| 1 | // |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions |
| 4 | // are met: |
| 5 | // * Redistributions of source code must retain the above copyright |
| 6 | // notice, this list of conditions and the following disclaimer. |
| 7 | // * Redistributions in binary form must reproduce the above copyright |
| 8 | // notice, this list of conditions and the following disclaimer in the |
| 9 | // documentation and/or other materials provided with the distribution. |
| 10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
| 11 | // contributors may be used to endorse or promote products derived |
| 12 | // from this software without specific prior written permission. |
| 13 | // |
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | // |
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 29 | |
| 30 | #ifndef PSFOUNDATION_PSVECTRANSFORM_H |
| 31 | #define PSFOUNDATION_PSVECTRANSFORM_H |
| 32 | |
| 33 | #include "PsVecMath.h" |
| 34 | #include "foundation/PxTransform.h" |
| 35 | |
| 36 | namespace physx |
| 37 | { |
| 38 | namespace shdfnd |
| 39 | { |
| 40 | namespace aos |
| 41 | { |
| 42 | |
| 43 | class PsTransformV |
| 44 | { |
| 45 | public: |
| 46 | QuatV q; |
| 47 | Vec3V p; |
| 48 | |
| 49 | PX_FORCE_INLINE PsTransformV(const PxTransform& orientation) |
| 50 | { |
| 51 | // const PxQuat oq = orientation.q; |
| 52 | // const PxF32 f[4] = {oq.x, oq.y, oq.z, oq.w}; |
| 53 | q = QuatVLoadXYZW(x: orientation.q.x, y: orientation.q.y, z: orientation.q.z, w: orientation.q.w); |
| 54 | // q = QuatV_From_F32Array(&oq.x); |
| 55 | p = V3LoadU(f: orientation.p); |
| 56 | } |
| 57 | |
| 58 | PX_FORCE_INLINE PsTransformV(const Vec3VArg p0 = V3Zero(), const QuatVArg q0 = QuatIdentity()) : q(q0), p(p0) |
| 59 | { |
| 60 | PX_ASSERT(isSaneQuatV(q0)); |
| 61 | } |
| 62 | |
| 63 | PX_FORCE_INLINE PsTransformV operator*(const PsTransformV& x) const |
| 64 | { |
| 65 | PX_ASSERT(x.isSane()); |
| 66 | return transform(src: x); |
| 67 | } |
| 68 | |
| 69 | PX_FORCE_INLINE PsTransformV getInverse() const |
| 70 | { |
| 71 | PX_ASSERT(isFinite()); |
| 72 | // return PxTransform(q.rotateInv(-p),q.getConjugate()); |
| 73 | return PsTransformV(QuatRotateInv(q, v: V3Neg(f: p)), QuatConjugate(q)); |
| 74 | } |
| 75 | |
| 76 | PX_FORCE_INLINE void normalize() |
| 77 | { |
| 78 | p = V3Zero(); |
| 79 | q = QuatIdentity(); |
| 80 | } |
| 81 | |
| 82 | PX_FORCE_INLINE void Invalidate() |
| 83 | { |
| 84 | p = V3Splat(f: FMax()); |
| 85 | q = QuatIdentity(); |
| 86 | } |
| 87 | |
| 88 | PX_FORCE_INLINE Vec3V transform(const Vec3VArg input) const |
| 89 | { |
| 90 | PX_ASSERT(isFinite()); |
| 91 | // return q.rotate(input) + p; |
| 92 | return QuatTransform(q, p, v: input); |
| 93 | } |
| 94 | |
| 95 | PX_FORCE_INLINE Vec3V transformInv(const Vec3VArg input) const |
| 96 | { |
| 97 | PX_ASSERT(isFinite()); |
| 98 | // return q.rotateInv(input-p); |
| 99 | return QuatRotateInv(q, v: V3Sub(a: input, b: p)); |
| 100 | } |
