| 1 | // |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions |
| 4 | // are met: |
| 5 | // * Redistributions of source code must retain the above copyright |
| 6 | // notice, this list of conditions and the following disclaimer. |
| 7 | // * Redistributions in binary form must reproduce the above copyright |
| 8 | // notice, this list of conditions and the following disclaimer in the |
| 9 | // documentation and/or other materials provided with the distribution. |
| 10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
| 11 | // contributors may be used to endorse or promote products derived |
| 12 | // from this software without specific prior written permission. |
| 13 | // |
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | // |
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 29 | |
| 30 | #ifndef PSFOUNDATION_PSVECMATH_H |
| 31 | #define PSFOUNDATION_PSVECMATH_H |
| 32 | |
| 33 | #include "Ps.h" |
| 34 | #include "PsIntrinsics.h" |
| 35 | #include "foundation/PxVec3.h" |
| 36 | #include "foundation/PxVec4.h" |
| 37 | #include "foundation/PxMat33.h" |
| 38 | #include "foundation/PxUnionCast.h" |
| 39 | |
| 40 | // We can opt to use the scalar version of vectorised functions. |
| 41 | // This can catch type safety issues and might even work out more optimal on pc. |
| 42 | // It will also be useful for benchmarking and testing. |
| 43 | // NEVER submit with vector intrinsics deactivated without good reason. |
| 44 | // AM: deactivating SIMD for debug win64 just so autobuild will also exercise |
| 45 | // non-SIMD path, until a dedicated non-SIMD platform sich as Arm comes online. |
| 46 | // TODO: dima: reference all platforms with SIMD support here, |
| 47 | // all unknown/experimental cases should better default to NO SIMD. |
| 48 | |
| 49 | // enable/disable SIMD |
| 50 | #if !defined(PX_SIMD_DISABLED) |
| 51 | #if PX_INTEL_FAMILY && (!defined(__EMSCRIPTEN__) || defined(__SSE2__)) |
| 52 | #define COMPILE_VECTOR_INTRINSICS 1 |
| 53 | #elif PX_ANDROID && PX_NEON |
| 54 | #define COMPILE_VECTOR_INTRINSICS 1 |
| 55 | #elif PX_UWP && PX_NEON |
| 56 | #define COMPILE_VECTOR_INTRINSICS 1 |
| 57 | #elif PX_IOS && PX_NEON |
| 58 | #define COMPILE_VECTOR_INTRINSICS 1 |
| 59 | #elif PX_SWITCH |
| 60 | #define COMPILE_VECTOR_INTRINSICS 1 |
| 61 | #else |
| 62 | #define COMPILE_VECTOR_INTRINSICS 0 |
| 63 | #endif |
| 64 | #else |
| 65 | #define COMPILE_VECTOR_INTRINSICS 0 |
| 66 | #endif |
| 67 | |
| 68 | #if COMPILE_VECTOR_INTRINSICS && PX_INTEL_FAMILY&&(PX_UNIX_FAMILY || PX_PS4) |
| 69 | // only SSE2 compatible platforms should reach this |
| 70 | #if PX_EMSCRIPTEN |
| 71 | #include <emmintrin.h> |
| 72 | #endif |
| 73 | #include <xmmintrin.h> |
| 74 | #endif |
| 75 | |
| 76 | #if COMPILE_VECTOR_INTRINSICS |
| 77 | #include "PsAoS.h" |
| 78 | #else |
| 79 | #include "PsVecMathAoSScalar.h" |
| 80 | #endif |
| 81 | |
| 82 | namespace physx |
| 83 | { |
| 84 | namespace shdfnd |
| 85 | { |
| 86 | namespace aos |
| 87 | { |
| 88 | |
| 89 | // Basic AoS types are |
| 90 | // FloatV - 16-byte aligned representation of float. |
| 91 | // Vec3V - 16-byte aligned representation of PxVec3 stored as (x y z 0). |
| 92 | // Vec4V - 16-byte aligned representation of vector of 4 floats stored as (x y z w). |
| 93 | // BoolV - 16-byte aligned representation of vector of 4 bools stored as (x y z w). |
| 94 | // VecU32V - 16-byte aligned representation of 4 unsigned ints stored as (x y z w). |
| 95 | // VecI32V - 16-byte aligned representation of 4 signed ints stored as (x y z w). |
| 96 | // Mat33V - 16-byte aligned representation of any 3x3 matrix. |
| 97 | // Mat34V - 16-byte aligned representation of transformation matrix (rotation in col1,col2,col3 and translation in |
| 98 | // col4). |
| 99 | // Mat44V - 16-byte aligned representation of any 4x4 matrix. |
| 100 | |
| 101 | ////////////////////////////////////////// |
| 102 | // Construct a simd type from a scalar type |
| 103 | ////////////////////////////////////////// |
| 104 | |
| 105 | // FloatV |
| 106 | //(f,f,f,f) |
| 107 | PX_FORCE_INLINE FloatV FLoad(const PxF32 f); |
| 108 | |
| 109 | // Vec3V |
| 110 | //(f,f,f,0) |
| 111 | PX_FORCE_INLINE Vec3V V3Load(const PxF32 f); |
| 112 | //(f.x,f.y,f.z,0) |
| 113 | PX_FORCE_INLINE Vec3V V3LoadU(const PxVec3& f); |
| 114 | //(f.x,f.y,f.z,0), f must be 16-byte aligned |
| 115 | PX_FORCE_INLINE Vec3V V3LoadA(const PxVec3& f); |
| 116 | //(f.x,f.y,f.z,w_undefined), f must be 16-byte aligned |
| 117 | PX_FORCE_INLINE Vec3V V3LoadUnsafeA(const PxVec3& f); |
| 118 | //(f.x,f.y,f.z,0) |
| 119 | PX_FORCE_INLINE Vec3V V3LoadU(const PxF32* f); |
| 120 | //(f.x,f.y,f.z,0), f must be 16-byte aligned |
| 121 | PX_FORCE_INLINE Vec3V V3LoadA(const PxF32* f); |
| 122 | |
| 123 | // Vec4V |
| 124 | //(f,f,f,f) |
| 125 | PX_FORCE_INLINE Vec4V V4Load(const PxF32 f); |
| 126 | //(f[0],f[1],f[2],f[3]) |
| 127 | PX_FORCE_INLINE Vec4V V4LoadU(const PxF32* const f); |
| 128 | //(f[0],f[1],f[2],f[3]), f must be 16-byte aligned |
| 129 | PX_FORCE_INLINE Vec4V V4LoadA(const PxF32* const f); |
| 130 | //(x,y,z,w) |
| 131 | PX_FORCE_INLINE Vec4V V4LoadXYZW(const PxF32& x, const PxF32& y, const PxF32& z, const PxF32& w); |
| 132 | |
| 133 | // BoolV |
| 134 | //(f,f,f,f) |
| 135 | PX_FORCE_INLINE BoolV BLoad(const bool f); |
| 136 | //(f[0],f[1],f[2],f[3]) |
| 137 | PX_FORCE_INLINE BoolV BLoad(const bool* const f); |
| 138 | |
| 139 | // VecU32V |
| 140 | //(f,f,f,f) |
| 141 | PX_FORCE_INLINE VecU32V U4Load(const PxU32 f); |
| 142 | //(f[0],f[1],f[2],f[3]) |
| 143 | PX_FORCE_INLINE VecU32V U4LoadU(const PxU32* f); |
| 144 | //(f[0],f[1],f[2],f[3]), f must be 16-byte aligned |
| 145 | PX_FORCE_INLINE VecU32V U4LoadA(const PxU32* f); |
| 146 | //((U32)x, (U32)y, (U32)z, (U32)w) |
| 147 | PX_FORCE_INLINE VecU32V U4LoadXYZW(PxU32 x, PxU32 y, PxU32 z, PxU32 w); |
| 148 | |
| 149 | // VecI32V |
| 150 | //(i,i,i,i) |
| 151 | PX_FORCE_INLINE VecI32V I4Load(const PxI32 i); |
| 152 | //(i,i,i,i) |
| 153 | PX_FORCE_INLINE VecI32V I4LoadU(const PxI32* i); |
| 154 | //(i,i,i,i) |
| 155 | PX_FORCE_INLINE VecI32V I4LoadA(const PxI32* i); |
| 156 | |
| 157 | // QuatV |
| 158 | //(x = v[0], y=v[1], z=v[2], w=v3[3]) and array don't need to aligned |
| 159 | PX_FORCE_INLINE QuatV QuatVLoadU(const PxF32* v); |
| 160 | //(x = v[0], y=v[1], z=v[2], w=v3[3]) and array need to aligned, fast load |
| 161 | PX_FORCE_INLINE QuatV QuatVLoadA(const PxF32* v); |
| 162 | //(x, y, z, w) |
| 163 | PX_FORCE_INLINE QuatV QuatVLoadXYZW(const PxF32 x, const PxF32 y, const PxF32 z, const PxF32 w); |
| 164 | |
| 165 | // not added to public api |
| 166 | Vec4V Vec4V_From_PxVec3_WUndefined(const PxVec3& v); |
| 167 | |
| 168 | /////////////////////////////////////////////////// |
| 169 | // Construct a simd type from a different simd type |
| 170 | /////////////////////////////////////////////////// |
| 171 | |
| 172 | // Vec3V |
| 173 | //(v.x,v.y,v.z,0) |
| 174 | PX_FORCE_INLINE Vec3V Vec3V_From_Vec4V(Vec4V v); |
| 175 | //(v.x,v.y,v.z,undefined) - be very careful with w!=0 because many functions require w==0 for correct operation eg V3Dot, V3Length, V3Cross etc etc. |
| 176 | PX_FORCE_INLINE Vec3V Vec3V_From_Vec4V_WUndefined(const Vec4V v); |
| 177 | |
| 178 | // Vec4V |
| 179 | //(f.x,f.y,f.z,f.w) |
| 180 | PX_FORCE_INLINE Vec4V Vec4V_From_Vec3V(Vec3V f); |
| 181 | //((PxF32)f.x, (PxF32)f.y, (PxF32)f.z, (PxF32)f.w) |
| 182 | PX_FORCE_INLINE Vec4V Vec4V_From_VecU32V(VecU32V a); |
| 183 | //((PxF32)f.x, (PxF32)f.y, (PxF32)f.z, (PxF32)f.w) |
| 184 | PX_FORCE_INLINE Vec4V Vec4V_From_VecI32V(VecI32V a); |
| 185 | //(*(reinterpret_cast<PxF32*>(&f.x), (reinterpret_cast<PxF32*>(&f.y), (reinterpret_cast<PxF32*>(&f.z), |
| 186 | //(reinterpret_cast<PxF32*>(&f.w)) |
