| 1 | // |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions |
| 4 | // are met: |
| 5 | // * Redistributions of source code must retain the above copyright |
| 6 | // notice, this list of conditions and the following disclaimer. |
| 7 | // * Redistributions in binary form must reproduce the above copyright |
| 8 | // notice, this list of conditions and the following disclaimer in the |
| 9 | // documentation and/or other materials provided with the distribution. |
| 10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
| 11 | // contributors may be used to endorse or promote products derived |
| 12 | // from this software without specific prior written permission. |
| 13 | // |
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | // |
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 29 | |
| 30 | #ifndef PSFOUNDATION_PSUNIXSSE2INLINEAOS_H |
| 31 | #define PSFOUNDATION_PSUNIXSSE2INLINEAOS_H |
| 32 | |
| 33 | #if !COMPILE_VECTOR_INTRINSICS |
| 34 | #error Vector intrinsics should not be included when using scalar implementation. |
| 35 | #endif |
| 36 | |
| 37 | #ifdef __SSE4_2__ |
| 38 | #include "smmintrin.h" |
| 39 | #endif |
| 40 | |
| 41 | #include "../../PsVecMathSSE.h" |
| 42 | |
| 43 | namespace physx |
| 44 | { |
| 45 | namespace shdfnd |
| 46 | { |
| 47 | namespace aos |
| 48 | { |
| 49 | |
| 50 | #define PX_FPCLASS_SNAN 0x0001 /* signaling NaN */ |
| 51 | #define PX_FPCLASS_QNAN 0x0002 /* quiet NaN */ |
| 52 | #define PX_FPCLASS_NINF 0x0004 /* negative infinity */ |
| 53 | #define PX_FPCLASS_PINF 0x0200 /* positive infinity */ |
| 54 | |
| 55 | PX_FORCE_INLINE __m128 m128_I2F(__m128i n) |
| 56 | { |
| 57 | return _mm_castsi128_ps(a: n); |
| 58 | } |
| 59 | PX_FORCE_INLINE __m128i m128_F2I(__m128 n) |
| 60 | { |
| 61 | return _mm_castps_si128(a: n); |
| 62 | } |
| 63 | |
| 64 | ////////////////////////////////////////////////////////////////////// |
| 65 | //Test that Vec3V and FloatV are legal |
| 66 | ////////////////////////////////////////////////////////////////////// |
| 67 | |
| 68 | #define FLOAT_COMPONENTS_EQUAL_THRESHOLD 0.01f |
| 69 | PX_FORCE_INLINE static bool isValidFloatV(const FloatV a) |
| 70 | { |
| 71 | const PxF32 x = V4ReadX(v: a); |
| 72 | const PxF32 y = V4ReadY(v: a); |
| 73 | const PxF32 z = V4ReadZ(v: a); |
| 74 | const PxF32 w = V4ReadW(v: a); |
| 75 | |
| 76 | if ( |
| 77 | (PxAbs(a: x - y) < FLOAT_COMPONENTS_EQUAL_THRESHOLD) && |
| 78 | (PxAbs(a: x - z) < FLOAT_COMPONENTS_EQUAL_THRESHOLD) && |
| 79 | (PxAbs(a: x - w) < FLOAT_COMPONENTS_EQUAL_THRESHOLD) |
| 80 | ) |
| 81 | { |
| 82 | return true; |
| 83 | } |
| 84 | |
| 85 | if ( |
| 86 | (PxAbs(a: (x - y) / x) < FLOAT_COMPONENTS_EQUAL_THRESHOLD) && |
| 87 | (PxAbs(a: (x - z) / x) < FLOAT_COMPONENTS_EQUAL_THRESHOLD) && |
| 88 | (PxAbs(a: (x - w) / x) < FLOAT_COMPONENTS_EQUAL_THRESHOLD) |
| 89 | ) |
| 90 | { |
| 91 | return true; |
| 92 | } |
| 93 | |
| 94 | return false; |
| 95 | } |
| 96 | |
| 97 | PX_FORCE_INLINE bool isValidVec3V(const Vec3V a) |
| 98 | { |
| 99 | PX_ALIGN(16, PxF32 f[4]); |
| 100 | V4StoreA(a, f); |
| 101 | return (f[3] == 0.0f); |
| 102 | } |
| 103 | |
| 104 | PX_FORCE_INLINE bool isFiniteLength(const Vec3V a) |
| 105 | { |
| 106 | return !FAllEq(a: V4LengthSq(a), b: FZero()); |
| 107 | } |
| 108 | |
| 109 | PX_FORCE_INLINE bool isAligned16(void* a) |
| 110 | { |
| 111 | return(0 == (size_t(a) & 0x0f)); |
| 112 | } |
| 113 | |
| 114 | //ASSERT_FINITELENGTH is deactivated because there is a lot of code that calls a simd normalisation function with zero length but then ignores the result. |
| 115 | |
| 116 | #if PX_DEBUG |
| 117 | #define ASSERT_ISVALIDVEC3V(a) PX_ASSERT(isValidVec3V(a)) |
| 118 | #define ASSERT_ISVALIDFLOATV(a) PX_ASSERT(isValidFloatV(a)) |
| 119 | #define ASSERT_ISALIGNED16(a) PX_ASSERT(isAligned16(reinterpret_cast<void*>(a))) |
| 120 | #define ASSERT_ISFINITELENGTH(a) //PX_ASSERT(isFiniteLength(a)) |
| 121 | #else |
| 122 | #define ASSERT_ISVALIDVEC3V(a) |
| 123 | #define ASSERT_ISVALIDFLOATV(a) |
| 124 | #define ASSERT_ISALIGNED16(a) |
| 125 | #define ASSERT_ISFINITELENGTH(a) |
| 126 | #endif |
| 127 | |
| 128 | |
| 129 | namespace internalUnitSSE2Simd |
| 130 | { |
| 131 | PX_FORCE_INLINE PxU32 BAllTrue4_R(const BoolV a) |
| 132 | { |
| 133 | const PxI32 moveMask = _mm_movemask_ps(a: a); |
| 134 | return PxU32(moveMask == 0xf); |
| 135 | } |
| 136 | |
| 137 | PX_FORCE_INLINE PxU32 BAllTrue3_R(const BoolV a) |
| 138 | { |
| 139 | const PxI32 moveMask = _mm_movemask_ps(a: a); |
| 140 | return PxU32((moveMask & 0x7) == 0x7); |
| 141 | } |
| 142 | |
| 143 | PX_FORCE_INLINE PxU32 BAnyTrue4_R(const BoolV a) |
| 144 | { |
| 145 | const PxI32 moveMask = _mm_movemask_ps(a: a); |
| 146 | return PxU32(moveMask != 0x0); |
| 147 | } |
| 148 | |
| 149 | PX_FORCE_INLINE PxU32 BAnyTrue3_R(const BoolV a) |
| 150 | { |
| 151 | const PxI32 moveMask = _mm_movemask_ps(a: a); |
| 152 | return PxU32((moveMask & 0x7) != 0x0); |
| 153 | } |
| 154 | |
| 155 | PX_FORCE_INLINE PxU32 FiniteTestEq(const Vec4V a, const Vec4V b) |
| 156 | { |
| 157 | // This is a bit of a bodge. |
| 158 | //_mm_comieq_ss returns 1 if either value is nan so we need to re-cast a and b with true encoded as a non-nan |
| 159 | // number. |
| 160 | // There must be a better way of doing this in sse. |
| 161 | const BoolV one = FOne(); |
| 162 | const BoolV zero = FZero(); |
| 163 | const BoolV a1 = V4Sel(c: a, a: one, b: zero); |
| 164 | const BoolV b1 = V4Sel(c: b, a: one, b: zero); |
| 165 | return ( |
| 166 | _mm_comieq_ss(a: a1, b: b1) && |
| 167 | _mm_comieq_ss(_mm_shuffle_ps(a1, a1, _MM_SHUFFLE(1, 1, 1, 1)), _mm_shuffle_ps(b1, b1, _MM_SHUFFLE(1, 1, 1, 1))) && |
| 168 | _mm_comieq_ss(_mm_shuffle_ps(a1, a1, _MM_SHUFFLE(2, 2, 2, 2)), _mm_shuffle_ps(b1, b1, _MM_SHUFFLE(2, 2, 2, 2))) && |
| 169 | _mm_comieq_ss(_mm_shuffle_ps(a1, a1, _MM_SHUFFLE(3, 3, 3, 3)), _mm_shuffle_ps(b1, b1, _MM_SHUFFLE(3, 3, 3, 3)))); |
| 170 | } |
| 171 | |
| 172 | #if !PX_EMSCRIPTEN |
| 173 | const PX_ALIGN(16, PxF32 gMaskXYZ[4]) = { physx::PxUnionCast<PxF32>(b: 0xffffffff), physx::PxUnionCast<PxF32>(b: 0xffffffff), |
| 174 | physx::PxUnionCast<PxF32>(b: 0xffffffff), 0 }; |
| 175 | #else |
| 176 | // emscripten doesn't like the PxUnionCast data structure |
| 177 | // the following is what windows and xbox does -- using these for emscripten |
| 178 | const PX_ALIGN(16, PxU32 gMaskXYZ[4]) = { 0xffffffff, 0xffffffff, 0xffffffff, 0 }; |
| 179 | #endif |
| 180 | } |
| 181 | |
| 182 | namespace _VecMathTests |
| 183 | { |
| 184 | // PT: this function returns an invalid Vec3V (W!=0.0f) just for unit-testing 'isValidVec3V' |
| 185 | PX_FORCE_INLINE Vec3V getInvalidVec3V() |
| 186 | { |
| 187 | const float f = 1.0f; |
| 188 | return _mm_load1_ps(p: &f); |
| 189 | } |
| 190 | |
| 191 | PX_FORCE_INLINE bool allElementsEqualFloatV(const FloatV a, const FloatV b) |
| 192 | { |
| 193 | ASSERT_ISVALIDFLOATV(a); |
| 194 | ASSERT_ISVALIDFLOATV(b); |
| 195 | return _mm_comieq_ss(a: a, b: b) != 0; |
| 196 | } |
| 197 | |
| 198 | PX_FORCE_INLINE bool allElementsEqualVec3V(const Vec3V a, const Vec3V b) |
| 199 | { |
| 200 | return V3AllEq(a, b) != 0; |
| 201 | } |
| 202 | |
| 203 | PX_FORCE_INLINE bool allElementsEqualVec4V(const Vec4V a, const Vec4V b) |
| 204 | { |
| 205 | return V4AllEq(a, b) != 0; |
| 206 | } |
| 207 | |
| 208 | PX_FORCE_INLINE bool allElementsEqualBoolV(const BoolV a, const BoolV b) |
| 209 | { |
| 210 | return internalUnitSSE2Simd::BAllTrue4_R(a: VecI32V_IsEq(a: m128_F2I(n: a), b: m128_F2I(n: b))) != 0; |
| 211 | } |
| 212 | |
| 213 | PX_FORCE_INLINE bool allElementsEqualVecU32V(const VecU32V a, const VecU32V b) |
| 214 | { |
| 215 | return internalUnitSSE2Simd::BAllTrue4_R(a: V4IsEqU32(a, b)) != 0; |
| 216 | } |
| 217 | |
| 218 | PX_FORCE_INLINE bool allElementsEqualVecI32V(const VecI32V a, const VecI32V b) |
| 219 | { |
| 220 | BoolV c = m128_I2F(n: _mm_cmpeq_epi32(a: a, b: b)); |
| 221 | return internalUnitSSE2Simd::BAllTrue4_R(a: c) != 0; |
| 222 | } |
| 223 | |
| 224 | #define VECMATH_AOS_EPSILON (1e-3f) |
| 225 | |
| 226 | PX_FORCE_INLINE bool allElementsNearEqualFloatV(const FloatV a, const FloatV b) |
| 227 | { |
| 228 | ASSERT_ISVALIDFLOATV(a); |
| 229 | ASSERT_ISVALIDFLOATV(b); |
| 230 | const FloatV c = FSub(a, b); |
| 231 | const FloatV minError = FLoad(f: -VECMATH_AOS_EPSILON); |
| 232 | const FloatV maxError = FLoad(VECMATH_AOS_EPSILON); |
| 233 | return _mm_comigt_ss(a: c, b: minError) && _mm_comilt_ss(a: c, b: maxError); |
| 234 | } |
| 235 | |
| 236 | PX_FORCE_INLINE bool allElementsNearEqualVec3V(const Vec3V a, const Vec3V b) |
| 237 | { |
| 238 | const Vec3V c = V3Sub(a, b); |
| 239 | const Vec3V minError = V3Load(f: -VECMATH_AOS_EPSILON); |
| 240 | const Vec3V maxError = V3Load(VECMATH_AOS_EPSILON); |
| 241 | return (_mm_comigt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(0, 0, 0, 0)), b: minError) && |
| 242 | _mm_comilt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(0, 0, 0, 0)), b: maxError) && |
| 243 | _mm_comigt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(1, 1, 1, 1)), b: minError) && |
| 244 | _mm_comilt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(1, 1, 1, 1)), b: maxError) && |
| 245 | _mm_comigt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(2, 2, 2, 2)), b: minError) && |
| 246 | _mm_comilt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(2, 2, 2, 2)), b: maxError)); |
| 247 | } |
| 248 | |
| 249 | PX_FORCE_INLINE bool allElementsNearEqualVec4V(const Vec4V a, const Vec4V b) |
| 250 | { |
| 251 | const Vec4V c = V4Sub(a, b); |
| 252 | const Vec4V minError = V4Load(f: -VECMATH_AOS_EPSILON); |
| 253 | const Vec4V maxError = V4Load(VECMATH_AOS_EPSILON); |
| 254 | return (_mm_comigt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(0, 0, 0, 0)), b: minError) && |
| 255 | _mm_comilt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(0, 0, 0, 0)), b: maxError) && |
| 256 | _mm_comigt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(1, 1, 1, 1)), b: minError) && |
| 257 | _mm_comilt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(1, 1, 1, 1)), b: maxError) && |
| 258 | _mm_comigt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(2, 2, 2, 2)), b: minError) && |
| 259 | _mm_comilt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(2, 2, 2, 2)), b: maxError) && |
| 260 | _mm_comigt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(3, 3, 3, 3)), b: minError) && |
| 261 | _mm_comilt_ss(_mm_shuffle_ps(c, c, _MM_SHUFFLE(3, 3, 3, 3)), b: maxError)); |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | ///////////////////////////////////////////////////////////////////// |
| 266 | ////FUNCTIONS USED ONLY FOR ASSERTS IN VECTORISED IMPLEMENTATIONS |
| 267 | ///////////////////////////////////////////////////////////////////// |
| 268 | |
| 269 | PX_FORCE_INLINE bool isFiniteFloatV(const FloatV a) |
| 270 | { |
| 271 | PxF32 badNumber = |
| 272 | physx::PxUnionCast<PxF32, PxU32>(PX_FPCLASS_SNAN | PX_FPCLASS_QNAN | PX_FPCLASS_NINF | PX_FPCLASS_PINF); |
| 273 | const FloatV vBadNum = FLoad(f: badNumber); |
| 274 | const BoolV vMask = BAnd(a: vBadNum, b: a); |
| 275 | return internalUnitSSE2Simd::FiniteTestEq(a: vMask, b: BFFFF()) == 1; |
| 276 | } |
| 277 | |
| 278 | PX_FORCE_INLINE bool isFiniteVec3V(const Vec3V a) |
| 279 | { |
| 280 | PxF32 badNumber = |
| 281 | physx::PxUnionCast<PxF32, PxU32>(PX_FPCLASS_SNAN | PX_FPCLASS_QNAN | PX_FPCLASS_NINF | PX_FPCLASS_PINF); |
| 282 | const Vec3V vBadNum = V3Load(f: badNumber); |
| 283 | const BoolV vMask = BAnd(a: BAnd(a: vBadNum, b: a), b: BTTTF()); |
| 284 | return internalUnitSSE2Simd::FiniteTestEq(a: vMask, b: BFFFF()) == 1; |
| 285 | } |
| 286 | |
| 287 | PX_FORCE_INLINE bool isFiniteVec4V(const Vec4V a) |
| 288 | { |
| 289 | /*Vec4V a; |
| 290 | PX_ALIGN(16, PxF32 f[4]); |
| 291 | F32Array_Aligned_From_Vec4V(a, f); |
| 292 | return PxIsFinite(f[0]) |
| 293 | && PxIsFinite(f[1]) |
| 294 | && PxIsFinite(f[2]) |
| 295 | && PxIsFinite(f[3]);*/ |
| 296 | |
| 297 | PxF32 badNumber = |
| 298 | physx::PxUnionCast<PxF32, PxU32>(PX_FPCLASS_SNAN | PX_FPCLASS_QNAN | PX_FPCLASS_NINF | PX_FPCLASS_PINF); |
| 299 | const Vec4V vBadNum = V4Load(f: badNumber); |
| 300 | const BoolV vMask = BAnd(a: vBadNum, b: a); |
| 301 | |
| 302 | return internalUnitSSE2Simd::FiniteTestEq(a: vMask, b: BFFFF()) == 1; |
| 303 | } |
| 304 | |
| 305 | PX_FORCE_INLINE bool hasZeroElementinFloatV(const FloatV a) |
| 306 | { |
| 307 | ASSERT_ISVALIDFLOATV(a); |
| 308 | return _mm_comieq_ss(_mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 0, 0, 0)), b: FZero()) ? true : false; |
| 309 | } |
| 310 | |
| 311 | PX_FORCE_INLINE bool hasZeroElementInVec3V(const Vec3V a) |
| 312 | { |
| 313 | return (_mm_comieq_ss(_mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 0, 0, 0)), b: FZero()) || |
| 314 | _mm_comieq_ss(_mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 1, 1, 1)), b: FZero()) || |
| 315 | _mm_comieq_ss(_mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 2, 2, 2)), b: FZero())); |
| 316 | } |
| 317 | |
| 318 | PX_FORCE_INLINE bool hasZeroElementInVec4V(const Vec4V a) |
| 319 | { |
| 320 | return (_mm_comieq_ss(_mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 0, 0, 0)), b: FZero()) || |
| 321 | _mm_comieq_ss(_mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 1, 1, 1)), b: FZero()) || |
| 322 | _mm_comieq_ss(_mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 2, 2, 2)), b: FZero()) || |
| 323 | _mm_comieq_ss(_mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 3, 3, 3)), b: FZero())); |
| 324 | } |
| 325 | |
| 326 | ///////////////////////////////////////////////////////////////////// |
| 327 | ////VECTORISED FUNCTION IMPLEMENTATIONS |
| 328 | ///////////////////////////////////////////////////////////////////// |
| 329 | |
| 330 | PX_FORCE_INLINE FloatV FLoad(const PxF32 f) |
| 331 | { |
| 332 | return _mm_load1_ps(p: &f); |
| 333 | } |
| 334 | |
| 335 | PX_FORCE_INLINE Vec3V V3Load(const PxF32 f) |
| 336 | { |
| 337 | return _mm_set_ps(z: 0.0f, y: f, x: f, w: f); |
| 338 | } |
| 339 | |
| 340 | PX_FORCE_INLINE Vec4V V4Load(const PxF32 f) |
| 341 | { |
| 342 | return _mm_load1_ps(p: &f); |
| 343 | } |
| 344 | |
| 345 | PX_FORCE_INLINE BoolV BLoad(const bool f) |
| 346 | { |
| 347 | const PxU32 i = -PxI32(f); |
| 348 | return _mm_load1_ps(p: reinterpret_cast<const float*>(&i)); |
| 349 | } |
| 350 | |
| 351 | PX_FORCE_INLINE Vec3V V3LoadA(const PxVec3& f) |
| 352 | { |
| 353 | ASSERT_ISALIGNED16(const_cast<PxVec3*>(&f)); |
| 354 | #if !PX_EMSCRIPTEN |
| 355 | return _mm_and_ps(a: reinterpret_cast<const Vec3V&>(f), b: V4LoadA(f: internalUnitSSE2Simd::gMaskXYZ)); |
| 356 | #else |
| 357 | return _mm_and_ps((Vec3V&)f, (VecI32V&)internalUnitSSE2Simd::gMaskXYZ); |
| 358 | #endif |
| 359 | } |
| 360 | |
| 361 | PX_FORCE_INLINE Vec3V V3LoadU(const PxVec3& f) |
| 362 | { |
| 363 | return _mm_set_ps(z: 0.0f, y: f.z, x: f.y, w: f.x); |
| 364 | } |
| 365 | |
| 366 | PX_FORCE_INLINE Vec3V V3LoadUnsafeA(const PxVec3& f) |
| 367 | { |
| 368 | ASSERT_ISALIGNED16(const_cast<PxVec3*>(&f)); |
| 369 | return _mm_set_ps(z: 0.0f, y: f.z, x: f.y, w: f.x); |
| 370 | } |
| 371 | |
| 372 | PX_FORCE_INLINE Vec3V V3LoadA(const PxF32* const f) |
| 373 | { |
| 374 | ASSERT_ISALIGNED16(const_cast<PxF32*>(f)); |
| 375 | #if !PX_EMSCRIPTEN |
| 376 | return _mm_and_ps(a: V4LoadA(f), b: V4LoadA(f: internalUnitSSE2Simd::gMaskXYZ)); |
| 377 | #else |
| 378 | return _mm_and_ps((Vec3V&)*f, (VecI32V&)internalUnitSSE2Simd::gMaskXYZ); |
| 379 | #endif |
| 380 | } |
| 381 | |
| 382 | PX_FORCE_INLINE Vec3V V3LoadU(const PxF32* const i) |
| 383 | { |
| 384 | return _mm_set_ps(z: 0.0f, y: i[2], x: i[1], w: i[0]); |
| 385 | } |
| 386 | |
| 387 | PX_FORCE_INLINE Vec3V Vec3V_From_Vec4V(Vec4V v) |
| 388 | { |
| 389 | return V4ClearW(v); |
| 390 | } |
| 391 | |
| 392 | PX_FORCE_INLINE Vec3V Vec3V_From_Vec4V_WUndefined(const Vec4V v) |