| 101 | |
| 102 | PX_FORCE_INLINE Vec3V rotate(const Vec3VArg input) const |
| 103 | { |
| 104 | PX_ASSERT(isFinite()); |
| 105 | // return q.rotate(input); |
| 106 | return QuatRotate(q, v: input); |
| 107 | } |
| 108 | |
| 109 | PX_FORCE_INLINE Vec3V rotateInv(const Vec3VArg input) const |
| 110 | { |
| 111 | PX_ASSERT(isFinite()); |
| 112 | // return q.rotateInv(input); |
| 113 | return QuatRotateInv(q, v: input); |
| 114 | } |
| 115 | |
| 116 | //! Transform transform to parent (returns compound transform: first src, then *this) |
| 117 | PX_FORCE_INLINE PsTransformV transform(const PsTransformV& src) const |
| 118 | { |
| 119 | PX_ASSERT(src.isSane()); |
| 120 | PX_ASSERT(isSane()); |
| 121 | // src = [srct, srcr] -> [r*srct + t, r*srcr] |
| 122 | // return PxTransform(q.rotate(src.p) + p, q*src.q); |
| 123 | return PsTransformV(V3Add(a: QuatRotate(q, v: src.p), b: p), QuatMul(a: q, b: src.q)); |
| 124 | } |
| 125 | |
| 126 | /** |
| 127 | \brief returns true if finite and q is a unit quaternion |
| 128 | */ |
| 129 | |
| 130 | PX_FORCE_INLINE bool isValid() const |
| 131 | { |
| 132 | // return p.isFinite() && q.isFinite() && q.isValid(); |
| 133 | return isFiniteVec3V(a: p) & isFiniteQuatV(q) & isValidQuatV(q); |
| 134 | } |
| 135 | |
| 136 | /** |
| 137 | \brief returns true if finite and quat magnitude is reasonably close to unit to allow for some accumulation of error |
| 138 | vs isValid |
| 139 | */ |
| 140 | |
| 141 | PX_FORCE_INLINE bool isSane() const |
| 142 | { |
| 143 | // return isFinite() && q.isSane(); |
| 144 | return isFinite() & isSaneQuatV(q); |
| 145 | } |
| 146 | |
| 147 | /** |
| 148 | \brief returns true if all elems are finite (not NAN or INF, etc.) |
| 149 | */ |
| 150 | PX_FORCE_INLINE bool isFinite() const |
| 151 | { |
| 152 | // return p.isFinite() && q.isFinite(); |
| 153 | return isFiniteVec3V(a: p) & isFiniteQuatV(q); |
| 154 | } |
| 155 | |
| 156 | //! Transform transform from parent (returns compound transform: first src, then this->inverse) |
| 157 | PX_FORCE_INLINE PsTransformV transformInv(const PsTransformV& src) const |
| 158 | { |
| 159 | PX_ASSERT(src.isSane()); |
| 160 | PX_ASSERT(isFinite()); |
| 161 | // src = [srct, srcr] -> [r^-1*(srct-t), r^-1*srcr] |
| 162 | /*PxQuat qinv = q.getConjugate(); |
| 163 | return PxTransform(qinv.rotate(src.p - p), qinv*src.q);*/ |
| 164 | const QuatV qinv = QuatConjugate(q); |
| 165 | const Vec3V v = QuatRotate(q: qinv, v: V3Sub(a: src.p, b: p)); |
| 166 | const QuatV rot = QuatMul(a: qinv, b: src.q); |
| 167 | return PsTransformV(v, rot); |
| 168 | } |
| 169 | |
| 170 | static PX_FORCE_INLINE PsTransformV createIdentity() |
| 171 | { |
| 172 | return PsTransformV(V3Zero()); |
| 173 | } |
| 174 | }; |
| 175 | |
| 176 | PX_FORCE_INLINE PsTransformV loadTransformA(const PxTransform& transform) |
| 177 | { |
| 178 | const QuatV q0 = QuatVLoadA(v: &transform.q.x); |
| 179 | const Vec3V p0 = V3LoadA(f: &transform.p.x); |
| 180 | |
