| 1 | // | 
| 2 | // Redistribution and use in source and binary forms, with or without | 
| 3 | // modification, are permitted provided that the following conditions | 
| 4 | // are met: | 
| 5 | //  * Redistributions of source code must retain the above copyright | 
| 6 | //    notice, this list of conditions and the following disclaimer. | 
| 7 | //  * Redistributions in binary form must reproduce the above copyright | 
| 8 | //    notice, this list of conditions and the following disclaimer in the | 
| 9 | //    documentation and/or other materials provided with the distribution. | 
| 10 | //  * Neither the name of NVIDIA CORPORATION nor the names of its | 
| 11 | //    contributors may be used to endorse or promote products derived | 
| 12 | //    from this software without specific prior written permission. | 
| 13 | // | 
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY | 
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
| 17 | // PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR | 
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| 25 | // | 
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. | 
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. | 
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. | 
| 29 |  | 
| 30 | #ifndef PXFOUNDATION_PXQUAT_H | 
| 31 | #define PXFOUNDATION_PXQUAT_H | 
| 32 |  | 
| 33 | /** \addtogroup foundation | 
| 34 | @{ | 
| 35 | */ | 
| 36 |  | 
| 37 | #include "foundation/PxVec3.h" | 
| 38 | #if !PX_DOXYGEN | 
| 39 | namespace physx | 
| 40 | { | 
| 41 | #endif | 
| 42 |  | 
| 43 | /** | 
| 44 | \brief This is a quaternion class. For more information on quaternion mathematics | 
| 45 | consult a mathematics source on complex numbers. | 
| 46 |  | 
| 47 | */ | 
| 48 |  | 
| 49 | class PxQuat | 
| 50 | { | 
| 51 |   public: | 
| 52 | 	/** | 
| 53 | 	\brief Default constructor, does not do any initialization. | 
| 54 | 	*/ | 
| 55 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat() | 
| 56 | 	{ | 
| 57 | 	} | 
| 58 |  | 
| 59 | 	//! identity constructor | 
| 60 | 	PX_CUDA_CALLABLE PX_INLINE PxQuat(PxIDENTITY r) : x(0.0f), y(0.0f), z(0.0f), w(1.0f) | 
| 61 | 	{ | 
| 62 | 		PX_UNUSED(r); | 
| 63 | 	} | 
| 64 |  | 
| 65 | 	/** | 
| 66 | 	\brief Constructor from a scalar: sets the real part w to the scalar value, and the imaginary parts (x,y,z) to zero | 
| 67 | 	*/ | 
| 68 | 	explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat(float r) : x(0.0f), y(0.0f), z(0.0f), w(r) | 
| 69 | 	{ | 
| 70 | 	} | 
| 71 |  | 
| 72 | 	/** | 
| 73 | 	\brief Constructor.  Take note of the order of the elements! | 
| 74 | 	*/ | 
| 75 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat(float nx, float ny, float nz, float nw) : x(nx), y(ny), z(nz), w(nw) | 
| 76 | 	{ | 
| 77 | 	} | 
| 78 |  | 
| 79 | 	/** | 
| 80 | 	\brief Creates from angle-axis representation. | 