| 393 | { |
| 394 | return v; |
| 395 | } |
| 396 | |
| 397 | PX_FORCE_INLINE Vec4V Vec4V_From_Vec3V(Vec3V f) |
| 398 | { |
| 399 | ASSERT_ISVALIDVEC3V(f); |
| 400 | return f; // ok if it is implemented as the same type. |
| 401 | } |
| 402 | |
| 403 | PX_FORCE_INLINE Vec4V Vec4V_From_PxVec3_WUndefined(const PxVec3& f) |
| 404 | { |
| 405 | return _mm_set_ps(z: 0.0f, y: f.z, x: f.y, w: f.x); |
| 406 | } |
| 407 | |
| 408 | PX_FORCE_INLINE Vec4V Vec4V_From_FloatV(FloatV f) |
| 409 | { |
| 410 | return f; |
| 411 | } |
| 412 | |
| 413 | PX_FORCE_INLINE Vec3V Vec3V_From_FloatV(FloatV f) |
| 414 | { |
| 415 | ASSERT_ISVALIDFLOATV(f); |
| 416 | return Vec3V_From_Vec4V(v: Vec4V_From_FloatV(f)); |
| 417 | } |
| 418 | |
| 419 | PX_FORCE_INLINE Vec3V Vec3V_From_FloatV_WUndefined(FloatV f) |
| 420 | { |
| 421 | ASSERT_ISVALIDVEC3V(f); |
| 422 | return Vec3V_From_Vec4V_WUndefined(v: Vec4V_From_FloatV(f)); |
| 423 | } |
| 424 | |
| 425 | PX_FORCE_INLINE Mat33V Mat33V_From_PxMat33(const PxMat33& m) |
| 426 | { |
| 427 | return Mat33V(V3LoadU(f: m.column0), V3LoadU(f: m.column1), V3LoadU(f: m.column2)); |
| 428 | } |
| 429 | |
| 430 | PX_FORCE_INLINE void PxMat33_From_Mat33V(const Mat33V& m, PxMat33& out) |
| 431 | { |
| 432 | V3StoreU(a: m.col0, f&: out.column0); |
| 433 | V3StoreU(a: m.col1, f&: out.column1); |
| 434 | V3StoreU(a: m.col2, f&: out.column2); |
| 435 | } |
| 436 | |
| 437 | PX_FORCE_INLINE Vec4V V4LoadA(const PxF32* const f) |
| 438 | { |
| 439 | ASSERT_ISALIGNED16(const_cast<PxF32*>(f)); |
| 440 | return _mm_load_ps(p: f); |
| 441 | } |
| 442 | |
| 443 | PX_FORCE_INLINE void V4StoreA(Vec4V a, PxF32* f) |
| 444 | { |
| 445 | ASSERT_ISALIGNED16(f); |
| 446 | _mm_store_ps(p: f, a: a); |
| 447 | } |
| 448 | |
| 449 | PX_FORCE_INLINE void V4StoreU(const Vec4V a, PxF32* f) |
| 450 | { |
| 451 | _mm_storeu_ps(p: f, a: a); |
| 452 | } |
| 453 | |
| 454 | PX_FORCE_INLINE void BStoreA(const BoolV a, PxU32* f) |
| 455 | { |
| 456 | ASSERT_ISALIGNED16(f); |
| 457 | _mm_store_ps(p: reinterpret_cast<PxF32*>(f), a: a); |
| 458 | } |
| 459 | |
| 460 | PX_FORCE_INLINE void U4StoreA(const VecU32V uv, PxU32* u) |
| 461 | { |
| 462 | ASSERT_ISALIGNED16(u); |
| 463 | _mm_store_ps(p: reinterpret_cast<float*>(u), a: uv); |
| 464 | } |
| 465 | |
| 466 | PX_FORCE_INLINE void I4StoreA(const VecI32V iv, PxI32* i) |
| 467 | { |
| 468 | ASSERT_ISALIGNED16(i); |
| 469 | _mm_store_ps(p: reinterpret_cast<float*>(i), a: m128_I2F(n: iv)); |
| 470 | } |
| 471 | |
| 472 | PX_FORCE_INLINE Vec4V V4LoadU(const PxF32* const f) |
| 473 | { |
| 474 | return _mm_loadu_ps(p: f); |
| 475 | } |
| 476 | |
| 477 | PX_FORCE_INLINE BoolV BLoad(const bool* const f) |
| 478 | { |
| 479 | const PX_ALIGN(16, PxI32) b[4] = { -PxI32(f[0]), -PxI32(f[1]), -PxI32(f[2]), -PxI32(f[3]) }; |
| 480 | return _mm_load_ps(p: reinterpret_cast<const float*>(&b)); |
| 481 | } |
| 482 | |
| 483 | PX_FORCE_INLINE void FStore(const FloatV a, PxF32* PX_RESTRICT f) |
| 484 | { |
| 485 | ASSERT_ISVALIDFLOATV(a); |
| 486 | _mm_store_ss(p: f, a: a); |
| 487 | } |
| 488 | |
| 489 | PX_FORCE_INLINE void V3StoreA(const Vec3V a, PxVec3& f) |
| 490 | { |
| 491 | ASSERT_ISALIGNED16(&f); |
| 492 | PX_ALIGN(16, PxF32) f2[4]; |
| 493 | _mm_store_ps(p: f2, a: a); |
| 494 | f = PxVec3(f2[0], f2[1], f2[2]); |
| 495 | } |
| 496 | |
| 497 | PX_FORCE_INLINE void V3StoreU(const Vec3V a, PxVec3& f) |
| 498 | { |
| 499 | PX_ALIGN(16, PxF32) f2[4]; |
| 500 | _mm_store_ps(p: f2, a: a); |
| 501 | f = PxVec3(f2[0], f2[1], f2[2]); |
| 502 | } |
| 503 | |
| 504 | PX_FORCE_INLINE void Store_From_BoolV(const BoolV b, PxU32* b2) |
| 505 | { |
| 506 | _mm_store_ss(p: reinterpret_cast<PxF32*>(b2), a: b); |
| 507 | } |
| 508 | |
| 509 | PX_FORCE_INLINE VecU32V U4Load(const PxU32 i) |
| 510 | { |
| 511 | return _mm_load1_ps(p: reinterpret_cast<const PxF32*>(&i)); |
| 512 | } |
| 513 | |
| 514 | PX_FORCE_INLINE VecU32V U4LoadU(const PxU32* i) |
| 515 | { |
| 516 | return _mm_loadu_ps(p: reinterpret_cast<const PxF32*>(i)); |
| 517 | } |
| 518 | |
| 519 | PX_FORCE_INLINE VecU32V U4LoadA(const PxU32* i) |
| 520 | { |
| 521 | ASSERT_ISALIGNED16(const_cast<PxU32*>(i)); |
| 522 | return _mm_load_ps(p: reinterpret_cast<const PxF32*>(i)); |
| 523 | } |
| 524 | |
| 525 | ////////////////////////////////// |
| 526 | // FLOATV |
| 527 | ////////////////////////////////// |
| 528 | |
| 529 | PX_FORCE_INLINE FloatV FZero() |
| 530 | { |
| 531 | return FLoad(f: 0.0f); |
| 532 | } |
| 533 | |
| 534 | PX_FORCE_INLINE FloatV FOne() |
| 535 | { |
| 536 | return FLoad(f: 1.0f); |
| 537 | } |
| 538 | |
| 539 | PX_FORCE_INLINE FloatV FHalf() |
| 540 | { |
| 541 | return FLoad(f: 0.5f); |
| 542 | } |
| 543 | |
| 544 | PX_FORCE_INLINE FloatV FEps() |
| 545 | { |
| 546 | return FLoad(PX_EPS_REAL); |
| 547 | } |
| 548 | |
| 549 | PX_FORCE_INLINE FloatV FEps6() |
| 550 | { |
| 551 | return FLoad(f: 1e-6f); |
| 552 | } |
| 553 | |
| 554 | PX_FORCE_INLINE FloatV FMax() |
| 555 | { |
| 556 | return FLoad(PX_MAX_REAL); |
| 557 | } |
| 558 | |
| 559 | PX_FORCE_INLINE FloatV FNegMax() |
| 560 | { |
| 561 | return FLoad(f: -PX_MAX_REAL); |
| 562 | } |
| 563 | |
| 564 | PX_FORCE_INLINE FloatV IZero() |
| 565 | { |
| 566 | const PxU32 zero = 0; |
| 567 | return _mm_load1_ps(p: reinterpret_cast<const PxF32*>(&zero)); |
| 568 | } |
| 569 | |
| 570 | PX_FORCE_INLINE FloatV IOne() |
| 571 | { |
| 572 | const PxU32 one = 1; |
| 573 | return _mm_load1_ps(p: reinterpret_cast<const PxF32*>(&one)); |
| 574 | } |
| 575 | |
| 576 | PX_FORCE_INLINE FloatV ITwo() |
| 577 | { |
| 578 | const PxU32 two = 2; |
| 579 | return _mm_load1_ps(p: reinterpret_cast<const PxF32*>(&two)); |
| 580 | } |
| 581 | |
| 582 | PX_FORCE_INLINE FloatV IThree() |
| 583 | { |
| 584 | const PxU32 three = 3; |
| 585 | return _mm_load1_ps(p: reinterpret_cast<const PxF32*>(&three)); |
| 586 | } |
| 587 | |
| 588 | PX_FORCE_INLINE FloatV IFour() |
| 589 | { |
| 590 | PxU32 four = 4; |
| 591 | return _mm_load1_ps(p: reinterpret_cast<const PxF32*>(&four)); |
| 592 | } |
| 593 | |
| 594 | PX_FORCE_INLINE FloatV FNeg(const FloatV f) |
| 595 | { |
| 596 | ASSERT_ISVALIDFLOATV(f); |
| 597 | return _mm_sub_ps(a: _mm_setzero_ps(), b: f); |
| 598 | } |
| 599 | |
| 600 | PX_FORCE_INLINE FloatV FAdd(const FloatV a, const FloatV b) |
| 601 | { |
| 602 | ASSERT_ISVALIDFLOATV(a); |
| 603 | ASSERT_ISVALIDFLOATV(b); |
| 604 | /* |
| 605 | if(!isValidFloatV(a)) |
| 606 | { |
| 607 | assert(false); |
| 608 | } |
| 609 | if(!isValidFloatV(b)) |
| 610 | { |
| 611 | assert(false); |
| 612 | } |
| 613 | */ |
| 614 | return _mm_add_ps(a: a, b: b); |
| 615 | } |
| 616 | |
| 617 | PX_FORCE_INLINE FloatV FSub(const FloatV a, const FloatV b) |
| 618 | { |
| 619 | ASSERT_ISVALIDFLOATV(a); |
| 620 | ASSERT_ISVALIDFLOATV(b); |
| 621 | return _mm_sub_ps(a: a, b: b); |
| 622 | } |
| 623 | |
| 624 | PX_FORCE_INLINE FloatV FMul(const FloatV a, const FloatV b) |
| 625 | { |
| 626 | ASSERT_ISVALIDFLOATV(a); |
| 627 | ASSERT_ISVALIDFLOATV(b); |
| 628 | return _mm_mul_ps(a: a, b: b); |
| 629 | } |
| 630 | |
| 631 | PX_FORCE_INLINE FloatV FDiv(const FloatV a, const FloatV b) |
| 632 | { |
| 633 | ASSERT_ISVALIDFLOATV(a); |
| 634 | ASSERT_ISVALIDFLOATV(b); |
| 635 | return _mm_div_ps(a: a, b: b); |
| 636 | } |
| 637 | |
| 638 | PX_FORCE_INLINE FloatV FDivFast(const FloatV a, const FloatV b) |
| 639 | { |
| 640 | ASSERT_ISVALIDFLOATV(a); |
| 641 | ASSERT_ISVALIDFLOATV(b); |
| 642 | return _mm_mul_ps(a: a, b: _mm_rcp_ps(a: b)); |
| 643 | } |
| 644 | |
| 645 | PX_FORCE_INLINE FloatV FRecip(const FloatV a) |
| 646 | { |
| 647 | ASSERT_ISVALIDFLOATV(a); |
| 648 | return _mm_div_ps(a: FOne(), b: a); |
| 649 | } |
| 650 | |
| 651 | PX_FORCE_INLINE FloatV FRecipFast(const FloatV a) |
| 652 | { |
| 653 | ASSERT_ISVALIDFLOATV(a); |
| 654 | return _mm_rcp_ps(a: a); |
| 655 | } |
| 656 | |
| 657 | PX_FORCE_INLINE FloatV FRsqrt(const FloatV a) |
| 658 | { |
| 659 | ASSERT_ISVALIDFLOATV(a); |
| 660 | return _mm_div_ps(a: FOne(), b: _mm_sqrt_ps(a: a)); |
| 661 | } |
| 662 | |
| 663 | PX_FORCE_INLINE FloatV FSqrt(const FloatV a) |
| 664 | { |
| 665 | ASSERT_ISVALIDFLOATV(a); |
| 666 | return _mm_sqrt_ps(a: a); |
| 667 | } |
| 668 | |
| 669 | PX_FORCE_INLINE FloatV FRsqrtFast(const FloatV a) |
| 670 | { |
| 671 | ASSERT_ISVALIDFLOATV(a); |
| 672 | return _mm_rsqrt_ps(a: a); |
| 673 | } |
| 674 | |
| 675 | PX_FORCE_INLINE FloatV FScaleAdd(const FloatV a, const FloatV b, const FloatV c) |
| 676 | { |
| 677 | ASSERT_ISVALIDFLOATV(a); |
| 678 | ASSERT_ISVALIDFLOATV(b); |
| 679 | ASSERT_ISVALIDFLOATV(c); |
| 680 | return FAdd(a: FMul(a, b), b: c); |
| 681 | } |
| 682 | |
| 683 | PX_FORCE_INLINE FloatV FNegScaleSub(const FloatV a, const FloatV b, const FloatV c) |
| 684 | { |
| 685 | ASSERT_ISVALIDFLOATV(a); |
| 686 | ASSERT_ISVALIDFLOATV(b); |
| 687 | ASSERT_ISVALIDFLOATV(c); |
| 688 | return FSub(a: c, b: FMul(a, b)); |
| 689 | } |
| 690 | |
| 691 | PX_FORCE_INLINE FloatV FAbs(const FloatV a) |
| 692 | { |
| 693 | ASSERT_ISVALIDFLOATV(a); |
| 694 | PX_ALIGN(16, const PxU32) absMask[4] = { 0x7fFFffFF, 0x7fFFffFF, 0x7fFFffFF, 0x7fFFffFF }; |
| 695 | return _mm_and_ps(a: a, b: _mm_load_ps(p: reinterpret_cast<const PxF32*>(absMask))); |
| 696 | } |
| 697 | |
| 698 | PX_FORCE_INLINE FloatV FSel(const BoolV c, const FloatV a, const FloatV b) |
| 699 | { |
| 700 | PX_ASSERT(_VecMathTests::allElementsEqualBoolV(c,BTTTT()) || |
| 701 | _VecMathTests::allElementsEqualBoolV(c,BFFFF())); |
| 702 | ASSERT_ISVALIDFLOATV(_mm_or_ps(_mm_andnot_ps(c, b), _mm_and_ps(c, a))); |
| 703 | return _mm_or_ps(a: _mm_andnot_ps(a: c, b: b), b: _mm_and_ps(a: c, b: a)); |
| 704 | } |
| 705 | |
| 706 | PX_FORCE_INLINE BoolV FIsGrtr(const FloatV a, const FloatV b) |
| 707 | { |
| 708 | ASSERT_ISVALIDFLOATV(a); |
| 709 | ASSERT_ISVALIDFLOATV(b); |
| 710 | return _mm_cmpgt_ps(a: a, b: b); |
| 711 | } |
| 712 | |
| 713 | PX_FORCE_INLINE BoolV FIsGrtrOrEq(const FloatV a, const FloatV b) |
| 714 | { |
| 715 | ASSERT_ISVALIDFLOATV(a); |
| 716 | ASSERT_ISVALIDFLOATV(b); |
| 717 | return _mm_cmpge_ps(a: a, b: b); |
| 718 | } |
| 719 | |
| 720 | PX_FORCE_INLINE BoolV FIsEq(const FloatV a, const FloatV b) |
| 721 | { |
| 722 | ASSERT_ISVALIDFLOATV(a); |
| 723 | ASSERT_ISVALIDFLOATV(b); |
| 724 | return _mm_cmpeq_ps(a: a, b: b); |
| 725 | } |
| 726 | |
| 727 | PX_FORCE_INLINE FloatV FMax(const FloatV a, const FloatV b) |
| 728 | { |
| 729 | ASSERT_ISVALIDFLOATV(a); |
| 730 | ASSERT_ISVALIDFLOATV(b); |
| 731 | return _mm_max_ps(a: a, b: b); |
| 732 | } |
| 733 | |
| 734 | PX_FORCE_INLINE FloatV FMin(const FloatV a, const FloatV b) |
| 735 | { |
| 736 | ASSERT_ISVALIDFLOATV(a); |
| 737 | ASSERT_ISVALIDFLOATV(b); |
| 738 | return _mm_min_ps(a: a, b: b); |
| 739 | } |
| 740 | |
| 741 | PX_FORCE_INLINE FloatV FClamp(const FloatV a, const FloatV minV, const FloatV maxV) |
| 742 | { |
| 743 | ASSERT_ISVALIDFLOATV(minV); |
| 744 | ASSERT_ISVALIDFLOATV(maxV); |
| 745 | return _mm_max_ps(a: _mm_min_ps(a: a, b: maxV), b: minV); |
| 746 | } |
| 747 | |
| 748 | PX_FORCE_INLINE PxU32 FAllGrtr(const FloatV a, const FloatV b) |
| 749 | { |
| 750 | ASSERT_ISVALIDFLOATV(a); |
| 751 | ASSERT_ISVALIDFLOATV(b); |
| 752 | return _mm_comigt_ss(a: a, b: b); |
| 753 | } |
| 754 | |
| 755 | PX_FORCE_INLINE PxU32 FAllGrtrOrEq(const FloatV a, const FloatV b) |
| 756 | { |
| 757 | ASSERT_ISVALIDFLOATV(a); |
| 758 | ASSERT_ISVALIDFLOATV(b); |
| 759 | return _mm_comige_ss(a: a, b: b); |
| 760 | } |
| 761 | |
| 762 | PX_FORCE_INLINE PxU32 FAllEq(const FloatV a, const FloatV b) |
| 763 | { |
| 764 | ASSERT_ISVALIDFLOATV(a); |
| 765 | ASSERT_ISVALIDFLOATV(b); |
| 766 | return _mm_comieq_ss(a: a, b: b); |
| 767 | } |
| 768 | |
| 769 | PX_FORCE_INLINE FloatV FRound(const FloatV a) |
| 770 | { |
| 771 | ASSERT_ISVALIDFLOATV(a); |
| 772 | #ifdef __SSE4_2__ |
| 773 | return _mm_round_ps(a, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| 774 | #else |
| 775 | // return _mm_round_ps(a, 0x0); |
| 776 | const FloatV half = FLoad(f: 0.5f); |
| 777 | const __m128 signBit = _mm_cvtepi32_ps(a: _mm_srli_epi32(a: _mm_cvtps_epi32(a: a), count: 31)); |
| 778 | const FloatV aRound = FSub(a: FAdd(a, b: half), b: signBit); |
| 779 | __m128i tmp = _mm_cvttps_epi32(a: aRound); |
| 780 | return _mm_cvtepi32_ps(a: tmp); |
| 781 | #endif |
| 782 | } |
| 783 | |
| 784 | PX_FORCE_INLINE FloatV FSin(const FloatV a) |
| 785 | { |
| 786 | ASSERT_ISVALIDFLOATV(a); |
| 787 | |
| 788 | // Modulo the range of the given angles such that -XM_2PI <= Angles < XM_2PI |
| 789 | const FloatV recipTwoPi = V4LoadA(f: g_PXReciprocalTwoPi.f); |
| 790 | const FloatV twoPi = V4LoadA(f: g_PXTwoPi.f); |
| 791 | const FloatV tmp = FMul(a, b: recipTwoPi); |
| 792 | const FloatV b = FRound(a: tmp); |
| 793 | const FloatV V1 = FNegScaleSub(a: twoPi, b, c: a); |
| 794 | |
| 795 | // sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! + V^9 / 9! - V^11 / 11! + V^13 / 13! - |
| 796 | // V^15 / 15! + V^17 / 17! - V^19 / 19! + V^21 / 21! - V^23 / 23! (for -PI <= V < PI) |
| 797 | const FloatV V2 = FMul(a: V1, b: V1); |
| 798 | const FloatV V3 = FMul(a: V2, b: V1); |
| 799 | const FloatV V5 = FMul(a: V3, b: V2); |
| 800 | const FloatV V7 = FMul(a: V5, b: V2); |
| 801 | const FloatV V9 = FMul(a: V7, b: V2); |
| 802 | const FloatV V11 = FMul(a: V9, b: V2); |
| 803 | const FloatV V13 = FMul(a: V11, b: V2); |
| 804 | const FloatV V15 = FMul(a: V13, b: V2); |
| 805 | const FloatV V17 = FMul(a: V15, b: V2); |
| 806 | const FloatV V19 = FMul(a: V17, b: V2); |
| 807 | const FloatV V21 = FMul(a: V19, b: V2); |
| 808 | const FloatV V23 = FMul(a: V21, b: V2); |
| 809 | |
| 810 | const Vec4V sinCoefficients0 = V4LoadA(f: g_PXSinCoefficients0.f); |
| 811 | const Vec4V sinCoefficients1 = V4LoadA(f: g_PXSinCoefficients1.f); |
| 812 | const Vec4V sinCoefficients2 = V4LoadA(f: g_PXSinCoefficients2.f); |
| 813 | |
| 814 | const FloatV S1 = V4GetY(f: sinCoefficients0); |
| 815 | const FloatV S2 = V4GetZ(f: sinCoefficients0); |
| 816 | const FloatV S3 = V4GetW(f: sinCoefficients0); |
| 817 | const FloatV S4 = V4GetX(f: sinCoefficients1); |
| 818 | const FloatV S5 = V4GetY(f: sinCoefficients1); |
| 819 | const FloatV S6 = V4GetZ(f: sinCoefficients1); |
| 820 | const FloatV S7 = V4GetW(f: sinCoefficients1); |
| 821 | const FloatV S8 = V4GetX(f: sinCoefficients2); |
| 822 | const FloatV S9 = V4GetY(f: sinCoefficients2); |
| 823 | const FloatV S10 = V4GetZ(f: sinCoefficients2); |
| 824 | const FloatV S11 = V4GetW(f: sinCoefficients2); |
| 825 | |
| 826 | FloatV Result; |
| 827 | Result = FScaleAdd(a: S1, b: V3, c: V1); |
| 828 | Result = FScaleAdd(a: S2, b: V5, c: Result); |
| 829 | Result = FScaleAdd(a: S3, b: V7, c: Result); |
| 830 | Result = FScaleAdd(a: S4, b: V9, c: Result); |
| 831 | Result = FScaleAdd(a: S5, b: V11, c: Result); |
| 832 | Result = FScaleAdd(a: S6, b: V13, c: Result); |
| 833 | Result = FScaleAdd(a: S7, b: V15, c: Result); |
| 834 | Result = FScaleAdd(a: S8, b: V17, c: Result); |
| 835 | Result = FScaleAdd(a: S9, b: V19, c: Result); |
| 836 | Result = FScaleAdd(a: S10, b: V21, c: Result); |
| 837 | Result = FScaleAdd(a: S11, b: V23, c: Result); |
| 838 | |
| 839 | return Result; |
| 840 | } |
| 841 | |
| 842 | PX_FORCE_INLINE FloatV FCos(const FloatV a) |
| 843 | { |
| 844 | ASSERT_ISVALIDFLOATV(a); |
| 845 | |
| 846 | // Modulo the range of the given angles such that -XM_2PI <= Angles < XM_2PI |
| 847 | const FloatV recipTwoPi = V4LoadA(f: g_PXReciprocalTwoPi.f); |
| 848 | const FloatV twoPi = V4LoadA(f: g_PXTwoPi.f); |
| 849 | const FloatV tmp = FMul(a, b: recipTwoPi); |
| 850 | const FloatV b = FRound(a: tmp); |
| 851 | const FloatV V1 = FNegScaleSub(a: twoPi, b, c: a); |
| 852 | |
| 853 | // cos(V) ~= 1 - V^2 / 2! + V^4 / 4! - V^6 / 6! + V^8 / 8! - V^10 / 10! + V^12 / 12! - |
| 854 | // V^14 / 14! + V^16 / 16! - V^18 / 18! + V^20 / 20! - V^22 / 22! (for -PI <= V < PI) |
| 855 | const FloatV V2 = FMul(a: V1, b: V1); |