| 181 | return PsTransformV(p0, q0); |
| 182 | } |
| 183 | |
| 184 | PX_FORCE_INLINE PsTransformV loadTransformU(const PxTransform& transform) |
| 185 | { |
| 186 | const QuatV q0 = QuatVLoadU(v: &transform.q.x); |
| 187 | const Vec3V p0 = V3LoadU(i: &transform.p.x); |
| 188 | |
| 189 | return PsTransformV(p0, q0); |
| 190 | } |
| 191 | |
| 192 | class PsMatTransformV |
| 193 | { |
| 194 | public: |
| 195 | Mat33V rot; |
| 196 | Vec3V p; |
| 197 | |
| 198 | PX_FORCE_INLINE PsMatTransformV() |
| 199 | { |
| 200 | p = V3Zero(); |
| 201 | rot = M33Identity(); |
| 202 | } |
| 203 | PX_FORCE_INLINE PsMatTransformV(const Vec3VArg _p, const Mat33V& _rot) |
| 204 | { |
| 205 | p = _p; |
| 206 | rot = _rot; |
| 207 | } |
| 208 | |
| 209 | PX_FORCE_INLINE PsMatTransformV(const PsTransformV& other) |
| 210 | { |
| 211 | p = other.p; |
| 212 | QuatGetMat33V(q: other.q, column0&: rot.col0, column1&: rot.col1, column2&: rot.col2); |
| 213 | } |
| 214 | |
| 215 | PX_FORCE_INLINE PsMatTransformV(const Vec3VArg _p, const QuatV& quat) |
| 216 | { |
| 217 | p = _p; |
| 218 | QuatGetMat33V(q: quat, column0&: rot.col0, column1&: rot.col1, column2&: rot.col2); |
| 219 | } |
| 220 | |
| 221 | PX_FORCE_INLINE Vec3V getCol0() const |
| 222 | { |
| 223 | return rot.col0; |
| 224 | } |
| 225 | |
| 226 | PX_FORCE_INLINE Vec3V getCol1() const |
| 227 | { |
| 228 | return rot.col1; |
| 229 | } |
| 230 | |
| 231 | PX_FORCE_INLINE Vec3V getCol2() const |
| 232 | { |
| 233 | return rot.col2; |
| 234 | } |
| 235 | |
| 236 | PX_FORCE_INLINE void setCol0(const Vec3VArg col0) |
| 237 | { |
| 238 | rot.col0 = col0; |
| 239 | } |
| 240 | |
| 241 | PX_FORCE_INLINE void setCol1(const Vec3VArg col1) |
| 242 | { |
| 243 | rot.col1 = col1; |
| 244 | } |
| 245 | |
| 246 | PX_FORCE_INLINE void setCol2(const Vec3VArg col2) |
| 247 | { |
| 248 | rot.col2 = col2; |
| 249 | } |
| 250 | |
| 251 | PX_FORCE_INLINE Vec3V transform(const Vec3VArg input) const |
| 252 | { |
| 253 | return V3Add(a: p, b: M33MulV3(a: rot, b: input)); |
| 254 | } |
| 255 | |
| 256 | PX_FORCE_INLINE Vec3V transformInv(const Vec3VArg input) const |
| 257 | { |
| 258 | return M33TrnspsMulV3(a: rot, b: V3Sub(a: input, b: p)); // QuatRotateInv(q, V3Sub(input, p)); |
| 259 | } |
| 260 | |
| 261 | PX_FORCE_INLINE Vec3V rotate(const Vec3VArg input) const |
| 262 | { |
| 263 | return M33MulV3(a: rot, b: input); |
| 264 | } |
| 265 | |
| 266 | PX_FORCE_INLINE Vec3V rotateInv(const Vec3VArg input) const |
| 267 | { |
| 268 | return M33TrnspsMulV3(a: rot, b: input); |
| 269 | } |
| 270 | |
| 271 | PX_FORCE_INLINE PsMatTransformV transformInv(const PsMatTransformV& src) const |
| 272 | { |
| 273 | |
| 274 | const Vec3V v = M33TrnspsMulV3(a: rot, b: V3Sub(a: src.p, b: p)); |
| 275 | const Mat33V mat = M33MulM33(a: M33Trnsps(a: rot), b: src.rot); |
| 276 | return PsMatTransformV(v, mat); |
| 277 | } |
| 278 | }; |
| 279 | } |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | #endif |
| 284 | |