1 | // |
2 | // Redistribution and use in source and binary forms, with or without |
3 | // modification, are permitted provided that the following conditions |
4 | // are met: |
5 | // * Redistributions of source code must retain the above copyright |
6 | // notice, this list of conditions and the following disclaimer. |
7 | // * Redistributions in binary form must reproduce the above copyright |
8 | // notice, this list of conditions and the following disclaimer in the |
9 | // documentation and/or other materials provided with the distribution. |
10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
11 | // contributors may be used to endorse or promote products derived |
12 | // from this software without specific prior written permission. |
13 | // |
14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | // |
26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
29 | |
30 | #ifndef PX_PHYSICS_SCB_DEFS |
31 | #define PX_PHYSICS_SCB_DEFS |
32 | |
33 | #include "ScbBase.h" |
34 | |
35 | //#define USE_NEW_SYSTEM |
36 | |
37 | #ifdef USE_NEW_SYSTEM |
38 | namespace physx |
39 | { |
40 | namespace Scb |
41 | { |
42 | template<class ValueType, class CoreType, class SCBType, class AccessType, int id> |
43 | void setValueT(ValueType value, CoreType& core, SCBType& scb) |
44 | { |
45 | if(!scb.isBuffering()) |
46 | { |
47 | AccessType::setCore(core, value); |
48 | #if PX_SUPPORT_PVD |
49 | if(scb.getControlState() == ControlState::eIN_SCENE) |
50 | { |
51 | Scb::Scene* scene = scb.getScbScene(); |
52 | PX_ASSERT(scene); |
53 | scene->getScenePvdClient().updatePvdProperties(&scb); |
54 | } |
55 | #endif |
56 | } |
57 | else |
58 | { |
59 | AccessType::setBuffered(scb, value); |
60 | scb.markUpdated(1<<id); |
61 | } |
62 | } |
63 | |
64 | template<class ValueType, class CoreType, class SCBType, class AccessType, int id> |
65 | ValueType getValueT(const CoreType& core, const SCBType& scb) |
66 | { |
67 | if(!scb.isBuffered(1<<id)) |
68 | return AccessType::getCore(core); |
69 | else |
70 | return AccessType::getBuffered(scb); |
71 | } |
72 | |
73 | template<class CoreType, class SCBType, class AccessType, int id> |
74 | void syncT(CoreType& core, SCBType& scb) |
75 | { |
76 | if(scb.isBuffered(1<<id)) |
77 | AccessType::setCore(core, AccessType::getBuffered(scb)); |
78 | } |
79 | |
80 | // PT: TODO: |
81 | // - revisit the sync function, maybe ask for core/buffer params |
82 | // - revisit the need for explicit BF_XXX flags. I think it's now mainly to skip sync functions in syncState() really. |
83 | #define SCB_MEMBER(_scb, _getCore, _name, _type, _id) \ |
84 | enum { BF_##_name = 1<<(_id) }; \ |
85 | PX_INLINE void setBuffered##_name(_type v) { reinterpret_cast<Buf*>(getStream())->m##_name = v; } \ |
86 | PX_INLINE _type getBuffered##_name() const { return reinterpret_cast<const Buf*>(getStream())->m##_name; } \ |
87 | struct Fns_##_name \ |
88 | { \ |
89 | static PX_INLINE void setCore(Core& core, _type v) { core.set##_name(v); } \ |
90 | static PX_INLINE void setBuffered(_scb& scb, _type v) { scb.setBuffered##_name(v); } \ |
91 | static PX_INLINE _type getCore(const Core& core) { return core.get##_name(); } \ |
92 | static PX_INLINE _type getBuffered(const _scb& scb) { return scb.getBuffered##_name(); } \ |
93 | }; \ |
94 | PX_INLINE void set##_name(_type v) { setValueT<_type, Core, _scb, Fns_##_name, _id>(v, _getCore, *this); } \ |
95 | PX_INLINE _type get##_name() const { return getValueT<_type, Core, _scb, Fns_##_name, _id>(_getCore, *this); } \ |
96 | PX_INLINE void sync##_name() { syncT<Core, _scb, Fns_##_name, _id>(_getCore, *this); } |
97 | } |
98 | } |
99 | #else |
100 | |
101 | // a Regular attribute of type T is one for which |
102 | // * the SC method takes a single argument of type ArgType<T> (defined below) |
103 | // * Scb either passes that argument through, or dumps it in a buffer to flush later. |
104 | // * PVD is notified when the variable changes |
105 | // |
106 | // For each such, we can define static methods to read and write the core and buffered variables, |
107 | // and capture the buffering logic in the BufferedAccess class. |
108 | // |
109 | // The dummy arg is necessary here because ISO permits partial specialization of member templates |
