| 1 | // |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions |
| 4 | // are met: |
| 5 | // * Redistributions of source code must retain the above copyright |
| 6 | // notice, this list of conditions and the following disclaimer. |
| 7 | // * Redistributions in binary form must reproduce the above copyright |
| 8 | // notice, this list of conditions and the following disclaimer in the |
| 9 | // documentation and/or other materials provided with the distribution. |
| 10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
| 11 | // contributors may be used to endorse or promote products derived |
| 12 | // from this software without specific prior written permission. |
| 13 | // |
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | // |
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
| 29 | |
| 30 | |
| 31 | #ifndef PXS_RIGID_BODY_H |
| 32 | #define PXS_RIGID_BODY_H |
| 33 | |
| 34 | #include "PxvDynamics.h" |
| 35 | #include "CmSpatialVector.h" |
| 36 | |
| 37 | namespace physx |
| 38 | { |
| 39 | struct PxsCCDBody; |
| 40 | |
| 41 | #define PX_INTERNAL_LOCK_FLAG_START 8 |
| 42 | |
| 43 | PX_ALIGN_PREFIX(16) |
| 44 | class PxsRigidBody |
| 45 | { |
| 46 | public: |
| 47 | |
| 48 | enum PxsRigidBodyFlag |
| 49 | { |
| 50 | eFROZEN = 1 << 0, //This flag indicates that the stabilization is enabled and the body is |
| 51 | //"frozen". By "frozen", we mean that the body's transform is unchanged |
| 52 | //from the previous frame. This permits various optimizations. |
| 53 | eFREEZE_THIS_FRAME = 1 << 1, |
| 54 | eUNFREEZE_THIS_FRAME = 1 << 2, |
| 55 | eACTIVATE_THIS_FRAME = 1 << 3, |
| 56 | eDEACTIVATE_THIS_FRAME = 1 << 4, |
| 57 | // PT: this flag is now only used on the GPU. For the CPU the data is now stored directly in PxsBodyCore. |
| 58 | eDISABLE_GRAVITY_GPU = 1 << 5, |
| 59 | eSPECULATIVE_CCD = 1 << 6, |
| 60 | //KS - copied here for GPU simulation to avoid needing to pass another set of flags around. |
| 61 | eLOCK_LINEAR_X = 1 << (PX_INTERNAL_LOCK_FLAG_START), |
| 62 | eLOCK_LINEAR_Y = 1 << (PX_INTERNAL_LOCK_FLAG_START + 1), |
| 63 | eLOCK_LINEAR_Z = 1 << (PX_INTERNAL_LOCK_FLAG_START + 2), |
| 64 | eLOCK_ANGULAR_X = 1 << (PX_INTERNAL_LOCK_FLAG_START + 3), |
| 65 | eLOCK_ANGULAR_Y = 1 << (PX_INTERNAL_LOCK_FLAG_START + 4), |
| 66 | eLOCK_ANGULAR_Z = 1 << (PX_INTERNAL_LOCK_FLAG_START + 5) |
| 67 | }; |
| 68 | |
| 69 | PX_FORCE_INLINE PxsRigidBody(PxsBodyCore* core, PxReal freeze_count) : |
| 70 | // PT: TODO: unify naming conventions |
| 71 | mLastTransform (core->body2World), |
| 72 | mInternalFlags (0), |
| 73 | solverIterationCounts (core->solverIterationCounts), |
| 74 | mCCD (NULL), |
| 75 | mCore (core), |
| 76 | sleepLinVelAcc (PxVec3(0.0f)), |
| 77 | freezeCount (freeze_count), |
| 78 | sleepAngVelAcc (PxVec3(0.0f)), |
| 79 | accelScale (1.0f) |
| 80 | {} |
| 81 | |
| 82 | PX_FORCE_INLINE ~PxsRigidBody() {} |
| 83 | |
| 84 | PX_FORCE_INLINE const PxTransform& getPose() const { PX_ASSERT(mCore->body2World.isSane()); return mCore->body2World; } |
| 85 | |
| 86 | PX_FORCE_INLINE const PxVec3& getLinearVelocity() const { PX_ASSERT(mCore->linearVelocity.isFinite()); return mCore->linearVelocity; } |
| 87 | PX_FORCE_INLINE const PxVec3& getAngularVelocity() const { PX_ASSERT(mCore->angularVelocity.isFinite()); return mCore->angularVelocity; } |
| 88 | |
| 89 | PX_FORCE_INLINE void setVelocity(const PxVec3& linear, |
| 90 | const PxVec3& angular) { PX_ASSERT(linear.isFinite()); PX_ASSERT(angular.isFinite()); |
| 91 | mCore->linearVelocity = linear; |
| 92 | mCore->angularVelocity = angular; } |
| 93 | PX_FORCE_INLINE void setLinearVelocity(const PxVec3& linear) { PX_ASSERT(linear.isFinite()); mCore->linearVelocity = linear; } |
| 94 | PX_FORCE_INLINE void setAngularVelocity(const PxVec3& angular) { PX_ASSERT(angular.isFinite()); mCore->angularVelocity = angular; } |
| 95 | |
| 96 | PX_FORCE_INLINE void constrainLinearVelocity(); |
| 97 | PX_FORCE_INLINE void constrainAngularVelocity(); |
| 98 | |
| 99 | PX_FORCE_INLINE PxU32 getIterationCounts() { return mCore->solverIterationCounts; } |
