1 | // Copyright (C) 2021 The Qt Company Ltd. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only |
3 | |
4 | #include "qdynamicrigidbody_p.h" |
5 | #include "qphysicscommands_p.h" |
6 | #include "qphysicsworld_p.h" |
7 | #include "physxnode/qphysxdynamicbody_p.h" |
8 | |
9 | QT_BEGIN_NAMESPACE |
10 | |
11 | /*! |
12 | \qmltype DynamicRigidBody |
13 | \inqmlmodule QtQuick3D.Physics |
14 | \inherits PhysicsBody |
15 | \since 6.4 |
16 | \brief A physical body that can move or be moved. |
17 | |
18 | This type defines a dynamic rigid body: an object that is part of the physics |
19 | scene and behaves like a physical object with mass and velocity. |
20 | |
21 | \note \l{TriangleMeshShape}{triangle mesh}, \l{HeightFieldShape}{height field} and |
22 | \l{PlaneShape}{plane} geometry shapes are not allowed as collision shapes when |
23 | \l isKinematic is \c false. |
24 | */ |
25 | |
26 | /*! |
27 | \qmlproperty float DynamicRigidBody::mass |
28 | |
29 | This property defines the mass of the body. Note that this is only used when massMode is not |
30 | \c {DynamicRigidBody.CustomDensity} or \c {DynamicRigidBody.DefaultDensity}. Also note that |
31 | a value of 0 is interpreted as infinite mass and that negative numbers are not allowed. |
32 | |
33 | Default value is \c 1. |
34 | |
35 | Range: \c{[0, inf]} |
36 | |
37 | \sa massMode |
38 | */ |
39 | |
40 | /*! |
41 | \qmlproperty float DynamicRigidBody::density |
42 | |
43 | This property defines the density of the body. This is only used when massMode is set to \c |
44 | {DynamicRigidBody.CustomDensity}. |
45 | |
46 | Default value is \c{0.001}. |
47 | |
48 | Range: \c{(0, inf]} |
49 | \sa massMode |
50 | */ |
51 | |
52 | /*! |
53 | \qmlproperty AxisLock DynamicRigidBody::linearAxisLock |
54 | |
55 | This property locks the linear velocity of the body along the axes defined by the |
56 | DynamicRigidBody.AxisLock enum. To lock several axes just bitwise-or their enum values. |
57 | |
58 | Available options: |
59 | |
60 | \value DynamicRigidBody.None |
61 | No axis lock (default value). |
62 | |
63 | \value DynamicRigidBody.LockX |
64 | Lock X axis. |
65 | |
66 | \value DynamicRigidBody.LockY |
67 | Lock Y axis. |
68 | |
69 | \value DynamicRigidBody.LockZ |
70 | Lock Z axis. |
71 | */ |
72 | |
73 | /*! |
74 | \qmlproperty AxisLock DynamicRigidBody::angularAxisLock |
75 | |
76 | This property locks the angular velocity of the body along the axes defined by the |
77 | DynamicRigidBody.AxisLock enum. To lock several axes just bitwise-or their enum values. |
78 | |
79 | Available options: |
80 | |
81 | \value DynamicRigidBody.None |
82 | No axis lock (default value). |
83 | |
84 | \value DynamicRigidBody.LockX |
85 | Lock X axis. |
86 | |
87 | \value DynamicRigidBody.LockY |
88 | Lock Y axis. |
89 | |
90 | \value DynamicRigidBody.LockZ |
91 | Lock Z axis. |
92 | */ |
93 | |
94 | /*! |
95 | \qmlproperty bool DynamicRigidBody::isKinematic |
96 | This property defines whether the object is kinematic or not. A kinematic object does not get |
97 | influenced by external forces and can be seen as an object of infinite mass. If this property is |
98 | set then in every simulation frame the physical object will be moved to its target position |