| 187 | PX_FORCE_INLINE Vec4V Vec4V_ReinterpretFrom_VecU32V(VecU32V a); |
| 188 | //(*(reinterpret_cast<PxF32*>(&f.x), (reinterpret_cast<PxF32*>(&f.y), (reinterpret_cast<PxF32*>(&f.z), |
| 189 | //(reinterpret_cast<PxF32*>(&f.w)) |
| 190 | PX_FORCE_INLINE Vec4V Vec4V_ReinterpretFrom_VecI32V(VecI32V a); |
| 191 | |
| 192 | // VecU32V |
| 193 | //(*(reinterpret_cast<PxU32*>(&f.x), (reinterpret_cast<PxU32*>(&f.y), (reinterpret_cast<PxU32*>(&f.z), |
| 194 | //(reinterpret_cast<PxU32*>(&f.w)) |
| 195 | PX_FORCE_INLINE VecU32V VecU32V_ReinterpretFrom_Vec4V(Vec4V a); |
| 196 | //(b[0], b[1], b[2], b[3]) |
| 197 | PX_FORCE_INLINE VecU32V VecU32V_From_BoolV(const BoolVArg b); |
| 198 | |
| 199 | // VecI32V |
| 200 | //(*(reinterpret_cast<PxI32*>(&f.x), (reinterpret_cast<PxI32*>(&f.y), (reinterpret_cast<PxI32*>(&f.z), |
| 201 | //(reinterpret_cast<PxI32*>(&f.w)) |
| 202 | PX_FORCE_INLINE VecI32V VecI32V_ReinterpretFrom_Vec4V(Vec4V a); |
| 203 | //((I32)a.x, (I32)a.y, (I32)a.z, (I32)a.w) |
| 204 | PX_FORCE_INLINE VecI32V VecI32V_From_Vec4V(Vec4V a); |
| 205 | //((I32)b.x, (I32)b.y, (I32)b.z, (I32)b.w) |
| 206 | PX_FORCE_INLINE VecI32V VecI32V_From_BoolV(const BoolVArg b); |
| 207 | |
| 208 | /////////////////////////////////////////////////// |
| 209 | // Convert from a simd type back to a scalar type |
| 210 | /////////////////////////////////////////////////// |
| 211 | |
| 212 | // FloatV |
| 213 | // a.x |
| 214 | PX_FORCE_INLINE void FStore(const FloatV a, PxF32* PX_RESTRICT f); |
| 215 | |
| 216 | // Vec3V |
| 217 | //(a.x,a.y,a.z) |
| 218 | PX_FORCE_INLINE void V3StoreA(const Vec3V a, PxVec3& f); |
| 219 | //(a.x,a.y,a.z) |
| 220 | PX_FORCE_INLINE void V3StoreU(const Vec3V a, PxVec3& f); |
| 221 | |
| 222 | // Vec4V |
| 223 | PX_FORCE_INLINE void V4StoreA(const Vec4V a, PxF32* f); |
| 224 | PX_FORCE_INLINE void V4StoreU(const Vec4V a, PxF32* f); |
| 225 | |
| 226 | // BoolV |
| 227 | PX_FORCE_INLINE void BStoreA(const BoolV b, PxU32* f); |
| 228 | |
| 229 | // VecU32V |
| 230 | PX_FORCE_INLINE void U4StoreA(const VecU32V uv, PxU32* u); |
| 231 | |
| 232 | // VecI32V |
| 233 | PX_FORCE_INLINE void I4StoreA(const VecI32V iv, PxI32* i); |
| 234 | |
| 235 | ////////////////////////////////////////////////////////////////// |
| 236 | // Test that simd types have elements in the floating point range |
| 237 | ////////////////////////////////////////////////////////////////// |
| 238 | |
| 239 | // check for each component is valid ie in floating point range |
| 240 | PX_FORCE_INLINE bool isFiniteFloatV(const FloatV a); |
| 241 | // check for each component is valid ie in floating point range |
| 242 | PX_FORCE_INLINE bool isFiniteVec3V(const Vec3V a); |
| 243 | // check for each component is valid ie in floating point range |
| 244 | PX_FORCE_INLINE bool isFiniteVec4V(const Vec4V a); |
| 245 | |
| 246 | // Check that w-component is zero. |
| 247 | PX_FORCE_INLINE bool isValidVec3V(const Vec3V a); |
| 248 | |
| 249 | ////////////////////////////////////////////////////////////////// |
| 250 | // Tests that all elements of two 16-byte types are completely equivalent. |
| 251 | // Use these tests for unit testing and asserts only. |
| 252 | ////////////////////////////////////////////////////////////////// |
| 253 | |
| 254 | namespace _VecMathTests |
| 255 | { |
| 256 | PX_FORCE_INLINE Vec3V getInvalidVec3V(); |
| 257 | PX_FORCE_INLINE bool allElementsEqualFloatV(const FloatV a, const FloatV b); |
| 258 | PX_FORCE_INLINE bool allElementsEqualVec3V(const Vec3V a, const Vec3V b); |
| 259 | PX_FORCE_INLINE bool allElementsEqualVec4V(const Vec4V a, const Vec4V b); |
| 260 | PX_FORCE_INLINE bool allElementsEqualBoolV(const BoolV a, const BoolV b); |
| 261 | PX_FORCE_INLINE bool allElementsEqualVecU32V(const VecU32V a, const VecU32V b); |
| 262 | PX_FORCE_INLINE bool allElementsEqualVecI32V(const VecI32V a, const VecI32V b); |
| 263 | |
| 264 | PX_FORCE_INLINE bool allElementsEqualMat33V(const Mat33V& a, const Mat33V& b) |
| 265 | { |
| 266 | return (allElementsEqualVec3V(a: a.col0, b: b.col0) && allElementsEqualVec3V(a: a.col1, b: b.col1) && |
| 267 | allElementsEqualVec3V(a: a.col2, b: b.col2)); |
| 268 | } |
| 269 | PX_FORCE_INLINE bool allElementsEqualMat34V(const Mat34V& a, const Mat34V& b) |
| 270 | { |
| 271 | return (allElementsEqualVec3V(a: a.col0, b: b.col0) && allElementsEqualVec3V(a: a.col1, b: b.col1) && |
| 272 | allElementsEqualVec3V(a: a.col2, b: b.col2) && allElementsEqualVec3V(a: a.col3, b: b.col3)); |
| 273 | } |
| 274 | PX_FORCE_INLINE bool allElementsEqualMat44V(const Mat44V& a, const Mat44V& b) |
| 275 | { |
| 276 | return (allElementsEqualVec4V(a: a.col0, b: b.col0) && allElementsEqualVec4V(a: a.col1, b: b.col1) && |
| 277 | allElementsEqualVec4V(a: a.col2, b: b.col2) && allElementsEqualVec4V(a: a.col3, b: b.col3)); |
| 278 | } |
| 279 | |
| 280 | PX_FORCE_INLINE bool allElementsNearEqualFloatV(const FloatV a, const FloatV b); |
| 281 | PX_FORCE_INLINE bool allElementsNearEqualVec3V(const Vec3V a, const Vec3V b); |
| 282 | PX_FORCE_INLINE bool allElementsNearEqualVec4V(const Vec4V a, const Vec4V b); |
| 283 | PX_FORCE_INLINE bool allElementsNearEqualMat33V(const Mat33V& a, const Mat33V& b) |
| 284 | { |
| 285 | return (allElementsNearEqualVec3V(a: a.col0, b: b.col0) && allElementsNearEqualVec3V(a: a.col1, b: b.col1) && |
| 286 | allElementsNearEqualVec3V(a: a.col2, b: b.col2)); |
| 287 | } |
| 288 | PX_FORCE_INLINE bool allElementsNearEqualMat34V(const Mat34V& a, const Mat34V& b) |
| 289 | { |
| 290 | return (allElementsNearEqualVec3V(a: a.col0, b: b.col0) && allElementsNearEqualVec3V(a: a.col1, b: b.col1) && |
| 291 | allElementsNearEqualVec3V(a: a.col2, b: b.col2) && allElementsNearEqualVec3V(a: a.col3, b: b.col3)); |
| 292 | } |
| 293 | PX_FORCE_INLINE bool allElementsNearEqualMat44V(const Mat44V& a, const Mat44V& b) |
| 294 | { |
| 295 | return (allElementsNearEqualVec4V(a: a.col0, b: b.col0) && allElementsNearEqualVec4V(a: a.col1, b: b.col1) && |
| 296 | allElementsNearEqualVec4V(a: a.col2, b: b.col2) && allElementsNearEqualVec4V(a: a.col3, b: b.col3)); |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | ////////////////////////////////////////////////////////////////// |
| 301 | // Math operations on FloatV |
| 302 | ////////////////////////////////////////////////////////////////// |
| 303 | |
| 304 | //(0,0,0,0) |
| 305 | PX_FORCE_INLINE FloatV FZero(); |
| 306 | //(1,1,1,1) |
| 307 | PX_FORCE_INLINE FloatV FOne(); |
| 308 | //(0.5,0.5,0.5,0.5) |
| 309 | PX_FORCE_INLINE FloatV FHalf(); |
| 310 | //(PX_EPS_REAL,PX_EPS_REAL,PX_EPS_REAL,PX_EPS_REAL) |
| 311 | PX_FORCE_INLINE FloatV FEps(); |
| 312 | //(PX_MAX_REAL, PX_MAX_REAL, PX_MAX_REAL PX_MAX_REAL) |
| 313 | PX_FORCE_INLINE FloatV FMax(); |
| 314 | //(-PX_MAX_REAL, -PX_MAX_REAL, -PX_MAX_REAL -PX_MAX_REAL) |
| 315 | PX_FORCE_INLINE FloatV FNegMax(); |
| 316 | //(1e-6f, 1e-6f, 1e-6f, 1e-6f) |
| 317 | PX_FORCE_INLINE FloatV FEps6(); |
| 318 | //((PxF32*)&1, (PxF32*)&1, (PxF32*)&1, (PxF32*)&1) |
| 319 | |
| 320 | //-f (per component) |
| 321 | PX_FORCE_INLINE FloatV FNeg(const FloatV f); |
| 322 | // a+b (per component) |
| 323 | PX_FORCE_INLINE FloatV FAdd(const FloatV a, const FloatV b); |
| 324 | // a-b (per component) |
| 325 | PX_FORCE_INLINE FloatV FSub(const FloatV a, const FloatV b); |
| 326 | // a*b (per component) |
| 327 | PX_FORCE_INLINE FloatV FMul(const FloatV a, const FloatV b); |
| 328 | // a/b (per component) |
| 329 | PX_FORCE_INLINE FloatV FDiv(const FloatV a, const FloatV b); |
| 330 | // a/b (per component) |
| 331 | PX_FORCE_INLINE FloatV FDivFast(const FloatV a, const FloatV b); |
| 332 | // 1.0f/a |
| 333 | PX_FORCE_INLINE FloatV FRecip(const FloatV a); |
| 334 | // 1.0f/a |
| 335 | PX_FORCE_INLINE FloatV FRecipFast(const FloatV a); |
| 336 | // 1.0f/sqrt(a) |