| 100 | PX_FORCE_INLINE PxReal getReportThreshold() const { return mCore->contactReportThreshold; } |
| 101 | |
| 102 | PX_FORCE_INLINE const PxTransform& getLastCCDTransform() const { return mLastTransform; } |
| 103 | PX_FORCE_INLINE void saveLastCCDTransform() { mLastTransform = mCore->body2World; } |
| 104 | |
| 105 | PX_FORCE_INLINE bool isKinematic() const { return mCore->inverseMass == 0.0f; } |
| 106 | |
| 107 | PX_FORCE_INLINE void setPose(const PxTransform& pose) { mCore->body2World = pose; } |
| 108 | PX_FORCE_INLINE void setPosition(const PxVec3& position) { mCore->body2World.p = position; } |
| 109 | PX_FORCE_INLINE PxReal getInvMass() const { return mCore->inverseMass; } |
| 110 | PX_FORCE_INLINE PxVec3 getInvInertia() const { return mCore->inverseInertia; } |
| 111 | PX_FORCE_INLINE PxReal getMass() const { return 1.0f/mCore->inverseMass; } |
| 112 | PX_FORCE_INLINE PxVec3 getInertia() const { return PxVec3(1.0f/mCore->inverseInertia.x, |
| 113 | 1.0f/mCore->inverseInertia.y, |
| 114 | 1.0f/mCore->inverseInertia.z); } |
| 115 | PX_FORCE_INLINE PxsBodyCore& getCore() { return *mCore; } |
| 116 | PX_FORCE_INLINE const PxsBodyCore& getCore() const { return *mCore; } |
| 117 | |
| 118 | PX_FORCE_INLINE PxU32 isActivateThisFrame() const { return PxU32(mInternalFlags & eACTIVATE_THIS_FRAME); } |
| 119 | PX_FORCE_INLINE PxU32 isDeactivateThisFrame() const { return PxU32(mInternalFlags & eDEACTIVATE_THIS_FRAME); } |
| 120 | PX_FORCE_INLINE PxU32 isFreezeThisFrame() const { return PxU32(mInternalFlags & eFREEZE_THIS_FRAME); } |
| 121 | PX_FORCE_INLINE PxU32 isUnfreezeThisFrame() const { return PxU32(mInternalFlags & eUNFREEZE_THIS_FRAME); } |
| 122 | PX_FORCE_INLINE void clearFreezeFlag() { mInternalFlags &= ~eFREEZE_THIS_FRAME; } |
| 123 | PX_FORCE_INLINE void clearUnfreezeFlag() { mInternalFlags &= ~eUNFREEZE_THIS_FRAME; } |
| 124 | PX_FORCE_INLINE void clearAllFrameFlags() { mInternalFlags &= eFROZEN; } |
| 125 | |
| 126 | // PT: implemented in PxsCCD.cpp: |
| 127 | void advanceToToi(PxReal toi, PxReal dt, bool clip); |
| 128 | void advancePrevPoseToToi(PxReal toi); |
| 129 | // PxTransform getAdvancedTransform(PxReal toi) const; |
| 130 | Cm::SpatialVector getPreSolverVelocities() const; |
| 131 | |
| 132 | PxTransform mLastTransform; //28 (28) |
| 133 | |
| 134 | PxU16 mInternalFlags; //30 (30) |
| 135 | PxU16 solverIterationCounts; //32 (32) |
| 136 | |
| 137 | PxsCCDBody* mCCD; //36 (40) // only valid during CCD |
| 138 | |
| 139 | PxsBodyCore* mCore; //40 (48) |
| 140 | #if !PX_P64_FAMILY |
| 141 | PxU32 alignmentPad[2]; //48 (48) |
| 142 | #endif |
| 143 | PxVec3 sleepLinVelAcc; //60 (60) |
| 144 | PxReal freezeCount; //64 (64) |
| 145 | |
| 146 | PxVec3 sleepAngVelAcc; //76 (76) |
| 147 | PxReal accelScale; //80 (80) |
| 148 | } |
| 149 | PX_ALIGN_SUFFIX(16); |
| 150 | PX_COMPILE_TIME_ASSERT(0 == (sizeof(PxsRigidBody) & 0x0f)); |
| 151 | |
| 152 | void PxsRigidBody::constrainLinearVelocity() |
| 153 | { |
| 154 | const PxU32 lockFlags = mCore->lockFlags; |
| 155 | if(lockFlags) |
| 156 | { |
| 157 | if(lockFlags & PxRigidDynamicLockFlag::eLOCK_LINEAR_X) |
| 158 | mCore->linearVelocity.x = 0.0f; |
| 159 | if(lockFlags & PxRigidDynamicLockFlag::eLOCK_LINEAR_Y) |
| 160 | mCore->linearVelocity.y = 0.0f; |
| 161 | if(lockFlags & PxRigidDynamicLockFlag::eLOCK_LINEAR_Z) |
| 162 | mCore->linearVelocity.z = 0.0f; |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | void PxsRigidBody::constrainAngularVelocity() |
| 167 | { |
| 168 | const PxU32 lockFlags = mCore->lockFlags; |
| 169 | if(lockFlags) |
| 170 | { |
| 171 | if(lockFlags & PxRigidDynamicLockFlag::eLOCK_ANGULAR_X) |
| 172 | mCore->angularVelocity.x = 0.0f; |
| 173 | if(lockFlags & PxRigidDynamicLockFlag::eLOCK_ANGULAR_Y) |
| 174 | mCore->angularVelocity.y = 0.0f; |
| 175 | if(lockFlags & PxRigidDynamicLockFlag::eLOCK_ANGULAR_Z) |
| 176 | mCore->angularVelocity.z = 0.0f; |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | } |
| 181 | |
| 182 | #endif |
| 183 | |