99 | regardless of external forces. Note that to move and rotate the kinematic object you need to use |
100 | the kinematicPosition, kinematicRotation, kinematicEulerRotation and kinematicPivot properties. |
101 | |
102 | \sa kinematicPosition, kinematicRotation, kinematicEulerRotation, kinematicPivot |
103 | */ |
104 | |
105 | /*! |
106 | \qmlproperty bool DynamicRigidBody::gravityEnabled |
107 | This property defines whether the object is going to be affected by gravity or not. |
108 | */ |
109 | |
110 | /*! |
111 | \qmlproperty MassMode DynamicRigidBody::massMode |
112 | |
113 | This property holds the enum which describes how mass and inertia are calculated for this body. |
114 | |
115 | By default, \c DynamicRigidBody.DefaultDensity is used. |
116 | |
117 | Available options: |
118 | |
119 | \value DynamicRigidBody.DefaultDensity |
120 | Use the density specified in the \l {PhysicsWorld::}{defaultDensity} property in |
121 | PhysicsWorld to calculate mass and inertia assuming a uniform density. |
122 | |
123 | \value DynamicRigidBody.CustomDensity |
124 | Use specified density in the specified in the \l {DynamicRigidBody::}{density} to |
125 | calculate mass and inertia assuming a uniform density. |
126 | |
127 | \value DynamicRigidBody.Mass |
128 | Use the specified mass to calculate inertia assuming a uniform density. |
129 | |
130 | \value DynamicRigidBody.MassAndInertiaTensor |
131 | Use the specified mass value and inertia tensor. |
132 | |
133 | \value DynamicRigidBody.MassAndInertiaMatrix |
134 | Use the specified mass value and calculate inertia from the specified inertia |
135 | matrix. |
136 | */ |
137 | |
138 | /*! |
139 | \qmlproperty vector3d DynamicRigidBody::inertiaTensor |
140 | |
141 | Defines the inertia tensor vector, using a parameter specified in mass space coordinates. |
142 | |
143 | This is the diagonal vector of a 3x3 diagonal matrix, if you have a non diagonal world/actor |
144 | space inertia tensor then you should use \l{DynamicRigidBody::inertiaMatrix}{inertiaMatrix} |
145 | instead. |
146 | |
147 | The inertia tensor components must be positive and a value of 0 in any component is |
148 | interpreted as infinite inertia along that axis. Note that this is only used when |
149 | massMode is set to \c DynamicRigidBody.MassAndInertiaTensor. |
150 | |
151 | Default value is (1, 1, 1). |
152 | |
153 | \sa massMode, inertiaMatrix |
154 | */ |
155 | |
156 | /*! |
157 | \qmlproperty vector3d DynamicRigidBody::centerOfMassPosition |
158 | |
159 | Defines the position of the center of mass relative to the body. Note that this is only used |
160 | when massMode is set to \c DynamicRigidBody.MassAndInertiaTensor. |
161 | |
162 | \sa massMode, inertiaTensor |
163 | */ |
164 | |
165 | /*! |
166 | \qmlproperty quaternion DynamicRigidBody::centerOfMassRotation |
167 | |
168 | Defines the rotation of the center of mass pose, i.e. it specifies the orientation of the body's |
169 | principal inertia axes relative to the body. Note that this is only used when massMode is set to |
170 | \c DynamicRigidBody.MassAndInertiaTensor. |
171 | |
172 | \sa massMode, inertiaTensor |
173 | */ |
174 | |
175 | /*! |
176 | \qmlproperty list<float> DynamicRigidBody::inertiaMatrix |
177 | |