| 856 | const FloatV V4 = FMul(a: V2, b: V2); |
| 857 | const FloatV V6 = FMul(a: V4, b: V2); |
| 858 | const FloatV V8 = FMul(a: V4, b: V4); |
| 859 | const FloatV V10 = FMul(a: V6, b: V4); |
| 860 | const FloatV V12 = FMul(a: V6, b: V6); |
| 861 | const FloatV V14 = FMul(a: V8, b: V6); |
| 862 | const FloatV V16 = FMul(a: V8, b: V8); |
| 863 | const FloatV V18 = FMul(a: V10, b: V8); |
| 864 | const FloatV V20 = FMul(a: V10, b: V10); |
| 865 | const FloatV V22 = FMul(a: V12, b: V10); |
| 866 | |
| 867 | const Vec4V cosCoefficients0 = V4LoadA(f: g_PXCosCoefficients0.f); |
| 868 | const Vec4V cosCoefficients1 = V4LoadA(f: g_PXCosCoefficients1.f); |
| 869 | const Vec4V cosCoefficients2 = V4LoadA(f: g_PXCosCoefficients2.f); |
| 870 | |
| 871 | const FloatV C1 = V4GetY(f: cosCoefficients0); |
| 872 | const FloatV C2 = V4GetZ(f: cosCoefficients0); |
| 873 | const FloatV C3 = V4GetW(f: cosCoefficients0); |
| 874 | const FloatV C4 = V4GetX(f: cosCoefficients1); |
| 875 | const FloatV C5 = V4GetY(f: cosCoefficients1); |
| 876 | const FloatV C6 = V4GetZ(f: cosCoefficients1); |
| 877 | const FloatV C7 = V4GetW(f: cosCoefficients1); |
| 878 | const FloatV C8 = V4GetX(f: cosCoefficients2); |
| 879 | const FloatV C9 = V4GetY(f: cosCoefficients2); |
| 880 | const FloatV C10 = V4GetZ(f: cosCoefficients2); |
| 881 | const FloatV C11 = V4GetW(f: cosCoefficients2); |
| 882 | |
| 883 | FloatV Result; |
| 884 | Result = FScaleAdd(a: C1, b: V2, c: V4One()); |
| 885 | Result = FScaleAdd(a: C2, b: V4, c: Result); |
| 886 | Result = FScaleAdd(a: C3, b: V6, c: Result); |
| 887 | Result = FScaleAdd(a: C4, b: V8, c: Result); |
| 888 | Result = FScaleAdd(a: C5, b: V10, c: Result); |
| 889 | Result = FScaleAdd(a: C6, b: V12, c: Result); |
| 890 | Result = FScaleAdd(a: C7, b: V14, c: Result); |
| 891 | Result = FScaleAdd(a: C8, b: V16, c: Result); |
| 892 | Result = FScaleAdd(a: C9, b: V18, c: Result); |
| 893 | Result = FScaleAdd(a: C10, b: V20, c: Result); |
| 894 | Result = FScaleAdd(a: C11, b: V22, c: Result); |
| 895 | |
| 896 | return Result; |
| 897 | } |
| 898 | |
| 899 | PX_FORCE_INLINE PxU32 FOutOfBounds(const FloatV a, const FloatV min, const FloatV max) |
| 900 | { |
| 901 | ASSERT_ISVALIDFLOATV(a); |
| 902 | ASSERT_ISVALIDFLOATV(min); |
| 903 | ASSERT_ISVALIDFLOATV(max); |
| 904 | const BoolV c = BOr(a: FIsGrtr(a, b: max), b: FIsGrtr(a: min, b: a)); |
| 905 | return !BAllEqFFFF(a: c); |
| 906 | } |
| 907 | |
| 908 | PX_FORCE_INLINE PxU32 FInBounds(const FloatV a, const FloatV min, const FloatV max) |
| 909 | { |
| 910 | ASSERT_ISVALIDFLOATV(a); |
| 911 | ASSERT_ISVALIDFLOATV(min); |
| 912 | ASSERT_ISVALIDFLOATV(max) |
| 913 | const BoolV c = BAnd(a: FIsGrtrOrEq(a, b: min), b: FIsGrtrOrEq(a: max, b: a)); |
| 914 | return BAllEqTTTT(a: c); |
| 915 | } |
| 916 | |
| 917 | PX_FORCE_INLINE PxU32 FOutOfBounds(const FloatV a, const FloatV bounds) |
| 918 | { |
| 919 | ASSERT_ISVALIDFLOATV(a); |
| 920 | ASSERT_ISVALIDFLOATV(bounds); |
| 921 | return FOutOfBounds(a, min: FNeg(f: bounds), max: bounds); |
| 922 | } |
| 923 | |
| 924 | PX_FORCE_INLINE PxU32 FInBounds(const FloatV a, const FloatV bounds) |
| 925 | { |
| 926 | ASSERT_ISVALIDFLOATV(a); |
| 927 | ASSERT_ISVALIDFLOATV(bounds); |
| 928 | return FInBounds(a, min: FNeg(f: bounds), max: bounds); |
| 929 | } |
| 930 | |
| 931 | ////////////////////////////////// |
| 932 | // VEC3V |
| 933 | ////////////////////////////////// |
| 934 | |
| 935 | PX_FORCE_INLINE Vec3V V3Splat(const FloatV f) |
| 936 | { |
| 937 | ASSERT_ISVALIDFLOATV(f); |
| 938 | const __m128 zero = FZero(); |
| 939 | const __m128 fff0 = _mm_move_ss(a: f, b: zero); |
| 940 | return _mm_shuffle_ps(fff0, fff0, _MM_SHUFFLE(0, 1, 2, 3)); |
| 941 | } |
| 942 | |
| 943 | PX_FORCE_INLINE Vec3V V3Merge(const FloatVArg x, const FloatVArg y, const FloatVArg z) |
| 944 | { |
| 945 | ASSERT_ISVALIDFLOATV(x); |
| 946 | ASSERT_ISVALIDFLOATV(y); |
| 947 | ASSERT_ISVALIDFLOATV(z); |
| 948 | // static on zero causes compiler crash on x64 debug_opt |
| 949 | const __m128 zero = FZero(); |
| 950 | const __m128 xy = _mm_move_ss(a: x, b: y); |
| 951 | const __m128 z0 = _mm_move_ss(a: zero, b: z); |
| 952 | |
| 953 | return _mm_shuffle_ps(xy, z0, _MM_SHUFFLE(1, 0, 0, 1)); |
| 954 | } |
| 955 | |
| 956 | PX_FORCE_INLINE Vec3V V3UnitX() |
| 957 | { |
| 958 | const PX_ALIGN(16, PxF32) x[4] = { 1.0f, 0.0f, 0.0f, 0.0f }; |
| 959 | const __m128 x128 = _mm_load_ps(p: x); |
| 960 | return x128; |
| 961 | } |
| 962 | |
| 963 | PX_FORCE_INLINE Vec3V V3UnitY() |
| 964 | { |
| 965 | const PX_ALIGN(16, PxF32) y[4] = { 0.0f, 1.0f, 0.0f, 0.0f }; |
| 966 | const __m128 y128 = _mm_load_ps(p: y); |
| 967 | return y128; |
| 968 | } |
| 969 | |
| 970 | PX_FORCE_INLINE Vec3V V3UnitZ() |
| 971 | { |
| 972 | const PX_ALIGN(16, PxF32) z[4] = { 0.0f, 0.0f, 1.0f, 0.0f }; |
| 973 | const __m128 z128 = _mm_load_ps(p: z); |
| 974 | return z128; |
| 975 | } |
| 976 | |
| 977 | PX_FORCE_INLINE FloatV V3GetX(const Vec3V f) |
| 978 | { |
| 979 | ASSERT_ISVALIDVEC3V(f); |
| 980 | return _mm_shuffle_ps(f, f, _MM_SHUFFLE(0, 0, 0, 0)); |
| 981 | } |
| 982 | |
| 983 | PX_FORCE_INLINE FloatV V3GetY(const Vec3V f) |
| 984 | { |
| 985 | ASSERT_ISVALIDVEC3V(f) |
| 986 | return _mm_shuffle_ps(f, f, _MM_SHUFFLE(1, 1, 1, 1)); |
| 987 | } |
| 988 | |
| 989 | PX_FORCE_INLINE FloatV V3GetZ(const Vec3V f) |
| 990 | { |
| 991 | ASSERT_ISVALIDVEC3V(f); |
| 992 | return _mm_shuffle_ps(f, f, _MM_SHUFFLE(2, 2, 2, 2)); |
| 993 | } |
| 994 | |
| 995 | PX_FORCE_INLINE Vec3V V3SetX(const Vec3V v, const FloatV f) |
| 996 | { |
| 997 | ASSERT_ISVALIDVEC3V(v); |
| 998 | ASSERT_ISVALIDFLOATV(f); |
| 999 | return V4Sel(c: BFTTT(), a: v, b: f); |
| 1000 | } |
| 1001 | |
| 1002 | PX_FORCE_INLINE Vec3V V3SetY(const Vec3V v, const FloatV f) |
| 1003 | { |
| 1004 | ASSERT_ISVALIDVEC3V(v); |
| 1005 | ASSERT_ISVALIDFLOATV(f); |
| 1006 | return V4Sel(c: BTFTT(), a: v, b: f); |
| 1007 | } |
| 1008 | |
| 1009 | PX_FORCE_INLINE Vec3V V3SetZ(const Vec3V v, const FloatV f) |
| 1010 | { |
| 1011 | ASSERT_ISVALIDVEC3V(v); |
| 1012 | ASSERT_ISVALIDFLOATV(f); |
| 1013 | return V4Sel(c: BTTFT(), a: v, b: f); |
| 1014 | } |
| 1015 | |
| 1016 | PX_FORCE_INLINE Vec3V V3ColX(const Vec3V a, const Vec3V b, const Vec3V c) |
| 1017 | { |
| 1018 | ASSERT_ISVALIDVEC3V(a); |
| 1019 | ASSERT_ISVALIDVEC3V(b); |
| 1020 | ASSERT_ISVALIDVEC3V(c); |
| 1021 | Vec3V r = _mm_shuffle_ps(a, c, _MM_SHUFFLE(3, 0, 3, 0)); |
| 1022 | return V3SetY(v: r, f: V3GetX(f: b)); |
| 1023 | } |
| 1024 | |
| 1025 | PX_FORCE_INLINE Vec3V V3ColY(const Vec3V a, const Vec3V b, const Vec3V c) |
| 1026 | { |
| 1027 | ASSERT_ISVALIDVEC3V(a); |
| 1028 | ASSERT_ISVALIDVEC3V(b); |
| 1029 | ASSERT_ISVALIDVEC3V(c) |
| 1030 | Vec3V r = _mm_shuffle_ps(a, c, _MM_SHUFFLE(3, 1, 3, 1)); |
| 1031 | return V3SetY(v: r, f: V3GetY(f: b)); |
| 1032 | } |
| 1033 | |
| 1034 | PX_FORCE_INLINE Vec3V V3ColZ(const Vec3V a, const Vec3V b, const Vec3V c) |
| 1035 | { |
| 1036 | ASSERT_ISVALIDVEC3V(a); |
| 1037 | ASSERT_ISVALIDVEC3V(b); |
| 1038 | ASSERT_ISVALIDVEC3V(c); |
| 1039 | Vec3V r = _mm_shuffle_ps(a, c, _MM_SHUFFLE(3, 2, 3, 2)); |
| 1040 | return V3SetY(v: r, f: V3GetZ(f: b)); |
| 1041 | } |
| 1042 | |
| 1043 | PX_FORCE_INLINE Vec3V V3Zero() |
| 1044 | { |
| 1045 | return V3Load(f: 0.0f); |
| 1046 | } |
| 1047 | |
| 1048 | PX_FORCE_INLINE Vec3V V3Eps() |
| 1049 | { |
| 1050 | return V3Load(PX_EPS_REAL); |
| 1051 | } |
| 1052 | PX_FORCE_INLINE Vec3V V3One() |
| 1053 | { |
| 1054 | return V3Load(f: 1.0f); |
| 1055 | } |
| 1056 | |
| 1057 | PX_FORCE_INLINE Vec3V V3Neg(const Vec3V f) |
| 1058 | { |
| 1059 | ASSERT_ISVALIDVEC3V(f); |
| 1060 | return _mm_sub_ps(a: _mm_setzero_ps(), b: f); |
| 1061 | } |
| 1062 | |
| 1063 | PX_FORCE_INLINE Vec3V V3Add(const Vec3V a, const Vec3V b) |
| 1064 | { |
| 1065 | ASSERT_ISVALIDVEC3V(a); |
| 1066 | ASSERT_ISVALIDVEC3V(b); |
| 1067 | return _mm_add_ps(a: a, b: b); |
| 1068 | } |
| 1069 | |
| 1070 | PX_FORCE_INLINE Vec3V V3Sub(const Vec3V a, const Vec3V b) |
| 1071 | { |
| 1072 | ASSERT_ISVALIDVEC3V(a); |
| 1073 | ASSERT_ISVALIDVEC3V(b); |
| 1074 | return _mm_sub_ps(a: a, b: b); |
| 1075 | } |
| 1076 | |
| 1077 | PX_FORCE_INLINE Vec3V V3Scale(const Vec3V a, const FloatV b) |
| 1078 | { |
| 1079 | ASSERT_ISVALIDVEC3V(a); |
| 1080 | ASSERT_ISVALIDFLOATV(b); |
| 1081 | return _mm_mul_ps(a: a, b: b); |
| 1082 | } |
| 1083 | |
| 1084 | PX_FORCE_INLINE Vec3V V3Mul(const Vec3V a, const Vec3V b) |
| 1085 | { |
| 1086 | ASSERT_ISVALIDVEC3V(a); |
| 1087 | ASSERT_ISVALIDVEC3V(b); |
| 1088 | return _mm_mul_ps(a: a, b: b); |
| 1089 | } |
| 1090 | |
| 1091 | PX_FORCE_INLINE Vec3V V3ScaleInv(const Vec3V a, const FloatV b) |
| 1092 | { |
| 1093 | ASSERT_ISVALIDVEC3V(a); |
| 1094 | ASSERT_ISVALIDFLOATV(b); |
| 1095 | return _mm_div_ps(a: a, b: b); |
| 1096 | } |
| 1097 | |
| 1098 | PX_FORCE_INLINE Vec3V V3Div(const Vec3V a, const Vec3V b) |
| 1099 | { |
| 1100 | ASSERT_ISVALIDVEC3V(a); |
| 1101 | ASSERT_ISVALIDVEC3V(b); |
| 1102 | return V4ClearW(v: _mm_div_ps(a: a, b: b)); |
| 1103 | } |
| 1104 | |
| 1105 | PX_FORCE_INLINE Vec3V V3ScaleInvFast(const Vec3V a, const FloatV b) |
| 1106 | { |
| 1107 | ASSERT_ISVALIDVEC3V(a); |
| 1108 | ASSERT_ISVALIDFLOATV(b); |
| 1109 | return _mm_mul_ps(a: a, b: _mm_rcp_ps(a: b)); |
| 1110 | } |
| 1111 | |
| 1112 | PX_FORCE_INLINE Vec3V V3DivFast(const Vec3V a, const Vec3V b) |
| 1113 | { |
| 1114 | ASSERT_ISVALIDVEC3V(a); |
| 1115 | ASSERT_ISVALIDVEC3V(b); |
| 1116 | return V4ClearW(v: _mm_mul_ps(a: a, b: _mm_rcp_ps(a: b))); |
| 1117 | } |
| 1118 | |
| 1119 | PX_FORCE_INLINE Vec3V V3Recip(const Vec3V a) |
| 1120 | { |
| 1121 | ASSERT_ISVALIDVEC3V(a); |
| 1122 | const __m128 zero = V3Zero(); |
| 1123 | const __m128 tttf = BTTTF(); |
| 1124 | const __m128 recipA = _mm_div_ps(a: V3One(), b: a); |
| 1125 | return V4Sel(c: tttf, a: recipA, b: zero); |
| 1126 | } |
| 1127 | |
| 1128 | PX_FORCE_INLINE Vec3V V3RecipFast(const Vec3V a) |
| 1129 | { |
| 1130 | ASSERT_ISVALIDVEC3V(a); |
| 1131 | const __m128 zero = V3Zero(); |
| 1132 | const __m128 tttf = BTTTF(); |
| 1133 | const __m128 recipA = _mm_rcp_ps(a: a); |
| 1134 | return V4Sel(c: tttf, a: recipA, b: zero); |
| 1135 | } |
| 1136 | |
| 1137 | PX_FORCE_INLINE Vec3V V3Rsqrt(const Vec3V a) |
| 1138 | { |
| 1139 | ASSERT_ISVALIDVEC3V(a); |
| 1140 | const __m128 zero = V3Zero(); |
| 1141 | const __m128 tttf = BTTTF(); |
| 1142 | const __m128 recipA = _mm_div_ps(a: V3One(), b: _mm_sqrt_ps(a: a)); |
| 1143 | return V4Sel(c: tttf, a: recipA, b: zero); |
| 1144 | } |
| 1145 | |
| 1146 | PX_FORCE_INLINE Vec3V V3RsqrtFast(const Vec3V a) |
| 1147 | { |
| 1148 | ASSERT_ISVALIDVEC3V(a); |
| 1149 | const __m128 zero = V3Zero(); |
| 1150 | const __m128 tttf = BTTTF(); |
| 1151 | const __m128 recipA = _mm_rsqrt_ps(a: a); |
| 1152 | return V4Sel(c: tttf, a: recipA, b: zero); |
| 1153 | } |
| 1154 | |
| 1155 | PX_FORCE_INLINE Vec3V V3ScaleAdd(const Vec3V a, const FloatV b, const Vec3V c) |
| 1156 | { |
| 1157 | ASSERT_ISVALIDVEC3V(a); |
| 1158 | ASSERT_ISVALIDFLOATV(b); |
| 1159 | ASSERT_ISVALIDVEC3V(c); |
| 1160 | return V3Add(a: V3Scale(a, b), b: c); |
| 1161 | } |
| 1162 | |
| 1163 | PX_FORCE_INLINE Vec3V V3NegScaleSub(const Vec3V a, const FloatV b, const Vec3V c) |
| 1164 | { |
| 1165 | ASSERT_ISVALIDVEC3V(a); |
| 1166 | ASSERT_ISVALIDFLOATV(b); |
| 1167 | ASSERT_ISVALIDVEC3V(c); |
| 1168 | return V3Sub(a: c, b: V3Scale(a, b)); |
| 1169 | } |
| 1170 | |
| 1171 | PX_FORCE_INLINE Vec3V V3MulAdd(const Vec3V a, const Vec3V b, const Vec3V c) |
| 1172 | { |
| 1173 | ASSERT_ISVALIDVEC3V(a); |
| 1174 | ASSERT_ISVALIDVEC3V(b); |
| 1175 | ASSERT_ISVALIDVEC3V(c); |
| 1176 | return V3Add(a: V3Mul(a, b), b: c); |
| 1177 | } |
| 1178 | |
| 1179 | PX_FORCE_INLINE Vec3V V3NegMulSub(const Vec3V a, const Vec3V b, const Vec3V c) |
| 1180 | { |
| 1181 | ASSERT_ISVALIDVEC3V(a); |
| 1182 | ASSERT_ISVALIDVEC3V(b); |
| 1183 | ASSERT_ISVALIDVEC3V(c); |
| 1184 | return V3Sub(a: c, b: V3Mul(a, b)); |
| 1185 | } |
| 1186 | |
| 1187 | PX_FORCE_INLINE Vec3V V3Abs(const Vec3V a) |
| 1188 | { |
| 1189 | ASSERT_ISVALIDVEC3V(a); |
| 1190 | return V3Max(a, b: V3Neg(f: a)); |
| 1191 | } |
| 1192 | |
| 1193 | PX_FORCE_INLINE FloatV V3Dot(const Vec3V a, const Vec3V b) |
| 1194 | { |
| 1195 | ASSERT_ISVALIDVEC3V(a); |
| 1196 | ASSERT_ISVALIDVEC3V(b); |
| 1197 | #ifdef __SSE4_2__ |
| 1198 | return _mm_dp_ps(a, b, 0x7f); |
| 1199 | #else |
| 1200 | const __m128 t0 = _mm_mul_ps(a: a, b: b); // aw*bw | az*bz | ay*by | ax*bx |
| 1201 | const __m128 t1 = _mm_shuffle_ps(t0, t0, _MM_SHUFFLE(1,0,3,2)); // ay*by | ax*bx | aw*bw | az*bz |
| 1202 | const __m128 t2 = _mm_add_ps(a: t0, b: t1); // ay*by + aw*bw | ax*bx + az*bz | aw*bw + ay*by | az*bz + ax*bx |
| 1203 | const __m128 t3 = _mm_shuffle_ps(t2, t2, _MM_SHUFFLE(2,3,0,1)); // ax*bx + az*bz | ay*by + aw*bw | az*bz + ax*bx | aw*bw + ay*by |
| 1204 | return _mm_add_ps(a: t3, b: t2); // ax*bx + az*bz + ay*by + aw*bw |
| 1205 | // ay*by + aw*bw + ax*bx + az*bz |
| 1206 | // az*bz + ax*bx + aw*bw + ay*by |
| 1207 | // aw*bw + ay*by + az*bz + ax*bx |
| 1208 | #endif |
| 1209 | } |
| 1210 | |
| 1211 | PX_FORCE_INLINE Vec3V V3Cross(const Vec3V a, const Vec3V b) |
| 1212 | { |
| 1213 | ASSERT_ISVALIDVEC3V(a); |
| 1214 | ASSERT_ISVALIDVEC3V(b); |
| 1215 | const __m128 r1 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 1, 0, 2)); // z,x,y,w |
| 1216 | const __m128 r2 = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3, 0, 2, 1)); // y,z,x,w |
| 1217 | const __m128 l1 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 0, 2, 1)); // y,z,x,w |
| 1218 | const __m128 l2 = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3, 1, 0, 2)); // z,x,y,w |
| 1219 | return _mm_sub_ps(a: _mm_mul_ps(a: l1, b: l2), b: _mm_mul_ps(a: r1, b: r2)); |
| 1220 | } |
| 1221 | |
| 1222 | PX_FORCE_INLINE VecCrossV V3PrepareCross(const Vec3V a) |
| 1223 | { |
| 1224 | ASSERT_ISVALIDVEC3V(a); |
| 1225 | VecCrossV v; |
| 1226 | v.mR1 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 1, 0, 2)); // z,x,y,w |
| 1227 | v.mL1 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 0, 2, 1)); // y,z,x,w |
| 1228 | return v; |
| 1229 | } |
| 1230 | |
| 1231 | PX_FORCE_INLINE Vec3V V3Cross(const VecCrossV& a, const Vec3V b) |
| 1232 | { |
| 1233 | ASSERT_ISVALIDVEC3V(b); |
| 1234 | const __m128 r2 = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3, 0, 2, 1)); // y,z,x,w |
| 1235 | const __m128 l2 = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3, 1, 0, 2)); // z,x,y,w |
| 1236 | return _mm_sub_ps(a: _mm_mul_ps(a: a.mL1, b: l2), b: _mm_mul_ps(a: a.mR1, b: r2)); |
| 1237 | } |
| 1238 | |
| 1239 | PX_FORCE_INLINE Vec3V V3Cross(const Vec3V a, const VecCrossV& b) |
| 1240 | { |
| 1241 | ASSERT_ISVALIDVEC3V(a); |
| 1242 | const __m128 r2 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 0, 2, 1)); // y,z,x,w |
| 1243 | const __m128 l2 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 1, 0, 2)); // z,x,y,w |
| 1244 | return _mm_sub_ps(a: _mm_mul_ps(a: b.mR1, b: r2), b: _mm_mul_ps(a: b.mL1, b: l2)); |
| 1245 | } |
| 1246 | |
| 1247 | PX_FORCE_INLINE Vec3V V3Cross(const VecCrossV& a, const VecCrossV& b) |
| 1248 | { |
| 1249 | return _mm_sub_ps(a: _mm_mul_ps(a: a.mL1, b: b.mR1), b: _mm_mul_ps(a: a.mR1, b: b.mL1)); |
| 1250 | } |
| 1251 | |
| 1252 | PX_FORCE_INLINE FloatV V3Length(const Vec3V a) |
| 1253 | { |
| 1254 | ASSERT_ISVALIDVEC3V(a); |
| 1255 | return _mm_sqrt_ps(a: V3Dot(a, b: a)); |
| 1256 | } |
| 1257 | |
| 1258 | PX_FORCE_INLINE FloatV V3LengthSq(const Vec3V a) |
| 1259 | { |
| 1260 | ASSERT_ISVALIDVEC3V(a); |
| 1261 | return V3Dot(a, b: a); |
| 1262 | } |
| 1263 | |
| 1264 | PX_FORCE_INLINE Vec3V V3Normalize(const Vec3V a) |
| 1265 | { |
| 1266 | ASSERT_ISVALIDVEC3V(a); |
| 1267 | ASSERT_ISFINITELENGTH(a); |
| 1268 | return V3ScaleInv(a, b: _mm_sqrt_ps(a: V3Dot(a, b: a))); |
| 1269 | } |
| 1270 | |
| 1271 | PX_FORCE_INLINE Vec3V V3NormalizeFast(const Vec3V a) |
| 1272 | { |