| 81 |  | 
| 82 | 	Axis must be normalized! | 
| 83 |  | 
| 84 | 	Angle is in radians! | 
| 85 |  | 
| 86 | 	<b>Unit:</b> Radians | 
| 87 | 	*/ | 
| 88 | 	PX_CUDA_CALLABLE PX_INLINE PxQuat(float angleRadians, const PxVec3& unitAxis) | 
| 89 | 	{ | 
| 90 | 		PX_SHARED_ASSERT(PxAbs(1.0f - unitAxis.magnitude()) < 1e-3f); | 
| 91 | 		const float a = angleRadians * 0.5f; | 
| 92 | 		const float s = PxSin(a); | 
| 93 | 		w = PxCos(a); | 
| 94 | 		x = unitAxis.x * s; | 
| 95 | 		y = unitAxis.y * s; | 
| 96 | 		z = unitAxis.z * s; | 
| 97 | 	} | 
| 98 |  | 
| 99 | 	/** | 
| 100 | 	\brief Copy ctor. | 
| 101 | 	*/ | 
| 102 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat(const PxQuat& v) : x(v.x), y(v.y), z(v.z), w(v.w) | 
| 103 | 	{ | 
| 104 | 	} | 
| 105 |  | 
| 106 | 	/** | 
| 107 | 	\brief Creates from orientation matrix. | 
| 108 |  | 
| 109 | 	\param[in] m Rotation matrix to extract quaternion from. | 
| 110 | 	*/ | 
| 111 | 	PX_CUDA_CALLABLE PX_INLINE explicit PxQuat(const PxMat33& m); /* defined in PxMat33.h */ | 
| 112 |  | 
| 113 | 	/** | 
| 114 | 	\brief returns true if quat is identity | 
| 115 | 	*/ | 
| 116 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE bool isIdentity() const | 
| 117 | 	{ | 
| 118 | 		return x==0.0f && y==0.0f && z==0.0f && w==1.0f; | 
| 119 | 	} | 
| 120 |  | 
| 121 | 	/** | 
| 122 | 	\brief returns true if all elements are finite (not NAN or INF, etc.) | 
| 123 | 	*/ | 
| 124 | 	PX_CUDA_CALLABLE bool isFinite() const | 
| 125 | 	{ | 
| 126 | 		return PxIsFinite(f: x) && PxIsFinite(f: y) && PxIsFinite(f: z) && PxIsFinite(f: w); | 
| 127 | 	} | 
| 128 |  | 
| 129 | 	/** | 
| 130 | 	\brief returns true if finite and magnitude is close to unit | 
| 131 | 	*/ | 
| 132 | 	PX_CUDA_CALLABLE bool isUnit() const | 
| 133 | 	{ | 
| 134 | 		const float unitTolerance = 1e-4f; | 
| 135 | 		return isFinite() && PxAbs(a: magnitude() - 1) < unitTolerance; | 
| 136 | 	} | 
| 137 |  | 
| 138 | 	/** | 
| 139 | 	\brief returns true if finite and magnitude is reasonably close to unit to allow for some accumulation of error vs | 
| 140 | 	isValid | 
| 141 | 	*/ | 
| 142 | 	PX_CUDA_CALLABLE bool isSane() const | 
| 143 | 	{ | 
| 144 | 		const float unitTolerance = 1e-2f; | 
| 145 | 		return isFinite() && PxAbs(a: magnitude() - 1) < unitTolerance; | 
| 146 | 	} | 
| 147 |  | 
| 148 | 	/** | 
| 149 | 	\brief returns true if the two quaternions are exactly equal | 
| 150 | 	*/ | 
| 151 | 	PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxQuat& q) const | 
| 152 | 	{ | 
| 153 | 		return x == q.x && y == q.y && z == q.z && w == q.w; | 
| 154 | 	} | 
| 155 |  | 
| 156 | 	/** | 
| 157 | 	\brief converts this quaternion to angle-axis representation | 
| 158 | 	*/ | 
| 159 | 	PX_CUDA_CALLABLE PX_INLINE void toRadiansAndUnitAxis(float& angle, PxVec3& axis) const | 