| 337 | PX_FORCE_INLINE FloatV FRsqrt(const FloatV a); |
| 338 | // 1.0f/sqrt(a) |
| 339 | PX_FORCE_INLINE FloatV FRsqrtFast(const FloatV a); |
| 340 | // sqrt(a) |
| 341 | PX_FORCE_INLINE FloatV FSqrt(const FloatV a); |
| 342 | // a*b+c |
| 343 | PX_FORCE_INLINE FloatV FScaleAdd(const FloatV a, const FloatV b, const FloatV c); |
| 344 | // c-a*b |
| 345 | PX_FORCE_INLINE FloatV FNegScaleSub(const FloatV a, const FloatV b, const FloatV c); |
| 346 | // fabs(a) |
| 347 | PX_FORCE_INLINE FloatV FAbs(const FloatV a); |
| 348 | // c ? a : b (per component) |
| 349 | PX_FORCE_INLINE FloatV FSel(const BoolV c, const FloatV a, const FloatV b); |
| 350 | // a>b (per component) |
| 351 | PX_FORCE_INLINE BoolV FIsGrtr(const FloatV a, const FloatV b); |
| 352 | // a>=b (per component) |
| 353 | PX_FORCE_INLINE BoolV FIsGrtrOrEq(const FloatV a, const FloatV b); |
| 354 | // a==b (per component) |
| 355 | PX_FORCE_INLINE BoolV FIsEq(const FloatV a, const FloatV b); |
| 356 | // Max(a,b) (per component) |
| 357 | PX_FORCE_INLINE FloatV FMax(const FloatV a, const FloatV b); |
| 358 | // Min(a,b) (per component) |
| 359 | PX_FORCE_INLINE FloatV FMin(const FloatV a, const FloatV b); |
| 360 | // Clamp(a,b) (per component) |
| 361 | PX_FORCE_INLINE FloatV FClamp(const FloatV a, const FloatV minV, const FloatV maxV); |
| 362 | |
| 363 | // a.x>b.x |
| 364 | PX_FORCE_INLINE PxU32 FAllGrtr(const FloatV a, const FloatV b); |
| 365 | // a.x>=b.x |
| 366 | PX_FORCE_INLINE PxU32 FAllGrtrOrEq(const FloatV a, const FloatV b); |
| 367 | // a.x==b.x |
| 368 | PX_FORCE_INLINE PxU32 FAllEq(const FloatV a, const FloatV b); |
| 369 | // a<min || a>max |
| 370 | PX_FORCE_INLINE PxU32 FOutOfBounds(const FloatV a, const FloatV min, const FloatV max); |
| 371 | // a>=min && a<=max |
| 372 | PX_FORCE_INLINE PxU32 FInBounds(const FloatV a, const FloatV min, const FloatV max); |
| 373 | // a<-bounds || a>bounds |
| 374 | PX_FORCE_INLINE PxU32 FOutOfBounds(const FloatV a, const FloatV bounds); |
| 375 | // a>=-bounds && a<=bounds |
| 376 | PX_FORCE_INLINE PxU32 FInBounds(const FloatV a, const FloatV bounds); |
| 377 | |
| 378 | // round float a to the near int |
| 379 | PX_FORCE_INLINE FloatV FRound(const FloatV a); |
| 380 | // calculate the sin of float a |
| 381 | PX_FORCE_INLINE FloatV FSin(const FloatV a); |
| 382 | // calculate the cos of float b |
| 383 | PX_FORCE_INLINE FloatV FCos(const FloatV a); |
| 384 | |
| 385 | ////////////////////////////////////////////////////////////////// |
| 386 | // Math operations on Vec3V |
| 387 | ////////////////////////////////////////////////////////////////// |
| 388 | |
| 389 | //(f,f,f,f) |
| 390 | PX_FORCE_INLINE Vec3V V3Splat(const FloatV f); |
| 391 | |
| 392 | //(x,y,z) |
| 393 | PX_FORCE_INLINE Vec3V V3Merge(const FloatVArg x, const FloatVArg y, const FloatVArg z); |
| 394 | |
| 395 | //(1,0,0,0) |
| 396 | PX_FORCE_INLINE Vec3V V3UnitX(); |
| 397 | //(0,1,0,0) |
| 398 | PX_FORCE_INLINE Vec3V V3UnitY(); |
| 399 | //(0,0,1,0) |
| 400 | PX_FORCE_INLINE Vec3V V3UnitZ(); |
| 401 | |
| 402 | //(f.x,f.x,f.x,f.x) |
| 403 | PX_FORCE_INLINE FloatV V3GetX(const Vec3V f); |
| 404 | //(f.y,f.y,f.y,f.y) |
| 405 | PX_FORCE_INLINE FloatV V3GetY(const Vec3V f); |
| 406 | //(f.z,f.z,f.z,f.z) |
| 407 | PX_FORCE_INLINE FloatV V3GetZ(const Vec3V f); |
| 408 | |
| 409 | //(f,v.y,v.z,v.w) |
| 410 | PX_FORCE_INLINE Vec3V V3SetX(const Vec3V v, const FloatV f); |
| 411 | //(v.x,f,v.z,v.w) |
| 412 | PX_FORCE_INLINE Vec3V V3SetY(const Vec3V v, const FloatV f); |
| 413 | //(v.x,v.y,f,v.w) |
| 414 | PX_FORCE_INLINE Vec3V V3SetZ(const Vec3V v, const FloatV f); |
| 415 | |
| 416 | // v.x=f |
| 417 | PX_FORCE_INLINE void V3WriteX(Vec3V& v, const PxF32 f); |
| 418 | // v.y=f |
| 419 | PX_FORCE_INLINE void V3WriteY(Vec3V& v, const PxF32 f); |
| 420 | // v.z=f |
| 421 | PX_FORCE_INLINE void V3WriteZ(Vec3V& v, const PxF32 f); |
| 422 | // v.x=f.x, v.y=f.y, v.z=f.z |
| 423 | PX_FORCE_INLINE void V3WriteXYZ(Vec3V& v, const PxVec3& f); |
| 424 | // return v.x |
| 425 | PX_FORCE_INLINE PxF32 V3ReadX(const Vec3V& v); |
| 426 | // return v.y |
| 427 | PX_FORCE_INLINE PxF32 V3ReadY(const Vec3V& v); |
| 428 | // return v.y |
| 429 | PX_FORCE_INLINE PxF32 V3ReadZ(const Vec3V& v); |
| 430 | // return (v.x,v.y,v.z) |
| 431 | PX_FORCE_INLINE const PxVec3& V3ReadXYZ(const Vec3V& v); |
| 432 | |
| 433 | //(a.x, b.x, c.x) |
| 434 | PX_FORCE_INLINE Vec3V V3ColX(const Vec3V a, const Vec3V b, const Vec3V c); |
| 435 | //(a.y, b.y, c.y) |
| 436 | PX_FORCE_INLINE Vec3V V3ColY(const Vec3V a, const Vec3V b, const Vec3V c); |
| 437 | //(a.z, b.z, c.z) |
| 438 | PX_FORCE_INLINE Vec3V V3ColZ(const Vec3V a, const Vec3V b, const Vec3V c); |
| 439 | |
| 440 | //(0,0,0,0) |
| 441 | PX_FORCE_INLINE Vec3V V3Zero(); |
| 442 | //(1,1,1,1) |
| 443 | PX_FORCE_INLINE Vec3V V3One(); |
| 444 | //(PX_EPS_REAL,PX_EPS_REAL,PX_EPS_REAL,PX_EPS_REAL) |
| 445 | PX_FORCE_INLINE Vec3V V3Eps(); |
| 446 | //-c (per component) |
| 447 | PX_FORCE_INLINE Vec3V V3Neg(const Vec3V c); |
| 448 | // a+b (per component) |
| 449 | PX_FORCE_INLINE Vec3V V3Add(const Vec3V a, const Vec3V b); |
| 450 | // a-b (per component) |
| 451 | PX_FORCE_INLINE Vec3V V3Sub(const Vec3V a, const Vec3V b); |
| 452 | // a*b (per component) |
| 453 | PX_FORCE_INLINE Vec3V V3Scale(const Vec3V a, const FloatV b); |
| 454 | // a*b (per component) |
| 455 | PX_FORCE_INLINE Vec3V V3Mul(const Vec3V a, const Vec3V b); |
| 456 | // a/b (per component) |
| 457 | PX_FORCE_INLINE Vec3V V3ScaleInv(const Vec3V a, const FloatV b); |
| 458 | // a/b (per component) |
| 459 | PX_FORCE_INLINE Vec3V V3Div(const Vec3V a, const Vec3V b); |
| 460 | // a/b (per component) |
| 461 | PX_FORCE_INLINE Vec3V V3ScaleInvFast(const Vec3V a, const FloatV b); |
| 462 | // a/b (per component) |
| 463 | PX_FORCE_INLINE Vec3V V3DivFast(const Vec3V a, const Vec3V b); |
| 464 | // 1.0f/a |
| 465 | PX_FORCE_INLINE Vec3V V3Recip(const Vec3V a); |
| 466 | // 1.0f/a |
| 467 | PX_FORCE_INLINE Vec3V V3RecipFast(const Vec3V a); |
| 468 | // 1.0f/sqrt(a) |
| 469 | PX_FORCE_INLINE Vec3V V3Rsqrt(const Vec3V a); |
| 470 | // 1.0f/sqrt(a) |
| 471 | PX_FORCE_INLINE Vec3V V3RsqrtFast(const Vec3V a); |
| 472 | // a*b+c |
| 473 | PX_FORCE_INLINE Vec3V V3ScaleAdd(const Vec3V a, const FloatV b, const Vec3V c); |
| 474 | // c-a*b |
| 475 | PX_FORCE_INLINE Vec3V V3NegScaleSub(const Vec3V a, const FloatV b, const Vec3V c); |
| 476 | // a*b+c |
| 477 | PX_FORCE_INLINE Vec3V V3MulAdd(const Vec3V a, const Vec3V b, const Vec3V c); |
| 478 | // c-a*b |
| 479 | PX_FORCE_INLINE Vec3V V3NegMulSub(const Vec3V a, const Vec3V b, const Vec3V c); |
| 480 | // fabs(a) |
| 481 | PX_FORCE_INLINE Vec3V V3Abs(const Vec3V a); |
| 482 | |
| 483 | // a.b |
| 484 | // Note: a.w and b.w must have value zero |
| 485 | PX_FORCE_INLINE FloatV V3Dot(const Vec3V a, const Vec3V b); |
| 486 | // aXb |
| 487 | // Note: a.w and b.w must have value zero |
| 488 | PX_FORCE_INLINE Vec3V V3Cross(const Vec3V a, const Vec3V b); |
| 489 | // |a.a|^1/2 |
| 490 | // Note: a.w must have value zero |
| 491 | PX_FORCE_INLINE FloatV V3Length(const Vec3V a); |
| 492 | // a.a |
| 493 | // Note: a.w must have value zero |
| 494 | PX_FORCE_INLINE FloatV V3LengthSq(const Vec3V a); |
| 495 | // a*|a.a|^-1/2 |
| 496 | // Note: a.w must have value zero |
| 497 | PX_FORCE_INLINE Vec3V V3Normalize(const Vec3V a); |
| 498 | // a.a>0 ? a*|a.a|^-1/2 : (0,0,0,0) |
| 499 | // Note: a.w must have value zero |
| 500 | PX_FORCE_INLINE FloatV V3Length(const Vec3V a); |
| 501 | // a.a>0 ? a*|a.a|^-1/2 : unsafeReturnValue |
| 502 | // Note: a.w must have value zero |
| 503 | PX_FORCE_INLINE Vec3V V3NormalizeSafe(const Vec3V a, const Vec3V unsafeReturnValue); |
| 504 | // a.x + a.y + a.z |
| 505 | // Note: a.w must have value zero |
