| 1 | #![unstable (feature = "raw_vec_internals" , reason = "unstable const warnings" , issue = "none" )] |
| 2 | #![cfg_attr (test, allow(dead_code))] |
| 3 | |
| 4 | // Note: This module is also included in the alloctests crate using #[path] to |
| 5 | // run the tests. See the comment there for an explanation why this is the case. |
| 6 | |
| 7 | use core::marker::PhantomData; |
| 8 | use core::mem::{ManuallyDrop, MaybeUninit, SizedTypeProperties}; |
| 9 | use core::ptr::{self, Alignment, NonNull, Unique}; |
| 10 | use core::{cmp, hint}; |
| 11 | |
| 12 | #[cfg (not(no_global_oom_handling))] |
| 13 | use crate::alloc::handle_alloc_error; |
| 14 | use crate::alloc::{Allocator, Global, Layout}; |
| 15 | use crate::boxed::Box; |
| 16 | use crate::collections::TryReserveError; |
| 17 | use crate::collections::TryReserveErrorKind::*; |
| 18 | |
| 19 | #[cfg (test)] |
| 20 | mod tests; |
| 21 | |
| 22 | // One central function responsible for reporting capacity overflows. This'll |
| 23 | // ensure that the code generation related to these panics is minimal as there's |
| 24 | // only one location which panics rather than a bunch throughout the module. |
| 25 | #[cfg (not(no_global_oom_handling))] |
| 26 | #[cfg_attr (not(feature = "panic_immediate_abort" ), inline(never))] |
| 27 | #[track_caller ] |
| 28 | fn capacity_overflow() -> ! { |
| 29 | panic!("capacity overflow" ); |
| 30 | } |
| 31 | |
| 32 | enum AllocInit { |
| 33 | /// The contents of the new memory are uninitialized. |
| 34 | Uninitialized, |
| 35 | #[cfg (not(no_global_oom_handling))] |
| 36 | /// The new memory is guaranteed to be zeroed. |
| 37 | Zeroed, |
| 38 | } |
| 39 | |
| 40 | type Cap = core::num::niche_types::UsizeNoHighBit; |
| 41 | |
| 42 | const ZERO_CAP: Cap = unsafe { Cap::new_unchecked(val:0) }; |
| 43 | |
| 44 | /// `Cap(cap)`, except if `T` is a ZST then `Cap::ZERO`. |
| 45 | /// |
| 46 | /// # Safety: cap must be <= `isize::MAX`. |
| 47 | unsafe fn new_cap<T>(cap: usize) -> Cap { |
| 48 | if T::IS_ZST { ZERO_CAP } else { unsafe { Cap::new_unchecked(val:cap) } } |
| 49 | } |
| 50 | |
| 51 | /// A low-level utility for more ergonomically allocating, reallocating, and deallocating |
| 52 | /// a buffer of memory on the heap without having to worry about all the corner cases |
| 53 | /// involved. This type is excellent for building your own data structures like Vec and VecDeque. |
| 54 | /// In particular: |
| 55 | /// |
| 56 | /// * Produces `Unique::dangling()` on zero-sized types. |
| 57 | /// * Produces `Unique::dangling()` on zero-length allocations. |
| 58 | /// * Avoids freeing `Unique::dangling()`. |
| 59 | /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics). |
| 60 | /// * Guards against 32-bit systems allocating more than `isize::MAX` bytes. |
| 61 | /// * Guards against overflowing your length. |
| 62 | /// * Calls `handle_alloc_error` for fallible allocations. |
| 63 | /// * Contains a `ptr::Unique` and thus endows the user with all related benefits. |
| 64 | /// * Uses the excess returned from the allocator to use the largest available capacity. |
| 65 | /// |
| 66 | /// This type does not in anyway inspect the memory that it manages. When dropped it *will* |
| 67 | /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec` |
| 68 | /// to handle the actual things *stored* inside of a `RawVec`. |
| 69 | /// |
| 70 | /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns |
| 71 | /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a |
| 72 | /// `Box<[T]>`, since `capacity()` won't yield the length. |
| 73 | #[allow (missing_debug_implementations)] |
| 74 | pub(crate) struct RawVec<T, A: Allocator = Global> { |
| 75 | inner: RawVecInner<A>, |
| 76 | _marker: PhantomData<T>, |
| 77 | } |
| 78 | |
| 79 | /// Like a `RawVec`, but only generic over the allocator, not the type. |
| 80 | /// |
| 81 | /// As such, all the methods need the layout passed-in as a parameter. |
| 82 | /// |
| 83 | /// Having this separation reduces the amount of code we need to monomorphize, |
| 84 | /// as most operations don't need the actual type, just its layout. |
| 85 | #[allow (missing_debug_implementations)] |
| 86 | struct RawVecInner<A: Allocator = Global> { |
| 87 | ptr: Unique<u8>, |
| 88 | /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case. |
| 89 | /// |
| 90 | /// # Safety |
| 91 | /// |
| 92 | /// `cap` must be in the `0..=isize::MAX` range. |
| 93 | cap: Cap, |
| 94 | alloc: A, |