178 | Defines the inertia tensor matrix. This is a 3x3 matrix in column-major order. Note that this |
179 | matrix is expected to be diagonalizable. Note that this is only used when massMode is set to |
180 | \c DynamicRigidBody.MassAndInertiaMatrix. |
181 | |
182 | \sa massMode, inertiaTensor |
183 | */ |
184 | |
185 | /*! |
186 | \qmlproperty vector3d DynamicRigidBody::kinematicPosition |
187 | \since 6.5 |
188 | |
189 | Defines the position of the object when it is kinematic, i.e. when \l isKinematic is set to \c |
190 | true. On each iteration of the simulation the physical object will be updated according to this |
191 | value. |
192 | |
193 | \sa isKinematic, kinematicRotation, kinematicEulerRotation, kinematicPivot |
194 | */ |
195 | |
196 | /*! |
197 | \qmlproperty vector3d DynamicRigidBody::kinematicRotation |
198 | \since 6.5 |
199 | |
200 | Defines the rotation of the object when it is kinematic, i.e. when \l isKinematic is set to \c |
201 | true. On each iteration of the simulation the physical object will be updated according to this |
202 | value. |
203 | |
204 | \sa isKinematic, kinematicPosition, kinematicEulerRotation, kinematicPivot |
205 | */ |
206 | |
207 | /*! |
208 | \qmlproperty vector4d DynamicRigidBody::kinematicEulerRotation |
209 | \since 6.5 |
210 | |
211 | Defines the euler rotation of the object when it is kinematic, i.e. when \l isKinematic is set to \c |
212 | true. On each iteration of the simulation the physical object will be updated according to this |
213 | value. |
214 | |
215 | \sa isKinematic, kinematicPosition, kinematicEulerRotation, kinematicPivot |
216 | */ |
217 | |
218 | /*! |
219 | \qmlproperty vector3d DynamicRigidBody::kinematicPivot |
220 | \since 6.5 |
221 | |
222 | Defines the pivot of the object when it is kinematic, i.e. when \l isKinematic is set to \c |
223 | true. On each iteration of the simulation the physical object will be updated according to this |
224 | value. |
225 | |
226 | \sa isKinematic, kinematicPosition, kinematicEulerRotation, kinematicRotation |
227 | */ |
228 | |
229 | /*! |
230 | \qmlmethod DynamicRigidBody::applyCentralForce(vector3d force) |
231 | |
232 | Applies a \a force on the center of the body. |
233 | */ |
234 | |
235 | /*! |
236 | \qmlmethod DynamicRigidBody::applyForce(vector3d force, vector3d position) |
237 | |
238 | Applies a \a force at a \a position on the body. |
239 | */ |
240 | |
241 | /*! |
242 | \qmlmethod DynamicRigidBody::applyTorque(vector3d torque) |
243 | |
244 | Applies a \a torque on the body. |
245 | */ |
246 | |
247 | /*! |
248 | \qmlmethod DynamicRigidBody::applyCentralImpulse(vector3d impulse) |
249 | |
250 | Applies an \a impulse on the center of the body. |
251 | */ |
252 | |
253 | /*! |
254 | \qmlmethod DynamicRigidBody::applyImpulse(vector3d impulse, vector3d position) |
255 | |
256 | Applies an \a impulse at a \a position on the body. |
257 | */ |
258 | |
259 | /*! |
260 | \qmlmethod DynamicRigidBody::applyTorqueImpulse(vector3d impulse) |
261 | |
262 | Applies a torque \a impulse on the body. |
263 | */ |
264 | |
265 | /*! |
266 | \qmlmethod DynamicRigidBody::setAngularVelocity(vector3d angularVelocity) |
267 | |
268 | Sets the \a angularVelocity of the body. |
269 | */ |
270 | |
271 | /*! |