| 1273 | ASSERT_ISVALIDVEC3V(a); |
| 1274 | ASSERT_ISFINITELENGTH(a); |
| 1275 | return V3Scale(a, b: _mm_rsqrt_ps(a: V3Dot(a, b: a))); |
| 1276 | } |
| 1277 | |
| 1278 | PX_FORCE_INLINE Vec3V V3NormalizeSafe(const Vec3V a, const Vec3V unsafeReturnValue) |
| 1279 | { |
| 1280 | ASSERT_ISVALIDVEC3V(a); |
| 1281 | const __m128 eps = V3Eps(); |
| 1282 | const __m128 length = V3Length(a); |
| 1283 | const __m128 isGreaterThanZero = FIsGrtr(a: length, b: eps); |
| 1284 | return V3Sel(c: isGreaterThanZero, a: V3ScaleInv(a, b: length), b: unsafeReturnValue); |
| 1285 | } |
| 1286 | |
| 1287 | PX_FORCE_INLINE Vec3V V3Sel(const BoolV c, const Vec3V a, const Vec3V b) |
| 1288 | { |
| 1289 | ASSERT_ISVALIDVEC3V(_mm_or_ps(_mm_andnot_ps(c, b), _mm_and_ps(c, a))); |
| 1290 | return _mm_or_ps(a: _mm_andnot_ps(a: c, b: b), b: _mm_and_ps(a: c, b: a)); |
| 1291 | } |
| 1292 | |
| 1293 | PX_FORCE_INLINE BoolV V3IsGrtr(const Vec3V a, const Vec3V b) |
| 1294 | { |
| 1295 | ASSERT_ISVALIDVEC3V(a); |
| 1296 | ASSERT_ISVALIDVEC3V(b); |
| 1297 | return _mm_cmpgt_ps(a: a, b: b); |
| 1298 | } |
| 1299 | |
| 1300 | PX_FORCE_INLINE BoolV V3IsGrtrOrEq(const Vec3V a, const Vec3V b) |
| 1301 | { |
| 1302 | ASSERT_ISVALIDVEC3V(a); |
| 1303 | ASSERT_ISVALIDVEC3V(b); |
| 1304 | return _mm_cmpge_ps(a: a, b: b); |
| 1305 | } |
| 1306 | |
| 1307 | PX_FORCE_INLINE BoolV V3IsEq(const Vec3V a, const Vec3V b) |
| 1308 | { |
| 1309 | ASSERT_ISVALIDVEC3V(a); |
| 1310 | ASSERT_ISVALIDVEC3V(b); |
| 1311 | return _mm_cmpeq_ps(a: a, b: b); |
| 1312 | } |
| 1313 | |
| 1314 | PX_FORCE_INLINE Vec3V V3Max(const Vec3V a, const Vec3V b) |
| 1315 | { |
| 1316 | ASSERT_ISVALIDVEC3V(a); |
| 1317 | ASSERT_ISVALIDVEC3V(b); |
| 1318 | return _mm_max_ps(a: a, b: b); |
| 1319 | } |
| 1320 | |
| 1321 | PX_FORCE_INLINE Vec3V V3Min(const Vec3V a, const Vec3V b) |
| 1322 | { |
| 1323 | ASSERT_ISVALIDVEC3V(a); |
| 1324 | ASSERT_ISVALIDVEC3V(b); |
| 1325 | return _mm_min_ps(a: a, b: b); |
| 1326 | } |
| 1327 | |
| 1328 | PX_FORCE_INLINE FloatV (const Vec3V a) |
| 1329 | { |
| 1330 | ASSERT_ISVALIDVEC3V(a); |
| 1331 | const __m128 shuf1 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 0, 0, 0)); |
| 1332 | const __m128 shuf2 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 1, 1, 1)); |
| 1333 | const __m128 shuf3 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 2, 2, 2)); |
| 1334 | |
| 1335 | return _mm_max_ps(a: _mm_max_ps(a: shuf1, b: shuf2), b: shuf3); |
| 1336 | } |
| 1337 | |
| 1338 | PX_FORCE_INLINE FloatV (const Vec3V a) |
| 1339 | { |
| 1340 | ASSERT_ISVALIDVEC3V(a); |
| 1341 | |
| 1342 | const __m128 shuf1 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 0, 0, 0)); |
| 1343 | const __m128 shuf2 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 1, 1, 1)); |
| 1344 | const __m128 shuf3 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 2, 2, 2)); |
| 1345 | |
| 1346 | return _mm_min_ps(a: _mm_min_ps(a: shuf1, b: shuf2), b: shuf3); |
| 1347 | } |
| 1348 | |
| 1349 | // return (a >= 0.0f) ? 1.0f : -1.0f; |
| 1350 | PX_FORCE_INLINE Vec3V V3Sign(const Vec3V a) |
| 1351 | { |
| 1352 | ASSERT_ISVALIDVEC3V(a); |
| 1353 | const __m128 zero = V3Zero(); |
| 1354 | const __m128 one = V3One(); |
| 1355 | const __m128 none = V3Neg(f: one); |
| 1356 | return V3Sel(c: V3IsGrtrOrEq(a, b: zero), a: one, b: none); |
| 1357 | } |
| 1358 | |
| 1359 | PX_FORCE_INLINE Vec3V V3Clamp(const Vec3V a, const Vec3V minV, const Vec3V maxV) |
| 1360 | { |
| 1361 | ASSERT_ISVALIDVEC3V(maxV); |
| 1362 | ASSERT_ISVALIDVEC3V(minV); |
| 1363 | return V3Max(a: V3Min(a, b: maxV), b: minV); |
| 1364 | } |
| 1365 | |
| 1366 | PX_FORCE_INLINE PxU32 V3AllGrtr(const Vec3V a, const Vec3V b) |
| 1367 | { |
| 1368 | ASSERT_ISVALIDVEC3V(a); |
| 1369 | ASSERT_ISVALIDVEC3V(b); |
| 1370 | return internalUnitSSE2Simd::BAllTrue3_R(a: V4IsGrtr(a, b)); |
| 1371 | } |
| 1372 | |
| 1373 | PX_FORCE_INLINE PxU32 V3AllGrtrOrEq(const Vec3V a, const Vec3V b) |
| 1374 | { |
| 1375 | ASSERT_ISVALIDVEC3V(a); |
| 1376 | ASSERT_ISVALIDVEC3V(b); |
| 1377 | return internalUnitSSE2Simd::BAllTrue3_R(a: V4IsGrtrOrEq(a, b)); |
| 1378 | } |
| 1379 | |
| 1380 | PX_FORCE_INLINE PxU32 V3AllEq(const Vec3V a, const Vec3V b) |
| 1381 | { |
| 1382 | ASSERT_ISVALIDVEC3V(a); |
| 1383 | ASSERT_ISVALIDVEC3V(b); |
| 1384 | return internalUnitSSE2Simd::BAllTrue3_R(a: V4IsEq(a, b)); |
| 1385 | } |
| 1386 | |
| 1387 | PX_FORCE_INLINE Vec3V V3Round(const Vec3V a) |
| 1388 | { |
| 1389 | ASSERT_ISVALIDVEC3V(a); |
| 1390 | #ifdef __SSE4_2__ |
| 1391 | return _mm_round_ps(a, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| 1392 | #else |
| 1393 | // return _mm_round_ps(a, 0x0); |
| 1394 | const Vec3V half = V3Load(f: 0.5f); |
| 1395 | const __m128 signBit = _mm_cvtepi32_ps(a: _mm_srli_epi32(a: _mm_cvtps_epi32(a: a), count: 31)); |
| 1396 | const Vec3V aRound = V3Sub(a: V3Add(a, b: half), b: signBit); |
| 1397 | __m128i tmp = _mm_cvttps_epi32(a: aRound); |
| 1398 | return _mm_cvtepi32_ps(a: tmp); |
| 1399 | #endif |
| 1400 | } |
| 1401 | |
| 1402 | PX_FORCE_INLINE Vec3V V3Sin(const Vec3V a) |
| 1403 | { |
| 1404 | ASSERT_ISVALIDVEC3V(a); |
| 1405 | // Modulo the range of the given angles such that -XM_2PI <= Angles < XM_2PI |
| 1406 | const Vec4V recipTwoPi = V4LoadA(f: g_PXReciprocalTwoPi.f); |
| 1407 | const Vec4V twoPi = V4LoadA(f: g_PXTwoPi.f); |
| 1408 | const Vec3V tmp = V3Scale(a, b: recipTwoPi); |
| 1409 | const Vec3V b = V3Round(a: tmp); |
| 1410 | const Vec3V V1 = V3NegScaleSub(a: b, b: twoPi, c: a); |
| 1411 | |
| 1412 | // sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! + V^9 / 9! - V^11 / 11! + V^13 / 13! - |
| 1413 | // V^15 / 15! + V^17 / 17! - V^19 / 19! + V^21 / 21! - V^23 / 23! (for -PI <= V < PI) |
| 1414 | const Vec3V V2 = V3Mul(a: V1, b: V1); |
| 1415 | const Vec3V V3 = V3Mul(a: V2, b: V1); |
| 1416 | const Vec3V V5 = V3Mul(a: V3, b: V2); |
| 1417 | const Vec3V V7 = V3Mul(a: V5, b: V2); |
| 1418 | const Vec3V V9 = V3Mul(a: V7, b: V2); |
| 1419 | const Vec3V V11 = V3Mul(a: V9, b: V2); |
| 1420 | const Vec3V V13 = V3Mul(a: V11, b: V2); |
| 1421 | const Vec3V V15 = V3Mul(a: V13, b: V2); |
| 1422 | const Vec3V V17 = V3Mul(a: V15, b: V2); |
| 1423 | const Vec3V V19 = V3Mul(a: V17, b: V2); |
| 1424 | const Vec3V V21 = V3Mul(a: V19, b: V2); |
| 1425 | const Vec3V V23 = V3Mul(a: V21, b: V2); |
| 1426 | |
| 1427 | const Vec4V sinCoefficients0 = V4LoadA(f: g_PXSinCoefficients0.f); |
| 1428 | const Vec4V sinCoefficients1 = V4LoadA(f: g_PXSinCoefficients1.f); |
| 1429 | const Vec4V sinCoefficients2 = V4LoadA(f: g_PXSinCoefficients2.f); |
| 1430 | |
| 1431 | const FloatV S1 = V4GetY(f: sinCoefficients0); |
| 1432 | const FloatV S2 = V4GetZ(f: sinCoefficients0); |
| 1433 | const FloatV S3 = V4GetW(f: sinCoefficients0); |
| 1434 | const FloatV S4 = V4GetX(f: sinCoefficients1); |
| 1435 | const FloatV S5 = V4GetY(f: sinCoefficients1); |
| 1436 | const FloatV S6 = V4GetZ(f: sinCoefficients1); |
| 1437 | const FloatV S7 = V4GetW(f: sinCoefficients1); |
| 1438 | const FloatV S8 = V4GetX(f: sinCoefficients2); |
| 1439 | const FloatV S9 = V4GetY(f: sinCoefficients2); |
| 1440 | const FloatV S10 = V4GetZ(f: sinCoefficients2); |
| 1441 | const FloatV S11 = V4GetW(f: sinCoefficients2); |
| 1442 | |
| 1443 | Vec3V Result; |
| 1444 | Result = V3ScaleAdd(a: V3, b: S1, c: V1); |
| 1445 | Result = V3ScaleAdd(a: V5, b: S2, c: Result); |
| 1446 | Result = V3ScaleAdd(a: V7, b: S3, c: Result); |
| 1447 | Result = V3ScaleAdd(a: V9, b: S4, c: Result); |
| 1448 | Result = V3ScaleAdd(a: V11, b: S5, c: Result); |
| 1449 | Result = V3ScaleAdd(a: V13, b: S6, c: Result); |
| 1450 | Result = V3ScaleAdd(a: V15, b: S7, c: Result); |
| 1451 | Result = V3ScaleAdd(a: V17, b: S8, c: Result); |
| 1452 | Result = V3ScaleAdd(a: V19, b: S9, c: Result); |
| 1453 | Result = V3ScaleAdd(a: V21, b: S10, c: Result); |
| 1454 | Result = V3ScaleAdd(a: V23, b: S11, c: Result); |
| 1455 | |
| 1456 | ASSERT_ISVALIDVEC3V(Result); |
| 1457 | return Result; |
| 1458 | } |
| 1459 | |
| 1460 | PX_FORCE_INLINE Vec3V V3Cos(const Vec3V a) |
| 1461 | { |
| 1462 | ASSERT_ISVALIDVEC3V(a); |
| 1463 | |
| 1464 | // Modulo the range of the given angles such that -XM_2PI <= Angles < XM_2PI |
| 1465 | const Vec4V recipTwoPi = V4LoadA(f: g_PXReciprocalTwoPi.f); |
| 1466 | const Vec4V twoPi = V4LoadA(f: g_PXTwoPi.f); |
| 1467 | const Vec3V tmp = V3Scale(a, b: recipTwoPi); |
| 1468 | const Vec3V b = V3Round(a: tmp); |
| 1469 | const Vec3V V1 = V3NegScaleSub(a: b, b: twoPi, c: a); |
| 1470 | |
| 1471 | // cos(V) ~= 1 - V^2 / 2! + V^4 / 4! - V^6 / 6! + V^8 / 8! - V^10 / 10! + V^12 / 12! - |
| 1472 | // V^14 / 14! + V^16 / 16! - V^18 / 18! + V^20 / 20! - V^22 / 22! (for -PI <= V < PI) |
| 1473 | const Vec3V V2 = V3Mul(a: V1, b: V1); |
| 1474 | const Vec3V V4 = V3Mul(a: V2, b: V2); |
| 1475 | const Vec3V V6 = V3Mul(a: V4, b: V2); |
| 1476 | const Vec3V V8 = V3Mul(a: V4, b: V4); |
| 1477 | const Vec3V V10 = V3Mul(a: V6, b: V4); |
| 1478 | const Vec3V V12 = V3Mul(a: V6, b: V6); |
| 1479 | const Vec3V V14 = V3Mul(a: V8, b: V6); |
| 1480 | const Vec3V V16 = V3Mul(a: V8, b: V8); |
| 1481 | const Vec3V V18 = V3Mul(a: V10, b: V8); |
| 1482 | const Vec3V V20 = V3Mul(a: V10, b: V10); |
| 1483 | const Vec3V V22 = V3Mul(a: V12, b: V10); |
| 1484 | |
| 1485 | const Vec4V cosCoefficients0 = V4LoadA(f: g_PXCosCoefficients0.f); |
| 1486 | const Vec4V cosCoefficients1 = V4LoadA(f: g_PXCosCoefficients1.f); |
| 1487 | const Vec4V cosCoefficients2 = V4LoadA(f: g_PXCosCoefficients2.f); |
| 1488 | |
| 1489 | const FloatV C1 = V4GetY(f: cosCoefficients0); |
| 1490 | const FloatV C2 = V4GetZ(f: cosCoefficients0); |
| 1491 | const FloatV C3 = V4GetW(f: cosCoefficients0); |
| 1492 | const FloatV C4 = V4GetX(f: cosCoefficients1); |
| 1493 | const FloatV C5 = V4GetY(f: cosCoefficients1); |
| 1494 | const FloatV C6 = V4GetZ(f: cosCoefficients1); |
| 1495 | const FloatV C7 = V4GetW(f: cosCoefficients1); |
| 1496 | const FloatV C8 = V4GetX(f: cosCoefficients2); |
| 1497 | const FloatV C9 = V4GetY(f: cosCoefficients2); |
| 1498 | const FloatV C10 = V4GetZ(f: cosCoefficients2); |
| 1499 | const FloatV C11 = V4GetW(f: cosCoefficients2); |
| 1500 | |
| 1501 | Vec3V Result; |
| 1502 | Result = V3ScaleAdd(a: V2, b: C1, c: V3One()); |
| 1503 | Result = V3ScaleAdd(a: V4, b: C2, c: Result); |
| 1504 | Result = V3ScaleAdd(a: V6, b: C3, c: Result); |
| 1505 | Result = V3ScaleAdd(a: V8, b: C4, c: Result); |
| 1506 | Result = V3ScaleAdd(a: V10, b: C5, c: Result); |
| 1507 | Result = V3ScaleAdd(a: V12, b: C6, c: Result); |
| 1508 | Result = V3ScaleAdd(a: V14, b: C7, c: Result); |
| 1509 | Result = V3ScaleAdd(a: V16, b: C8, c: Result); |
| 1510 | Result = V3ScaleAdd(a: V18, b: C9, c: Result); |
| 1511 | Result = V3ScaleAdd(a: V20, b: C10, c: Result); |
| 1512 | Result = V3ScaleAdd(a: V22, b: C11, c: Result); |
| 1513 | |
| 1514 | ASSERT_ISVALIDVEC3V(Result); |
| 1515 | return Result; |
| 1516 | } |
| 1517 | |
| 1518 | PX_FORCE_INLINE Vec3V V3PermYZZ(const Vec3V a) |
| 1519 | { |
| 1520 | ASSERT_ISVALIDVEC3V(a); |
| 1521 | return _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 2, 2, 1)); |
| 1522 | } |
| 1523 | |
| 1524 | PX_FORCE_INLINE Vec3V V3PermXYX(const Vec3V a) |
| 1525 | { |
| 1526 | ASSERT_ISVALIDVEC3V(a); |
| 1527 | return _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 0, 1, 0)); |
| 1528 | } |
| 1529 | |
| 1530 | PX_FORCE_INLINE Vec3V V3PermYZX(const Vec3V a) |
| 1531 | { |
| 1532 | ASSERT_ISVALIDVEC3V(a); |
| 1533 | return _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 0, 2, 1)); |
| 1534 | } |
| 1535 | |
| 1536 | PX_FORCE_INLINE Vec3V V3PermZXY(const Vec3V a) |
| 1537 | { |
| 1538 | ASSERT_ISVALIDVEC3V(a); |
| 1539 | return _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 1, 0, 2)); |
| 1540 | } |
| 1541 | |
| 1542 | PX_FORCE_INLINE Vec3V V3PermZZY(const Vec3V a) |
| 1543 | { |
| 1544 | ASSERT_ISVALIDVEC3V(a); |
| 1545 | return _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 1, 2, 2)); |
| 1546 | } |
| 1547 | |
| 1548 | PX_FORCE_INLINE Vec3V V3PermYXX(const Vec3V a) |
| 1549 | { |
| 1550 | ASSERT_ISVALIDVEC3V(a); |
| 1551 | return _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 0, 0, 1)); |
| 1552 | } |
| 1553 | |
| 1554 | PX_FORCE_INLINE Vec3V V3Perm_Zero_1Z_0Y(const Vec3V v0, const Vec3V v1) |
| 1555 | { |
| 1556 | ASSERT_ISVALIDVEC3V(v0); |
| 1557 | ASSERT_ISVALIDVEC3V(v1); |
| 1558 | return _mm_shuffle_ps(v1, v0, _MM_SHUFFLE(3, 1, 2, 3)); |
| 1559 | } |
| 1560 | |
| 1561 | PX_FORCE_INLINE Vec3V V3Perm_0Z_Zero_1X(const Vec3V v0, const Vec3V v1) |
| 1562 | { |
| 1563 | ASSERT_ISVALIDVEC3V(v0); |
| 1564 | ASSERT_ISVALIDVEC3V(v1); |
| 1565 | return _mm_shuffle_ps(v0, v1, _MM_SHUFFLE(3, 0, 3, 2)); |
| 1566 | } |
| 1567 | |
| 1568 | PX_FORCE_INLINE Vec3V V3Perm_1Y_0X_Zero(const Vec3V v0, const Vec3V v1) |
| 1569 | { |
| 1570 | ASSERT_ISVALIDVEC3V(v0); |
| 1571 | ASSERT_ISVALIDVEC3V(v1); |
| 1572 | // There must be a better way to do this. |
| 1573 | Vec3V v2 = V3Zero(); |
| 1574 | FloatV y1 = V3GetY(f: v1); |
| 1575 | FloatV x0 = V3GetX(f: v0); |
| 1576 | v2 = V3SetX(v: v2, f: y1); |
| 1577 | return V3SetY(v: v2, f: x0); |
| 1578 | } |
| 1579 | |
| 1580 | PX_FORCE_INLINE FloatV V3SumElems(const Vec3V a) |
| 1581 | { |
| 1582 | ASSERT_ISVALIDVEC3V(a); |
| 1583 | #ifdef __SSE4_2__ |
| 1584 | Vec3V r = _mm_hadd_ps(a, a); |
| 1585 | r = _mm_hadd_ps(r, r); |
| 1586 | return r; |
| 1587 | #else |
| 1588 | __m128 shuf1 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 0, 0, 0)); // z,y,x,w |
| 1589 | __m128 shuf2 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 1, 1, 1)); // y,x,w,z |
| 1590 | __m128 shuf3 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 2, 2, 2)); // x,w,z,y |
| 1591 | return _mm_add_ps(a: _mm_add_ps(a: shuf1, b: shuf2), b: shuf3); |
| 1592 | #endif |
| 1593 | } |
| 1594 | |
| 1595 | PX_FORCE_INLINE PxU32 V3OutOfBounds(const Vec3V a, const Vec3V min, const Vec3V max) |
| 1596 | { |
| 1597 | ASSERT_ISVALIDVEC3V(a); |
| 1598 | ASSERT_ISVALIDVEC3V(min); |
| 1599 | ASSERT_ISVALIDVEC3V(max); |
| 1600 | const BoolV c = BOr(a: V3IsGrtr(a, b: max), b: V3IsGrtr(a: min, b: a)); |
| 1601 | return !BAllEqFFFF(a: c); |
| 1602 | } |
| 1603 | |
| 1604 | PX_FORCE_INLINE PxU32 V3InBounds(const Vec3V a, const Vec3V min, const Vec3V max) |
| 1605 | { |
| 1606 | ASSERT_ISVALIDVEC3V(a); |
| 1607 | ASSERT_ISVALIDVEC3V(min); |
| 1608 | ASSERT_ISVALIDVEC3V(max); |
| 1609 | const BoolV c = BAnd(a: V3IsGrtrOrEq(a, b: min), b: V3IsGrtrOrEq(a: max, b: a)); |
| 1610 | return BAllEqTTTT(a: c); |
| 1611 | } |
| 1612 | |
| 1613 | PX_FORCE_INLINE PxU32 V3OutOfBounds(const Vec3V a, const Vec3V bounds) |
| 1614 | { |
| 1615 | ASSERT_ISVALIDVEC3V(a); |
| 1616 | ASSERT_ISVALIDVEC3V(bounds); |
| 1617 | return V3OutOfBounds(a, min: V3Neg(f: bounds), max: bounds); |
| 1618 | } |
| 1619 | |
| 1620 | PX_FORCE_INLINE PxU32 V3InBounds(const Vec3V a, const Vec3V bounds) |
| 1621 | { |
| 1622 | ASSERT_ISVALIDVEC3V(a); |
| 1623 | ASSERT_ISVALIDVEC3V(bounds) |
| 1624 | return V3InBounds(a, min: V3Neg(f: bounds), max: bounds); |
| 1625 | } |
| 1626 | |
| 1627 | PX_FORCE_INLINE void V3Transpose(Vec3V& col0, Vec3V& col1, Vec3V& col2) |
| 1628 | { |
| 1629 | ASSERT_ISVALIDVEC3V(col0); |
| 1630 | ASSERT_ISVALIDVEC3V(col1); |
| 1631 | ASSERT_ISVALIDVEC3V(col2); |
| 1632 | |
| 1633 | const Vec3V col3 = _mm_setzero_ps(); |
| 1634 | Vec3V tmp0 = _mm_unpacklo_ps(a: col0, b: col1); |
| 1635 | Vec3V tmp2 = _mm_unpacklo_ps(a: col2, b: col3); |
| 1636 | Vec3V tmp1 = _mm_unpackhi_ps(a: col0, b: col1); |
| 1637 | Vec3V tmp3 = _mm_unpackhi_ps(a: col2, b: col3); |
| 1638 | col0 = _mm_movelh_ps(a: tmp0, b: tmp2); |
| 1639 | col1 = _mm_movehl_ps(a: tmp2, b: tmp0); |
| 1640 | col2 = _mm_movelh_ps(a: tmp1, b: tmp3); |
| 1641 | } |
| 1642 | |
| 1643 | ////////////////////////////////// |
| 1644 | // VEC4V |
| 1645 | ////////////////////////////////// |
| 1646 | |
| 1647 | PX_FORCE_INLINE Vec4V V4Splat(const FloatV f) |