| 160 | 	{ | 
| 161 | 		const float quatEpsilon = 1.0e-8f; | 
| 162 | 		const float s2 = x * x + y * y + z * z; | 
| 163 | 		if(s2 < quatEpsilon * quatEpsilon) // can't extract a sensible axis | 
| 164 | 		{ | 
| 165 | 			angle = 0.0f; | 
| 166 | 			axis = PxVec3(1.0f, 0.0f, 0.0f); | 
| 167 | 		} | 
| 168 | 		else | 
| 169 | 		{ | 
| 170 | 			const float s = PxRecipSqrt(a: s2); | 
| 171 | 			axis = PxVec3(x, y, z) * s; | 
| 172 | 			angle = PxAbs(a: w) < quatEpsilon ? PxPi : PxAtan2(x: s2 * s, y: w) * 2.0f; | 
| 173 | 		} | 
| 174 | 	} | 
| 175 |  | 
| 176 | 	/** | 
| 177 | 	\brief Gets the angle between this quat and the identity quaternion. | 
| 178 |  | 
| 179 | 	<b>Unit:</b> Radians | 
| 180 | 	*/ | 
| 181 | 	PX_CUDA_CALLABLE PX_INLINE float getAngle() const | 
| 182 | 	{ | 
| 183 | 		return PxAcos(f: w) * 2.0f; | 
| 184 | 	} | 
| 185 |  | 
| 186 | 	/** | 
| 187 | 	\brief Gets the angle between this quat and the argument | 
| 188 |  | 
| 189 | 	<b>Unit:</b> Radians | 
| 190 | 	*/ | 
| 191 | 	PX_CUDA_CALLABLE PX_INLINE float getAngle(const PxQuat& q) const | 
| 192 | 	{ | 
| 193 | 		return PxAcos(f: dot(v: q)) * 2.0f; | 
| 194 | 	} | 
| 195 |  | 
| 196 | 	/** | 
| 197 | 	\brief This is the squared 4D vector length, should be 1 for unit quaternions. | 
| 198 | 	*/ | 
| 199 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitudeSquared() const | 
| 200 | 	{ | 
| 201 | 		return x * x + y * y + z * z + w * w; | 
| 202 | 	} | 
| 203 |  | 
| 204 | 	/** | 
| 205 | 	\brief returns the scalar product of this and other. | 
| 206 | 	*/ | 
| 207 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE float dot(const PxQuat& v) const | 
| 208 | 	{ | 
| 209 | 		return x * v.x + y * v.y + z * v.z + w * v.w; | 
| 210 | 	} | 
| 211 |  | 
| 212 | 	PX_CUDA_CALLABLE PX_INLINE PxQuat getNormalized() const | 
| 213 | 	{ | 
| 214 | 		const float s = 1.0f / magnitude(); | 
| 215 | 		return PxQuat(x * s, y * s, z * s, w * s); | 
| 216 | 	} | 
| 217 |  | 
| 218 | 	PX_CUDA_CALLABLE PX_INLINE float magnitude() const | 
| 219 | 	{ | 
| 220 | 		return PxSqrt(a: magnitudeSquared()); | 
| 221 | 	} | 
| 222 |  | 
| 223 | 	// modifiers: | 
| 224 | 	/** | 
| 225 | 	\brief maps to the closest unit quaternion. | 
| 226 | 	*/ | 
| 227 | 	PX_CUDA_CALLABLE PX_INLINE float normalize() // convert this PxQuat to a unit quaternion | 
| 228 | 	{ | 
| 229 | 		const float mag = magnitude(); | 
| 230 | 		if(mag != 0.0f) | 
| 231 | 		{ | 
| 232 | 			const float imag = 1.0f / mag; | 
| 233 |  | 
| 234 | 			x *= imag; | 
| 235 | 			y *= imag; | 
| 236 | 			z *= imag; | 
| 237 | 			w *= imag; | 
| 238 | 		} | 
| 239 | 		return mag; | 
| 240 | 	} | 
| 241 |  | 
| 242 | 	/* | 
| 243 | 	\brief returns the conjugate. | 
| 244 |  | 
| 245 | 	\note for unit quaternions, this is the inverse. | 
| 246 | 	*/ | 