272 | \qmlmethod DynamicRigidBody::setLinearVelocity(vector3d linearVelocity) |
273 | |
274 | Sets the \a linearVelocity of the body. |
275 | */ |
276 | |
277 | /*! |
278 | \qmlmethod DynamicRigidBody::reset(vector3d position, vector3d eulerRotation) |
279 | |
280 | Resets the body's \a position and \a eulerRotation. |
281 | */ |
282 | |
283 | QDynamicRigidBody::QDynamicRigidBody() = default; |
284 | |
285 | QDynamicRigidBody::~QDynamicRigidBody() |
286 | { |
287 | qDeleteAll(c: m_commandQueue); |
288 | m_commandQueue.clear(); |
289 | } |
290 | |
291 | const QQuaternion &QDynamicRigidBody::centerOfMassRotation() const |
292 | { |
293 | return m_centerOfMassRotation; |
294 | } |
295 | |
296 | void QDynamicRigidBody::setCenterOfMassRotation(const QQuaternion &newCenterOfMassRotation) |
297 | { |
298 | if (qFuzzyCompare(q1: m_centerOfMassRotation, q2: newCenterOfMassRotation)) |
299 | return; |
300 | m_centerOfMassRotation = newCenterOfMassRotation; |
301 | |
302 | // Only inertia tensor is using rotation |
303 | if (m_massMode == MassMode::MassAndInertiaTensor) |
304 | m_commandQueue.enqueue(t: new QPhysicsCommandSetMassAndInertiaTensor(m_mass, m_inertiaTensor)); |
305 | |
306 | emit centerOfMassRotationChanged(); |
307 | } |
308 | |
309 | const QVector3D &QDynamicRigidBody::centerOfMassPosition() const |
310 | { |
311 | return m_centerOfMassPosition; |
312 | } |
313 | |
314 | void QDynamicRigidBody::setCenterOfMassPosition(const QVector3D &newCenterOfMassPosition) |
315 | { |
316 | if (qFuzzyCompare(v1: m_centerOfMassPosition, v2: newCenterOfMassPosition)) |
317 | return; |
318 | |
319 | switch (m_massMode) { |
320 | case MassMode::MassAndInertiaTensor: { |
321 | m_commandQueue.enqueue(t: new QPhysicsCommandSetMassAndInertiaTensor(m_mass, m_inertiaTensor)); |
322 | break; |
323 | } |
324 | case MassMode::MassAndInertiaMatrix: { |
325 | m_commandQueue.enqueue(t: new QPhysicsCommandSetMassAndInertiaMatrix(m_mass, m_inertiaMatrix)); |
326 | break; |
327 | } |
328 | case MassMode::DefaultDensity: |
329 | case MassMode::CustomDensity: |
330 | case MassMode::Mass: |
331 | break; |
332 | } |
333 | |
334 | m_centerOfMassPosition = newCenterOfMassPosition; |
335 | emit centerOfMassPositionChanged(); |
336 | } |
337 | |
338 | QDynamicRigidBody::MassMode QDynamicRigidBody::massMode() const |
339 | { |
340 | return m_massMode; |
341 | } |
342 | |
343 | void QDynamicRigidBody::setMassMode(const MassMode newMassMode) |
344 | { |
345 | if (m_massMode == newMassMode) |
346 | return; |
347 | |
348 | switch (newMassMode) { |
349 | case MassMode::DefaultDensity: { |
350 | auto world = QPhysicsWorld::getWorld(node: this); |
351 | if (world) { |
352 | m_commandQueue.enqueue(t: new QPhysicsCommandSetDensity(world->defaultDensity())); |
353 | } else { |
354 | qWarning() << "No physics world found, cannot set default density." ; |
355 | } |
356 | break; |
357 | } |
358 | case MassMode::CustomDensity: { |
359 | m_commandQueue.enqueue(t: new QPhysicsCommandSetDensity(m_density)); |
360 | break; |
361 | } |
362 | case MassMode::Mass: { |
363 | m_commandQueue.enqueue(t: new QPhysicsCommandSetMass(m_mass)); |
364 | break; |
365 | } |
366 | case MassMode::MassAndInertiaTensor: { |
367 | m_commandQueue.enqueue(t: new QPhysicsCommandSetMassAndInertiaTensor(m_mass, m_inertiaTensor)); |