| 1648 | { |
| 1649 | ASSERT_ISVALIDFLOATV(f); |
| 1650 | // return _mm_shuffle_ps(f, f, _MM_SHUFFLE(0,0,0,0)); |
| 1651 | return f; |
| 1652 | } |
| 1653 | |
| 1654 | PX_FORCE_INLINE Vec4V V4Merge(const FloatV* const floatVArray) |
| 1655 | { |
| 1656 | ASSERT_ISVALIDFLOATV(floatVArray[0]); |
| 1657 | ASSERT_ISVALIDFLOATV(floatVArray[1]); |
| 1658 | ASSERT_ISVALIDFLOATV(floatVArray[2]); |
| 1659 | ASSERT_ISVALIDFLOATV(floatVArray[3]); |
| 1660 | const __m128 xw = _mm_move_ss(a: floatVArray[1], b: floatVArray[0]); // y, y, y, x |
| 1661 | const __m128 yz = _mm_move_ss(a: floatVArray[2], b: floatVArray[3]); // z, z, z, w |
| 1662 | return _mm_shuffle_ps(xw, yz, _MM_SHUFFLE(0, 2, 1, 0)); |
| 1663 | } |
| 1664 | |
| 1665 | PX_FORCE_INLINE Vec4V V4Merge(const FloatVArg x, const FloatVArg y, const FloatVArg z, const FloatVArg w) |
| 1666 | { |
| 1667 | ASSERT_ISVALIDFLOATV(x); |
| 1668 | ASSERT_ISVALIDFLOATV(y); |
| 1669 | ASSERT_ISVALIDFLOATV(z); |
| 1670 | ASSERT_ISVALIDFLOATV(w); |
| 1671 | const __m128 xw = _mm_move_ss(a: y, b: x); // y, y, y, x |
| 1672 | const __m128 yz = _mm_move_ss(a: z, b: w); // z, z, z, w |
| 1673 | return _mm_shuffle_ps(xw, yz, _MM_SHUFFLE(0, 2, 1, 0)); |
| 1674 | } |
| 1675 | |
| 1676 | PX_FORCE_INLINE Vec4V V4MergeW(const Vec4VArg x, const Vec4VArg y, const Vec4VArg z, const Vec4VArg w) |
| 1677 | { |
| 1678 | const Vec4V xz = _mm_unpackhi_ps(a: x, b: z); |
| 1679 | const Vec4V yw = _mm_unpackhi_ps(a: y, b: w); |
| 1680 | return _mm_unpackhi_ps(a: xz, b: yw); |
| 1681 | } |
| 1682 | |
| 1683 | PX_FORCE_INLINE Vec4V V4MergeZ(const Vec4VArg x, const Vec4VArg y, const Vec4VArg z, const Vec4VArg w) |
| 1684 | { |
| 1685 | const Vec4V xz = _mm_unpackhi_ps(a: x, b: z); |
| 1686 | const Vec4V yw = _mm_unpackhi_ps(a: y, b: w); |
| 1687 | return _mm_unpacklo_ps(a: xz, b: yw); |
| 1688 | } |
| 1689 | |
| 1690 | PX_FORCE_INLINE Vec4V V4MergeY(const Vec4VArg x, const Vec4VArg y, const Vec4VArg z, const Vec4VArg w) |
| 1691 | { |
| 1692 | const Vec4V xz = _mm_unpacklo_ps(a: x, b: z); |
| 1693 | const Vec4V yw = _mm_unpacklo_ps(a: y, b: w); |
| 1694 | return _mm_unpackhi_ps(a: xz, b: yw); |
| 1695 | } |
| 1696 | |
| 1697 | PX_FORCE_INLINE Vec4V V4MergeX(const Vec4VArg x, const Vec4VArg y, const Vec4VArg z, const Vec4VArg w) |
| 1698 | { |
| 1699 | const Vec4V xz = _mm_unpacklo_ps(a: x, b: z); |
| 1700 | const Vec4V yw = _mm_unpacklo_ps(a: y, b: w); |
| 1701 | return _mm_unpacklo_ps(a: xz, b: yw); |
| 1702 | } |
| 1703 | |
| 1704 | PX_FORCE_INLINE Vec4V V4UnpackXY(const Vec4VArg a, const Vec4VArg b) |
| 1705 | { |
| 1706 | return _mm_unpacklo_ps(a: a, b: b); |
| 1707 | } |
| 1708 | |
| 1709 | PX_FORCE_INLINE Vec4V V4UnpackZW(const Vec4VArg a, const Vec4VArg b) |
| 1710 | { |
| 1711 | return _mm_unpackhi_ps(a: a, b: b); |
| 1712 | } |
| 1713 | |
| 1714 | PX_FORCE_INLINE Vec4V V4UnitW() |
| 1715 | { |
| 1716 | const PX_ALIGN(16, PxF32) w[4] = { 0.0f, 0.0f, 0.0f, 1.0f }; |
| 1717 | const __m128 w128 = _mm_load_ps(p: w); |
| 1718 | return w128; |
| 1719 | } |
| 1720 | |
| 1721 | PX_FORCE_INLINE Vec4V V4UnitX() |
| 1722 | { |
| 1723 | const PX_ALIGN(16, PxF32) x[4] = { 1.0f, 0.0f, 0.0f, 0.0f }; |
| 1724 | const __m128 x128 = _mm_load_ps(p: x); |
| 1725 | return x128; |
| 1726 | } |
| 1727 | |
| 1728 | PX_FORCE_INLINE Vec4V V4UnitY() |
| 1729 | { |
| 1730 | const PX_ALIGN(16, PxF32) y[4] = { 0.0f, 1.0f, 0.0f, 0.0f }; |
| 1731 | const __m128 y128 = _mm_load_ps(p: y); |
| 1732 | return y128; |
| 1733 | } |
| 1734 | |
| 1735 | PX_FORCE_INLINE Vec4V V4UnitZ() |
| 1736 | { |
| 1737 | const PX_ALIGN(16, PxF32) z[4] = { 0.0f, 0.0f, 1.0f, 0.0f }; |
| 1738 | const __m128 z128 = _mm_load_ps(p: z); |
| 1739 | return z128; |
| 1740 | } |
| 1741 | |
| 1742 | PX_FORCE_INLINE FloatV V4GetW(const Vec4V f) |
| 1743 | { |
| 1744 | return _mm_shuffle_ps(f, f, _MM_SHUFFLE(3, 3, 3, 3)); |
| 1745 | } |
| 1746 | |
| 1747 | PX_FORCE_INLINE FloatV V4GetX(const Vec4V f) |
| 1748 | { |
| 1749 | return _mm_shuffle_ps(f, f, _MM_SHUFFLE(0, 0, 0, 0)); |
| 1750 | } |
| 1751 | |
| 1752 | PX_FORCE_INLINE FloatV V4GetY(const Vec4V f) |
| 1753 | { |
| 1754 | return _mm_shuffle_ps(f, f, _MM_SHUFFLE(1, 1, 1, 1)); |
| 1755 | } |
| 1756 | |
| 1757 | PX_FORCE_INLINE FloatV V4GetZ(const Vec4V f) |
| 1758 | { |
| 1759 | return _mm_shuffle_ps(f, f, _MM_SHUFFLE(2, 2, 2, 2)); |
| 1760 | } |
| 1761 | |
| 1762 | PX_FORCE_INLINE Vec4V V4SetW(const Vec4V v, const FloatV f) |
| 1763 | { |
| 1764 | ASSERT_ISVALIDFLOATV(f); |
| 1765 | return V4Sel(c: BTTTF(), a: v, b: f); |
| 1766 | } |
| 1767 | |
| 1768 | PX_FORCE_INLINE Vec4V V4SetX(const Vec4V v, const FloatV f) |
| 1769 | { |
| 1770 | ASSERT_ISVALIDFLOATV(f); |
| 1771 | return V4Sel(c: BFTTT(), a: v, b: f); |
| 1772 | } |
| 1773 | |
| 1774 | PX_FORCE_INLINE Vec4V V4SetY(const Vec4V v, const FloatV f) |
| 1775 | { |
| 1776 | ASSERT_ISVALIDFLOATV(f); |
| 1777 | return V4Sel(c: BTFTT(), a: v, b: f); |
| 1778 | } |
| 1779 | |
| 1780 | PX_FORCE_INLINE Vec4V V4SetZ(const Vec4V v, const FloatV f) |
| 1781 | { |
| 1782 | ASSERT_ISVALIDFLOATV(f); |
| 1783 | return V4Sel(c: BTTFT(), a: v, b: f); |
| 1784 | } |
| 1785 | |
| 1786 | PX_FORCE_INLINE Vec4V V4ClearW(const Vec4V v) |
| 1787 | { |
| 1788 | #if !PX_EMSCRIPTEN |
| 1789 | return _mm_and_ps(a: v, b: V4LoadA(f: internalUnitSSE2Simd::gMaskXYZ)); |
| 1790 | #else |
| 1791 | return _mm_and_ps(v, (VecI32V&)internalUnitSSE2Simd::gMaskXYZ); |
| 1792 | #endif |
| 1793 | } |
| 1794 | |
| 1795 | PX_FORCE_INLINE Vec4V V4PermYXWZ(const Vec4V a) |
| 1796 | { |
| 1797 | return _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 3, 0, 1)); |
| 1798 | } |
| 1799 | |
| 1800 | PX_FORCE_INLINE Vec4V V4PermXZXZ(const Vec4V a) |
| 1801 | { |
| 1802 | return _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 0, 2, 0)); |
| 1803 | } |
| 1804 | |
| 1805 | PX_FORCE_INLINE Vec4V V4PermYWYW(const Vec4V a) |
| 1806 | { |
| 1807 | return _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 1, 3, 1)); |
| 1808 | } |
| 1809 | |
| 1810 | PX_FORCE_INLINE Vec4V V4PermYZXW(const Vec4V a) |
| 1811 | { |
| 1812 | return _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 0, 2, 1)); |
| 1813 | } |
| 1814 | |
| 1815 | PX_FORCE_INLINE Vec4V V4PermZWXY(const Vec4V a) |
| 1816 | { |
| 1817 | return _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 0, 3, 2)); |
| 1818 | } |
| 1819 | |
| 1820 | template <PxU8 x, PxU8 y, PxU8 z, PxU8 w> |
| 1821 | PX_FORCE_INLINE Vec4V V4Perm(const Vec4V a) |
| 1822 | { |
| 1823 | return _mm_shuffle_ps(a, a, _MM_SHUFFLE(w, z, y, x)); |
| 1824 | } |
| 1825 | |
| 1826 | PX_FORCE_INLINE Vec4V V4Zero() |
| 1827 | { |
| 1828 | return V4Load(f: 0.0f); |
| 1829 | } |
| 1830 | |
| 1831 | PX_FORCE_INLINE Vec4V V4One() |
| 1832 | { |
| 1833 | return V4Load(f: 1.0f); |
| 1834 | } |
| 1835 | |
| 1836 | PX_FORCE_INLINE Vec4V V4Eps() |
| 1837 | { |
| 1838 | return V4Load(PX_EPS_REAL); |
| 1839 | } |
| 1840 | |
| 1841 | PX_FORCE_INLINE Vec4V V4Neg(const Vec4V f) |
| 1842 | { |
| 1843 | return _mm_sub_ps(a: _mm_setzero_ps(), b: f); |
| 1844 | } |
| 1845 | |
| 1846 | PX_FORCE_INLINE Vec4V V4Add(const Vec4V a, const Vec4V b) |
| 1847 | { |
| 1848 | return _mm_add_ps(a: a, b: b); |
| 1849 | } |
| 1850 | |
| 1851 | PX_FORCE_INLINE Vec4V V4Sub(const Vec4V a, const Vec4V b) |
| 1852 | { |
| 1853 | return _mm_sub_ps(a: a, b: b); |
| 1854 | } |
| 1855 | |
| 1856 | PX_FORCE_INLINE Vec4V V4Scale(const Vec4V a, const FloatV b) |
| 1857 | { |
| 1858 | return _mm_mul_ps(a: a, b: b); |
| 1859 | } |
| 1860 | |
| 1861 | PX_FORCE_INLINE Vec4V V4Mul(const Vec4V a, const Vec4V b) |
| 1862 | { |
| 1863 | return _mm_mul_ps(a: a, b: b); |
| 1864 | } |
| 1865 | |
| 1866 | PX_FORCE_INLINE Vec4V V4ScaleInv(const Vec4V a, const FloatV b) |
| 1867 | { |
| 1868 | ASSERT_ISVALIDFLOATV(b); |
| 1869 | return _mm_div_ps(a: a, b: b); |
| 1870 | } |
| 1871 | |
| 1872 | PX_FORCE_INLINE Vec4V V4Div(const Vec4V a, const Vec4V b) |
| 1873 | { |
| 1874 | return _mm_div_ps(a: a, b: b); |
| 1875 | } |
| 1876 | |
| 1877 | PX_FORCE_INLINE Vec4V V4ScaleInvFast(const Vec4V a, const FloatV b) |
| 1878 | { |
| 1879 | ASSERT_ISVALIDFLOATV(b); |
| 1880 | return _mm_mul_ps(a: a, b: _mm_rcp_ps(a: b)); |
| 1881 | } |
| 1882 | |
| 1883 | PX_FORCE_INLINE Vec4V V4DivFast(const Vec4V a, const Vec4V b) |
| 1884 | { |
| 1885 | return _mm_mul_ps(a: a, b: _mm_rcp_ps(a: b)); |
| 1886 | } |
| 1887 | |
| 1888 | PX_FORCE_INLINE Vec4V V4Recip(const Vec4V a) |
| 1889 | { |
| 1890 | return _mm_div_ps(a: V4One(), b: a); |
| 1891 | } |
| 1892 | |
| 1893 | PX_FORCE_INLINE Vec4V V4RecipFast(const Vec4V a) |
| 1894 | { |
| 1895 | return _mm_rcp_ps(a: a); |
| 1896 | } |
| 1897 | |
| 1898 | PX_FORCE_INLINE Vec4V V4Rsqrt(const Vec4V a) |
| 1899 | { |
| 1900 | return _mm_div_ps(a: V4One(), b: _mm_sqrt_ps(a: a)); |
| 1901 | } |
| 1902 | |
| 1903 | PX_FORCE_INLINE Vec4V V4RsqrtFast(const Vec4V a) |
| 1904 | { |
| 1905 | return _mm_rsqrt_ps(a: a); |
| 1906 | } |
| 1907 | |
| 1908 | PX_FORCE_INLINE Vec4V V4Sqrt(const Vec4V a) |
| 1909 | { |
| 1910 | return _mm_sqrt_ps(a: a); |
| 1911 | } |
| 1912 | |
| 1913 | PX_FORCE_INLINE Vec4V V4ScaleAdd(const Vec4V a, const FloatV b, const Vec4V c) |
| 1914 | { |
| 1915 | ASSERT_ISVALIDFLOATV(b); |
| 1916 | return V4Add(a: V4Scale(a, b), b: c); |
| 1917 | } |
| 1918 | |
| 1919 | PX_FORCE_INLINE Vec4V V4NegScaleSub(const Vec4V a, const FloatV b, const Vec4V c) |
| 1920 | { |
| 1921 | ASSERT_ISVALIDFLOATV(b); |
| 1922 | return V4Sub(a: c, b: V4Scale(a, b)); |
| 1923 | } |
| 1924 | |
| 1925 | PX_FORCE_INLINE Vec4V V4MulAdd(const Vec4V a, const Vec4V b, const Vec4V c) |
| 1926 | { |
| 1927 | return V4Add(a: V4Mul(a, b), b: c); |
| 1928 | } |
| 1929 | |
| 1930 | PX_FORCE_INLINE Vec4V V4NegMulSub(const Vec4V a, const Vec4V b, const Vec4V c) |
| 1931 | { |
| 1932 | return V4Sub(a: c, b: V4Mul(a, b)); |
| 1933 | } |
| 1934 | |
| 1935 | PX_FORCE_INLINE Vec4V V4Abs(const Vec4V a) |
| 1936 | { |
| 1937 | return V4Max(a, b: V4Neg(f: a)); |
| 1938 | } |
| 1939 | |
| 1940 | PX_FORCE_INLINE FloatV V4SumElements(const Vec4V a) |
| 1941 | { |
| 1942 | #ifdef __SSE4_2__ |
| 1943 | Vec4V r = _mm_hadd_ps(a, a); |
| 1944 | r = _mm_hadd_ps(r, r); |
| 1945 | return r; |
| 1946 | #else |
| 1947 | const Vec4V xy = V4UnpackXY(a, b: a); // x,x,y,y |
| 1948 | const Vec4V zw = V4UnpackZW(a, b: a); // z,z,w,w |
| 1949 | const Vec4V xz_yw = V4Add(a: xy, b: zw); // x+z,x+z,y+w,y+w |
| 1950 | const FloatV xz = V4GetX(f: xz_yw); // x+z |
| 1951 | const FloatV yw = V4GetZ(f: xz_yw); // y+w |
| 1952 | return FAdd(a: xz, b: yw); // sum |
| 1953 | #endif |
| 1954 | } |
| 1955 | |
| 1956 | PX_FORCE_INLINE FloatV V4Dot(const Vec4V a, const Vec4V b) |
| 1957 | { |
| 1958 | #ifdef __SSE4_2__ |
| 1959 | return _mm_dp_ps(a, b, 0xff); |
| 1960 | #else |
| 1961 | const __m128 dot1 = _mm_mul_ps(a: a, b: b); // x,y,z,w |
| 1962 | const __m128 shuf1 = _mm_shuffle_ps(dot1, dot1, _MM_SHUFFLE(2, 1, 0, 3)); // w,x,y,z |
| 1963 | const __m128 shuf2 = _mm_shuffle_ps(dot1, dot1, _MM_SHUFFLE(1, 0, 3, 2)); // z,w,x,y |
| 1964 | const __m128 shuf3 = _mm_shuffle_ps(dot1, dot1, _MM_SHUFFLE(0, 3, 2, 1)); // y,z,w,x |
| 1965 | return _mm_add_ps(a: _mm_add_ps(a: shuf2, b: shuf3), b: _mm_add_ps(a: dot1, b: shuf1)); |
| 1966 | #endif |
| 1967 | } |
| 1968 | |
| 1969 | PX_FORCE_INLINE FloatV V4Dot3(const Vec4V a, const Vec4V b) |
| 1970 | { |
| 1971 | #ifdef __SSE4_2__ |
| 1972 | return _mm_dp_ps(a, b, 0x7f); |
| 1973 | #else |
| 1974 | const __m128 dot1 = _mm_mul_ps(a: a, b: b); // w,z,y,x |
| 1975 | const __m128 shuf1 = _mm_shuffle_ps(dot1, dot1, _MM_SHUFFLE(0, 0, 0, 0)); // z,y,x,w |
| 1976 | const __m128 shuf2 = _mm_shuffle_ps(dot1, dot1, _MM_SHUFFLE(1, 1, 1, 1)); // y,x,w,z |
| 1977 | const __m128 shuf3 = _mm_shuffle_ps(dot1, dot1, _MM_SHUFFLE(2, 2, 2, 2)); // x,w,z,y |
| 1978 | return _mm_add_ps(a: _mm_add_ps(a: shuf1, b: shuf2), b: shuf3); |
| 1979 | #endif |
| 1980 | } |
| 1981 | |
| 1982 | PX_FORCE_INLINE Vec4V V4Cross(const Vec4V a, const Vec4V b) |
| 1983 | { |
| 1984 | const __m128 r1 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 1, 0, 2)); // z,x,y,w |
| 1985 | const __m128 r2 = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3, 0, 2, 1)); // y,z,x,w |
| 1986 | const __m128 l1 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 0, 2, 1)); // y,z,x,w |
| 1987 | const __m128 l2 = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3, 1, 0, 2)); // z,x,y,w |
| 1988 | return _mm_sub_ps(a: _mm_mul_ps(a: l1, b: l2), b: _mm_mul_ps(a: r1, b: r2)); |
| 1989 | } |
| 1990 | |
| 1991 | PX_FORCE_INLINE FloatV V4Length(const Vec4V a) |
| 1992 | { |
| 1993 | return _mm_sqrt_ps(a: V4Dot(a, b: a)); |
| 1994 | } |
| 1995 | |
| 1996 | PX_FORCE_INLINE FloatV V4LengthSq(const Vec4V a) |
| 1997 | { |
| 1998 | return V4Dot(a, b: a); |
| 1999 | } |
| 2000 | |
| 2001 | PX_FORCE_INLINE Vec4V V4Normalize(const Vec4V a) |
| 2002 | { |
| 2003 | ASSERT_ISFINITELENGTH(a); |
| 2004 | return V4ScaleInv(a, b: _mm_sqrt_ps(a: V4Dot(a, b: a))); |
| 2005 | } |
| 2006 | |
| 2007 | PX_FORCE_INLINE Vec4V V4NormalizeFast(const Vec4V a) |
| 2008 | { |
| 2009 | ASSERT_ISFINITELENGTH(a); |
| 2010 | return V4ScaleInvFast(a, b: _mm_sqrt_ps(a: V4Dot(a, b: a))); |
| 2011 | } |
| 2012 | |
| 2013 | PX_FORCE_INLINE Vec4V V4NormalizeSafe(const Vec4V a, const Vec3V unsafeReturnValue) |
| 2014 | { |
| 2015 | const __m128 eps = V3Eps(); |
| 2016 | const __m128 length = V4Length(a); |
| 2017 | const __m128 isGreaterThanZero = V4IsGrtr(a: length, b: eps); |
| 2018 | return V4Sel(c: isGreaterThanZero, a: V4ScaleInv(a, b: length), b: unsafeReturnValue); |
| 2019 | } |
| 2020 | |
| 2021 | PX_FORCE_INLINE BoolV V4IsEqU32(const VecU32V a, const VecU32V b) |
| 2022 | { |
| 2023 | return m128_I2F(n: _mm_cmpeq_epi32(a: m128_F2I(n: a), b: m128_F2I(n: b))); |
| 2024 | } |
| 2025 | |
| 2026 | PX_FORCE_INLINE Vec4V V4Sel(const BoolV c, const Vec4V a, const Vec4V b) |
| 2027 | { |
| 2028 | return _mm_or_ps(a: _mm_andnot_ps(a: c, b: b), b: _mm_and_ps(a: c, b: a)); |
| 2029 | } |
| 2030 | |
| 2031 | PX_FORCE_INLINE BoolV V4IsGrtr(const Vec4V a, const Vec4V b) |
| 2032 | { |
| 2033 | return _mm_cmpgt_ps(a: a, b: b); |
| 2034 | } |
| 2035 | |
| 2036 | PX_FORCE_INLINE BoolV V4IsGrtrOrEq(const Vec4V a, const Vec4V b) |
| 2037 | { |
| 2038 | return _mm_cmpge_ps(a: a, b: b); |
| 2039 | } |
| 2040 | |
| 2041 | PX_FORCE_INLINE BoolV V4IsEq(const Vec4V a, const Vec4V b) |
| 2042 | { |
| 2043 | return _mm_cmpeq_ps(a: a, b: b); |
| 2044 | } |
| 2045 | |
| 2046 | PX_FORCE_INLINE Vec4V V4Max(const Vec4V a, const Vec4V b) |
| 2047 | { |
| 2048 | return _mm_max_ps(a: a, b: b); |
| 2049 | } |
| 2050 | |
| 2051 | PX_FORCE_INLINE Vec4V V4Min(const Vec4V a, const Vec4V b) |
| 2052 | { |
| 2053 | return _mm_min_ps(a: a, b: b); |
| 2054 | } |
| 2055 | |
| 2056 | PX_FORCE_INLINE FloatV (const Vec4V a) |
| 2057 | { |
| 2058 | const __m128 shuf1 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 1, 0, 3)); |
| 2059 | const __m128 shuf2 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 0, 3, 2)); |
| 2060 | const __m128 shuf3 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 3, 2, 1)); |
| 2061 | |
| 2062 | return _mm_max_ps(a: _mm_max_ps(a: a, b: shuf1), b: _mm_max_ps(a: shuf2, b: shuf3)); |
| 2063 | } |
| 2064 | |
| 2065 | PX_FORCE_INLINE FloatV (const Vec4V a) |
| 2066 | { |
| 2067 | const __m128 shuf1 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 1, 0, 3)); |
| 2068 | const __m128 shuf2 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 0, 3, 2)); |
| 2069 | const __m128 shuf3 = _mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 3, 2, 1)); |
| 2070 | |
| 2071 | return _mm_min_ps(a: _mm_min_ps(a: a, b: shuf1), b: _mm_min_ps(a: shuf2, b: shuf3)); |
| 2072 | } |
| 2073 | |
| 2074 | PX_FORCE_INLINE Vec4V V4Clamp(const Vec4V a, const Vec4V minV, const Vec4V maxV) |
| 2075 | { |
| 2076 | return V4Max(a: V4Min(a, b: maxV), b: minV); |
| 2077 | } |
| 2078 | |