| 506 | PX_FORCE_INLINE FloatV V3SumElems(const Vec3V a); |
| 507 | |
| 508 | // c ? a : b (per component) |
| 509 | PX_FORCE_INLINE Vec3V V3Sel(const BoolV c, const Vec3V a, const Vec3V b); |
| 510 | // a>b (per component) |
| 511 | PX_FORCE_INLINE BoolV V3IsGrtr(const Vec3V a, const Vec3V b); |
| 512 | // a>=b (per component) |
| 513 | PX_FORCE_INLINE BoolV V3IsGrtrOrEq(const Vec3V a, const Vec3V b); |
| 514 | // a==b (per component) |
| 515 | PX_FORCE_INLINE BoolV V3IsEq(const Vec3V a, const Vec3V b); |
| 516 | // Max(a,b) (per component) |
| 517 | PX_FORCE_INLINE Vec3V V3Max(const Vec3V a, const Vec3V b); |
| 518 | // Min(a,b) (per component) |
| 519 | PX_FORCE_INLINE Vec3V V3Min(const Vec3V a, const Vec3V b); |
| 520 | |
| 521 | // Extract the maximum value from a |
| 522 | // Note: a.w must have value zero |
| 523 | PX_FORCE_INLINE FloatV (const Vec3V a); |
| 524 | |
| 525 | // Extract the minimum value from a |
| 526 | // Note: a.w must have value zero |
| 527 | PX_FORCE_INLINE FloatV (const Vec3V a); |
| 528 | |
| 529 | // Clamp(a,b) (per component) |
| 530 | PX_FORCE_INLINE Vec3V V3Clamp(const Vec3V a, const Vec3V minV, const Vec3V maxV); |
| 531 | |
| 532 | // Extract the sign for each component |
| 533 | PX_FORCE_INLINE Vec3V V3Sign(const Vec3V a); |
| 534 | |
| 535 | // Test all components. |
| 536 | // (a.x>b.x && a.y>b.y && a.z>b.z) |
| 537 | // Note: a.w and b.w must have value zero |
| 538 | PX_FORCE_INLINE PxU32 V3AllGrtr(const Vec3V a, const Vec3V b); |
| 539 | // (a.x>=b.x && a.y>=b.y && a.z>=b.z) |
| 540 | // Note: a.w and b.w must have value zero |
| 541 | PX_FORCE_INLINE PxU32 V3AllGrtrOrEq(const Vec3V a, const Vec3V b); |
| 542 | // (a.x==b.x && a.y==b.y && a.z==b.z) |
| 543 | // Note: a.w and b.w must have value zero |
| 544 | PX_FORCE_INLINE PxU32 V3AllEq(const Vec3V a, const Vec3V b); |
| 545 | // a.x<min.x || a.y<min.y || a.z<min.z || a.x>max.x || a.y>max.y || a.z>max.z |
| 546 | // Note: a.w and min.w and max.w must have value zero |
| 547 | PX_FORCE_INLINE PxU32 V3OutOfBounds(const Vec3V a, const Vec3V min, const Vec3V max); |
| 548 | // a.x>=min.x && a.y>=min.y && a.z>=min.z && a.x<=max.x && a.y<=max.y && a.z<=max.z |
| 549 | // Note: a.w and min.w and max.w must have value zero |
| 550 | PX_FORCE_INLINE PxU32 V3InBounds(const Vec3V a, const Vec3V min, const Vec3V max); |
| 551 | // a.x<-bounds.x || a.y<=-bounds.y || a.z<bounds.z || a.x>bounds.x || a.y>bounds.y || a.z>bounds.z |
| 552 | // Note: a.w and bounds.w must have value zero |
| 553 | PX_FORCE_INLINE PxU32 V3OutOfBounds(const Vec3V a, const Vec3V bounds); |
| 554 | // a.x>=-bounds.x && a.y>=-bounds.y && a.z>=-bounds.z && a.x<=bounds.x && a.y<=bounds.y && a.z<=bounds.z |
| 555 | // Note: a.w and bounds.w must have value zero |
| 556 | PX_FORCE_INLINE PxU32 V3InBounds(const Vec3V a, const Vec3V bounds); |
| 557 | |
| 558 | //(floor(a.x + 0.5f), floor(a.y + 0.5f), floor(a.z + 0.5f)) |
| 559 | PX_FORCE_INLINE Vec3V V3Round(const Vec3V a); |
| 560 | |
| 561 | //(sinf(a.x), sinf(a.y), sinf(a.z)) |
| 562 | PX_FORCE_INLINE Vec3V V3Sin(const Vec3V a); |
| 563 | //(cosf(a.x), cosf(a.y), cosf(a.z)) |
| 564 | PX_FORCE_INLINE Vec3V V3Cos(const Vec3V a); |
| 565 | |
| 566 | //(a.y,a.z,a.z) |
| 567 | PX_FORCE_INLINE Vec3V V3PermYZZ(const Vec3V a); |
| 568 | //(a.x,a.y,a.x) |
| 569 | PX_FORCE_INLINE Vec3V V3PermXYX(const Vec3V a); |
| 570 | //(a.y,a.z,a.x) |
| 571 | PX_FORCE_INLINE Vec3V V3PermYZX(const Vec3V a); |
| 572 | //(a.z, a.x, a.y) |
| 573 | PX_FORCE_INLINE Vec3V V3PermZXY(const Vec3V a); |
| 574 | //(a.z,a.z,a.y) |
| 575 | PX_FORCE_INLINE Vec3V V3PermZZY(const Vec3V a); |
| 576 | //(a.y,a.x,a.x) |
| 577 | PX_FORCE_INLINE Vec3V V3PermYXX(const Vec3V a); |
| 578 | //(0, v1.z, v0.y) |
| 579 | PX_FORCE_INLINE Vec3V V3Perm_Zero_1Z_0Y(const Vec3V v0, const Vec3V v1); |
| 580 | //(v0.z, 0, v1.x) |
| 581 | PX_FORCE_INLINE Vec3V V3Perm_0Z_Zero_1X(const Vec3V v0, const Vec3V v1); |
| 582 | //(v1.y, v0.x, 0) |
| 583 | PX_FORCE_INLINE Vec3V V3Perm_1Y_0X_Zero(const Vec3V v0, const Vec3V v1); |
| 584 | |
| 585 | // Transpose 3 Vec3Vs inplace. Sets the w component to zero |
| 586 | // [ x0, y0, z0, w0] [ x1, y1, z1, w1] [ x2, y2, z2, w2] -> [x0 x1 x2 0] [y0 y1 y2 0] [z0 z1 z2 0] |
| 587 | PX_FORCE_INLINE void V3Transpose(Vec3V& col0, Vec3V& col1, Vec3V& col2); |
| 588 | |
| 589 | ////////////////////////////////////////////////////////////////// |
| 590 | // Math operations on Vec4V |
| 591 | ////////////////////////////////////////////////////////////////// |
| 592 | |
| 593 | //(f,f,f,f) |
| 594 | PX_FORCE_INLINE Vec4V V4Splat(const FloatV f); |
| 595 | |
| 596 | //(f[0],f[1],f[2],f[3]) |
| 597 | PX_FORCE_INLINE Vec4V V4Merge(const FloatV* const f); |
| 598 | //(x,y,z,w) |
| 599 | PX_FORCE_INLINE Vec4V V4Merge(const FloatVArg x, const FloatVArg y, const FloatVArg z, const FloatVArg w); |
| 600 | //(x.w, y.w, z.w, w.w) |
| 601 | PX_FORCE_INLINE Vec4V V4MergeW(const Vec4VArg x, const Vec4VArg y, const Vec4VArg z, const Vec4VArg w); |
| 602 | //(x.z, y.z, z.z, w.z) |
| 603 | PX_FORCE_INLINE Vec4V V4MergeZ(const Vec4VArg x, const Vec4VArg y, const Vec4VArg z, const Vec4VArg w); |
| 604 | //(x.y, y.y, z.y, w.y) |
| 605 | PX_FORCE_INLINE Vec4V V4MergeY(const Vec4VArg x, const Vec4VArg y, const Vec4VArg z, const Vec4VArg w); |
| 606 | //(x.x, y.x, z.x, w.x) |
| 607 | PX_FORCE_INLINE Vec4V V4MergeX(const Vec4VArg x, const Vec4VArg y, const Vec4VArg z, const Vec4VArg w); |
| 608 | |
| 609 | //(a.x, b.x, a.y, b.y) |
| 610 | PX_FORCE_INLINE Vec4V V4UnpackXY(const Vec4VArg a, const Vec4VArg b); |
| 611 | //(a.z, b.z, a.w, b.w) |
| 612 | PX_FORCE_INLINE Vec4V V4UnpackZW(const Vec4VArg a, const Vec4VArg b); |
| 613 | |
| 614 | //(1,0,0,0) |
| 615 | PX_FORCE_INLINE Vec4V V4UnitW(); |
| 616 | //(0,1,0,0) |
| 617 | PX_FORCE_INLINE Vec4V V4UnitY(); |
| 618 | //(0,0,1,0) |
| 619 | PX_FORCE_INLINE Vec4V V4UnitZ(); |
| 620 | //(0,0,0,1) |
| 621 | PX_FORCE_INLINE Vec4V V4UnitW(); |
| 622 | |
| 623 | //(f.x,f.x,f.x,f.x) |
| 624 | PX_FORCE_INLINE FloatV V4GetX(const Vec4V f); |
| 625 | //(f.y,f.y,f.y,f.y) |
| 626 | PX_FORCE_INLINE FloatV V4GetY(const Vec4V f); |
| 627 | //(f.z,f.z,f.z,f.z) |
| 628 | PX_FORCE_INLINE FloatV V4GetZ(const Vec4V f); |
| 629 | //(f.w,f.w,f.w,f.w) |
| 630 | PX_FORCE_INLINE FloatV V4GetW(const Vec4V f); |
| 631 | |
| 632 | //(f,v.y,v.z,v.w) |
| 633 | PX_FORCE_INLINE Vec4V V4SetX(const Vec4V v, const FloatV f); |
| 634 | //(v.x,f,v.z,v.w) |
| 635 | PX_FORCE_INLINE Vec4V V4SetY(const Vec4V v, const FloatV f); |
| 636 | //(v.x,v.y,f,v.w) |
| 637 | PX_FORCE_INLINE Vec4V V4SetZ(const Vec4V v, const FloatV f); |
| 638 | //(v.x,v.y,v.z,f) |
| 639 | PX_FORCE_INLINE Vec4V V4SetW(const Vec4V v, const FloatV f); |
| 640 | |
| 641 | //(v.x,v.y,v.z,0) |
| 642 | PX_FORCE_INLINE Vec4V V4ClearW(const Vec4V v); |
| 643 | |
| 644 | //(a[elementIndex], a[elementIndex], a[elementIndex], a[elementIndex]) |
| 645 | template <int elementIndex> |
| 646 | PX_FORCE_INLINE Vec4V V4SplatElement(Vec4V a); |
| 647 | |
| 648 | // v.x=f |
| 649 | PX_FORCE_INLINE void V4WriteX(Vec4V& v, const PxF32 f); |
| 650 | // v.y=f |
| 651 | PX_FORCE_INLINE void V4WriteY(Vec4V& v, const PxF32 f); |
| 652 | // v.z=f |
| 653 | PX_FORCE_INLINE void V4WriteZ(Vec4V& v, const PxF32 f); |
| 654 | // v.w=f |
| 655 | PX_FORCE_INLINE void V4WriteW(Vec4V& v, const PxF32 f); |
| 656 | // v.x=f.x, v.y=f.y, v.z=f.z |
| 657 | PX_FORCE_INLINE void V4WriteXYZ(Vec4V& v, const PxVec3& f); |
| 658 | // return v.x |
| 659 | PX_FORCE_INLINE PxF32 V4ReadX(const Vec4V& v); |
| 660 | // return v.y |
| 661 | PX_FORCE_INLINE PxF32 V4ReadY(const Vec4V& v); |
| 662 | // return v.z |
| 663 | PX_FORCE_INLINE PxF32 V4ReadZ(const Vec4V& v); |
| 664 | // return v.w |
| 665 | PX_FORCE_INLINE PxF32 V4ReadW(const Vec4V& v); |