368 | break; |
369 | } |
370 | case MassMode::MassAndInertiaMatrix: { |
371 | m_commandQueue.enqueue(t: new QPhysicsCommandSetMassAndInertiaMatrix(m_mass, m_inertiaMatrix)); |
372 | break; |
373 | } |
374 | } |
375 | |
376 | m_massMode = newMassMode; |
377 | emit massModeChanged(); |
378 | } |
379 | |
380 | const QVector3D &QDynamicRigidBody::inertiaTensor() const |
381 | { |
382 | return m_inertiaTensor; |
383 | } |
384 | |
385 | void QDynamicRigidBody::setInertiaTensor(const QVector3D &newInertiaTensor) |
386 | { |
387 | if (qFuzzyCompare(v1: m_inertiaTensor, v2: newInertiaTensor)) |
388 | return; |
389 | m_inertiaTensor = newInertiaTensor; |
390 | |
391 | if (m_massMode == MassMode::MassAndInertiaTensor) |
392 | m_commandQueue.enqueue(t: new QPhysicsCommandSetMassAndInertiaTensor(m_mass, m_inertiaTensor)); |
393 | |
394 | emit inertiaTensorChanged(); |
395 | } |
396 | |
397 | const QList<float> &QDynamicRigidBody::readInertiaMatrix() const |
398 | { |
399 | return m_inertiaMatrixList; |
400 | } |
401 | |
402 | static bool fuzzyEquals(const QList<float> &a, const QList<float> &b) |
403 | { |
404 | if (a.length() != b.length()) |
405 | return false; |
406 | |
407 | const int length = a.length(); |
408 | for (int i = 0; i < length; i++) |
409 | if (!qFuzzyCompare(p1: a[i], p2: b[i])) |
410 | return false; |
411 | |
412 | return true; |
413 | } |
414 | |
415 | void QDynamicRigidBody::setInertiaMatrix(const QList<float> &newInertiaMatrix) |
416 | { |
417 | if (fuzzyEquals(a: m_inertiaMatrixList, b: newInertiaMatrix)) |
418 | return; |
419 | |
420 | m_inertiaMatrixList = newInertiaMatrix; |
421 | const int elemsToCopy = qMin(a: m_inertiaMatrixList.length(), b: 9); |
422 | memcpy(dest: m_inertiaMatrix.data(), src: m_inertiaMatrixList.data(), n: elemsToCopy * sizeof(float)); |
423 | memset(s: m_inertiaMatrix.data() + elemsToCopy, c: 0, n: (9 - elemsToCopy) * sizeof(float)); |
424 | |
425 | if (m_massMode == MassMode::MassAndInertiaMatrix) |
426 | m_commandQueue.enqueue(t: new QPhysicsCommandSetMassAndInertiaMatrix(m_mass, m_inertiaMatrix)); |
427 | |
428 | emit inertiaMatrixChanged(); |
429 | } |
430 | |
431 | const QMatrix3x3 &QDynamicRigidBody::inertiaMatrix() const |
432 | { |
433 | return m_inertiaMatrix; |
434 | } |
435 | |
436 | float QDynamicRigidBody::mass() const |
437 | { |
438 | return m_mass; |
439 | } |
440 | |
441 | bool QDynamicRigidBody::isKinematic() const |
442 | { |
443 | return m_isKinematic; |
444 | } |
445 | |
446 | bool QDynamicRigidBody::gravityEnabled() const |
447 | { |
448 | return m_gravityEnabled; |
449 | } |
450 | |
451 | void QDynamicRigidBody::setMass(float mass) |
452 | { |
453 | if (mass < 0.f || qFuzzyCompare(p1: m_mass, p2: mass)) |
454 | return; |
455 | |
456 | switch (m_massMode) { |
457 | case QDynamicRigidBody::MassMode::Mass: |
458 | m_commandQueue.enqueue(t: new QPhysicsCommandSetMass(mass)); |
459 | break; |
460 | case QDynamicRigidBody::MassMode::MassAndInertiaTensor: |
461 | m_commandQueue.enqueue(t: new QPhysicsCommandSetMassAndInertiaTensor(mass, m_inertiaTensor)); |
462 | break; |
463 | case QDynamicRigidBody::MassMode::MassAndInertiaMatrix: |
464 | m_commandQueue.enqueue(t: new QPhysicsCommandSetMassAndInertiaMatrix(mass, m_inertiaMatrix)); |