| 2079 | PX_FORCE_INLINE PxU32 V4AllGrtr(const Vec4V a, const Vec4V b) |
| 2080 | { |
| 2081 | return internalUnitSSE2Simd::BAllTrue4_R(a: V4IsGrtr(a, b)); |
| 2082 | } |
| 2083 | |
| 2084 | PX_FORCE_INLINE PxU32 V4AllGrtrOrEq(const Vec4V a, const Vec4V b) |
| 2085 | { |
| 2086 | return internalUnitSSE2Simd::BAllTrue4_R(a: V4IsGrtrOrEq(a, b)); |
| 2087 | } |
| 2088 | |
| 2089 | PX_FORCE_INLINE PxU32 V4AllGrtrOrEq3(const Vec4V a, const Vec4V b) |
| 2090 | { |
| 2091 | return internalUnitSSE2Simd::BAllTrue3_R(a: V4IsGrtrOrEq(a, b)); |
| 2092 | } |
| 2093 | |
| 2094 | PX_FORCE_INLINE PxU32 V4AllEq(const Vec4V a, const Vec4V b) |
| 2095 | { |
| 2096 | return internalUnitSSE2Simd::BAllTrue4_R(a: V4IsEq(a, b)); |
| 2097 | } |
| 2098 | |
| 2099 | PX_FORCE_INLINE PxU32 V4AnyGrtr3(const Vec4V a, const Vec4V b) |
| 2100 | { |
| 2101 | return internalUnitSSE2Simd::BAnyTrue3_R(a: V4IsGrtr(a, b)); |
| 2102 | } |
| 2103 | |
| 2104 | PX_FORCE_INLINE Vec4V V4Round(const Vec4V a) |
| 2105 | { |
| 2106 | #ifdef __SSE4_2__ |
| 2107 | return _mm_round_ps(a, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| 2108 | #else |
| 2109 | // return _mm_round_ps(a, 0x0); |
| 2110 | const Vec4V half = V4Load(f: 0.5f); |
| 2111 | const __m128 signBit = _mm_cvtepi32_ps(a: _mm_srli_epi32(a: _mm_cvtps_epi32(a: a), count: 31)); |
| 2112 | const Vec4V aRound = V4Sub(a: V4Add(a, b: half), b: signBit); |
| 2113 | __m128i tmp = _mm_cvttps_epi32(a: aRound); |
| 2114 | return _mm_cvtepi32_ps(a: tmp); |
| 2115 | #endif |
| 2116 | } |
| 2117 | |
| 2118 | PX_FORCE_INLINE Vec4V V4Sin(const Vec4V a) |
| 2119 | { |
| 2120 | const Vec4V recipTwoPi = V4LoadA(f: g_PXReciprocalTwoPi.f); |
| 2121 | const Vec4V twoPi = V4LoadA(f: g_PXTwoPi.f); |
| 2122 | const Vec4V tmp = V4Mul(a, b: recipTwoPi); |
| 2123 | const Vec4V b = V4Round(a: tmp); |
| 2124 | const Vec4V V1 = V4NegMulSub(a: twoPi, b, c: a); |
| 2125 | |
| 2126 | // sin(V) ~= V - V^3 / 3! + V^5 / 5! - V^7 / 7! + V^9 / 9! - V^11 / 11! + V^13 / 13! - |
| 2127 | // V^15 / 15! + V^17 / 17! - V^19 / 19! + V^21 / 21! - V^23 / 23! (for -PI <= V < PI) |
| 2128 | const Vec4V V2 = V4Mul(a: V1, b: V1); |
| 2129 | const Vec4V V3 = V4Mul(a: V2, b: V1); |
| 2130 | const Vec4V V5 = V4Mul(a: V3, b: V2); |
| 2131 | const Vec4V V7 = V4Mul(a: V5, b: V2); |
| 2132 | const Vec4V V9 = V4Mul(a: V7, b: V2); |
| 2133 | const Vec4V V11 = V4Mul(a: V9, b: V2); |
| 2134 | const Vec4V V13 = V4Mul(a: V11, b: V2); |
| 2135 | const Vec4V V15 = V4Mul(a: V13, b: V2); |
| 2136 | const Vec4V V17 = V4Mul(a: V15, b: V2); |
| 2137 | const Vec4V V19 = V4Mul(a: V17, b: V2); |
| 2138 | const Vec4V V21 = V4Mul(a: V19, b: V2); |
| 2139 | const Vec4V V23 = V4Mul(a: V21, b: V2); |
| 2140 | |
| 2141 | const Vec4V sinCoefficients0 = V4LoadA(f: g_PXSinCoefficients0.f); |
| 2142 | const Vec4V sinCoefficients1 = V4LoadA(f: g_PXSinCoefficients1.f); |
| 2143 | const Vec4V sinCoefficients2 = V4LoadA(f: g_PXSinCoefficients2.f); |
| 2144 | |
| 2145 | const FloatV S1 = V4GetY(f: sinCoefficients0); |
| 2146 | const FloatV S2 = V4GetZ(f: sinCoefficients0); |
| 2147 | const FloatV S3 = V4GetW(f: sinCoefficients0); |
| 2148 | const FloatV S4 = V4GetX(f: sinCoefficients1); |
| 2149 | const FloatV S5 = V4GetY(f: sinCoefficients1); |
| 2150 | const FloatV S6 = V4GetZ(f: sinCoefficients1); |
| 2151 | const FloatV S7 = V4GetW(f: sinCoefficients1); |
| 2152 | const FloatV S8 = V4GetX(f: sinCoefficients2); |
| 2153 | const FloatV S9 = V4GetY(f: sinCoefficients2); |
| 2154 | const FloatV S10 = V4GetZ(f: sinCoefficients2); |
| 2155 | const FloatV S11 = V4GetW(f: sinCoefficients2); |
| 2156 | |
| 2157 | Vec4V Result; |
| 2158 | Result = V4MulAdd(a: S1, b: V3, c: V1); |
| 2159 | Result = V4MulAdd(a: S2, b: V5, c: Result); |
| 2160 | Result = V4MulAdd(a: S3, b: V7, c: Result); |
| 2161 | Result = V4MulAdd(a: S4, b: V9, c: Result); |
| 2162 | Result = V4MulAdd(a: S5, b: V11, c: Result); |
| 2163 | Result = V4MulAdd(a: S6, b: V13, c: Result); |
| 2164 | Result = V4MulAdd(a: S7, b: V15, c: Result); |
| 2165 | Result = V4MulAdd(a: S8, b: V17, c: Result); |
| 2166 | Result = V4MulAdd(a: S9, b: V19, c: Result); |
| 2167 | Result = V4MulAdd(a: S10, b: V21, c: Result); |
| 2168 | Result = V4MulAdd(a: S11, b: V23, c: Result); |
| 2169 | |
| 2170 | return Result; |
| 2171 | } |
| 2172 | |
| 2173 | PX_FORCE_INLINE Vec4V V4Cos(const Vec4V a) |
| 2174 | { |
| 2175 | const Vec4V recipTwoPi = V4LoadA(f: g_PXReciprocalTwoPi.f); |
| 2176 | const Vec4V twoPi = V4LoadA(f: g_PXTwoPi.f); |
| 2177 | const Vec4V tmp = V4Mul(a, b: recipTwoPi); |
| 2178 | const Vec4V b = V4Round(a: tmp); |
| 2179 | const Vec4V V1 = V4NegMulSub(a: twoPi, b, c: a); |
| 2180 | |
| 2181 | // cos(V) ~= 1 - V^2 / 2! + V^4 / 4! - V^6 / 6! + V^8 / 8! - V^10 / 10! + V^12 / 12! - |
| 2182 | // V^14 / 14! + V^16 / 16! - V^18 / 18! + V^20 / 20! - V^22 / 22! (for -PI <= V < PI) |
| 2183 | const Vec4V V2 = V4Mul(a: V1, b: V1); |
| 2184 | const Vec4V V4 = V4Mul(a: V2, b: V2); |
| 2185 | const Vec4V V6 = V4Mul(a: V4, b: V2); |
| 2186 | const Vec4V V8 = V4Mul(a: V4, b: V4); |
| 2187 | const Vec4V V10 = V4Mul(a: V6, b: V4); |
| 2188 | const Vec4V V12 = V4Mul(a: V6, b: V6); |
| 2189 | const Vec4V V14 = V4Mul(a: V8, b: V6); |
| 2190 | const Vec4V V16 = V4Mul(a: V8, b: V8); |
| 2191 | const Vec4V V18 = V4Mul(a: V10, b: V8); |
| 2192 | const Vec4V V20 = V4Mul(a: V10, b: V10); |
| 2193 | const Vec4V V22 = V4Mul(a: V12, b: V10); |
| 2194 | |
| 2195 | const Vec4V cosCoefficients0 = V4LoadA(f: g_PXCosCoefficients0.f); |
| 2196 | const Vec4V cosCoefficients1 = V4LoadA(f: g_PXCosCoefficients1.f); |
| 2197 | const Vec4V cosCoefficients2 = V4LoadA(f: g_PXCosCoefficients2.f); |
| 2198 | |
| 2199 | const FloatV C1 = V4GetY(f: cosCoefficients0); |
| 2200 | const FloatV C2 = V4GetZ(f: cosCoefficients0); |
| 2201 | const FloatV C3 = V4GetW(f: cosCoefficients0); |
| 2202 | const FloatV C4 = V4GetX(f: cosCoefficients1); |
| 2203 | const FloatV C5 = V4GetY(f: cosCoefficients1); |
| 2204 | const FloatV C6 = V4GetZ(f: cosCoefficients1); |
| 2205 | const FloatV C7 = V4GetW(f: cosCoefficients1); |
| 2206 | const FloatV C8 = V4GetX(f: cosCoefficients2); |
| 2207 | const FloatV C9 = V4GetY(f: cosCoefficients2); |
| 2208 | const FloatV C10 = V4GetZ(f: cosCoefficients2); |
| 2209 | const FloatV C11 = V4GetW(f: cosCoefficients2); |
| 2210 | |
| 2211 | Vec4V Result; |
| 2212 | Result = V4MulAdd(a: C1, b: V2, c: V4One()); |
| 2213 | Result = V4MulAdd(a: C2, b: V4, c: Result); |
| 2214 | Result = V4MulAdd(a: C3, b: V6, c: Result); |
| 2215 | Result = V4MulAdd(a: C4, b: V8, c: Result); |
| 2216 | Result = V4MulAdd(a: C5, b: V10, c: Result); |
| 2217 | Result = V4MulAdd(a: C6, b: V12, c: Result); |
| 2218 | Result = V4MulAdd(a: C7, b: V14, c: Result); |
| 2219 | Result = V4MulAdd(a: C8, b: V16, c: Result); |
| 2220 | Result = V4MulAdd(a: C9, b: V18, c: Result); |
| 2221 | Result = V4MulAdd(a: C10, b: V20, c: Result); |
| 2222 | Result = V4MulAdd(a: C11, b: V22, c: Result); |
| 2223 | |
| 2224 | return Result; |
| 2225 | } |
| 2226 | |
| 2227 | PX_FORCE_INLINE void V4Transpose(Vec4V& col0, Vec4V& col1, Vec4V& col2, Vec4V& col3) |
| 2228 | { |
| 2229 | Vec4V tmp0 = _mm_unpacklo_ps(a: col0, b: col1); |
| 2230 | Vec4V tmp2 = _mm_unpacklo_ps(a: col2, b: col3); |
| 2231 | Vec4V tmp1 = _mm_unpackhi_ps(a: col0, b: col1); |
| 2232 | Vec4V tmp3 = _mm_unpackhi_ps(a: col2, b: col3); |
| 2233 | col0 = _mm_movelh_ps(a: tmp0, b: tmp2); |
| 2234 | col1 = _mm_movehl_ps(a: tmp2, b: tmp0); |
| 2235 | col2 = _mm_movelh_ps(a: tmp1, b: tmp3); |
| 2236 | col3 = _mm_movehl_ps(a: tmp3, b: tmp1); |
| 2237 | } |
| 2238 | |
| 2239 | ////////////////////////////////// |
| 2240 | // BoolV |
| 2241 | ////////////////////////////////// |
| 2242 | |
| 2243 | PX_FORCE_INLINE BoolV BFFFF() |
| 2244 | { |
| 2245 | return _mm_setzero_ps(); |
| 2246 | } |
| 2247 | |
| 2248 | PX_FORCE_INLINE BoolV BFFFT() |
| 2249 | { |
| 2250 | /*const PX_ALIGN(16, PxU32 f[4])={0,0,0,0xFFFFFFFF}; |
| 2251 | const __m128 ffft=_mm_load_ps((float*)&f); |
| 2252 | return ffft;*/ |
| 2253 | return m128_I2F(n: _mm_set_epi32(i3: -1, i2: 0, i1: 0, i0: 0)); |
| 2254 | } |
| 2255 | |
| 2256 | PX_FORCE_INLINE BoolV BFFTF() |
| 2257 | { |
| 2258 | /*const PX_ALIGN(16, PxU32 f[4])={0,0,0xFFFFFFFF,0}; |
| 2259 | const __m128 fftf=_mm_load_ps((float*)&f); |
| 2260 | return fftf;*/ |
| 2261 | return m128_I2F(n: _mm_set_epi32(i3: 0, i2: -1, i1: 0, i0: 0)); |
| 2262 | } |
| 2263 | |
| 2264 | PX_FORCE_INLINE BoolV BFFTT() |
| 2265 | { |
| 2266 | /*const PX_ALIGN(16, PxU32 f[4])={0,0,0xFFFFFFFF,0xFFFFFFFF}; |
| 2267 | const __m128 fftt=_mm_load_ps((float*)&f); |
| 2268 | return fftt;*/ |
| 2269 | return m128_I2F(n: _mm_set_epi32(i3: -1, i2: -1, i1: 0, i0: 0)); |
| 2270 | } |
| 2271 | |
| 2272 | PX_FORCE_INLINE BoolV BFTFF() |
| 2273 | { |
| 2274 | /*const PX_ALIGN(16, PxU32 f[4])={0,0xFFFFFFFF,0,0}; |
| 2275 | const __m128 ftff=_mm_load_ps((float*)&f); |
| 2276 | return ftff;*/ |
| 2277 | return m128_I2F(n: _mm_set_epi32(i3: 0, i2: 0, i1: -1, i0: 0)); |
| 2278 | } |
| 2279 | |
| 2280 | PX_FORCE_INLINE BoolV BFTFT() |
| 2281 | { |
| 2282 | /*const PX_ALIGN(16, PxU32 f[4])={0,0xFFFFFFFF,0,0xFFFFFFFF}; |
| 2283 | const __m128 ftft=_mm_load_ps((float*)&f); |
| 2284 | return ftft;*/ |
| 2285 | return m128_I2F(n: _mm_set_epi32(i3: -1, i2: 0, i1: -1, i0: 0)); |
| 2286 | } |
| 2287 | |
| 2288 | PX_FORCE_INLINE BoolV BFTTF() |
| 2289 | { |
| 2290 | /*const PX_ALIGN(16, PxU32 f[4])={0,0xFFFFFFFF,0xFFFFFFFF,0}; |
| 2291 | const __m128 fttf=_mm_load_ps((float*)&f); |
| 2292 | return fttf;*/ |
| 2293 | return m128_I2F(n: _mm_set_epi32(i3: 0, i2: -1, i1: -1, i0: 0)); |
| 2294 | } |
| 2295 | |
| 2296 | PX_FORCE_INLINE BoolV BFTTT() |
| 2297 | { |
| 2298 | /*const PX_ALIGN(16, PxU32 f[4])={0,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}; |
| 2299 | const __m128 fttt=_mm_load_ps((float*)&f); |
| 2300 | return fttt;*/ |
| 2301 | return m128_I2F(n: _mm_set_epi32(i3: -1, i2: -1, i1: -1, i0: 0)); |
| 2302 | } |
| 2303 | |
| 2304 | PX_FORCE_INLINE BoolV BTFFF() |
| 2305 | { |
| 2306 | // const PX_ALIGN(16, PxU32 f[4])={0xFFFFFFFF,0,0,0}; |
| 2307 | // const __m128 tfff=_mm_load_ps((float*)&f); |
| 2308 | // return tfff; |
| 2309 | return m128_I2F(n: _mm_set_epi32(i3: 0, i2: 0, i1: 0, i0: -1)); |
| 2310 | } |
| 2311 | |
| 2312 | PX_FORCE_INLINE BoolV BTFFT() |
| 2313 | { |
| 2314 | /*const PX_ALIGN(16, PxU32 f[4])={0xFFFFFFFF,0,0,0xFFFFFFFF}; |
| 2315 | const __m128 tfft=_mm_load_ps((float*)&f); |
| 2316 | return tfft;*/ |
| 2317 | return m128_I2F(n: _mm_set_epi32(i3: -1, i2: 0, i1: 0, i0: -1)); |
| 2318 | } |
| 2319 | |
| 2320 | PX_FORCE_INLINE BoolV BTFTF() |
| 2321 | { |
| 2322 | /*const PX_ALIGN(16, PxU32 f[4])={0xFFFFFFFF,0,0xFFFFFFFF,0}; |
| 2323 | const __m128 tftf=_mm_load_ps((float*)&f); |
| 2324 | return tftf;*/ |
| 2325 | return m128_I2F(n: _mm_set_epi32(i3: 0, i2: -1, i1: 0, i0: -1)); |
| 2326 | } |
| 2327 | |
| 2328 | PX_FORCE_INLINE BoolV BTFTT() |
| 2329 | { |
| 2330 | /*const PX_ALIGN(16, PxU32 f[4])={0xFFFFFFFF,0,0xFFFFFFFF,0xFFFFFFFF}; |
| 2331 | const __m128 tftt=_mm_load_ps((float*)&f); |
| 2332 | return tftt;*/ |
| 2333 | return m128_I2F(n: _mm_set_epi32(i3: -1, i2: -1, i1: 0, i0: -1)); |
| 2334 | } |
| 2335 | |
| 2336 | PX_FORCE_INLINE BoolV BTTFF() |
| 2337 | { |
| 2338 | /*const PX_ALIGN(16, PxU32 f[4])={0xFFFFFFFF,0xFFFFFFFF,0,0}; |
| 2339 | const __m128 ttff=_mm_load_ps((float*)&f); |
| 2340 | return ttff;*/ |
| 2341 | return m128_I2F(n: _mm_set_epi32(i3: 0, i2: 0, i1: -1, i0: -1)); |
| 2342 | } |
| 2343 | |
| 2344 | PX_FORCE_INLINE BoolV BTTFT() |
| 2345 | { |
| 2346 | /*const PX_ALIGN(16, PxU32 f[4])={0xFFFFFFFF,0xFFFFFFFF,0,0xFFFFFFFF}; |
| 2347 | const __m128 ttft=_mm_load_ps((float*)&f); |
| 2348 | return ttft;*/ |
| 2349 | return m128_I2F(n: _mm_set_epi32(i3: -1, i2: 0, i1: -1, i0: -1)); |
| 2350 | } |
| 2351 | |
| 2352 | PX_FORCE_INLINE BoolV BTTTF() |
| 2353 | { |
| 2354 | /*const PX_ALIGN(16, PxU32 f[4])={0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0}; |
| 2355 | const __m128 tttf=_mm_load_ps((float*)&f); |
| 2356 | return tttf;*/ |
| 2357 | return m128_I2F(n: _mm_set_epi32(i3: 0, i2: -1, i1: -1, i0: -1)); |
| 2358 | } |
| 2359 | |
| 2360 | PX_FORCE_INLINE BoolV BTTTT() |
| 2361 | { |
| 2362 | /*const PX_ALIGN(16, PxU32 f[4])={0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}; |
| 2363 | const __m128 tttt=_mm_load_ps((float*)&f); |
| 2364 | return tttt;*/ |
| 2365 | return m128_I2F(n: _mm_set_epi32(i3: -1, i2: -1, i1: -1, i0: -1)); |
| 2366 | } |
| 2367 | |
| 2368 | PX_FORCE_INLINE BoolV BXMask() |
| 2369 | { |
| 2370 | /*const PX_ALIGN(16, PxU32 f[4])={0xFFFFFFFF,0,0,0}; |
| 2371 | const __m128 tfff=_mm_load_ps((float*)&f); |
| 2372 | return tfff;*/ |
| 2373 | return m128_I2F(n: _mm_set_epi32(i3: 0, i2: 0, i1: 0, i0: -1)); |
| 2374 | } |
| 2375 | |
| 2376 | PX_FORCE_INLINE BoolV BYMask() |
| 2377 | { |
| 2378 | /*const PX_ALIGN(16, PxU32 f[4])={0,0xFFFFFFFF,0,0}; |
| 2379 | const __m128 ftff=_mm_load_ps((float*)&f); |
| 2380 | return ftff;*/ |
| 2381 | return m128_I2F(n: _mm_set_epi32(i3: 0, i2: 0, i1: -1, i0: 0)); |
| 2382 | } |
| 2383 | |
| 2384 | PX_FORCE_INLINE BoolV BZMask() |
| 2385 | { |
| 2386 | /*const PX_ALIGN(16, PxU32 f[4])={0,0,0xFFFFFFFF,0}; |
| 2387 | const __m128 fftf=_mm_load_ps((float*)&f); |
| 2388 | return fftf;*/ |
| 2389 | return m128_I2F(n: _mm_set_epi32(i3: 0, i2: -1, i1: 0, i0: 0)); |
| 2390 | } |
| 2391 | |
| 2392 | PX_FORCE_INLINE BoolV BWMask() |
| 2393 | { |
| 2394 | /*const PX_ALIGN(16, PxU32 f[4])={0,0,0,0xFFFFFFFF}; |
| 2395 | const __m128 ffft=_mm_load_ps((float*)&f); |
| 2396 | return ffft;*/ |
| 2397 | return m128_I2F(n: _mm_set_epi32(i3: -1, i2: 0, i1: 0, i0: 0)); |
| 2398 | } |
| 2399 | |
| 2400 | PX_FORCE_INLINE BoolV BGetX(const BoolV f) |
| 2401 | { |
| 2402 | return _mm_shuffle_ps(f, f, _MM_SHUFFLE(0, 0, 0, 0)); |
| 2403 | } |
| 2404 | |
| 2405 | PX_FORCE_INLINE BoolV BGetY(const BoolV f) |
| 2406 | { |
| 2407 | return _mm_shuffle_ps(f, f, _MM_SHUFFLE(1, 1, 1, 1)); |
| 2408 | } |
| 2409 | |
| 2410 | PX_FORCE_INLINE BoolV BGetZ(const BoolV f) |
| 2411 | { |
| 2412 | return _mm_shuffle_ps(f, f, _MM_SHUFFLE(2, 2, 2, 2)); |
| 2413 | } |
| 2414 | |
| 2415 | PX_FORCE_INLINE BoolV BGetW(const BoolV f) |
| 2416 | { |
| 2417 | return _mm_shuffle_ps(f, f, _MM_SHUFFLE(3, 3, 3, 3)); |
| 2418 | } |
| 2419 | |
| 2420 | PX_FORCE_INLINE BoolV BSetX(const BoolV v, const BoolV f) |
| 2421 | { |
| 2422 | return V4Sel(c: BFTTT(), a: v, b: f); |
| 2423 | } |
| 2424 | |
| 2425 | PX_FORCE_INLINE BoolV BSetY(const BoolV v, const BoolV f) |
| 2426 | { |
| 2427 | return V4Sel(c: BTFTT(), a: v, b: f); |
| 2428 | } |
| 2429 | |
| 2430 | PX_FORCE_INLINE BoolV BSetZ(const BoolV v, const BoolV f) |
| 2431 | { |
| 2432 | return V4Sel(c: BTTFT(), a: v, b: f); |
| 2433 | } |
| 2434 | |
| 2435 | PX_FORCE_INLINE BoolV BSetW(const BoolV v, const BoolV f) |
| 2436 | { |
| 2437 | return V4Sel(c: BTTTF(), a: v, b: f); |
| 2438 | } |
| 2439 | |
| 2440 | PX_FORCE_INLINE BoolV BAnd(const BoolV a, const BoolV b) |
| 2441 | { |
| 2442 | return _mm_and_ps(a: a, b: b); |
| 2443 | } |
| 2444 | |
| 2445 | PX_FORCE_INLINE BoolV BNot(const BoolV a) |
| 2446 | { |
| 2447 | const BoolV bAllTrue(BTTTT()); |
| 2448 | return _mm_xor_ps(a: a, b: bAllTrue); |
| 2449 | } |
| 2450 | |
| 2451 | PX_FORCE_INLINE BoolV BAndNot(const BoolV a, const BoolV b) |
| 2452 | { |
| 2453 | return _mm_andnot_ps(a: b, b: a); |
| 2454 | } |
| 2455 | |
| 2456 | PX_FORCE_INLINE BoolV BOr(const BoolV a, const BoolV b) |
| 2457 | { |
| 2458 | return _mm_or_ps(a: a, b: b); |
| 2459 | } |
| 2460 | |
| 2461 | PX_FORCE_INLINE BoolV BAllTrue4(const BoolV a) |
| 2462 | { |
| 2463 | const BoolV bTmp = |
| 2464 | _mm_and_ps(_mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 1, 0, 1)), _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 3, 2, 3))); |
| 2465 | return _mm_and_ps(_mm_shuffle_ps(bTmp, bTmp, _MM_SHUFFLE(0, 0, 0, 0)), |
