
| 61 | { |
| 62 | PX_UNUSED(r); |
| 63 | } |
| 64 | |
| 65 | /** |
| 66 | \brief Constructor from a scalar: sets the real part w to the scalar value, and the imaginary parts (x,y,z) to zero |
| 67 | */ |
| 68 | explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat(float r) : x(0.0f), y(0.0f), z(0.0f), w(r) |
| 69 | { |
| 70 | } |
| 71 | |
| 72 | /** |
| 73 | \brief Constructor. Take note of the order of the elements! |
| 74 | */ |
| 75 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat(float nx, float ny, float nz, float nw) : x(nx), y(ny), z(nz), w(nw) |
| 76 | { |
| 77 | } |
| 78 | |
| 79 | /** |
| 80 | \brief Creates from angle-axis representation. |
| 81 | |
| 82 | Axis must be normalized! |
| 83 | |
| 84 | Angle is in radians! |
| 85 | |
| 86 | <b>Unit:</b> Radians |
| 87 | */ |
| 88 | PX_CUDA_CALLABLE PX_INLINE PxQuat(float angleRadians, const PxVec3& unitAxis) |
| 89 | { |
| 90 | PX_SHARED_ASSERT(PxAbs(1.0f - unitAxis.magnitude()) < 1e-3f); |
| 91 | const float a = angleRadians * 0.5f; |
| 92 | const float s = PxSin(a); |
| 93 | w = PxCos(a); |
| 94 | x = unitAxis.x * s; |
| 95 | y = unitAxis.y * s; |
| 96 | z = unitAxis.z * s; |
| 97 | } |
| 98 | |
| 99 | /** |
| 100 | \brief Copy ctor. |
| 101 | */ |
| 102 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat(const PxQuat& v) : x(v.x), y(v.y), z(v.z), w(v.w) |
| 103 | { |
| 104 | } |
| 105 | |
| 106 | /** |
| 107 | \brief Creates from orientation matrix. |
| 108 | |
| 109 | \param[in] m Rotation matrix to extract quaternion from. |
| 110 | */ |
| 111 | PX_CUDA_CALLABLE PX_INLINE explicit PxQuat(const PxMat33& m); /* defined in PxMat33.h */ |
| 112 | |
| 113 | /** |
| 114 | \brief returns true if quat is identity |
| 115 | */ |
| 116 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool isIdentity() const |
| 117 | { |
| 118 | return x==0.0f && y==0.0f && z==0.0f && w==1.0f; |
| 119 | } |
| 120 | |
| 121 | /** |
| 122 | \brief returns true if all elements are finite (not NAN or INF, etc.) |
| 123 | */ |
| 124 | PX_CUDA_CALLABLE bool isFinite() const |
| 125 | { |
| 126 | return PxIsFinite(f: x) && PxIsFinite(f: y) && PxIsFinite(f: z) && PxIsFinite(f: w); |
| 127 | } |
| 128 | |
| 129 | /** |
| 130 | \brief returns true if finite and magnitude is close to unit |
| 131 | */ |
| 132 | PX_CUDA_CALLABLE bool isUnit() const |
| 133 | { |
| 134 | const float unitTolerance = 1e-4f; |
| 135 | return isFinite() && PxAbs(a: magnitude() - 1) < unitTolerance; |
| 136 | } |
| 137 | |
| 138 | /** |
| 139 | \brief returns true if finite and magnitude is reasonably close to unit to allow for some accumulation of error vs |
| 140 | isValid |
| 141 | */ |
| 142 | PX_CUDA_CALLABLE bool isSane() const |
| 143 | { |
| 144 | const float unitTolerance = 1e-2f; |
| 145 | return isFinite() && PxAbs(a: magnitude() - 1) < unitTolerance; |
| 146 | } |
| 147 | |
| 148 | /** |
| 149 | \brief returns true if the two quaternions are exactly equal |
| 150 | */ |
| 151 | PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxQuat& q) const |
| 152 | { |
| 153 | return x == q.x && y == q.y && z == q.z && w == q.w; |
| 154 | } |
| 155 | |
| 156 | /** |
| 157 | \brief converts this quaternion to angle-axis representation |
| 158 | */ |
| 159 | PX_CUDA_CALLABLE PX_INLINE void toRadiansAndUnitAxis(float& angle, PxVec3& axis) const |
| 160 | { |
| 161 | const float quatEpsilon = 1.0e-8f; |
| 162 | const float s2 = x * x + y * y + z * z; |
| 163 | if(s2 < quatEpsilon * quatEpsilon) // can't extract a sensible axis |
| 164 | { |
| 165 | angle = 0.0f; |
| 166 | axis = PxVec3(1.0f, 0.0f, 0.0f); |
| 167 | } |
| 168 | else |
| 169 | { |
| 170 | const float s = PxRecipSqrt(a: s2); |
| 171 | axis = PxVec3(x, y, z) * s; |