| 666 | // return (v.x,v.y,v.z) |
| 667 | PX_FORCE_INLINE const PxVec3& V4ReadXYZ(const Vec4V& v); |
| 668 | |
| 669 | //(0,0,0,0) |
| 670 | PX_FORCE_INLINE Vec4V V4Zero(); |
| 671 | //(1,1,1,1) |
| 672 | PX_FORCE_INLINE Vec4V V4One(); |
| 673 | //(PX_EPS_REAL,PX_EPS_REAL,PX_EPS_REAL,PX_EPS_REAL) |
| 674 | PX_FORCE_INLINE Vec4V V4Eps(); |
| 675 | |
| 676 | //-c (per component) |
| 677 | PX_FORCE_INLINE Vec4V V4Neg(const Vec4V c); |
| 678 | // a+b (per component) |
| 679 | PX_FORCE_INLINE Vec4V V4Add(const Vec4V a, const Vec4V b); |
| 680 | // a-b (per component) |
| 681 | PX_FORCE_INLINE Vec4V V4Sub(const Vec4V a, const Vec4V b); |
| 682 | // a*b (per component) |
| 683 | PX_FORCE_INLINE Vec4V V4Scale(const Vec4V a, const FloatV b); |
| 684 | // a*b (per component) |
| 685 | PX_FORCE_INLINE Vec4V V4Mul(const Vec4V a, const Vec4V b); |
| 686 | // a/b (per component) |
| 687 | PX_FORCE_INLINE Vec4V V4ScaleInv(const Vec4V a, const FloatV b); |
| 688 | // a/b (per component) |
| 689 | PX_FORCE_INLINE Vec4V V4Div(const Vec4V a, const Vec4V b); |
| 690 | // a/b (per component) |
| 691 | PX_FORCE_INLINE Vec4V V4ScaleInvFast(const Vec4V a, const FloatV b); |
| 692 | // a/b (per component) |
| 693 | PX_FORCE_INLINE Vec4V V4DivFast(const Vec4V a, const Vec4V b); |
| 694 | // 1.0f/a |
| 695 | PX_FORCE_INLINE Vec4V V4Recip(const Vec4V a); |
| 696 | // 1.0f/a |
| 697 | PX_FORCE_INLINE Vec4V V4RecipFast(const Vec4V a); |
| 698 | // 1.0f/sqrt(a) |
| 699 | PX_FORCE_INLINE Vec4V V4Rsqrt(const Vec4V a); |
| 700 | // 1.0f/sqrt(a) |
| 701 | PX_FORCE_INLINE Vec4V V4RsqrtFast(const Vec4V a); |
| 702 | // a*b+c |
| 703 | PX_FORCE_INLINE Vec4V V4ScaleAdd(const Vec4V a, const FloatV b, const Vec4V c); |
| 704 | // c-a*b |
| 705 | PX_FORCE_INLINE Vec4V V4NegScaleSub(const Vec4V a, const FloatV b, const Vec4V c); |
| 706 | // a*b+c |
| 707 | PX_FORCE_INLINE Vec4V V4MulAdd(const Vec4V a, const Vec4V b, const Vec4V c); |
| 708 | // c-a*b |
| 709 | PX_FORCE_INLINE Vec4V V4NegMulSub(const Vec4V a, const Vec4V b, const Vec4V c); |
| 710 | |
| 711 | // fabs(a) |
| 712 | PX_FORCE_INLINE Vec4V V4Abs(const Vec4V a); |
| 713 | // bitwise a & ~b |
| 714 | PX_FORCE_INLINE Vec4V V4Andc(const Vec4V a, const VecU32V b); |
| 715 | |
| 716 | // a.b (W is taken into account) |
| 717 | PX_FORCE_INLINE FloatV V4Dot(const Vec4V a, const Vec4V b); |
| 718 | // a.b (same computation as V3Dot. W is ignored in input) |
| 719 | PX_FORCE_INLINE FloatV V4Dot3(const Vec4V a, const Vec4V b); |
| 720 | // aXb (same computation as V3Cross. W is ignored in input and undefined in output) |
| 721 | PX_FORCE_INLINE Vec4V V4Cross(const Vec4V a, const Vec4V b); |
| 722 | |
| 723 | //|a.a|^1/2 |
| 724 | PX_FORCE_INLINE FloatV V4Length(const Vec4V a); |
| 725 | // a.a |
| 726 | PX_FORCE_INLINE FloatV V4LengthSq(const Vec4V a); |
| 727 | |
| 728 | // a*|a.a|^-1/2 |
| 729 | PX_FORCE_INLINE Vec4V V4Normalize(const Vec4V a); |
| 730 | // a.a>0 ? a*|a.a|^-1/2 : unsafeReturnValue |
| 731 | PX_FORCE_INLINE Vec4V V4NormalizeSafe(const Vec4V a, const Vec4V unsafeReturnValue); |
| 732 | // a*|a.a|^-1/2 |
| 733 | PX_FORCE_INLINE Vec4V V4NormalizeFast(const Vec4V a); |
| 734 | |
| 735 | // c ? a : b (per component) |
| 736 | PX_FORCE_INLINE Vec4V V4Sel(const BoolV c, const Vec4V a, const Vec4V b); |
| 737 | // a>b (per component) |
| 738 | PX_FORCE_INLINE BoolV V4IsGrtr(const Vec4V a, const Vec4V b); |
| 739 | // a>=b (per component) |
| 740 | PX_FORCE_INLINE BoolV V4IsGrtrOrEq(const Vec4V a, const Vec4V b); |
| 741 | // a==b (per component) |
| 742 | PX_FORCE_INLINE BoolV V4IsEq(const Vec4V a, const Vec4V b); |
| 743 | // Max(a,b) (per component) |
| 744 | PX_FORCE_INLINE Vec4V V4Max(const Vec4V a, const Vec4V b); |
| 745 | // Min(a,b) (per component) |
| 746 | PX_FORCE_INLINE Vec4V V4Min(const Vec4V a, const Vec4V b); |
| 747 | // Get the maximum component from a |
| 748 | PX_FORCE_INLINE FloatV (const Vec4V a); |
| 749 | // Get the minimum component from a |
| 750 | PX_FORCE_INLINE FloatV (const Vec4V a); |
| 751 | |
| 752 | // Clamp(a,b) (per component) |
| 753 | PX_FORCE_INLINE Vec4V V4Clamp(const Vec4V a, const Vec4V minV, const Vec4V maxV); |
| 754 | |
| 755 | // return 1 if all components of a are greater than all components of b. |
| 756 | PX_FORCE_INLINE PxU32 V4AllGrtr(const Vec4V a, const Vec4V b); |
| 757 | // return 1 if all components of a are greater than or equal to all components of b |
| 758 | PX_FORCE_INLINE PxU32 V4AllGrtrOrEq(const Vec4V a, const Vec4V b); |
| 759 | // return 1 if XYZ components of a are greater than or equal to XYZ components of b. W is ignored. |
| 760 | PX_FORCE_INLINE PxU32 V4AllGrtrOrEq3(const Vec4V a, const Vec4V b); |
| 761 | // return 1 if all components of a are equal to all components of b |
| 762 | PX_FORCE_INLINE PxU32 V4AllEq(const Vec4V a, const Vec4V b); |
| 763 | // return 1 if any XYZ component of a is greater than the corresponding component of b. W is ignored. |
| 764 | PX_FORCE_INLINE PxU32 V4AnyGrtr3(const Vec4V a, const Vec4V b); |
| 765 | |
| 766 | // round(a)(per component) |
| 767 | PX_FORCE_INLINE Vec4V V4Round(const Vec4V a); |
| 768 | // sin(a) (per component) |
| 769 | PX_FORCE_INLINE Vec4V V4Sin(const Vec4V a); |
| 770 | // cos(a) (per component) |
| 771 | PX_FORCE_INLINE Vec4V V4Cos(const Vec4V a); |
| 772 | |
| 773 | // Permute v into a new vec4v with YXWZ format |
| 774 | PX_FORCE_INLINE Vec4V V4PermYXWZ(const Vec4V v); |
| 775 | // Permute v into a new vec4v with XZXZ format |
| 776 | PX_FORCE_INLINE Vec4V V4PermXZXZ(const Vec4V v); |
| 777 | // Permute v into a new vec4v with YWYW format |
| 778 | PX_FORCE_INLINE Vec4V V4PermYWYW(const Vec4V v); |
| 779 | // Permute v into a new vec4v with YZXW format |
| 780 | PX_FORCE_INLINE Vec4V V4PermYZXW(const Vec4V v); |
| 781 | // Permute v into a new vec4v with ZWXY format - equivalent to a swap of the two 64bit parts of the vector |
| 782 | PX_FORCE_INLINE Vec4V V4PermZWXY(const Vec4V a); |
| 783 | |
| 784 | // Permute v into a new vec4v with format {a[x], a[y], a[z], a[w]} |
| 785 | // V4Perm<1,3,1,3> is equal to V4PermYWYW |
| 786 | // V4Perm<0,2,0,2> is equal to V4PermXZXZ |
| 787 | // V3Perm<1,0,3,2> is equal to V4PermYXWZ |
| 788 | template <PxU8 x, PxU8 y, PxU8 z, PxU8 w> |
| 789 | PX_FORCE_INLINE Vec4V V4Perm(const Vec4V a); |
| 790 | |
| 791 | // Transpose 4 Vec4Vs inplace. |
| 792 | // [ x0, y0, z0, w0] [ x1, y1, z1, w1] [ x2, y2, z2, w2] [ x3, y3, z3, w3] -> |
| 793 | // [ x0, x1, x2, x3] [ y0, y1, y2, y3] [ z0, z1, z2, z3] [ w0, w1, w2, w3] |
| 794 | PX_FORCE_INLINE void V3Transpose(Vec3V& col0, Vec3V& col1, Vec3V& col2); |
| 795 | |
| 796 | // q = cos(a/2) + u*sin(a/2) |
| 797 | PX_FORCE_INLINE QuatV QuatV_From_RotationAxisAngle(const Vec3V u, const FloatV a); |
| 798 | // convert q to a unit quaternion |
| 799 | PX_FORCE_INLINE QuatV QuatNormalize(const QuatV q); |
| 800 | //|q.q|^1/2 |
| 801 | PX_FORCE_INLINE FloatV QuatLength(const QuatV q); |
| 802 | // q.q |
| 803 | PX_FORCE_INLINE FloatV QuatLengthSq(const QuatV q); |
| 804 | // a.b |
| 805 | PX_FORCE_INLINE FloatV QuatDot(const QuatV a, const QuatV b); |
| 806 | //(-q.x, -q.y, -q.z, q.w) |
| 807 | PX_FORCE_INLINE QuatV QuatConjugate(const QuatV q); |
| 808 | //(q.x, q.y, q.z) |
| 809 | PX_FORCE_INLINE Vec3V QuatGetImaginaryPart(const QuatV q); |
| 810 | // convert quaternion to matrix 33 |
| 811 | PX_FORCE_INLINE Mat33V QuatGetMat33V(const QuatVArg q); |
| 812 | // convert quaternion to matrix 33 |
| 813 | PX_FORCE_INLINE void QuatGetMat33V(const QuatVArg q, Vec3V& column0, Vec3V& column1, Vec3V& column2); |
| 814 | // convert matrix 33 to quaternion |
| 815 | PX_FORCE_INLINE QuatV Mat33GetQuatV(const Mat33V& a); |
| 816 | // brief computes rotation of x-axis |
| 817 | PX_FORCE_INLINE Vec3V QuatGetBasisVector0(const QuatV q); |