| 2466 | _mm_shuffle_ps(bTmp, bTmp, _MM_SHUFFLE(1, 1, 1, 1))); |
| 2467 | } |
| 2468 | |
| 2469 | PX_FORCE_INLINE BoolV BAnyTrue4(const BoolV a) |
| 2470 | { |
| 2471 | const BoolV bTmp = |
| 2472 | _mm_or_ps(_mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 1, 0, 1)), _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 3, 2, 3))); |
| 2473 | return _mm_or_ps(_mm_shuffle_ps(bTmp, bTmp, _MM_SHUFFLE(0, 0, 0, 0)), |
| 2474 | _mm_shuffle_ps(bTmp, bTmp, _MM_SHUFFLE(1, 1, 1, 1))); |
| 2475 | } |
| 2476 | |
| 2477 | PX_FORCE_INLINE BoolV BAllTrue3(const BoolV a) |
| 2478 | { |
| 2479 | const BoolV bTmp = |
| 2480 | _mm_and_ps(_mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 1, 0, 1)), _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 2, 2, 2))); |
| 2481 | return _mm_and_ps(_mm_shuffle_ps(bTmp, bTmp, _MM_SHUFFLE(0, 0, 0, 0)), |
| 2482 | _mm_shuffle_ps(bTmp, bTmp, _MM_SHUFFLE(1, 1, 1, 1))); |
| 2483 | } |
| 2484 | |
| 2485 | PX_FORCE_INLINE BoolV BAnyTrue3(const BoolV a) |
| 2486 | { |
| 2487 | const BoolV bTmp = |
| 2488 | _mm_or_ps(_mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 1, 0, 1)), _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 2, 2, 2))); |
| 2489 | return _mm_or_ps(_mm_shuffle_ps(bTmp, bTmp, _MM_SHUFFLE(0, 0, 0, 0)), |
| 2490 | _mm_shuffle_ps(bTmp, bTmp, _MM_SHUFFLE(1, 1, 1, 1))); |
| 2491 | } |
| 2492 | |
| 2493 | PX_FORCE_INLINE PxU32 BAllEq(const BoolV a, const BoolV b) |
| 2494 | { |
| 2495 | const BoolV bTest = m128_I2F(n: _mm_cmpeq_epi32(a: m128_F2I(n: a), b: m128_F2I(n: b))); |
| 2496 | return internalUnitSSE2Simd::BAllTrue4_R(a: bTest); |
| 2497 | } |
| 2498 | |
| 2499 | PX_FORCE_INLINE PxU32 BAllEqTTTT(const BoolV a) |
| 2500 | { |
| 2501 | return PxU32(_mm_movemask_ps(a: a)==15); |
| 2502 | } |
| 2503 | |
| 2504 | PX_FORCE_INLINE PxU32 BAllEqFFFF(const BoolV a) |
| 2505 | { |
| 2506 | return PxU32(_mm_movemask_ps(a: a)==0); |
| 2507 | } |
| 2508 | |
| 2509 | PX_FORCE_INLINE PxU32 BGetBitMask(const BoolV a) |
| 2510 | { |
| 2511 | return PxU32(_mm_movemask_ps(a: a)); |
| 2512 | } |
| 2513 | |
| 2514 | ////////////////////////////////// |
| 2515 | // MAT33V |
| 2516 | ////////////////////////////////// |
| 2517 | |
| 2518 | PX_FORCE_INLINE Vec3V M33MulV3(const Mat33V& a, const Vec3V b) |
| 2519 | { |
| 2520 | const FloatV x = V3GetX(f: b); |
| 2521 | const FloatV y = V3GetY(f: b); |
| 2522 | const FloatV z = V3GetZ(f: b); |
| 2523 | const Vec3V v0 = V3Scale(a: a.col0, b: x); |
| 2524 | const Vec3V v1 = V3Scale(a: a.col1, b: y); |
| 2525 | const Vec3V v2 = V3Scale(a: a.col2, b: z); |
| 2526 | const Vec3V v0PlusV1 = V3Add(a: v0, b: v1); |
| 2527 | return V3Add(a: v0PlusV1, b: v2); |
| 2528 | } |
| 2529 | |
| 2530 | PX_FORCE_INLINE Vec3V M33TrnspsMulV3(const Mat33V& a, const Vec3V b) |
| 2531 | { |
| 2532 | const FloatV x = V3Dot(a: a.col0, b); |
| 2533 | const FloatV y = V3Dot(a: a.col1, b); |
| 2534 | const FloatV z = V3Dot(a: a.col2, b); |
| 2535 | return V3Merge(x, y, z); |
| 2536 | } |
| 2537 | |
| 2538 | PX_FORCE_INLINE Vec3V M33MulV3AddV3(const Mat33V& A, const Vec3V b, const Vec3V c) |
| 2539 | { |
| 2540 | const FloatV x = V3GetX(f: b); |
| 2541 | const FloatV y = V3GetY(f: b); |
| 2542 | const FloatV z = V3GetZ(f: b); |
| 2543 | Vec3V result = V3ScaleAdd(a: A.col0, b: x, c); |
| 2544 | result = V3ScaleAdd(a: A.col1, b: y, c: result); |
| 2545 | return V3ScaleAdd(a: A.col2, b: z, c: result); |
| 2546 | } |
| 2547 | |
| 2548 | PX_FORCE_INLINE Mat33V M33MulM33(const Mat33V& a, const Mat33V& b) |
| 2549 | { |
| 2550 | return Mat33V(M33MulV3(a, b: b.col0), M33MulV3(a, b: b.col1), M33MulV3(a, b: b.col2)); |
| 2551 | } |
| 2552 | |
| 2553 | PX_FORCE_INLINE Mat33V M33Add(const Mat33V& a, const Mat33V& b) |
| 2554 | { |
| 2555 | return Mat33V(V3Add(a: a.col0, b: b.col0), V3Add(a: a.col1, b: b.col1), V3Add(a: a.col2, b: b.col2)); |
| 2556 | } |
| 2557 | |
| 2558 | PX_FORCE_INLINE Mat33V M33Scale(const Mat33V& a, const FloatV& b) |
| 2559 | { |
| 2560 | return Mat33V(V3Scale(a: a.col0, b), V3Scale(a: a.col1, b), V3Scale(a: a.col2, b)); |
| 2561 | } |
| 2562 | |
| 2563 | PX_FORCE_INLINE Mat33V M33Inverse(const Mat33V& a) |
| 2564 | { |
| 2565 | const BoolV tfft = BTFFT(); |
| 2566 | const BoolV tttf = BTTTF(); |
| 2567 | const FloatV zero = FZero(); |
| 2568 | const Vec3V cross01 = V3Cross(a: a.col0, b: a.col1); |
| 2569 | const Vec3V cross12 = V3Cross(a: a.col1, b: a.col2); |
| 2570 | const Vec3V cross20 = V3Cross(a: a.col2, b: a.col0); |
| 2571 | const FloatV dot = V3Dot(a: cross01, b: a.col2); |
| 2572 | const FloatV invDet = _mm_rcp_ps(a: dot); |
| 2573 | const Vec3V mergeh = _mm_unpacklo_ps(a: cross12, b: cross01); |
| 2574 | const Vec3V mergel = _mm_unpackhi_ps(a: cross12, b: cross01); |
| 2575 | Vec3V colInv0 = _mm_unpacklo_ps(a: mergeh, b: cross20); |
| 2576 | colInv0 = _mm_or_ps(a: _mm_andnot_ps(a: tttf, b: zero), b: _mm_and_ps(a: tttf, b: colInv0)); |
| 2577 | const Vec3V zppd = _mm_shuffle_ps(mergeh, cross20, _MM_SHUFFLE(3, 0, 0, 2)); |
| 2578 | const Vec3V pbwp = _mm_shuffle_ps(cross20, mergeh, _MM_SHUFFLE(3, 3, 1, 0)); |
| 2579 | const Vec3V colInv1 = _mm_or_ps(a: _mm_andnot_ps(a: BTFFT(), b: pbwp), b: _mm_and_ps(a: BTFFT(), b: zppd)); |
| 2580 | const Vec3V xppd = _mm_shuffle_ps(mergel, cross20, _MM_SHUFFLE(3, 0, 0, 0)); |
| 2581 | const Vec3V pcyp = _mm_shuffle_ps(cross20, mergel, _MM_SHUFFLE(3, 1, 2, 0)); |
| 2582 | const Vec3V colInv2 = _mm_or_ps(a: _mm_andnot_ps(a: tfft, b: pcyp), b: _mm_and_ps(a: tfft, b: xppd)); |
| 2583 | |
| 2584 | return Mat33V(_mm_mul_ps(a: colInv0, b: invDet), _mm_mul_ps(a: colInv1, b: invDet), _mm_mul_ps(a: colInv2, b: invDet)); |
| 2585 | } |
| 2586 | |
| 2587 | PX_FORCE_INLINE Mat33V M33Trnsps(const Mat33V& a) |
| 2588 | { |
| 2589 | return Mat33V(V3Merge(x: V3GetX(f: a.col0), y: V3GetX(f: a.col1), z: V3GetX(f: a.col2)), |
| 2590 | V3Merge(x: V3GetY(f: a.col0), y: V3GetY(f: a.col1), z: V3GetY(f: a.col2)), |
| 2591 | V3Merge(x: V3GetZ(f: a.col0), y: V3GetZ(f: a.col1), z: V3GetZ(f: a.col2))); |
| 2592 | } |
| 2593 | |
| 2594 | PX_FORCE_INLINE Mat33V M33Identity() |
| 2595 | { |
| 2596 | return Mat33V(V3UnitX(), V3UnitY(), V3UnitZ()); |
| 2597 | } |
| 2598 | |
| 2599 | PX_FORCE_INLINE Mat33V M33Sub(const Mat33V& a, const Mat33V& b) |
| 2600 | { |
| 2601 | return Mat33V(V3Sub(a: a.col0, b: b.col0), V3Sub(a: a.col1, b: b.col1), V3Sub(a: a.col2, b: b.col2)); |
| 2602 | } |
| 2603 | |
| 2604 | PX_FORCE_INLINE Mat33V M33Neg(const Mat33V& a) |
| 2605 | { |
| 2606 | return Mat33V(V3Neg(f: a.col0), V3Neg(f: a.col1), V3Neg(f: a.col2)); |
| 2607 | } |
| 2608 | |
| 2609 | PX_FORCE_INLINE Mat33V M33Abs(const Mat33V& a) |
| 2610 | { |
| 2611 | return Mat33V(V3Abs(a: a.col0), V3Abs(a: a.col1), V3Abs(a: a.col2)); |
| 2612 | } |
| 2613 | |
| 2614 | PX_FORCE_INLINE Mat33V PromoteVec3V(const Vec3V v) |
| 2615 | { |
| 2616 | const BoolV bTFFF = BTFFF(); |
| 2617 | const BoolV bFTFF = BFTFF(); |
| 2618 | const BoolV bFFTF = BTFTF(); |
| 2619 | |
| 2620 | const Vec3V zero = V3Zero(); |
| 2621 | |
| 2622 | return Mat33V(V3Sel(c: bTFFF, a: v, b: zero), V3Sel(c: bFTFF, a: v, b: zero), V3Sel(c: bFFTF, a: v, b: zero)); |
| 2623 | } |
| 2624 | |
| 2625 | PX_FORCE_INLINE Mat33V M33Diagonal(const Vec3VArg d) |
| 2626 | { |
| 2627 | const FloatV x = V3Mul(a: V3UnitX(), b: d); |
| 2628 | const FloatV y = V3Mul(a: V3UnitY(), b: d); |
| 2629 | const FloatV z = V3Mul(a: V3UnitZ(), b: d); |
| 2630 | return Mat33V(x, y, z); |
| 2631 | } |
| 2632 | |
| 2633 | ////////////////////////////////// |
| 2634 | // MAT34V |
| 2635 | ////////////////////////////////// |
| 2636 | |
| 2637 | PX_FORCE_INLINE Vec3V M34MulV3(const Mat34V& a, const Vec3V b) |
| 2638 | { |
| 2639 | const FloatV x = V3GetX(f: b); |
| 2640 | const FloatV y = V3GetY(f: b); |
| 2641 | const FloatV z = V3GetZ(f: b); |
| 2642 | const Vec3V v0 = V3Scale(a: a.col0, b: x); |
| 2643 | const Vec3V v1 = V3Scale(a: a.col1, b: y); |
| 2644 | const Vec3V v2 = V3Scale(a: a.col2, b: z); |
| 2645 | const Vec3V v0PlusV1 = V3Add(a: v0, b: v1); |
| 2646 | const Vec3V v0PlusV1Plusv2 = V3Add(a: v0PlusV1, b: v2); |
| 2647 | return V3Add(a: v0PlusV1Plusv2, b: a.col3); |
| 2648 | } |
| 2649 | |
| 2650 | PX_FORCE_INLINE Vec3V M34Mul33V3(const Mat34V& a, const Vec3V b) |
| 2651 | { |
| 2652 | const FloatV x = V3GetX(f: b); |
| 2653 | const FloatV y = V3GetY(f: b); |
| 2654 | const FloatV z = V3GetZ(f: b); |
| 2655 | const Vec3V v0 = V3Scale(a: a.col0, b: x); |
| 2656 | const Vec3V v1 = V3Scale(a: a.col1, b: y); |
| 2657 | const Vec3V v2 = V3Scale(a: a.col2, b: z); |
| 2658 | const Vec3V v0PlusV1 = V3Add(a: v0, b: v1); |
| 2659 | return V3Add(a: v0PlusV1, b: v2); |
| 2660 | } |
| 2661 | |
| 2662 | PX_FORCE_INLINE Vec3V M34TrnspsMul33V3(const Mat34V& a, const Vec3V b) |
| 2663 | { |
| 2664 | const FloatV x = V3Dot(a: a.col0, b); |
| 2665 | const FloatV y = V3Dot(a: a.col1, b); |
| 2666 | const FloatV z = V3Dot(a: a.col2, b); |
| 2667 | return V3Merge(x, y, z); |
| 2668 | } |
| 2669 | |
| 2670 | PX_FORCE_INLINE Mat34V M34MulM34(const Mat34V& a, const Mat34V& b) |
| 2671 | { |
| 2672 | return Mat34V(M34Mul33V3(a, b: b.col0), M34Mul33V3(a, b: b.col1), M34Mul33V3(a, b: b.col2), M34MulV3(a, b: b.col3)); |
| 2673 | } |
| 2674 | |
| 2675 | PX_FORCE_INLINE Mat33V M34MulM33(const Mat34V& a, const Mat33V& b) |
| 2676 | { |
| 2677 | return Mat33V(M34Mul33V3(a, b: b.col0), M34Mul33V3(a, b: b.col1), M34Mul33V3(a, b: b.col2)); |
| 2678 | } |
| 2679 | |
| 2680 | PX_FORCE_INLINE Mat33V M34Mul33MM34(const Mat34V& a, const Mat34V& b) |
| 2681 | { |
| 2682 | return Mat33V(M34Mul33V3(a, b: b.col0), M34Mul33V3(a, b: b.col1), M34Mul33V3(a, b: b.col2)); |
| 2683 | } |
| 2684 | |
| 2685 | PX_FORCE_INLINE Mat34V M34Add(const Mat34V& a, const Mat34V& b) |
| 2686 | { |
| 2687 | return Mat34V(V3Add(a: a.col0, b: b.col0), V3Add(a: a.col1, b: b.col1), V3Add(a: a.col2, b: b.col2), V3Add(a: a.col3, b: b.col3)); |
| 2688 | } |
| 2689 | |
| 2690 | PX_FORCE_INLINE Mat33V M34Trnsps33(const Mat34V& a) |
| 2691 | { |
| 2692 | return Mat33V(V3Merge(x: V3GetX(f: a.col0), y: V3GetX(f: a.col1), z: V3GetX(f: a.col2)), |
| 2693 | V3Merge(x: V3GetY(f: a.col0), y: V3GetY(f: a.col1), z: V3GetY(f: a.col2)), |
| 2694 | V3Merge(x: V3GetZ(f: a.col0), y: V3GetZ(f: a.col1), z: V3GetZ(f: a.col2))); |
| 2695 | } |
| 2696 | |
| 2697 | ////////////////////////////////// |
| 2698 | // MAT44V |
| 2699 | ////////////////////////////////// |
| 2700 | |
| 2701 | PX_FORCE_INLINE Vec4V M44MulV4(const Mat44V& a, const Vec4V b) |
| 2702 | { |
| 2703 | const FloatV x = V4GetX(f: b); |
| 2704 | const FloatV y = V4GetY(f: b); |
| 2705 | const FloatV z = V4GetZ(f: b); |
| 2706 | const FloatV w = V4GetW(f: b); |
| 2707 | |
| 2708 | const Vec4V v0 = V4Scale(a: a.col0, b: x); |
| 2709 | const Vec4V v1 = V4Scale(a: a.col1, b: y); |
| 2710 | const Vec4V v2 = V4Scale(a: a.col2, b: z); |
| 2711 | const Vec4V v3 = V4Scale(a: a.col3, b: w); |
| 2712 | const Vec4V v0PlusV1 = V4Add(a: v0, b: v1); |
| 2713 | const Vec4V v0PlusV1Plusv2 = V4Add(a: v0PlusV1, b: v2); |
| 2714 | return V4Add(a: v0PlusV1Plusv2, b: v3); |
| 2715 | } |
| 2716 | |
| 2717 | PX_FORCE_INLINE Vec4V M44TrnspsMulV4(const Mat44V& a, const Vec4V b) |
| 2718 | { |
| 2719 | PX_ALIGN(16, FloatV) dotProdArray[4] = { V4Dot(a: a.col0, b), V4Dot(a: a.col1, b), V4Dot(a: a.col2, b), V4Dot(a: a.col3, b) }; |
| 2720 | return V4Merge(floatVArray: dotProdArray); |
| 2721 | } |
| 2722 | |
| 2723 | PX_FORCE_INLINE Mat44V M44MulM44(const Mat44V& a, const Mat44V& b) |
| 2724 | { |
| 2725 | return Mat44V(M44MulV4(a, b: b.col0), M44MulV4(a, b: b.col1), M44MulV4(a, b: b.col2), M44MulV4(a, b: b.col3)); |
| 2726 | } |
| 2727 | |
| 2728 | PX_FORCE_INLINE Mat44V M44Add(const Mat44V& a, const Mat44V& b) |
| 2729 | { |
| 2730 | return Mat44V(V4Add(a: a.col0, b: b.col0), V4Add(a: a.col1, b: b.col1), V4Add(a: a.col2, b: b.col2), V4Add(a: a.col3, b: b.col3)); |
| 2731 | } |
| 2732 | |
| 2733 | PX_FORCE_INLINE Mat44V M44Trnsps(const Mat44V& a) |
| 2734 | { |
| 2735 | const Vec4V v0 = _mm_unpacklo_ps(a: a.col0, b: a.col2); |
| 2736 | const Vec4V v1 = _mm_unpackhi_ps(a: a.col0, b: a.col2); |
| 2737 | const Vec4V v2 = _mm_unpacklo_ps(a: a.col1, b: a.col3); |
| 2738 | const Vec4V v3 = _mm_unpackhi_ps(a: a.col1, b: a.col3); |
| 2739 | return Mat44V(_mm_unpacklo_ps(a: v0, b: v2), _mm_unpackhi_ps(a: v0, b: v2), _mm_unpacklo_ps(a: v1, b: v3), _mm_unpackhi_ps(a: v1, b: v3)); |
| 2740 | } |
| 2741 | |
| 2742 | PX_FORCE_INLINE Mat44V M44Inverse(const Mat44V& a) |
| 2743 | { |
| 2744 | __m128 minor0, minor1, minor2, minor3; |
| 2745 | __m128 row0, row1, row2, row3; |
| 2746 | __m128 det, tmp1; |
| 2747 | |
| 2748 | tmp1 = V4Zero(); |
| 2749 | row1 = V4Zero(); |
| 2750 | row3 = V4Zero(); |
| 2751 | |
| 2752 | row0 = a.col0; |
| 2753 | row1 = _mm_shuffle_ps(a.col1, a.col1, _MM_SHUFFLE(1, 0, 3, 2)); |
| 2754 | row2 = a.col2; |
| 2755 | row3 = _mm_shuffle_ps(a.col3, a.col3, _MM_SHUFFLE(1, 0, 3, 2)); |
| 2756 | |
| 2757 | tmp1 = _mm_mul_ps(a: row2, b: row3); |
| 2758 | tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0xB1); |
| 2759 | minor0 = _mm_mul_ps(a: row1, b: tmp1); |
| 2760 | minor1 = _mm_mul_ps(a: row0, b: tmp1); |
| 2761 | tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0x4E); |
| 2762 | minor0 = _mm_sub_ps(a: _mm_mul_ps(a: row1, b: tmp1), b: minor0); |
| 2763 | minor1 = _mm_sub_ps(a: _mm_mul_ps(a: row0, b: tmp1), b: minor1); |
| 2764 | minor1 = _mm_shuffle_ps(minor1, minor1, 0x4E); |
| 2765 | |
| 2766 | tmp1 = _mm_mul_ps(a: row1, b: row2); |
| 2767 | tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0xB1); |
| 2768 | minor0 = _mm_add_ps(a: _mm_mul_ps(a: row3, b: tmp1), b: minor0); |
| 2769 | minor3 = _mm_mul_ps(a: row0, b: tmp1); |
| 2770 | tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0x4E); |
| 2771 | minor0 = _mm_sub_ps(a: minor0, b: _mm_mul_ps(a: row3, b: tmp1)); |
| 2772 | minor3 = _mm_sub_ps(a: _mm_mul_ps(a: row0, b: tmp1), b: minor3); |
| 2773 | minor3 = _mm_shuffle_ps(minor3, minor3, 0x4E); |
| 2774 | |
| 2775 | tmp1 = _mm_mul_ps(_mm_shuffle_ps(row1, row1, 0x4E), b: row3); |
| 2776 | tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0xB1); |
| 2777 | row2 = _mm_shuffle_ps(row2, row2, 0x4E); |
| 2778 | minor0 = _mm_add_ps(a: _mm_mul_ps(a: row2, b: tmp1), b: minor0); |
| 2779 | minor2 = _mm_mul_ps(a: row0, b: tmp1); |
| 2780 | tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0x4E); |
| 2781 | minor0 = _mm_sub_ps(a: minor0, b: _mm_mul_ps(a: row2, b: tmp1)); |
| 2782 | minor2 = _mm_sub_ps(a: _mm_mul_ps(a: row0, b: tmp1), b: minor2); |
| 2783 | minor2 = _mm_shuffle_ps(minor2, minor2, 0x4E); |
| 2784 | |
| 2785 | tmp1 = _mm_mul_ps(a: row0, b: row1); |
| 2786 | tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0xB1); |
| 2787 | minor2 = _mm_add_ps(a: _mm_mul_ps(a: row3, b: tmp1), b: minor2); |
| 2788 | minor3 = _mm_sub_ps(a: _mm_mul_ps(a: row2, b: tmp1), b: minor3); |
| 2789 | tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0x4E); |
| 2790 | minor2 = _mm_sub_ps(a: _mm_mul_ps(a: row3, b: tmp1), b: minor2); |
| 2791 | minor3 = _mm_sub_ps(a: minor3, b: _mm_mul_ps(a: row2, b: tmp1)); |
| 2792 | |
| 2793 | tmp1 = _mm_mul_ps(a: row0, b: row3); |
| 2794 | tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0xB1); |
| 2795 | minor1 = _mm_sub_ps(a: minor1, b: _mm_mul_ps(a: row2, b: tmp1)); |
| 2796 | minor2 = _mm_add_ps(a: _mm_mul_ps(a: row1, b: tmp1), b: minor2); |
| 2797 | tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0x4E); |
| 2798 | minor1 = _mm_add_ps(a: _mm_mul_ps(a: row2, b: tmp1), b: minor1); |
| 2799 | minor2 = _mm_sub_ps(a: minor2, b: _mm_mul_ps(a: row1, b: tmp1)); |
| 2800 | |
| 2801 | tmp1 = _mm_mul_ps(a: row0, b: row2); |
| 2802 | tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0xB1); |
| 2803 | minor1 = _mm_add_ps(a: _mm_mul_ps(a: row3, b: tmp1), b: minor1); |
| 2804 | minor3 = _mm_sub_ps(a: minor3, b: _mm_mul_ps(a: row1, b: tmp1)); |
| 2805 | tmp1 = _mm_shuffle_ps(tmp1, tmp1, 0x4E); |