| 247 | 	PX_CUDA_CALLABLE PX_INLINE PxQuat getConjugate() const | 
| 248 | 	{ | 
| 249 | 		return PxQuat(-x, -y, -z, w); | 
| 250 | 	} | 
| 251 |  | 
| 252 | 	/* | 
| 253 | 	\brief returns imaginary part. | 
| 254 | 	*/ | 
| 255 | 	PX_CUDA_CALLABLE PX_INLINE PxVec3 getImaginaryPart() const | 
| 256 | 	{ | 
| 257 | 		return PxVec3(x, y, z); | 
| 258 | 	} | 
| 259 |  | 
| 260 | 	/** brief computes rotation of x-axis */ | 
| 261 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getBasisVector0() const | 
| 262 | 	{ | 
| 263 | 		const float x2 = x * 2.0f; | 
| 264 | 		const float w2 = w * 2.0f; | 
| 265 | 		return PxVec3((w * w2) - 1.0f + x * x2, (z * w2) + y * x2, (-y * w2) + z * x2); | 
| 266 | 	} | 
| 267 |  | 
| 268 | 	/** brief computes rotation of y-axis */ | 
| 269 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getBasisVector1() const | 
| 270 | 	{ | 
| 271 | 		const float y2 = y * 2.0f; | 
| 272 | 		const float w2 = w * 2.0f; | 
| 273 | 		return PxVec3((-z * w2) + x * y2, (w * w2) - 1.0f + y * y2, (x * w2) + z * y2); | 
| 274 | 	} | 
| 275 |  | 
| 276 | 	/** brief computes rotation of z-axis */ | 
| 277 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getBasisVector2() const | 
| 278 | 	{ | 
| 279 | 		const float z2 = z * 2.0f; | 
| 280 | 		const float w2 = w * 2.0f; | 
| 281 | 		return PxVec3((y * w2) + x * z2, (-x * w2) + y * z2, (w * w2) - 1.0f + z * z2); | 
| 282 | 	} | 
| 283 |  | 
| 284 | 	/** | 
| 285 | 	rotates passed vec by this (assumed unitary) | 
| 286 | 	*/ | 
| 287 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3 rotate(const PxVec3& v) const | 
| 288 | 	{ | 
| 289 | 		const float vx = 2.0f * v.x; | 
| 290 | 		const float vy = 2.0f * v.y; | 
| 291 | 		const float vz = 2.0f * v.z; | 
| 292 | 		const float w2 = w * w - 0.5f; | 
| 293 | 		const float dot2 = (x * vx + y * vy + z * vz); | 
| 294 | 		return PxVec3((vx * w2 + (y * vz - z * vy) * w + x * dot2), (vy * w2 + (z * vx - x * vz) * w + y * dot2), | 
| 295 | 		              (vz * w2 + (x * vy - y * vx) * w + z * dot2)); | 
| 296 | 	} | 
| 297 |  | 
| 298 | 	/** | 
| 299 | 	inverse rotates passed vec by this (assumed unitary) | 
| 300 | 	*/ | 
| 301 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3 rotateInv(const PxVec3& v) const | 
| 302 | 	{ | 
| 303 | 		const float vx = 2.0f * v.x; | 
| 304 | 		const float vy = 2.0f * v.y; | 
| 305 | 		const float vz = 2.0f * v.z; | 
| 306 | 		const float w2 = w * w - 0.5f; | 
| 307 | 		const float dot2 = (x * vx + y * vy + z * vz); | 
| 308 | 		return PxVec3((vx * w2 - (y * vz - z * vy) * w + x * dot2), (vy * w2 - (z * vx - x * vz) * w + y * dot2), | 
| 309 | 		              (vz * w2 - (x * vy - y * vx) * w + z * dot2)); | 
| 310 | 	} | 
| 311 |  | 
| 312 | 	/** | 
| 313 | 	\brief Assignment operator | 
| 314 | 	*/ | 
| 315 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator=(const PxQuat& p) | 
