1 | // |
2 | // Redistribution and use in source and binary forms, with or without |
3 | // modification, are permitted provided that the following conditions |
4 | // are met: |
5 | // * Redistributions of source code must retain the above copyright |
6 | // notice, this list of conditions and the following disclaimer. |
7 | // * Redistributions in binary form must reproduce the above copyright |
8 | // notice, this list of conditions and the following disclaimer in the |
9 | // documentation and/or other materials provided with the distribution. |
10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
11 | // contributors may be used to endorse or promote products derived |
12 | // from this software without specific prior written permission. |
13 | // |
14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | // |
26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
29 | |
30 | |
31 | #ifndef PXS_RIGID_BODY_H |
32 | #define PXS_RIGID_BODY_H |
33 | |
34 | #include "PxvDynamics.h" |
35 | #include "CmSpatialVector.h" |
36 | |
37 | namespace physx |
38 | { |
39 | struct PxsCCDBody; |
40 | |
41 | #define PX_INTERNAL_LOCK_FLAG_START 8 |
42 | |
43 | PX_ALIGN_PREFIX(16) |
44 | class PxsRigidBody |
45 | { |
46 | public: |
47 | |
48 | enum PxsRigidBodyFlag |
49 | { |
50 | eFROZEN = 1 << 0, //This flag indicates that the stabilization is enabled and the body is |
51 | //"frozen". By "frozen", we mean that the body's transform is unchanged |
52 | //from the previous frame. This permits various optimizations. |
53 | eFREEZE_THIS_FRAME = 1 << 1, |
54 | eUNFREEZE_THIS_FRAME = 1 << 2, |
55 | eACTIVATE_THIS_FRAME = 1 << 3, |
56 | eDEACTIVATE_THIS_FRAME = 1 << 4, |
57 | // PT: this flag is now only used on the GPU. For the CPU the data is now stored directly in PxsBodyCore. |
58 | eDISABLE_GRAVITY_GPU = 1 << 5, |
59 | eSPECULATIVE_CCD = 1 << 6, |
60 | //KS - copied here for GPU simulation to avoid needing to pass another set of flags around. |
61 | eLOCK_LINEAR_X = 1 << (PX_INTERNAL_LOCK_FLAG_START), |
62 | eLOCK_LINEAR_Y = 1 << (PX_INTERNAL_LOCK_FLAG_START + 1), |
63 | eLOCK_LINEAR_Z = 1 << (PX_INTERNAL_LOCK_FLAG_START + 2), |
64 | eLOCK_ANGULAR_X = 1 << (PX_INTERNAL_LOCK_FLAG_START + 3), |
65 | eLOCK_ANGULAR_Y = 1 << (PX_INTERNAL_LOCK_FLAG_START + 4), |
66 | eLOCK_ANGULAR_Z = 1 << (PX_INTERNAL_LOCK_FLAG_START + 5) |
67 | }; |
68 | |
69 | PX_FORCE_INLINE PxsRigidBody(PxsBodyCore* core, PxReal freeze_count) : |
70 | // PT: TODO: unify naming conventions |
71 | mLastTransform (core->body2World), |
72 | mInternalFlags (0), |
73 | solverIterationCounts (core->solverIterationCounts), |
74 | mCCD (NULL), |
75 | mCore (core), |
76 | sleepLinVelAcc (PxVec3(0.0f)), |
77 | freezeCount (freeze_count), |
78 | sleepAngVelAcc (PxVec3(0.0f)), |
79 | accelScale (1.0f) |
80 | {} |
81 | |
82 | PX_FORCE_INLINE ~PxsRigidBody() {} |
83 | |
84 | PX_FORCE_INLINE const PxTransform& getPose() const { PX_ASSERT(mCore->body2World.isSane()); return mCore->body2World; } |
85 | |
86 | PX_FORCE_INLINE const PxVec3& getLinearVelocity() const { PX_ASSERT(mCore->linearVelocity.isFinite()); return mCore->linearVelocity; } |
87 | PX_FORCE_INLINE const PxVec3& getAngularVelocity() const { PX_ASSERT(mCore->angularVelocity.isFinite()); return mCore->angularVelocity; } |
88 | |
89 | PX_FORCE_INLINE void setVelocity(const PxVec3& linear, |
90 | const PxVec3& angular) { PX_ASSERT(linear.isFinite()); PX_ASSERT(angular.isFinite()); |
91 | mCore->linearVelocity = linear; |
92 | mCore->angularVelocity = angular; } |
93 | PX_FORCE_INLINE void setLinearVelocity(const PxVec3& linear) { PX_ASSERT(linear.isFinite()); mCore->linearVelocity = linear; } |
94 | PX_FORCE_INLINE void setAngularVelocity(const PxVec3& angular) { PX_ASSERT(angular.isFinite()); mCore->angularVelocity = angular; } |
95 | |
96 | PX_FORCE_INLINE void constrainLinearVelocity(); |
97 | PX_FORCE_INLINE void constrainAngularVelocity(); |