| 2806 | minor1 = _mm_sub_ps(a: minor1, b: _mm_mul_ps(a: row3, b: tmp1)); |
| 2807 | minor3 = _mm_add_ps(a: _mm_mul_ps(a: row1, b: tmp1), b: minor3); |
| 2808 | |
| 2809 | det = _mm_mul_ps(a: row0, b: minor0); |
| 2810 | det = _mm_add_ps(_mm_shuffle_ps(det, det, 0x4E), b: det); |
| 2811 | det = _mm_add_ss(_mm_shuffle_ps(det, det, 0xB1), b: det); |
| 2812 | tmp1 = _mm_rcp_ss(a: det); |
| 2813 | #if 0 |
| 2814 | det = _mm_sub_ss(_mm_add_ss(tmp1, tmp1), _mm_mul_ss(det, _mm_mul_ss(tmp1, tmp1))); |
| 2815 | det = _mm_shuffle_ps(det, det, 0x00); |
| 2816 | #else |
| 2817 | det = _mm_shuffle_ps(tmp1, tmp1, _MM_SHUFFLE(0, 0, 0, 0)); |
| 2818 | #endif |
| 2819 | |
| 2820 | minor0 = _mm_mul_ps(a: det, b: minor0); |
| 2821 | minor1 = _mm_mul_ps(a: det, b: minor1); |
| 2822 | minor2 = _mm_mul_ps(a: det, b: minor2); |
| 2823 | minor3 = _mm_mul_ps(a: det, b: minor3); |
| 2824 | Mat44V invTrans(minor0, minor1, minor2, minor3); |
| 2825 | return M44Trnsps(a: invTrans); |
| 2826 | } |
| 2827 | |
| 2828 | PX_FORCE_INLINE Vec4V V4LoadXYZW(const PxF32& x, const PxF32& y, const PxF32& z, const PxF32& w) |
| 2829 | { |
| 2830 | return _mm_set_ps(z: w, y: z, x: y, w: x); |
| 2831 | } |
| 2832 | |
| 2833 | /* |
| 2834 | // AP: work in progress - use proper SSE intrinsics where possible |
| 2835 | PX_FORCE_INLINE VecU16V V4U32PK(VecU32V a, VecU32V b) |
| 2836 | { |
| 2837 | VecU16V result; |
| 2838 | result.m128_u16[0] = PxU16(PxClamp<PxU32>((a).m128_u32[0], 0, 0xFFFF)); |
| 2839 | result.m128_u16[1] = PxU16(PxClamp<PxU32>((a).m128_u32[1], 0, 0xFFFF)); |
| 2840 | result.m128_u16[2] = PxU16(PxClamp<PxU32>((a).m128_u32[2], 0, 0xFFFF)); |
| 2841 | result.m128_u16[3] = PxU16(PxClamp<PxU32>((a).m128_u32[3], 0, 0xFFFF)); |
| 2842 | result.m128_u16[4] = PxU16(PxClamp<PxU32>((b).m128_u32[0], 0, 0xFFFF)); |
| 2843 | result.m128_u16[5] = PxU16(PxClamp<PxU32>((b).m128_u32[1], 0, 0xFFFF)); |
| 2844 | result.m128_u16[6] = PxU16(PxClamp<PxU32>((b).m128_u32[2], 0, 0xFFFF)); |
| 2845 | result.m128_u16[7] = PxU16(PxClamp<PxU32>((b).m128_u32[3], 0, 0xFFFF)); |
| 2846 | return result; |
| 2847 | } |
| 2848 | */ |
| 2849 | |
| 2850 | PX_FORCE_INLINE VecU32V V4U32Sel(const BoolV c, const VecU32V a, const VecU32V b) |
| 2851 | { |
| 2852 | return m128_I2F(n: _mm_or_si128(a: _mm_andnot_si128(a: m128_F2I(n: c), b: m128_F2I(n: b)), b: _mm_and_si128(a: m128_F2I(n: c), b: m128_F2I(n: a)))); |
| 2853 | } |
| 2854 | |
| 2855 | PX_FORCE_INLINE VecU32V V4U32or(VecU32V a, VecU32V b) |
| 2856 | { |
| 2857 | return m128_I2F(n: _mm_or_si128(a: m128_F2I(n: a), b: m128_F2I(n: b))); |
| 2858 | } |
| 2859 | |
| 2860 | PX_FORCE_INLINE VecU32V V4U32xor(VecU32V a, VecU32V b) |
| 2861 | { |
| 2862 | return m128_I2F(n: _mm_xor_si128(a: m128_F2I(n: a), b: m128_F2I(n: b))); |
| 2863 | } |
| 2864 | |
| 2865 | PX_FORCE_INLINE VecU32V V4U32and(VecU32V a, VecU32V b) |
| 2866 | { |
| 2867 | return m128_I2F(n: _mm_and_si128(a: m128_F2I(n: a), b: m128_F2I(n: b))); |
| 2868 | } |
| 2869 | |
| 2870 | PX_FORCE_INLINE VecU32V V4U32Andc(VecU32V a, VecU32V b) |
| 2871 | { |
| 2872 | return m128_I2F(n: _mm_andnot_si128(a: m128_F2I(n: b), b: m128_F2I(n: a))); |
| 2873 | } |
| 2874 | |
| 2875 | /* |
| 2876 | PX_FORCE_INLINE VecU16V V4U16Or(VecU16V a, VecU16V b) |
| 2877 | { |
| 2878 | return m128_I2F(_mm_or_si128(m128_F2I(a), m128_F2I(b))); |
| 2879 | } |
| 2880 | */ |
| 2881 | |
| 2882 | /* |
| 2883 | PX_FORCE_INLINE VecU16V V4U16And(VecU16V a, VecU16V b) |
| 2884 | { |
| 2885 | return m128_I2F(_mm_and_si128(m128_F2I(a), m128_F2I(b))); |
| 2886 | } |
| 2887 | */ |
| 2888 | |
| 2889 | /* |
| 2890 | PX_FORCE_INLINE VecU16V V4U16Andc(VecU16V a, VecU16V b) |
| 2891 | { |
| 2892 | return m128_I2F(_mm_andnot_si128(m128_F2I(b), m128_F2I(a))); |
| 2893 | } |
| 2894 | */ |
| 2895 | |
| 2896 | PX_FORCE_INLINE VecI32V I4Load(const PxI32 i) |
| 2897 | { |
| 2898 | return m128_F2I(n: _mm_load1_ps(p: reinterpret_cast<const PxF32*>(&i))); |
| 2899 | } |
| 2900 | |
| 2901 | PX_FORCE_INLINE VecI32V I4LoadU(const PxI32* i) |
| 2902 | { |
| 2903 | return m128_F2I(n: _mm_loadu_ps(p: reinterpret_cast<const PxF32*>(i))); |
| 2904 | } |
| 2905 | |
| 2906 | PX_FORCE_INLINE VecI32V I4LoadA(const PxI32* i) |
| 2907 | { |
| 2908 | return m128_F2I(n: _mm_load_ps(p: reinterpret_cast<const PxF32*>(i))); |
| 2909 | } |
| 2910 | |
| 2911 | PX_FORCE_INLINE VecI32V VecI32V_Add(const VecI32VArg a, const VecI32VArg b) |
| 2912 | { |
| 2913 | return _mm_add_epi32(a: a, b: b); |
| 2914 | } |
| 2915 | |
| 2916 | PX_FORCE_INLINE VecI32V VecI32V_Sub(const VecI32VArg a, const VecI32VArg b) |
| 2917 | { |
| 2918 | return _mm_sub_epi32(a: a, b: b); |
| 2919 | } |
| 2920 | |
| 2921 | PX_FORCE_INLINE BoolV VecI32V_IsGrtr(const VecI32VArg a, const VecI32VArg b) |
| 2922 | { |
| 2923 | return m128_I2F(n: _mm_cmpgt_epi32(a: a, b: b)); |
| 2924 | } |
| 2925 | |
| 2926 | PX_FORCE_INLINE BoolV VecI32V_IsEq(const VecI32VArg a, const VecI32VArg b) |
| 2927 | { |
| 2928 | return m128_I2F(n: _mm_cmpeq_epi32(a: a, b: b)); |
| 2929 | } |
| 2930 | |
| 2931 | PX_FORCE_INLINE VecI32V V4I32Sel(const BoolV c, const VecI32V a, const VecI32V b) |
| 2932 | { |
| 2933 | return _mm_or_si128(a: _mm_andnot_si128(a: m128_F2I(n: c), b: b), b: _mm_and_si128(a: m128_F2I(n: c), b: a)); |
| 2934 | } |
| 2935 | |
| 2936 | PX_FORCE_INLINE VecI32V VecI32V_Zero() |
| 2937 | { |
| 2938 | return _mm_setzero_si128(); |
| 2939 | } |
| 2940 | |
| 2941 | PX_FORCE_INLINE VecI32V VecI32V_One() |
| 2942 | { |
| 2943 | return I4Load(i: 1); |
| 2944 | } |
| 2945 | |
| 2946 | PX_FORCE_INLINE VecI32V VecI32V_Two() |
| 2947 | { |
| 2948 | return I4Load(i: 2); |
| 2949 | } |
| 2950 | |
| 2951 | PX_FORCE_INLINE VecI32V VecI32V_MinusOne() |
| 2952 | { |
| 2953 | return I4Load(i: -1); |
| 2954 | } |
| 2955 | |
| 2956 | PX_FORCE_INLINE VecU32V U4Zero() |
| 2957 | { |
| 2958 | return U4Load(i: 0); |
| 2959 | } |
| 2960 | |
| 2961 | PX_FORCE_INLINE VecU32V U4One() |
| 2962 | { |
| 2963 | return U4Load(i: 1); |
| 2964 | } |
| 2965 | |
| 2966 | PX_FORCE_INLINE VecU32V U4Two() |
| 2967 | { |
| 2968 | return U4Load(i: 2); |
| 2969 | } |
| 2970 | |
| 2971 | PX_FORCE_INLINE VecI32V VecI32V_Sel(const BoolV c, const VecI32VArg a, const VecI32VArg b) |
| 2972 | { |
| 2973 | return _mm_or_si128(a: _mm_andnot_si128(a: m128_F2I(n: c), b: b), b: _mm_and_si128(a: m128_F2I(n: c), b: a)); |
| 2974 | } |
| 2975 | |
| 2976 | PX_FORCE_INLINE VecShiftV VecI32V_PrepareShift(const VecI32VArg shift) |
| 2977 | { |
| 2978 | VecShiftV s; |
| 2979 | s.shift = VecI32V_Sel(c: BTFFF(), a: shift, b: VecI32V_Zero()); |
| 2980 | return s; |
| 2981 | } |
| 2982 | |
| 2983 | PX_FORCE_INLINE VecI32V VecI32V_LeftShift(const VecI32VArg a, const VecShiftVArg count) |
| 2984 | { |
| 2985 | return _mm_sll_epi32(a: a, count: count.shift); |
| 2986 | } |
| 2987 | |
| 2988 | PX_FORCE_INLINE VecI32V VecI32V_RightShift(const VecI32VArg a, const VecShiftVArg count) |
| 2989 | { |
| 2990 | return _mm_srl_epi32(a: a, count: count.shift); |
| 2991 | } |
| 2992 | |
| 2993 | PX_FORCE_INLINE VecI32V VecI32V_And(const VecI32VArg a, const VecI32VArg b) |
| 2994 | { |
| 2995 | return _mm_and_si128(a: a, b: b); |
| 2996 | } |
| 2997 | |
| 2998 | PX_FORCE_INLINE VecI32V VecI32V_Or(const VecI32VArg a, const VecI32VArg b) |
| 2999 | { |
| 3000 | return _mm_or_si128(a: a, b: b); |
| 3001 | } |
| 3002 | |
| 3003 | PX_FORCE_INLINE VecI32V VecI32V_GetX(const VecI32VArg a) |
| 3004 | { |
| 3005 | return m128_F2I(_mm_shuffle_ps(m128_I2F(a), m128_I2F(a), _MM_SHUFFLE(0, 0, 0, 0))); |
| 3006 | } |
| 3007 | |
| 3008 | PX_FORCE_INLINE VecI32V VecI32V_GetY(const VecI32VArg a) |
| 3009 | { |
| 3010 | return m128_F2I(_mm_shuffle_ps(m128_I2F(a), m128_I2F(a), _MM_SHUFFLE(1, 1, 1, 1))); |
| 3011 | } |
| 3012 | |
| 3013 | PX_FORCE_INLINE VecI32V VecI32V_GetZ(const VecI32VArg a) |
| 3014 | { |
| 3015 | return m128_F2I(_mm_shuffle_ps(m128_I2F(a), m128_I2F(a), _MM_SHUFFLE(2, 2, 2, 2))); |
| 3016 | } |
| 3017 | |
| 3018 | PX_FORCE_INLINE VecI32V VecI32V_GetW(const VecI32VArg a) |
| 3019 | { |
| 3020 | return m128_F2I(_mm_shuffle_ps(m128_I2F(a), m128_I2F(a), _MM_SHUFFLE(3, 3, 3, 3))); |
| 3021 | } |
| 3022 | |
| 3023 | PX_FORCE_INLINE void PxI32_From_VecI32V(const VecI32VArg a, PxI32* i) |
| 3024 | { |
| 3025 | _mm_store_ss(p: reinterpret_cast<PxF32*>(i), a: m128_I2F(n: a)); |
| 3026 | } |
| 3027 | |
| 3028 | PX_FORCE_INLINE VecI32V VecI32V_Merge(const VecI32VArg x, const VecI32VArg y, const VecI32VArg z, const VecI32VArg w) |
| 3029 | { |
| 3030 | const __m128 xw = _mm_move_ss(a: m128_I2F(n: y), b: m128_I2F(n: x)); // y, y, y, x |
| 3031 | const __m128 yz = _mm_move_ss(a: m128_I2F(n: z), b: m128_I2F(n: w)); // z, z, z, w |
| 3032 | return m128_F2I(_mm_shuffle_ps(xw, yz, _MM_SHUFFLE(0, 2, 1, 0))); |
| 3033 | } |
| 3034 | |
| 3035 | PX_FORCE_INLINE VecI32V VecI32V_From_BoolV(const BoolVArg a) |
| 3036 | { |
| 3037 | return m128_F2I(n: a); |
| 3038 | } |
| 3039 | |
| 3040 | PX_FORCE_INLINE VecU32V VecU32V_From_BoolV(const BoolVArg a) |
| 3041 | { |
| 3042 | return a; |
| 3043 | } |
| 3044 | |
| 3045 | /* |
| 3046 | template<int a> PX_FORCE_INLINE VecI32V V4ISplat() |
| 3047 | { |
| 3048 | VecI32V result; |
| 3049 | result.m128_i32[0] = a; |
| 3050 | result.m128_i32[1] = a; |
| 3051 | result.m128_i32[2] = a; |
| 3052 | result.m128_i32[3] = a; |
| 3053 | return result; |
| 3054 | } |
| 3055 | |
| 3056 | template<PxU32 a> PX_FORCE_INLINE VecU32V V4USplat() |
| 3057 | { |
| 3058 | VecU32V result; |
| 3059 | result.m128_u32[0] = a; |
| 3060 | result.m128_u32[1] = a; |
| 3061 | result.m128_u32[2] = a; |
| 3062 | result.m128_u32[3] = a; |
| 3063 | return result; |
| 3064 | } |
| 3065 | */ |
| 3066 | |
| 3067 | /* |
| 3068 | PX_FORCE_INLINE void V4U16StoreAligned(VecU16V val, VecU16V* address) |
| 3069 | { |
| 3070 | *address = val; |
| 3071 | } |
| 3072 | */ |
| 3073 | |
| 3074 | PX_FORCE_INLINE void V4U32StoreAligned(VecU32V val, VecU32V* address) |
| 3075 | { |
| 3076 | *address = val; |
| 3077 | } |
| 3078 | |
| 3079 | PX_FORCE_INLINE Vec4V V4LoadAligned(Vec4V* addr) |
| 3080 | { |
| 3081 | return *addr; |
| 3082 | } |
| 3083 | |
| 3084 | PX_FORCE_INLINE Vec4V V4LoadUnaligned(Vec4V* addr) |
| 3085 | { |
| 3086 | return V4LoadU(f: reinterpret_cast<float*>(addr)); |
| 3087 | } |
| 3088 | |
| 3089 | PX_FORCE_INLINE Vec4V V4Andc(const Vec4V a, const VecU32V b) |
| 3090 | { |
| 3091 | VecU32V result32(a); |
| 3092 | result32 = V4U32Andc(a: result32, b); |
| 3093 | return Vec4V(result32); |
| 3094 | } |
| 3095 | |
| 3096 | PX_FORCE_INLINE VecU32V V4IsGrtrV32u(const Vec4V a, const Vec4V b) |
| 3097 | { |
| 3098 | return V4IsGrtr(a, b); |
| 3099 | } |
| 3100 | |
| 3101 | PX_FORCE_INLINE VecU16V V4U16LoadAligned(VecU16V* addr) |
| 3102 | { |
| 3103 | return *addr; |
| 3104 | } |
| 3105 | |
| 3106 | PX_FORCE_INLINE VecU16V V4U16LoadUnaligned(VecU16V* addr) |
| 3107 | { |
| 3108 | return *addr; |
| 3109 | } |
| 3110 | |
| 3111 | PX_FORCE_INLINE VecU16V V4U16CompareGt(VecU16V a, VecU16V b) |
| 3112 | { |
| 3113 | // _mm_cmpgt_epi16 doesn't work for unsigned values unfortunately |
| 3114 | // return m128_I2F(_mm_cmpgt_epi16(m128_F2I(a), m128_F2I(b))); |
| 3115 | VecU16V result; |
| 3116 | result.m128_u16[0] = (a).m128_u16[0] > (b).m128_u16[0]; |
| 3117 | result.m128_u16[1] = (a).m128_u16[1] > (b).m128_u16[1]; |
| 3118 | result.m128_u16[2] = (a).m128_u16[2] > (b).m128_u16[2]; |
| 3119 | result.m128_u16[3] = (a).m128_u16[3] > (b).m128_u16[3]; |
| 3120 | result.m128_u16[4] = (a).m128_u16[4] > (b).m128_u16[4]; |
| 3121 | result.m128_u16[5] = (a).m128_u16[5] > (b).m128_u16[5]; |
| 3122 | result.m128_u16[6] = (a).m128_u16[6] > (b).m128_u16[6]; |
| 3123 | result.m128_u16[7] = (a).m128_u16[7] > (b).m128_u16[7]; |
| 3124 | return result; |
| 3125 | } |
| 3126 | |
| 3127 | PX_FORCE_INLINE VecU16V V4I16CompareGt(VecU16V a, VecU16V b) |
| 3128 | { |
| 3129 | return m128_I2F(n: _mm_cmpgt_epi16(a: m128_F2I(n: a), b: m128_F2I(n: b))); |
| 3130 | } |
| 3131 | |
| 3132 | PX_FORCE_INLINE Vec4V Vec4V_From_VecU32V(VecU32V a) |
| 3133 | { |
| 3134 | Vec4V result = V4LoadXYZW(x: PxF32(a.m128_u32[0]), y: PxF32(a.m128_u32[1]), z: PxF32(a.m128_u32[2]), w: PxF32(a.m128_u32[3])); |
| 3135 | return result; |
| 3136 | } |
| 3137 | |
| 3138 | PX_FORCE_INLINE Vec4V Vec4V_From_VecI32V(VecI32V in) |
| 3139 | { |
| 3140 | return _mm_cvtepi32_ps(a: in); |
| 3141 | } |
| 3142 | |
| 3143 | PX_FORCE_INLINE VecI32V VecI32V_From_Vec4V(Vec4V a) |
| 3144 | { |
| 3145 | return _mm_cvttps_epi32(a: a); |
| 3146 | } |
| 3147 | |
| 3148 | PX_FORCE_INLINE Vec4V Vec4V_ReinterpretFrom_VecU32V(VecU32V a) |
| 3149 | { |
| 3150 | return Vec4V(a); |
| 3151 | } |
| 3152 | |
| 3153 | PX_FORCE_INLINE Vec4V Vec4V_ReinterpretFrom_VecI32V(VecI32V a) |
| 3154 | { |
| 3155 | return m128_I2F(n: a); |
| 3156 | } |
| 3157 | |
| 3158 | PX_FORCE_INLINE VecU32V VecU32V_ReinterpretFrom_Vec4V(Vec4V a) |
| 3159 | { |
| 3160 | return VecU32V(a); |
| 3161 | } |
| 3162 | |
| 3163 | PX_FORCE_INLINE VecI32V VecI32V_ReinterpretFrom_Vec4V(Vec4V a) |
| 3164 | { |
| 3165 | return m128_F2I(n: a); |
| 3166 | } |
| 3167 | |
| 3168 | /* |
| 3169 | template<int index> PX_FORCE_INLINE BoolV BSplatElement(BoolV a) |
| 3170 | { |
| 3171 | BoolV result; |
| 3172 | result[0] = result[1] = result[2] = result[3] = a[index]; |
| 3173 | return result; |
| 3174 | } |
| 3175 | */ |
| 3176 | |
| 3177 | template <int index> |
| 3178 | BoolV BSplatElement(BoolV a) |
| 3179 | { |
| 3180 | float* data = reinterpret_cast<float*>(&a); |
| 3181 | return V4Load(f: data[index]); |
| 3182 | } |
| 3183 | |
| 3184 | template <int index> |
| 3185 | PX_FORCE_INLINE VecU32V V4U32SplatElement(VecU32V a) |
| 3186 | { |
| 3187 | VecU32V result; |
| 3188 | result.m128_u32[0] = result.m128_u32[1] = result.m128_u32[2] = result.m128_u32[3] = a.m128_u32[index]; |
| 3189 | return result; |
| 3190 | } |
| 3191 | |
| 3192 | template <int index> |
| 3193 | PX_FORCE_INLINE Vec4V V4SplatElement(Vec4V a) |
| 3194 | { |
| 3195 | float* data = reinterpret_cast<float*>(&a); |
| 3196 | return V4Load(f: data[index]); |
| 3197 | } |
| 3198 | |
| 3199 | PX_FORCE_INLINE VecU32V U4LoadXYZW(PxU32 x, PxU32 y, PxU32 z, PxU32 w) |
| 3200 | { |
| 3201 | VecU32V result; |
| 3202 | result.m128_u32[0] = x; |
| 3203 | result.m128_u32[1] = y; |
| 3204 | result.m128_u32[2] = z; |
| 3205 | result.m128_u32[3] = w; |
| 3206 | return result; |
| 3207 | } |
| 3208 | |
| 3209 | PX_FORCE_INLINE Vec4V V4Ceil(const Vec4V in) |
| 3210 | { |
| 3211 | UnionM128 a(in); |
| 3212 | return V4LoadXYZW(x: PxCeil(a: a.m128_f32[0]), y: PxCeil(a: a.m128_f32[1]), z: PxCeil(a: a.m128_f32[2]), w: PxCeil(a: a.m128_f32[3])); |
| 3213 | } |
| 3214 | |
| 3215 | PX_FORCE_INLINE Vec4V V4Floor(const Vec4V in) |
| 3216 | { |
| 3217 | UnionM128 a(in); |
| 3218 | return V4LoadXYZW(x: PxFloor(a: a.m128_f32[0]), y: PxFloor(a: a.m128_f32[1]), z: PxFloor(a: a.m128_f32[2]), w: PxFloor(a: a.m128_f32[3])); |
| 3219 | } |
| 3220 | |
| 3221 | PX_FORCE_INLINE VecU32V V4ConvertToU32VSaturate(const Vec4V in, PxU32 power) |
| 3222 | { |
| 3223 | PX_ASSERT(power == 0 && "Non-zero power not supported in convertToU32VSaturate" ); |
| 3224 | PX_UNUSED(power); // prevent warning in release builds |
| 3225 | PxF32 ffffFFFFasFloat = PxF32(0xFFFF0000); |
| 3226 | UnionM128 a(in); |
| 3227 | VecU32V result; |
| 3228 | result.m128_u32[0] = PxU32(PxClamp<PxF32>(v: (a).m128_f32[0], lo: 0.0f, hi: ffffFFFFasFloat)); |
| 3229 | result.m128_u32[1] = PxU32(PxClamp<PxF32>(v: (a).m128_f32[1], lo: 0.0f, hi: ffffFFFFasFloat)); |
| 3230 | result.m128_u32[2] = PxU32(PxClamp<PxF32>(v: (a).m128_f32[2], lo: 0.0f, hi: ffffFFFFasFloat)); |
| 3231 | result.m128_u32[3] = PxU32(PxClamp<PxF32>(v: (a).m128_f32[3], lo: 0.0f, hi: ffffFFFFasFloat)); |
| 3232 | return result; |
| 3233 | } |
| 3234 | |
| 3235 | } // namespace aos |
| 3236 | } // namespace shdfnd |
| 3237 | } // namespace physx |
| 3238 | |
| 3239 | #endif // PSFOUNDATION_PSUNIXSSE2INLINEAOS_H |
| 3240 | |