| 818 | // brief computes rotation of y-axis |
| 819 | PX_FORCE_INLINE Vec3V QuatGetBasisVector1(const QuatV q); |
| 820 | // brief computes rotation of z-axis |
| 821 | PX_FORCE_INLINE Vec3V QuatGetBasisVector2(const QuatV q); |
| 822 | // calculate the rotation vector from q and v |
| 823 | PX_FORCE_INLINE Vec3V QuatRotate(const QuatV q, const Vec3V v); |
| 824 | // calculate the rotation vector from the conjugate quaternion and v |
| 825 | PX_FORCE_INLINE Vec3V QuatRotateInv(const QuatV q, const Vec3V v); |
| 826 | // quaternion multiplication |
| 827 | PX_FORCE_INLINE QuatV QuatMul(const QuatV a, const QuatV b); |
| 828 | // quaternion add |
| 829 | PX_FORCE_INLINE QuatV QuatAdd(const QuatV a, const QuatV b); |
| 830 | // (-q.x, -q.y, -q.z, -q.w) |
| 831 | PX_FORCE_INLINE QuatV QuatNeg(const QuatV q); |
| 832 | // (a.x - b.x, a.y-b.y, a.z-b.z, a.w-b.w ) |
| 833 | PX_FORCE_INLINE QuatV QuatSub(const QuatV a, const QuatV b); |
| 834 | // (a.x*b, a.y*b, a.z*b, a.w*b) |
| 835 | PX_FORCE_INLINE QuatV QuatScale(const QuatV a, const FloatV b); |
| 836 | // (x = v[0], y = v[1], z = v[2], w =v[3]) |
| 837 | PX_FORCE_INLINE QuatV QuatMerge(const FloatV* const v); |
| 838 | // (x = v[0], y = v[1], z = v[2], w =v[3]) |
| 839 | PX_FORCE_INLINE QuatV QuatMerge(const FloatVArg x, const FloatVArg y, const FloatVArg z, const FloatVArg w); |
| 840 | // (x = 0.f, y = 0.f, z = 0.f, w = 1.f) |
| 841 | PX_FORCE_INLINE QuatV QuatIdentity(); |
| 842 | // check for each component is valid |
| 843 | PX_FORCE_INLINE bool isFiniteQuatV(const QuatV q); |
| 844 | // check for each component is valid |
| 845 | PX_FORCE_INLINE bool isValidQuatV(const QuatV q); |
| 846 | // check for each component is valid |
| 847 | PX_FORCE_INLINE bool isSaneQuatV(const QuatV q); |
| 848 | |
| 849 | // Math operations on 16-byte aligned booleans. |
| 850 | // x=false y=false z=false w=false |
| 851 | PX_FORCE_INLINE BoolV BFFFF(); |
| 852 | // x=false y=false z=false w=true |
| 853 | PX_FORCE_INLINE BoolV BFFFT(); |
| 854 | // x=false y=false z=true w=false |
| 855 | PX_FORCE_INLINE BoolV BFFTF(); |
| 856 | // x=false y=false z=true w=true |
| 857 | PX_FORCE_INLINE BoolV BFFTT(); |
| 858 | // x=false y=true z=false w=false |
| 859 | PX_FORCE_INLINE BoolV BFTFF(); |
| 860 | // x=false y=true z=false w=true |
| 861 | PX_FORCE_INLINE BoolV BFTFT(); |
| 862 | // x=false y=true z=true w=false |
| 863 | PX_FORCE_INLINE BoolV BFTTF(); |
| 864 | // x=false y=true z=true w=true |
| 865 | PX_FORCE_INLINE BoolV BFTTT(); |
| 866 | // x=true y=false z=false w=false |
| 867 | PX_FORCE_INLINE BoolV BTFFF(); |
| 868 | // x=true y=false z=false w=true |
| 869 | PX_FORCE_INLINE BoolV BTFFT(); |
| 870 | // x=true y=false z=true w=false |
| 871 | PX_FORCE_INLINE BoolV BTFTF(); |
| 872 | // x=true y=false z=true w=true |
| 873 | PX_FORCE_INLINE BoolV BTFTT(); |
| 874 | // x=true y=true z=false w=false |
| 875 | PX_FORCE_INLINE BoolV BTTFF(); |
| 876 | // x=true y=true z=false w=true |
| 877 | PX_FORCE_INLINE BoolV BTTFT(); |
| 878 | // x=true y=true z=true w=false |
| 879 | PX_FORCE_INLINE BoolV BTTTF(); |
| 880 | // x=true y=true z=true w=true |
| 881 | PX_FORCE_INLINE BoolV BTTTT(); |
| 882 | |
| 883 | // x=false y=false z=false w=true |
| 884 | PX_FORCE_INLINE BoolV BWMask(); |
| 885 | // x=true y=false z=false w=false |
| 886 | PX_FORCE_INLINE BoolV BXMask(); |
| 887 | // x=false y=true z=false w=false |
| 888 | PX_FORCE_INLINE BoolV BYMask(); |
| 889 | // x=false y=false z=true w=false |
| 890 | PX_FORCE_INLINE BoolV BZMask(); |
| 891 | |
| 892 | // get x component |
| 893 | PX_FORCE_INLINE BoolV BGetX(const BoolV f); |
| 894 | // get y component |
| 895 | PX_FORCE_INLINE BoolV BGetY(const BoolV f); |
| 896 | // get z component |
| 897 | PX_FORCE_INLINE BoolV BGetZ(const BoolV f); |
| 898 | // get w component |
| 899 | PX_FORCE_INLINE BoolV BGetW(const BoolV f); |
| 900 | |
| 901 | // Use elementIndex to splat xxxx or yyyy or zzzz or wwww |
| 902 | template <int elementIndex> |
| 903 | PX_FORCE_INLINE BoolV BSplatElement(Vec4V a); |
| 904 | |
| 905 | // component-wise && (AND) |
| 906 | PX_FORCE_INLINE BoolV BAnd(const BoolV a, const BoolV b); |
| 907 | // component-wise || (OR) |
| 908 | PX_FORCE_INLINE BoolV BOr(const BoolV a, const BoolV b); |
| 909 | // component-wise not |
| 910 | PX_FORCE_INLINE BoolV BNot(const BoolV a); |
| 911 | |
| 912 | // if all four components are true, return true, otherwise return false |
| 913 | PX_FORCE_INLINE BoolV BAllTrue4(const BoolV a); |
| 914 | |
| 915 | // if any four components is true, return true, otherwise return false |
| 916 | PX_FORCE_INLINE BoolV BAnyTrue4(const BoolV a); |
| 917 | |
| 918 | // if all three(0, 1, 2) components are true, return true, otherwise return false |
| 919 | PX_FORCE_INLINE BoolV BAllTrue3(const BoolV a); |
| 920 | |
| 921 | // if any three (0, 1, 2) components is true, return true, otherwise return false |
| 922 | PX_FORCE_INLINE BoolV BAnyTrue3(const BoolV a); |
| 923 | |
| 924 | // Return 1 if all components equal, zero otherwise. |
| 925 | PX_FORCE_INLINE PxU32 BAllEq(const BoolV a, const BoolV b); |
| 926 | |
| 927 | // Specialized/faster BAllEq function for b==TTTT |
| 928 | PX_FORCE_INLINE PxU32 BAllEqTTTT(const BoolV a); |
| 929 | // Specialized/faster BAllEq function for b==FFFF |
| 930 | PX_FORCE_INLINE PxU32 BAllEqFFFF(const BoolV a); |
| 931 | |
| 932 | /// Get BoolV as bits set in an PxU32. A bit in the output is set if the element is 'true' in the input. |
| 933 | /// There is a bit for each element in a, with element 0s value held in bit0, element 1 in bit 1s and so forth. |
| 934 | /// If nothing is true in the input it will return 0, and if all are true if will return 0xf. |
| 935 | /// NOTE! That performance of the function varies considerably by platform, thus it is recommended to use |
| 936 | /// where your algorithm really needs a BoolV in an integer variable. |
| 937 | PX_FORCE_INLINE PxU32 BGetBitMask(const BoolV a); |
| 938 | |
| 939 | // VecI32V stuff |
| 940 | |
| 941 | PX_FORCE_INLINE VecI32V VecI32V_Zero(); |
| 942 | |
| 943 | PX_FORCE_INLINE VecI32V VecI32V_One(); |
| 944 | |
| 945 | PX_FORCE_INLINE VecI32V VecI32V_Two(); |
| 946 | |
| 947 | PX_FORCE_INLINE VecI32V VecI32V_MinusOne(); |
| 948 | |
| 949 | // Compute a shift parameter for VecI32V_LeftShift and VecI32V_RightShift |
| 950 | // Each element of shift must be identical ie the vector must have form {count, count, count, count} with count>=0 |
| 951 | PX_FORCE_INLINE VecShiftV VecI32V_PrepareShift(const VecI32VArg shift); |
| 952 | |
| 953 | // Shift each element of a leftwards by the same amount |
| 954 | // Compute shift with VecI32V_PrepareShift |
| 955 | //{a.x<<shift[0], a.y<<shift[0], a.z<<shift[0], a.w<<shift[0]} |
| 956 | PX_FORCE_INLINE VecI32V VecI32V_LeftShift(const VecI32VArg a, const VecShiftVArg shift); |
| 957 | |
| 958 | // Shift each element of a rightwards by the same amount |
| 959 | // Compute shift with VecI32V_PrepareShift |
| 960 | //{a.x>>shift[0], a.y>>shift[0], a.z>>shift[0], a.w>>shift[0]} |
| 961 | PX_FORCE_INLINE VecI32V VecI32V_RightShift(const VecI32VArg a, const VecShiftVArg shift); |
| 962 | |
| 963 | PX_FORCE_INLINE VecI32V VecI32V_Add(const VecI32VArg a, const VecI32VArg b); |
| 964 | |
| 965 | PX_FORCE_INLINE VecI32V VecI32V_Or(const VecI32VArg a, const VecI32VArg b); |
| 966 | |
| 967 | PX_FORCE_INLINE VecI32V VecI32V_GetX(const VecI32VArg a); |
| 968 | |
| 969 | PX_FORCE_INLINE VecI32V VecI32V_GetY(const VecI32VArg a); |
| 970 | |
| 971 | PX_FORCE_INLINE VecI32V VecI32V_GetZ(const VecI32VArg a); |
| 972 | |
| 973 | PX_FORCE_INLINE VecI32V VecI32V_GetW(const VecI32VArg a); |
| 974 | |
| 975 | PX_FORCE_INLINE VecI32V VecI32V_Sub(const VecI32VArg a, const VecI32VArg b); |