465 | break; |
466 | case QDynamicRigidBody::MassMode::DefaultDensity: |
467 | case QDynamicRigidBody::MassMode::CustomDensity: |
468 | break; |
469 | } |
470 | |
471 | m_mass = mass; |
472 | emit massChanged(mass: m_mass); |
473 | } |
474 | |
475 | float QDynamicRigidBody::density() const |
476 | { |
477 | return m_density; |
478 | } |
479 | |
480 | void QDynamicRigidBody::setDensity(float density) |
481 | { |
482 | if (qFuzzyCompare(p1: m_density, p2: density)) |
483 | return; |
484 | |
485 | if (m_massMode == MassMode::CustomDensity) |
486 | m_commandQueue.enqueue(t: new QPhysicsCommandSetDensity(density)); |
487 | |
488 | m_density = density; |
489 | emit densityChanged(density: m_density); |
490 | } |
491 | |
492 | void QDynamicRigidBody::setIsKinematic(bool isKinematic) |
493 | { |
494 | if (m_isKinematic == isKinematic) |
495 | return; |
496 | |
497 | if (hasStaticShapes() && !isKinematic) { |
498 | qWarning() |
499 | << "Cannot make body containing trimesh/heightfield/plane non-kinematic, ignoring." ; |
500 | return; |
501 | } |
502 | |
503 | m_isKinematic = isKinematic; |
504 | m_commandQueue.enqueue(t: new QPhysicsCommandSetIsKinematic(m_isKinematic)); |
505 | emit isKinematicChanged(isKinematic: m_isKinematic); |
506 | } |
507 | |
508 | void QDynamicRigidBody::setGravityEnabled(bool gravityEnabled) |
509 | { |
510 | if (m_gravityEnabled == gravityEnabled) |
511 | return; |
512 | |
513 | m_gravityEnabled = gravityEnabled; |
514 | m_commandQueue.enqueue(t: new QPhysicsCommandSetGravityEnabled(m_gravityEnabled)); |
515 | emit gravityEnabledChanged(); |
516 | } |
517 | |
518 | void QDynamicRigidBody::setAngularVelocity(const QVector3D &angularVelocity) |
519 | { |
520 | m_commandQueue.enqueue(t: new QPhysicsCommandSetAngularVelocity(angularVelocity)); |
521 | } |
522 | |
523 | QDynamicRigidBody::AxisLock QDynamicRigidBody::linearAxisLock() const |
524 | { |
525 | return m_linearAxisLock; |
526 | } |
527 | |
528 | void QDynamicRigidBody::setLinearAxisLock(AxisLock newAxisLockLinear) |
529 | { |
530 | if (m_linearAxisLock == newAxisLockLinear) |
531 | return; |
532 | m_linearAxisLock = newAxisLockLinear; |
533 | emit linearAxisLockChanged(); |
534 | } |
535 | |
536 | QDynamicRigidBody::AxisLock QDynamicRigidBody::angularAxisLock() const |
537 | { |
538 | return m_angularAxisLock; |
539 | } |
540 | |
541 | void QDynamicRigidBody::setAngularAxisLock(AxisLock newAxisLockAngular) |
542 | { |
543 | if (m_angularAxisLock == newAxisLockAngular) |
544 | return; |
545 | m_angularAxisLock = newAxisLockAngular; |
546 | emit angularAxisLockChanged(); |
547 | } |
548 | |
549 | QQueue<QPhysicsCommand *> &QDynamicRigidBody::commandQueue() |
550 | { |
551 | return m_commandQueue; |
552 | } |
553 | |
554 | void QDynamicRigidBody::updateDefaultDensity(float defaultDensity) |
555 | { |
556 | if (m_massMode == MassMode::DefaultDensity) |
557 | m_commandQueue.enqueue(t: new QPhysicsCommandSetDensity(defaultDensity)); |
558 | } |
559 | |
560 | void QDynamicRigidBody::applyCentralForce(const QVector3D &force) |
561 | { |
562 | m_commandQueue.enqueue(t: new QPhysicsCommandApplyCentralForce(force)); |
563 | } |
564 | |
565 | void QDynamicRigidBody::applyForce(const QVector3D &force, const QVector3D &position) |