| 316 | 	{ | 
| 317 | 		x = p.x; | 
| 318 | 		y = p.y; | 
| 319 | 		z = p.z; | 
| 320 | 		w = p.w; | 
| 321 | 		return *this; | 
| 322 | 	} | 
| 323 |  | 
| 324 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator*=(const PxQuat& q) | 
| 325 | 	{ | 
| 326 | 		const float tx = w * q.x + q.w * x + y * q.z - q.y * z; | 
| 327 | 		const float ty = w * q.y + q.w * y + z * q.x - q.z * x; | 
| 328 | 		const float tz = w * q.z + q.w * z + x * q.y - q.x * y; | 
| 329 |  | 
| 330 | 		w = w * q.w - q.x * x - y * q.y - q.z * z; | 
| 331 | 		x = tx; | 
| 332 | 		y = ty; | 
| 333 | 		z = tz; | 
| 334 |  | 
| 335 | 		return *this; | 
| 336 | 	} | 
| 337 |  | 
| 338 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator+=(const PxQuat& q) | 
| 339 | 	{ | 
| 340 | 		x += q.x; | 
| 341 | 		y += q.y; | 
| 342 | 		z += q.z; | 
| 343 | 		w += q.w; | 
| 344 | 		return *this; | 
| 345 | 	} | 
| 346 |  | 
| 347 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator-=(const PxQuat& q) | 
| 348 | 	{ | 
| 349 | 		x -= q.x; | 
| 350 | 		y -= q.y; | 
| 351 | 		z -= q.z; | 
| 352 | 		w -= q.w; | 
| 353 | 		return *this; | 
| 354 | 	} | 
| 355 |  | 
| 356 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator*=(const float s) | 
| 357 | 	{ | 
| 358 | 		x *= s; | 
| 359 | 		y *= s; | 
| 360 | 		z *= s; | 
| 361 | 		w *= s; | 
| 362 | 		return *this; | 
| 363 | 	} | 
| 364 |  | 
| 365 | 	/** quaternion multiplication */ | 
| 366 | 	PX_CUDA_CALLABLE PX_INLINE PxQuat operator*(const PxQuat& q) const | 
| 367 | 	{ | 
| 368 | 		return PxQuat(w * q.x + q.w * x + y * q.z - q.y * z, w * q.y + q.w * y + z * q.x - q.z * x, | 
| 369 | 		              w * q.z + q.w * z + x * q.y - q.x * y, w * q.w - x * q.x - y * q.y - z * q.z); | 
| 370 | 	} | 
| 371 |  | 
| 372 | 	/** quaternion addition */ | 
| 373 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator+(const PxQuat& q) const | 
| 374 | 	{ | 
| 375 | 		return PxQuat(x + q.x, y + q.y, z + q.z, w + q.w); | 
| 376 | 	} | 
| 377 |  | 
| 378 | 	/** quaternion subtraction */ | 
| 379 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator-() const | 
| 380 | 	{ | 
| 381 | 		return PxQuat(-x, -y, -z, -w); | 
| 382 | 	} | 
| 383 |  | 
| 384 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator-(const PxQuat& q) const | 
| 385 | 	{ | 
| 386 | 		return PxQuat(x - q.x, y - q.y, z - q.z, w - q.w); | 
| 387 | 	} | 
| 388 |  | 
| 389 | 	PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator*(float r) const | 
| 390 | 	{ | 
| 391 | 		return PxQuat(x * r, y * r, z * r, w * r); | 
| 392 | 	} | 
| 393 |  | 
| 394 | 	/** the quaternion elements */ | 
| 395 | 	float x, y, z, w; | 
| 396 | }; | 
| 397 |  | 
| 398 | #if !PX_DOXYGEN | 
| 399 | } // namespace physx | 
| 400 | #endif | 
| 401 |  | 
| 402 | /** @} */ | 
| 403 | #endif // #ifndef PXFOUNDATION_PXQUAT_H | 
| 404 |  |