| 976 | |
| 977 | PX_FORCE_INLINE BoolV VecI32V_IsGrtr(const VecI32VArg a, const VecI32VArg b); |
| 978 | |
| 979 | PX_FORCE_INLINE BoolV VecI32V_IsEq(const VecI32VArg a, const VecI32VArg b); |
| 980 | |
| 981 | PX_FORCE_INLINE VecI32V V4I32Sel(const BoolV c, const VecI32V a, const VecI32V b); |
| 982 | |
| 983 | // VecU32V stuff |
| 984 | |
| 985 | PX_FORCE_INLINE VecU32V U4Zero(); |
| 986 | |
| 987 | PX_FORCE_INLINE VecU32V U4One(); |
| 988 | |
| 989 | PX_FORCE_INLINE VecU32V U4Two(); |
| 990 | |
| 991 | PX_FORCE_INLINE BoolV V4IsEqU32(const VecU32V a, const VecU32V b); |
| 992 | |
| 993 | PX_FORCE_INLINE VecU32V V4U32Sel(const BoolV c, const VecU32V a, const VecU32V b); |
| 994 | |
| 995 | PX_FORCE_INLINE VecU32V V4U32or(VecU32V a, VecU32V b); |
| 996 | |
| 997 | PX_FORCE_INLINE VecU32V V4U32xor(VecU32V a, VecU32V b); |
| 998 | |
| 999 | PX_FORCE_INLINE VecU32V V4U32and(VecU32V a, VecU32V b); |
| 1000 | |
| 1001 | PX_FORCE_INLINE VecU32V V4U32Andc(VecU32V a, VecU32V b); |
| 1002 | |
| 1003 | // VecU32 - why does this not return a bool? |
| 1004 | PX_FORCE_INLINE VecU32V V4IsGrtrV32u(const Vec4V a, const Vec4V b); |
| 1005 | |
| 1006 | // Math operations on 16-byte aligned Mat33s (represents any 3x3 matrix) |
| 1007 | PX_FORCE_INLINE Mat33V M33Load(const PxMat33& m) |
| 1008 | { |
| 1009 | return Mat33V(Vec3V_From_Vec4V(v: V4LoadU(f: &m.column0.x)), |
| 1010 | Vec3V_From_Vec4V(v: V4LoadU(f: &m.column1.x)), V3LoadU(f: m.column2)); |
| 1011 | } |
| 1012 | // a*b |
| 1013 | PX_FORCE_INLINE Vec3V M33MulV3(const Mat33V& a, const Vec3V b); |
| 1014 | // A*x + b |
| 1015 | PX_FORCE_INLINE Vec3V M33MulV3AddV3(const Mat33V& A, const Vec3V b, const Vec3V c); |
| 1016 | // transpose(a) * b |
| 1017 | PX_FORCE_INLINE Vec3V M33TrnspsMulV3(const Mat33V& a, const Vec3V b); |
| 1018 | // a*b |
| 1019 | PX_FORCE_INLINE Mat33V M33MulM33(const Mat33V& a, const Mat33V& b); |
| 1020 | // a+b |
| 1021 | PX_FORCE_INLINE Mat33V M33Add(const Mat33V& a, const Mat33V& b); |
| 1022 | // a+b |
| 1023 | PX_FORCE_INLINE Mat33V M33Sub(const Mat33V& a, const Mat33V& b); |
| 1024 | //-a |
| 1025 | PX_FORCE_INLINE Mat33V M33Neg(const Mat33V& a); |
| 1026 | // absolute value of the matrix |
| 1027 | PX_FORCE_INLINE Mat33V M33Abs(const Mat33V& a); |
| 1028 | // inverse mat |
| 1029 | PX_FORCE_INLINE Mat33V M33Inverse(const Mat33V& a); |
| 1030 | // transpose(a) |
| 1031 | PX_FORCE_INLINE Mat33V M33Trnsps(const Mat33V& a); |
| 1032 | // create an identity matrix |
| 1033 | PX_FORCE_INLINE Mat33V M33Identity(); |
| 1034 | |
| 1035 | // create a vec3 to store the diagonal element of the M33 |
| 1036 | PX_FORCE_INLINE Mat33V M33Diagonal(const Vec3VArg); |
| 1037 | |
| 1038 | // Not implemented |
| 1039 | // return 1 if all components of a are equal to all components of b |
| 1040 | // PX_FORCE_INLINE PxU32 V4U32AllEq(const VecU32V a, const VecU32V b); |
| 1041 | // v.w=f |
| 1042 | // PX_FORCE_INLINE void V3WriteW(Vec3V& v, const PxF32 f); |
| 1043 | // PX_FORCE_INLINE PxF32 V3ReadW(const Vec3V& v); |
| 1044 | |
| 1045 | // Not used |
| 1046 | // PX_FORCE_INLINE Vec4V V4LoadAligned(Vec4V* addr); |
| 1047 | // PX_FORCE_INLINE Vec4V V4LoadUnaligned(Vec4V* addr); |
| 1048 | // floor(a)(per component) |
| 1049 | // PX_FORCE_INLINE Vec4V V4Floor(Vec4V a); |
| 1050 | // ceil(a) (per component) |
| 1051 | // PX_FORCE_INLINE Vec4V V4Ceil(Vec4V a); |
| 1052 | // PX_FORCE_INLINE VecU32V V4ConvertToU32VSaturate(const Vec4V a, PxU32 power); |
| 1053 | |
| 1054 | // Math operations on 16-byte aligned Mat34s (represents transformation matrix - rotation and translation). |
| 1055 | // namespace _Mat34V |
| 1056 | //{ |
| 1057 | // //a*b |
| 1058 | // PX_FORCE_INLINE Vec3V multiplyV(const Mat34V& a, const Vec3V b); |
| 1059 | // //a_rotation * b |
| 1060 | // PX_FORCE_INLINE Vec3V multiply3X3V(const Mat34V& a, const Vec3V b); |
| 1061 | // //transpose(a_rotation)*b |
| 1062 | // PX_FORCE_INLINE Vec3V multiplyTranspose3X3V(const Mat34V& a, const Vec3V b); |
| 1063 | // //a*b |
| 1064 | // PX_FORCE_INLINE Mat34V multiplyV(const Mat34V& a, const Mat34V& b); |
| 1065 | // //a_rotation*b |
| 1066 | // PX_FORCE_INLINE Mat33V multiply3X3V(const Mat34V& a, const Mat33V& b); |
| 1067 | // //a_rotation*b_rotation |
| 1068 | // PX_FORCE_INLINE Mat33V multiply3X3V(const Mat34V& a, const Mat34V& b); |
| 1069 | // //a+b |
| 1070 | // PX_FORCE_INLINE Mat34V addV(const Mat34V& a, const Mat34V& b); |
| 1071 | // //a^-1 |
| 1072 | // PX_FORCE_INLINE Mat34V getInverseV(const Mat34V& a); |
| 1073 | // //transpose(a_rotation) |
| 1074 | // PX_FORCE_INLINE Mat33V getTranspose3X3(const Mat34V& a); |
| 1075 | //}; //namespace _Mat34V |
| 1076 | |
| 1077 | // a*b |
| 1078 | //#define M34MulV3(a,b) (M34MulV3(a,b)) |
| 1079 | ////a_rotation * b |
| 1080 | //#define M34Mul33V3(a,b) (M34Mul33V3(a,b)) |
| 1081 | ////transpose(a_rotation)*b |
| 1082 | //#define M34TrnspsMul33V3(a,b) (M34TrnspsMul33V3(a,b)) |
| 1083 | ////a*b |
| 1084 | //#define M34MulM34(a,b) (_Mat34V::multiplyV(a,b)) |
| 1085 | // a_rotation*b |
| 1086 | //#define M34MulM33(a,b) (M34MulM33(a,b)) |
| 1087 | // a_rotation*b_rotation |
| 1088 | //#define M34Mul33MM34(a,b) (M34MulM33(a,b)) |
| 1089 | // a+b |
| 1090 | //#define M34Add(a,b) (M34Add(a,b)) |
| 1091 | ////a^-1 |
| 1092 | //#define M34Inverse(a,b) (M34Inverse(a)) |
| 1093 | // transpose(a_rotation) |
| 1094 | //#define M34Trnsps33(a) (M33Trnsps3X3(a)) |
| 1095 | |
| 1096 | // Math operations on 16-byte aligned Mat44s (represents any 4x4 matrix) |
| 1097 | // namespace _Mat44V |
| 1098 | //{ |
| 1099 | // //a*b |
| 1100 | // PX_FORCE_INLINE Vec4V multiplyV(const Mat44V& a, const Vec4V b); |
| 1101 | // //transpose(a)*b |
| 1102 | // PX_FORCE_INLINE Vec4V multiplyTransposeV(const Mat44V& a, const Vec4V b); |
| 1103 | // //a*b |
| 1104 | // PX_FORCE_INLINE Mat44V multiplyV(const Mat44V& a, const Mat44V& b); |
| 1105 | // //a+b |
| 1106 | // PX_FORCE_INLINE Mat44V addV(const Mat44V& a, const Mat44V& b); |
| 1107 | // //a&-1 |
| 1108 | // PX_FORCE_INLINE Mat44V getInverseV(const Mat44V& a); |
| 1109 | // //transpose(a) |
| 1110 | // PX_FORCE_INLINE Mat44V getTransposeV(const Mat44V& a); |
| 1111 | //}; //namespace _Mat44V |
| 1112 | |
| 1113 | // namespace _VecU32V |
| 1114 | //{ |
| 1115 | // // pack 8 U32s to 8 U16s with saturation |
| 1116 | // PX_FORCE_INLINE VecU16V pack2U32VToU16VSaturate(VecU32V a, VecU32V b); |
| 1117 | // PX_FORCE_INLINE VecU32V orV(VecU32V a, VecU32V b); |
| 1118 | // PX_FORCE_INLINE VecU32V andV(VecU32V a, VecU32V b); |
| 1119 | // PX_FORCE_INLINE VecU32V andcV(VecU32V a, VecU32V b); |
| 1120 | // // conversion from integer to float |
| 1121 | // PX_FORCE_INLINE Vec4V convertToVec4V(VecU32V a); |
| 1122 | // // splat a[elementIndex] into all fields of a |
| 1123 | // template<int elementIndex> |
| 1124 | // PX_FORCE_INLINE VecU32V splatElement(VecU32V a); |
| 1125 | // PX_FORCE_INLINE void storeAligned(VecU32V a, VecU32V* address); |
| 1126 | //}; |
| 1127 | |
| 1128 | // namespace _VecI32V |
| 1129 | //{ |
| 1130 | // template<int a> PX_FORCE_INLINE VecI32V splatI32(); |
| 1131 | //}; |
| 1132 | // |
| 1133 | // namespace _VecU16V |
| 1134 | //{ |
| 1135 | // PX_FORCE_INLINE VecU16V orV(VecU16V a, VecU16V b); |
| 1136 | // PX_FORCE_INLINE VecU16V andV(VecU16V a, VecU16V b); |
| 1137 | // PX_FORCE_INLINE VecU16V andcV(VecU16V a, VecU16V b); |
| 1138 | // PX_FORCE_INLINE void storeAligned(VecU16V val, VecU16V *address); |
| 1139 | // PX_FORCE_INLINE VecU16V loadAligned(VecU16V* addr); |
| 1140 | // PX_FORCE_INLINE VecU16V loadUnaligned(VecU16V* addr); |
| 1141 | // PX_FORCE_INLINE VecU16V compareGt(VecU16V a, VecU16V b); |
| 1142 | // template<int elementIndex> |
| 1143 | // PX_FORCE_INLINE VecU16V splatElement(VecU16V a); |