| 95 | } |
| 96 | |
| 97 | impl<T> RawVec<T, Global> { |
| 98 | /// Creates the biggest possible `RawVec` (on the system heap) |
| 99 | /// without allocating. If `T` has positive size, then this makes a |
| 100 | /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a |
| 101 | /// `RawVec` with capacity `usize::MAX`. Useful for implementing |
| 102 | /// delayed allocation. |
| 103 | #[must_use ] |
| 104 | pub(crate) const fn new() -> Self { |
| 105 | Self::new_in(Global) |
| 106 | } |
| 107 | |
| 108 | /// Creates a `RawVec` (on the system heap) with exactly the |
| 109 | /// capacity and alignment requirements for a `[T; capacity]`. This is |
| 110 | /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is |
| 111 | /// zero-sized. Note that if `T` is zero-sized this means you will |
| 112 | /// *not* get a `RawVec` with the requested capacity. |
| 113 | /// |
| 114 | /// Non-fallible version of `try_with_capacity` |
| 115 | /// |
| 116 | /// # Panics |
| 117 | /// |
| 118 | /// Panics if the requested capacity exceeds `isize::MAX` bytes. |
| 119 | /// |
| 120 | /// # Aborts |
| 121 | /// |
| 122 | /// Aborts on OOM. |
| 123 | #[cfg (not(any(no_global_oom_handling, test)))] |
| 124 | #[must_use ] |
| 125 | #[inline ] |
| 126 | #[track_caller ] |
| 127 | pub(crate) fn with_capacity(capacity: usize) -> Self { |
| 128 | Self { inner: RawVecInner::with_capacity(capacity, T::LAYOUT), _marker: PhantomData } |
| 129 | } |
| 130 | |
| 131 | /// Like `with_capacity`, but guarantees the buffer is zeroed. |
| 132 | #[cfg (not(any(no_global_oom_handling, test)))] |
| 133 | #[must_use ] |
| 134 | #[inline ] |
| 135 | #[track_caller ] |
| 136 | pub(crate) fn with_capacity_zeroed(capacity: usize) -> Self { |
| 137 | Self { |
| 138 | inner: RawVecInner::with_capacity_zeroed_in(capacity, Global, T::LAYOUT), |
| 139 | _marker: PhantomData, |
| 140 | } |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | impl RawVecInner<Global> { |
| 145 | #[cfg (not(any(no_global_oom_handling, test)))] |
| 146 | #[must_use ] |
| 147 | #[inline ] |
| 148 | #[track_caller ] |
| 149 | fn with_capacity(capacity: usize, elem_layout: Layout) -> Self { |
| 150 | match Self::try_allocate_in(capacity, init:AllocInit::Uninitialized, alloc:Global, elem_layout) { |
| 151 | Ok(res: RawVecInner) => res, |
| 152 | Err(err: TryReserveError) => handle_error(err), |
| 153 | } |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | // Tiny Vecs are dumb. Skip to: |
| 158 | // - 8 if the element size is 1, because any heap allocators is likely |
| 159 | // to round up a request of less than 8 bytes to at least 8 bytes. |
| 160 | // - 4 if elements are moderate-sized (<= 1 KiB). |
| 161 | // - 1 otherwise, to avoid wasting too much space for very short Vecs. |
| 162 | const fn min_non_zero_cap(size: usize) -> usize { |
| 163 | if size == 1 { |
| 164 | 8 |
| 165 | } else if size <= 1024 { |
| 166 | 4 |
| 167 | } else { |
| 168 | 1 |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | impl<T, A: Allocator> RawVec<T, A> { |
| 173 | #[cfg (not(no_global_oom_handling))] |
| 174 | pub(crate) const MIN_NON_ZERO_CAP: usize = min_non_zero_cap(size_of::<T>()); |
| 175 | |
| 176 | /// Like `new`, but parameterized over the choice of allocator for |
| 177 | /// the returned `RawVec`. |
| 178 | #[inline ] |
| 179 | pub(crate) const fn new_in(alloc: A) -> Self { |
| 180 | Self { inner: RawVecInner::new_in(alloc, Alignment::of::<T>()), _marker: PhantomData } |
| 181 | } |
| 182 | |
| 183 | /// Like `with_capacity`, but parameterized over the choice of |
| 184 | /// allocator for the returned `RawVec`. |
| 185 | #[cfg (not(no_global_oom_handling))] |
| 186 | #[inline ] |
| 187 | #[track_caller ] |
| 188 | pub(crate) fn with_capacity_in(capacity: usize, alloc: A) -> Self { |
| 189 | Self { |
| 190 | inner: RawVecInner::with_capacity_in(capacity, alloc, T::LAYOUT), |
| 191 | _marker: PhantomData, |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | /// Like `try_with_capacity`, but parameterized over the choice of |
| 196 | /// allocator for the returned `RawVec`. |
| 197 | #[inline ] |
| 198 | pub(crate) fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> { |
| 199 | match RawVecInner::try_with_capacity_in(capacity, alloc, T::LAYOUT) { |
| 200 | Ok(inner) => Ok(Self { inner, _marker: PhantomData }), |
| 201 | Err(e) => Err(e), |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | /// Like `with_capacity_zeroed`, but parameterized over the choice |