566 | { |
567 | m_commandQueue.enqueue(t: new QPhysicsCommandApplyForce(force, position)); |
568 | } |
569 | |
570 | void QDynamicRigidBody::applyTorque(const QVector3D &torque) |
571 | { |
572 | m_commandQueue.enqueue(t: new QPhysicsCommandApplyTorque(torque)); |
573 | } |
574 | |
575 | void QDynamicRigidBody::applyCentralImpulse(const QVector3D &impulse) |
576 | { |
577 | m_commandQueue.enqueue(t: new QPhysicsCommandApplyCentralImpulse(impulse)); |
578 | } |
579 | |
580 | void QDynamicRigidBody::applyImpulse(const QVector3D &impulse, const QVector3D &position) |
581 | { |
582 | m_commandQueue.enqueue(t: new QPhysicsCommandApplyImpulse(impulse, position)); |
583 | } |
584 | |
585 | void QDynamicRigidBody::applyTorqueImpulse(const QVector3D &impulse) |
586 | { |
587 | m_commandQueue.enqueue(t: new QPhysicsCommandApplyTorqueImpulse(impulse)); |
588 | } |
589 | |
590 | void QDynamicRigidBody::setLinearVelocity(const QVector3D &linearVelocity) |
591 | { |
592 | m_commandQueue.enqueue(t: new QPhysicsCommandSetLinearVelocity(linearVelocity)); |
593 | } |
594 | |
595 | void QDynamicRigidBody::reset(const QVector3D &position, const QVector3D &eulerRotation) |
596 | { |
597 | m_commandQueue.enqueue(t: new QPhysicsCommandReset(position, eulerRotation)); |
598 | } |
599 | |
600 | void QDynamicRigidBody::setKinematicRotation(const QQuaternion &rotation) |
601 | { |
602 | if (m_kinematicRotation == rotation) |
603 | return; |
604 | |
605 | m_kinematicRotation = rotation; |
606 | emit kinematicRotationChanged(kinematicRotation: m_kinematicRotation); |
607 | emit kinematicEulerRotationChanged(kinematicEulerRotation: m_kinematicRotation.getEulerRotation()); |
608 | } |
609 | |
610 | QQuaternion QDynamicRigidBody::kinematicRotation() const |
611 | { |
612 | return m_kinematicRotation.getQuaternionRotation(); |
613 | } |
614 | |
615 | void QDynamicRigidBody::setKinematicEulerRotation(const QVector3D &rotation) |
616 | { |
617 | if (m_kinematicRotation == rotation) |
618 | return; |
619 | |
620 | m_kinematicRotation = rotation; |
621 | emit kinematicEulerRotationChanged(kinematicEulerRotation: m_kinematicRotation); |
622 | emit kinematicRotationChanged(kinematicRotation: m_kinematicRotation.getQuaternionRotation()); |
623 | } |
624 | |
625 | QVector3D QDynamicRigidBody::kinematicEulerRotation() const |
626 | { |
627 | return m_kinematicRotation.getEulerRotation(); |
628 | } |
629 | |
630 | void QDynamicRigidBody::setKinematicPivot(const QVector3D &pivot) |
631 | { |
632 | m_kinematicPivot = pivot; |
633 | emit kinematicPivotChanged(kinematicPivot: m_kinematicPivot); |
634 | } |
635 | |
636 | QVector3D QDynamicRigidBody::kinematicPivot() const |
637 | { |
638 | return m_kinematicPivot; |
639 | } |
640 | |
641 | QAbstractPhysXNode *QDynamicRigidBody::createPhysXBackend() |
642 | { |
643 | return new QPhysXDynamicBody(this); |
644 | } |
645 | |
646 | void QDynamicRigidBody::setKinematicPosition(const QVector3D &position) |
647 | { |
648 | m_kinematicPosition = position; |
649 | emit kinematicPositionChanged(kinematicPosition: m_kinematicPosition); |
650 | } |
651 | |
652 | QVector3D QDynamicRigidBody::kinematicPosition() const |
653 | { |
654 | return m_kinematicPosition; |
655 | } |
656 | |
657 | QT_END_NAMESPACE |
658 | |