| 172 | angle = PxAbs(a: w) < quatEpsilon ? PxPi : PxAtan2(x: s2 * s, y: w) * 2.0f; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | /** |
| 177 | \brief Gets the angle between this quat and the identity quaternion. |
| 178 | |
| 179 | <b>Unit:</b> Radians |
| 180 | */ |
| 181 | PX_CUDA_CALLABLE PX_INLINE float getAngle() const |
| 182 | { |
| 183 | return PxAcos(f: w) * 2.0f; |
| 184 | } |
| 185 | |
| 186 | /** |
| 187 | \brief Gets the angle between this quat and the argument |
| 188 | |
| 189 | <b>Unit:</b> Radians |
| 190 | */ |
| 191 | PX_CUDA_CALLABLE PX_INLINE float getAngle(const PxQuat& q) const |
| 192 | { |
| 193 | return PxAcos(f: dot(v: q)) * 2.0f; |
| 194 | } |
| 195 | |
| 196 | /** |
| 197 | \brief This is the squared 4D vector length, should be 1 for unit quaternions. |
| 198 | */ |
| 199 | PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitudeSquared() const |
| 200 | { |
| 201 | return x * x + y * y + z * z + w * w; |
| 202 | } |
| 203 | |
| 204 | /** |
| 205 | \brief returns the scalar product of this and other. |
| 206 | */ |
| 207 | PX_CUDA_CALLABLE PX_FORCE_INLINE float dot(const PxQuat& v) const |
| 208 | { |
| 209 | return x * v.x + y * v.y + z * v.z + w * v.w; |
| 210 | } |
| 211 | |
| 212 | PX_CUDA_CALLABLE PX_INLINE PxQuat getNormalized() const |
| 213 | { |
| 214 | const float s = 1.0f / magnitude(); |
| 215 | return PxQuat(x * s, y * s, z * s, w * s); |
| 216 | } |
| 217 | |
| 218 | PX_CUDA_CALLABLE PX_INLINE float magnitude() const |
| 219 | { |
| 220 | return PxSqrt(a: magnitudeSquared()); |
| 221 | } |
| 222 | |
| 223 | // modifiers: |
| 224 | /** |
| 225 | \brief maps to the closest unit quaternion. |
| 226 | */ |
| 227 | PX_CUDA_CALLABLE PX_INLINE float normalize() // convert this PxQuat to a unit quaternion |
| 228 | { |
| 229 | const float mag = magnitude(); |
| 230 | if(mag != 0.0f) |
| 231 | { |
| 232 | const float imag = 1.0f / mag; |
| 233 | |
| 234 | x *= imag; |
| 235 | y *= imag; |
| 236 | z *= imag; |
| 237 | w *= imag; |
| 238 | } |
| 239 | return mag; |
| 240 | } |
| 241 | |
| 242 | /* |
| 243 | \brief returns the conjugate. |
| 244 | |
| 245 | \note for unit quaternions, this is the inverse. |
| 246 | */ |
| 247 | PX_CUDA_CALLABLE PX_INLINE PxQuat getConjugate() const |
| 248 | { |
| 249 | return PxQuat(-x, -y, -z, w); |
| 250 | } |
| 251 | |
| 252 | /* |
| 253 | \brief returns imaginary part. |
| 254 | */ |
| 255 | PX_CUDA_CALLABLE PX_INLINE PxVec3 getImaginaryPart() const |
| 256 | { |
| 257 | return PxVec3(x, y, z); |
| 258 | } |
| 259 | |
| 260 | /** brief computes rotation of x-axis */ |
| 261 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getBasisVector0() const |
| 262 | { |
| 263 | const float x2 = x * 2.0f; |
| 264 | const float w2 = w * 2.0f; |
| 265 | return PxVec3((w * w2) - 1.0f + x * x2, (z * w2) + y * x2, (-y * w2) + z * x2); |
| 266 | } |
| 267 | |
| 268 | /** brief computes rotation of y-axis */ |
| 269 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getBasisVector1() const |
| 270 | { |
| 271 | const float y2 = y * 2.0f; |
| 272 | const float w2 = w * 2.0f; |
| 273 | return PxVec3((-z * w2) + x * y2, (w * w2) - 1.0f + y * y2, (x * w2) + z * y2); |
| 274 | } |
| 275 | |
| 276 | /** brief computes rotation of z-axis */ |
| 277 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getBasisVector2() const |
| 278 | { |
| 279 | const float z2 = z * 2.0f; |
| 280 | const float w2 = w * 2.0f; |
| 281 | return PxVec3((y * w2) + x * z2, (-x * w2) + y * z2, (w * w2) - 1.0f + z * z2); |
| 282 | } |
| 283 | |
| 284 | /** |
| 285 | rotates passed vec by this (assumed unitary) |
| 286 | */ |
| 287 | PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3 rotate(const PxVec3& v) const |
| 288 | { |
| 289 | const float vx = 2.0f * v.x; |