98 | |
99 | PX_FORCE_INLINE PxU32 getIterationCounts() { return mCore->solverIterationCounts; } |
100 | PX_FORCE_INLINE PxReal getReportThreshold() const { return mCore->contactReportThreshold; } |
101 | |
102 | PX_FORCE_INLINE const PxTransform& getLastCCDTransform() const { return mLastTransform; } |
103 | PX_FORCE_INLINE void saveLastCCDTransform() { mLastTransform = mCore->body2World; } |
104 | |
105 | PX_FORCE_INLINE bool isKinematic() const { return mCore->inverseMass == 0.0f; } |
106 | |
107 | PX_FORCE_INLINE void setPose(const PxTransform& pose) { mCore->body2World = pose; } |
108 | PX_FORCE_INLINE void setPosition(const PxVec3& position) { mCore->body2World.p = position; } |
109 | PX_FORCE_INLINE PxReal getInvMass() const { return mCore->inverseMass; } |
110 | PX_FORCE_INLINE PxVec3 getInvInertia() const { return mCore->inverseInertia; } |
111 | PX_FORCE_INLINE PxReal getMass() const { return 1.0f/mCore->inverseMass; } |
112 | PX_FORCE_INLINE PxVec3 getInertia() const { return PxVec3(1.0f/mCore->inverseInertia.x, |
113 | 1.0f/mCore->inverseInertia.y, |
114 | 1.0f/mCore->inverseInertia.z); } |
115 | PX_FORCE_INLINE PxsBodyCore& getCore() { return *mCore; } |
116 | PX_FORCE_INLINE const PxsBodyCore& getCore() const { return *mCore; } |
117 | |
118 | PX_FORCE_INLINE PxU32 isActivateThisFrame() const { return PxU32(mInternalFlags & eACTIVATE_THIS_FRAME); } |
119 | PX_FORCE_INLINE PxU32 isDeactivateThisFrame() const { return PxU32(mInternalFlags & eDEACTIVATE_THIS_FRAME); } |
120 | PX_FORCE_INLINE PxU32 isFreezeThisFrame() const { return PxU32(mInternalFlags & eFREEZE_THIS_FRAME); } |
121 | PX_FORCE_INLINE PxU32 isUnfreezeThisFrame() const { return PxU32(mInternalFlags & eUNFREEZE_THIS_FRAME); } |
122 | PX_FORCE_INLINE void clearFreezeFlag() { mInternalFlags &= ~eFREEZE_THIS_FRAME; } |
123 | PX_FORCE_INLINE void clearUnfreezeFlag() { mInternalFlags &= ~eUNFREEZE_THIS_FRAME; } |
124 | PX_FORCE_INLINE void clearAllFrameFlags() { mInternalFlags &= eFROZEN; } |
125 | |
126 | // PT: implemented in PxsCCD.cpp: |
127 | void advanceToToi(PxReal toi, PxReal dt, bool clip); |
128 | void advancePrevPoseToToi(PxReal toi); |
129 | // PxTransform getAdvancedTransform(PxReal toi) const; |
130 | Cm::SpatialVector getPreSolverVelocities() const; |
131 | |
132 | PxTransform mLastTransform; //28 (28) |
133 | |
134 | PxU16 mInternalFlags; //30 (30) |
135 | PxU16 solverIterationCounts; //32 (32) |
136 | |
137 | PxsCCDBody* mCCD; //36 (40) // only valid during CCD |
138 | |
139 | PxsBodyCore* mCore; //40 (48) |
140 | #if !PX_P64_FAMILY |
141 | PxU32 alignmentPad[2]; //48 (48) |
142 | #endif |
143 | PxVec3 sleepLinVelAcc; //60 (60) |
144 | PxReal freezeCount; //64 (64) |
145 | |
146 | PxVec3 sleepAngVelAcc; //76 (76) |
147 | PxReal accelScale; //80 (80) |
148 | } |
149 | PX_ALIGN_SUFFIX(16); |
150 | PX_COMPILE_TIME_ASSERT(0 == (sizeof(PxsRigidBody) & 0x0f)); |
151 | |
152 | void PxsRigidBody::constrainLinearVelocity() |
153 | { |
154 | const PxU32 lockFlags = mCore->lockFlags; |
155 | if(lockFlags) |
156 | { |
157 | if(lockFlags & PxRigidDynamicLockFlag::eLOCK_LINEAR_X) |
158 | mCore->linearVelocity.x = 0.0f; |
159 | if(lockFlags & PxRigidDynamicLockFlag::eLOCK_LINEAR_Y) |
160 | mCore->linearVelocity.y = 0.0f; |
161 | if(lockFlags & PxRigidDynamicLockFlag::eLOCK_LINEAR_Z) |
162 | mCore->linearVelocity.z = 0.0f; |
163 | } |
164 | } |
165 | |
166 | void PxsRigidBody::constrainAngularVelocity() |
167 | { |
168 | const PxU32 lockFlags = mCore->lockFlags; |
169 | if(lockFlags) |
170 | { |
171 | if(lockFlags & PxRigidDynamicLockFlag::eLOCK_ANGULAR_X) |
172 | mCore->angularVelocity.x = 0.0f; |
173 | if(lockFlags & PxRigidDynamicLockFlag::eLOCK_ANGULAR_Y) |
174 | mCore->angularVelocity.y = 0.0f; |
175 | if(lockFlags & PxRigidDynamicLockFlag::eLOCK_ANGULAR_Z) |
176 | mCore->angularVelocity.z = 0.0f; |
177 | } |
178 | } |
179 | |
180 | } |
181 | |
182 | #endif |
183 | |