| 1144 | // PX_FORCE_INLINE VecU16V subtractModulo(VecU16V a, VecU16V b); |
| 1145 | // PX_FORCE_INLINE VecU16V addModulo(VecU16V a, VecU16V b); |
| 1146 | // PX_FORCE_INLINE VecU32V getLo16(VecU16V a); // [0,2,4,6] 16-bit values to [0,1,2,3] 32-bit vector |
| 1147 | // PX_FORCE_INLINE VecU32V getHi16(VecU16V a); // [1,3,5,7] 16-bit values to [0,1,2,3] 32-bit vector |
| 1148 | //}; |
| 1149 | // |
| 1150 | // namespace _VecI16V |
| 1151 | //{ |
| 1152 | // template <int val> PX_FORCE_INLINE VecI16V splatImmediate(); |
| 1153 | //}; |
| 1154 | // |
| 1155 | // namespace _VecU8V |
| 1156 | //{ |
| 1157 | //}; |
| 1158 | |
| 1159 | // a*b |
| 1160 | //#define M44MulV4(a,b) (M44MulV4(a,b)) |
| 1161 | ////transpose(a)*b |
| 1162 | //#define M44TrnspsMulV4(a,b) (M44TrnspsMulV4(a,b)) |
| 1163 | ////a*b |
| 1164 | //#define M44MulM44(a,b) (M44MulM44(a,b)) |
| 1165 | ////a+b |
| 1166 | //#define M44Add(a,b) (M44Add(a,b)) |
| 1167 | ////a&-1 |
| 1168 | //#define M44Inverse(a) (M44Inverse(a)) |
| 1169 | ////transpose(a) |
| 1170 | //#define M44Trnsps(a) (M44Trnsps(a)) |
| 1171 | |
| 1172 | // dsequeira: these used to be assert'd out in SIMD builds, but they're necessary if |
| 1173 | // we want to be able to write some scalar functions which run using SIMD data structures |
| 1174 | |
| 1175 | PX_FORCE_INLINE void V3WriteX(Vec3V& v, const PxF32 f) |
| 1176 | { |
| 1177 | reinterpret_cast<PxVec3&>(v).x = f; |
| 1178 | } |
| 1179 | |
| 1180 | PX_FORCE_INLINE void V3WriteY(Vec3V& v, const PxF32 f) |
| 1181 | { |
| 1182 | reinterpret_cast<PxVec3&>(v).y = f; |
| 1183 | } |
| 1184 | |
| 1185 | PX_FORCE_INLINE void V3WriteZ(Vec3V& v, const PxF32 f) |
| 1186 | { |
| 1187 | reinterpret_cast<PxVec3&>(v).z = f; |
| 1188 | } |
| 1189 | |
| 1190 | PX_FORCE_INLINE void V3WriteXYZ(Vec3V& v, const PxVec3& f) |
| 1191 | { |
| 1192 | reinterpret_cast<PxVec3&>(v) = f; |
| 1193 | } |
| 1194 | |
| 1195 | PX_FORCE_INLINE PxF32 V3ReadX(const Vec3V& v) |
| 1196 | { |
| 1197 | return reinterpret_cast<const PxVec3&>(v).x; |
| 1198 | } |
| 1199 | |
| 1200 | PX_FORCE_INLINE PxF32 V3ReadY(const Vec3V& v) |
| 1201 | { |
| 1202 | return reinterpret_cast<const PxVec3&>(v).y; |
| 1203 | } |
| 1204 | |
| 1205 | PX_FORCE_INLINE PxF32 V3ReadZ(const Vec3V& v) |
| 1206 | { |
| 1207 | return reinterpret_cast<const PxVec3&>(v).z; |
| 1208 | } |
| 1209 | |
| 1210 | PX_FORCE_INLINE const PxVec3& V3ReadXYZ(const Vec3V& v) |
| 1211 | { |
| 1212 | return reinterpret_cast<const PxVec3&>(v); |
| 1213 | } |
| 1214 | |
| 1215 | PX_FORCE_INLINE void V4WriteX(Vec4V& v, const PxF32 f) |
| 1216 | { |
| 1217 | reinterpret_cast<PxVec4&>(v).x = f; |
| 1218 | } |
| 1219 | |
| 1220 | PX_FORCE_INLINE void V4WriteY(Vec4V& v, const PxF32 f) |
| 1221 | { |
| 1222 | reinterpret_cast<PxVec4&>(v).y = f; |
| 1223 | } |
| 1224 | |
| 1225 | PX_FORCE_INLINE void V4WriteZ(Vec4V& v, const PxF32 f) |
| 1226 | { |
| 1227 | reinterpret_cast<PxVec4&>(v).z = f; |
| 1228 | } |
| 1229 | |
| 1230 | PX_FORCE_INLINE void V4WriteW(Vec4V& v, const PxF32 f) |
| 1231 | { |
| 1232 | reinterpret_cast<PxVec4&>(v).w = f; |
| 1233 | } |
| 1234 | |
| 1235 | PX_FORCE_INLINE void V4WriteXYZ(Vec4V& v, const PxVec3& f) |
| 1236 | { |
| 1237 | reinterpret_cast<PxVec3&>(v) = f; |
| 1238 | } |
| 1239 | |
| 1240 | PX_FORCE_INLINE PxF32 V4ReadX(const Vec4V& v) |
| 1241 | { |
| 1242 | return reinterpret_cast<const PxVec4&>(v).x; |
| 1243 | } |
| 1244 | |
| 1245 | PX_FORCE_INLINE PxF32 V4ReadY(const Vec4V& v) |
| 1246 | { |
| 1247 | return reinterpret_cast<const PxVec4&>(v).y; |
| 1248 | } |
| 1249 | |
| 1250 | PX_FORCE_INLINE PxF32 V4ReadZ(const Vec4V& v) |
| 1251 | { |
| 1252 | return reinterpret_cast<const PxVec4&>(v).z; |
| 1253 | } |
| 1254 | |
| 1255 | PX_FORCE_INLINE PxF32 V4ReadW(const Vec4V& v) |
| 1256 | { |
| 1257 | return reinterpret_cast<const PxVec4&>(v).w; |
| 1258 | } |
| 1259 | |
| 1260 | PX_FORCE_INLINE const PxVec3& V4ReadXYZ(const Vec4V& v) |
| 1261 | { |
| 1262 | return reinterpret_cast<const PxVec3&>(v); |
| 1263 | } |
| 1264 | |
| 1265 | // this macro transposes 4 Vec4V into 3 Vec4V (assuming that the W component can be ignored |
| 1266 | #define PX_TRANSPOSE_44_34(inA, inB, inC, inD, outA, outB, outC) \ |
| 1267 | \ |
| 1268 | outA = V4UnpackXY(inA, inC); \ |
| 1269 | \ |
| 1270 | inA = V4UnpackZW(inA, inC); \ |
| 1271 | \ |
| 1272 | inC = V4UnpackXY(inB, inD); \ |
| 1273 | \ |
| 1274 | inB = V4UnpackZW(inB, inD); \ |
| 1275 | \ |
| 1276 | outB = V4UnpackZW(outA, inC); \ |
| 1277 | \ |
| 1278 | outA = V4UnpackXY(outA, inC); \ |
| 1279 | \ |
| 1280 | outC = V4UnpackXY(inA, inB); |
| 1281 | |
| 1282 | // this macro transposes 3 Vec4V into 4 Vec4V (with W components as garbage!) |
| 1283 | #define PX_TRANSPOSE_34_44(inA, inB, inC, outA, outB, outC, outD) \ |
| 1284 | outA = V4UnpackXY(inA, inC); \ |
| 1285 | inA = V4UnpackZW(inA, inC); \ |
| 1286 | outC = V4UnpackXY(inB, inB); \ |
| 1287 | inC = V4UnpackZW(inB, inB); \ |
| 1288 | outB = V4UnpackZW(outA, outC); \ |
| 1289 | outA = V4UnpackXY(outA, outC); \ |
| 1290 | outC = V4UnpackXY(inA, inC); \ |
| 1291 | outD = V4UnpackZW(inA, inC); |
| 1292 | |
| 1293 | #define PX_TRANSPOSE_44(inA, inB, inC, inD, outA, outB, outC, outD) \ |
| 1294 | outA = V4UnpackXY(inA, inC); \ |
| 1295 | inA = V4UnpackZW(inA, inC); \ |
| 1296 | inC = V4UnpackXY(inB, inD); \ |
| 1297 | inB = V4UnpackZW(inB, inD); \ |
| 1298 | outB = V4UnpackZW(outA, inC); \ |
| 1299 | outA = V4UnpackXY(outA, inC); \ |
| 1300 | outC = V4UnpackXY(inA, inB); \ |
| 1301 | outD = V4UnpackZW(inA, inB); |
| 1302 | |
| 1303 | // This function returns a Vec4V, where each element is the dot product of one pair of Vec3Vs. On PC, each element in |
| 1304 | // the result should be identical to the results if V3Dot was performed |
| 1305 | // for each pair of Vec3V. |
| 1306 | // However, on other platforms, the result might diverge by some small margin due to differences in FP rounding, e.g. if |
| 1307 | // _mm_dp_ps was used or some other approximate dot product or fused madd operations |
| 1308 | // were used. |
| 1309 | // Where there does not exist a hw-accelerated dot-product operation, this approach should be the fastest way to compute |
| 1310 | // the dot product of 4 vectors. |
| 1311 | PX_FORCE_INLINE Vec4V V3Dot4(const Vec3VArg a0, const Vec3VArg b0, const Vec3VArg a1, const Vec3VArg b1, |
| 1312 | const Vec3VArg a2, const Vec3VArg b2, const Vec3VArg a3, const Vec3VArg b3) |
| 1313 | { |
| 1314 | Vec4V a0b0 = Vec4V_From_Vec3V(f: V3Mul(a: a0, b: b0)); |
| 1315 | Vec4V a1b1 = Vec4V_From_Vec3V(f: V3Mul(a: a1, b: b1)); |
| 1316 | Vec4V a2b2 = Vec4V_From_Vec3V(f: V3Mul(a: a2, b: b2)); |
| 1317 | Vec4V a3b3 = Vec4V_From_Vec3V(f: V3Mul(a: a3, b: b3)); |
| 1318 | |
| 1319 | Vec4V aTrnsps, bTrnsps, cTrnsps; |
| 1320 | |
| 1321 | PX_TRANSPOSE_44_34(a0b0, a1b1, a2b2, a3b3, aTrnsps, bTrnsps, cTrnsps); |
| 1322 | |
| 1323 | return V4Add(a: V4Add(a: aTrnsps, b: bTrnsps), b: cTrnsps); |
| 1324 | } |
| 1325 | |
| 1326 | //(f.x,f.y,f.z,0) - Alternative/faster V3LoadU implementation when it is safe to read "W", i.e. the 32bits after the PxVec3. |
| 1327 | PX_FORCE_INLINE Vec3V V3LoadU_SafeReadW(const PxVec3& f) |
| 1328 | { |
| 1329 | return Vec3V_From_Vec4V(v: V4LoadU(f: &f.x)); |
| 1330 | } |
| 1331 | |
| 1332 | } // namespace aos |
| 1333 | } // namespace shdfnd |
| 1334 | } // namespace physx |
| 1335 | |
| 1336 | // Now for the cross-platform implementations of the 16-byte aligned maths functions (win32/360/ppu/spu etc). |
| 1337 | #if COMPILE_VECTOR_INTRINSICS |
| 1338 | #include "PsInlineAoS.h" |
| 1339 | #else // #if COMPILE_VECTOR_INTRINSICS |
| 1340 | #include "PsVecMathAoSScalarInline.h" |
| 1341 | #endif // #if !COMPILE_VECTOR_INTRINSICS |
| 1342 | #include "PsVecQuat.h" |
| 1343 | |
| 1344 | #endif // PSFOUNDATION_PSVECMATH_H |
| 1345 | |