| 290 | const float vy = 2.0f * v.y; |
| 291 | const float vz = 2.0f * v.z; |
| 292 | const float w2 = w * w - 0.5f; |
| 293 | const float dot2 = (x * vx + y * vy + z * vz); |
| 294 | return PxVec3((vx * w2 + (y * vz - z * vy) * w + x * dot2), (vy * w2 + (z * vx - x * vz) * w + y * dot2), |
| 295 | (vz * w2 + (x * vy - y * vx) * w + z * dot2)); |
| 296 | } |
| 297 | |
| 298 | /** |
| 299 | inverse rotates passed vec by this (assumed unitary) |
| 300 | */ |
| 301 | PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3 rotateInv(const PxVec3& v) const |
| 302 | { |
| 303 | const float vx = 2.0f * v.x; |
| 304 | const float vy = 2.0f * v.y; |
| 305 | const float vz = 2.0f * v.z; |
| 306 | const float w2 = w * w - 0.5f; |
| 307 | const float dot2 = (x * vx + y * vy + z * vz); |
| 308 | return PxVec3((vx * w2 - (y * vz - z * vy) * w + x * dot2), (vy * w2 - (z * vx - x * vz) * w + y * dot2), |
| 309 | (vz * w2 - (x * vy - y * vx) * w + z * dot2)); |
| 310 | } |
| 311 | |
| 312 | /** |
| 313 | \brief Assignment operator |
| 314 | */ |
| 315 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator=(const PxQuat& p) |
| 316 | { |
| 317 | x = p.x; |
| 318 | y = p.y; |
| 319 | z = p.z; |
| 320 | w = p.w; |
| 321 | return *this; |
| 322 | } |
| 323 | |
| 324 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator*=(const PxQuat& q) |
| 325 | { |
| 326 | const float tx = w * q.x + q.w * x + y * q.z - q.y * z; |
| 327 | const float ty = w * q.y + q.w * y + z * q.x - q.z * x; |
| 328 | const float tz = w * q.z + q.w * z + x * q.y - q.x * y; |
| 329 | |
| 330 | w = w * q.w - q.x * x - y * q.y - q.z * z; |
| 331 | x = tx; |
| 332 | y = ty; |
| 333 | z = tz; |
| 334 | |
| 335 | return *this; |
| 336 | } |
| 337 | |
| 338 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator+=(const PxQuat& q) |
| 339 | { |
| 340 | x += q.x; |
| 341 | y += q.y; |
| 342 | z += q.z; |
| 343 | w += q.w; |
| 344 | return *this; |
| 345 | } |
| 346 | |
| 347 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator-=(const PxQuat& q) |
| 348 | { |
| 349 | x -= q.x; |
| 350 | y -= q.y; |
| 351 | z -= q.z; |
| 352 | w -= q.w; |
| 353 | return *this; |
| 354 | } |
| 355 | |
| 356 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator*=(const float s) |
| 357 | { |
| 358 | x *= s; |
| 359 | y *= s; |
| 360 | z *= s; |
| 361 | w *= s; |
| 362 | return *this; |
| 363 | } |
| 364 | |
| 365 | /** quaternion multiplication */ |
| 366 | PX_CUDA_CALLABLE PX_INLINE PxQuat operator*(const PxQuat& q) const |
| 367 | { |
| 368 | return PxQuat(w * q.x + q.w * x + y * q.z - q.y * z, w * q.y + q.w * y + z * q.x - q.z * x, |
| 369 | w * q.z + q.w * z + x * q.y - q.x * y, w * q.w - x * q.x - y * q.y - z * q.z); |
| 370 | } |
| 371 | |
| 372 | /** quaternion addition */ |
| 373 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator+(const PxQuat& q) const |
| 374 | { |
| 375 | return PxQuat(x + q.x, y + q.y, z + q.z, w + q.w); |
| 376 | } |
| 377 | |
| 378 | /** quaternion subtraction */ |
| 379 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator-() const |
| 380 | { |
| 381 | return PxQuat(-x, -y, -z, -w); |
| 382 | } |
| 383 | |
| 384 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator-(const PxQuat& q) const |
| 385 | { |
| 386 | return PxQuat(x - q.x, y - q.y, z - q.z, w - q.w); |
| 387 | } |
| 388 | |
| 389 | PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator*(float r) const |
| 390 | { |
| 391 | return PxQuat(x * r, y * r, z * r, w * r); |
| 392 | } |
| 393 | |
| 394 | /** the quaternion elements */ |
| 395 | float x, y, z, w; |
| 396 | }; |
| 397 | |
| 398 | #if !PX_DOXYGEN |
| 399 | } // namespace physx |
| 400 | #endif |
| 401 | |
| 402 | /** @} */ |
| 403 | #endif // #ifndef PXFOUNDATION_PXQUAT_H |
| 404 | |