110 | // but not full specialization. |
111 | // |
112 | // putting just accessors and mutators here allows us to change the behavior just by varying the |
113 | // BufferAccess template (e.g. to compile without buffering), and also to size-reduce that template |
114 | // by passing function pointers if necessary |
115 | |
116 | #define SCB_REGULAR_ATTRIBUTE(_val, _type, _name) \ |
117 | enum { BF_##_name = 1<<(_val) }; \ |
118 | _type m##_name; \ |
119 | template<PxU32 Dummy> struct Fns<1<<(_val),Dummy> \ |
120 | { \ |
121 | typedef typename ArgType<_type>::Type Arg; \ |
122 | enum { flag = 1<<(_val) }; \ |
123 | static PX_FORCE_INLINE Arg getBuffered(const Buf& buf) { return Arg(buf.m##_name);} \ |
124 | static PX_FORCE_INLINE void setBuffered(Buf& buf, Arg v) { buf.m##_name = v;} \ |
125 | static PX_FORCE_INLINE Arg getCore(const Core& core) { return Arg(core.get##_name());} \ |
126 | static PX_FORCE_INLINE void setCore(Core& core, Arg v) { core.set##_name(v);} \ |
127 | }; |
128 | |
129 | #define SCB_REGULAR_ATTRIBUTE_ALIGNED(_val, _type, _name, _alignment) \ |
130 | enum { BF_##_name = 1<<(_val) }; \ |
131 | PX_ALIGN(_alignment, _type) m##_name; \ |
132 | template<PxU32 Dummy> struct Fns<1<<(_val),Dummy> \ |
133 | { \ |
134 | typedef typename ArgType<_type>::Type Arg; \ |
135 | enum { flag = 1<<(_val) }; \ |
136 | static PX_FORCE_INLINE Arg getBuffered(const Buf& buf) { return buf.m##_name;} \ |
137 | static PX_FORCE_INLINE void setBuffered(Buf& buf, Arg v) { buf.m##_name = v;} \ |
138 | static PX_FORCE_INLINE Arg getCore(const Core& core) { return core.get##_name();} \ |
139 | static PX_FORCE_INLINE void setCore(Core& core, Arg v) { core.set##_name(v);} \ |
140 | }; |
141 | |
142 | namespace physx |
143 | { |
144 | namespace Scb |
145 | { |
146 | class Scene; |
147 | |
148 | template<typename T> struct ArgType { typedef T Type; }; |
149 | template<> struct ArgType<PxVec3> { typedef const PxVec3& Type; }; |
150 | template<> struct ArgType<PxTransform> { typedef const PxTransform& Type; }; |
151 | template<> struct ArgType<PxQuat> { typedef const PxQuat& Type; }; |
152 | template<> struct ArgType<PxPlane> { typedef const PxPlane& Type; }; |
153 | template<> struct ArgType<PxFilterData> { typedef const PxFilterData& Type; }; |
154 | |
155 | // TODO: should be able to size-reduce this if necessary by just generating one set per |
156 | // arg type instead of one per arg, by passing function pointers to the accessors/mutators/flag |
157 | // instead of instancing per type. |
158 | |
159 | template<class Buf, class Core, class ScbClass, class BaseClass=Scb::Base> // BaseClass: introduced to have Scb::Body use custom location for storing buffered property flags |
160 | struct BufferedAccess |
161 | { |
162 | template<typename Fns> |
163 | static PX_FORCE_INLINE typename Fns::Arg read(const BaseClass& base, const Core& core) |
164 | { |
165 | /*return base.isBuffered(Fns::flag) ? Fns::getBuffered(*reinterpret_cast<const Buf*>(base.getStream())) |
166 | : Fns::getCore(core);*/ |
167 | |
168 | if (base.isBuffered(Fns::flag)) |
169 | { |
170 | return Fns::getBuffered(*reinterpret_cast<const Buf*>(base.getStream())); |
171 | } |
172 | return Fns::getCore(core); |
173 | |
174 | } |
175 | |
176 | template<typename Fns> |
177 | static PX_FORCE_INLINE void write(BaseClass& base, Core& core, typename Fns::Arg v) |
178 | { |
179 | if(!base.isBuffering()) |
180 | { |
181 | Fns::setCore(core, v); |
182 | #if PX_SUPPORT_PVD |
183 | if(base.getControlState() == ControlState::eIN_SCENE) |
184 | { |
185 | Scb::Scene* scene = base.getScbScene(); |
186 | PX_ASSERT(scene); |
187 | scene->getScenePvdClient().updatePvdProperties(static_cast<ScbClass*>(&base)); |
188 | } |
189 | #endif |
190 | } |
191 | else |
192 | { |
193 | Fns::setBuffered(*reinterpret_cast<Buf*>(base.getStream()), v); |
194 | base.markUpdated(Fns::flag); |
195 | } |
196 | } |
197 | |
198 | template<typename Fns> |
199 | static PX_FORCE_INLINE void flush(const BaseClass& base, Core& core, const Buf& buf) |
200 | { |
201 | if(base.isBuffered(Fns::flag)) |
202 | Fns::setCore(core, Fns::getBuffered(buf)); |
203 | } |
204 | }; |
205 | |
206 | } |
207 | } |
208 | #endif |
209 | |
210 | #endif |
211 | |