| 206 | /// of allocator for the returned `RawVec`. |
| 207 | #[cfg (not(no_global_oom_handling))] |
| 208 | #[inline ] |
| 209 | #[track_caller ] |
| 210 | pub(crate) fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self { |
| 211 | Self { |
| 212 | inner: RawVecInner::with_capacity_zeroed_in(capacity, alloc, T::LAYOUT), |
| 213 | _marker: PhantomData, |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`. |
| 218 | /// |
| 219 | /// Note that this will correctly reconstitute any `cap` changes |
| 220 | /// that may have been performed. (See description of type for details.) |
| 221 | /// |
| 222 | /// # Safety |
| 223 | /// |
| 224 | /// * `len` must be greater than or equal to the most recently requested capacity, and |
| 225 | /// * `len` must be less than or equal to `self.capacity()`. |
| 226 | /// |
| 227 | /// Note, that the requested capacity and `self.capacity()` could differ, as |
| 228 | /// an allocator could overallocate and return a greater memory block than requested. |
| 229 | pub(crate) unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> { |
| 230 | // Sanity-check one half of the safety requirement (we cannot check the other half). |
| 231 | debug_assert!( |
| 232 | len <= self.capacity(), |
| 233 | "`len` must be smaller than or equal to `self.capacity()`" |
| 234 | ); |
| 235 | |
| 236 | let me = ManuallyDrop::new(self); |
| 237 | unsafe { |
| 238 | let slice = ptr::slice_from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len); |
| 239 | Box::from_raw_in(slice, ptr::read(&me.inner.alloc)) |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator. |
| 244 | /// |
| 245 | /// # Safety |
| 246 | /// |
| 247 | /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given |
| 248 | /// `capacity`. |
| 249 | /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit |
| 250 | /// systems). For ZSTs capacity is ignored. |
| 251 | /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is |
| 252 | /// guaranteed. |
| 253 | #[inline ] |
| 254 | pub(crate) unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self { |
| 255 | // SAFETY: Precondition passed to the caller |
| 256 | unsafe { |
| 257 | let ptr = ptr.cast(); |
| 258 | let capacity = new_cap::<T>(capacity); |
| 259 | Self { |
| 260 | inner: RawVecInner::from_raw_parts_in(ptr, capacity, alloc), |
| 261 | _marker: PhantomData, |
| 262 | } |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | /// A convenience method for hoisting the non-null precondition out of [`RawVec::from_raw_parts_in`]. |
| 267 | /// |
| 268 | /// # Safety |
| 269 | /// |
| 270 | /// See [`RawVec::from_raw_parts_in`]. |
| 271 | #[inline ] |
| 272 | pub(crate) unsafe fn from_nonnull_in(ptr: NonNull<T>, capacity: usize, alloc: A) -> Self { |
| 273 | // SAFETY: Precondition passed to the caller |
| 274 | unsafe { |
| 275 | let ptr = ptr.cast(); |
| 276 | let capacity = new_cap::<T>(capacity); |
| 277 | Self { inner: RawVecInner::from_nonnull_in(ptr, capacity, alloc), _marker: PhantomData } |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | /// Gets a raw pointer to the start of the allocation. Note that this is |
| 282 | /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must |
| 283 | /// be careful. |
| 284 | #[inline ] |
| 285 | pub(crate) const fn ptr(&self) -> *mut T { |
| 286 | self.inner.ptr() |
| 287 | } |
| 288 | |
| 289 | #[inline ] |
| 290 | pub(crate) const fn non_null(&self) -> NonNull<T> { |
| 291 | self.inner.non_null() |
| 292 | } |
| 293 | |
| 294 | /// Gets the capacity of the allocation. |
| 295 | /// |
| 296 | /// This will always be `usize::MAX` if `T` is zero-sized. |
| 297 | #[inline ] |
| 298 | pub(crate) const fn capacity(&self) -> usize { |
| 299 | self.inner.capacity(size_of::<T>()) |
| 300 | } |
| 301 | |
| 302 | /// Returns a shared reference to the allocator backing this `RawVec`. |
| 303 | #[inline ] |
| 304 | pub(crate) fn allocator(&self) -> &A { |
| 305 | self.inner.allocator() |
| 306 | } |
| 307 | |
| 308 | /// Ensures that the buffer contains at least enough space to hold `len + |
| 309 | /// additional` elements. If it doesn't already have enough capacity, will |
| 310 | /// reallocate enough space plus comfortable slack space to get amortized |
| 311 | /// *O*(1) behavior. Will limit this behavior if it would needlessly cause |
| 312 | /// itself to panic. |
| 313 | /// |
| 314 | /// If `len` exceeds `self.capacity()`, this may fail to actually allocate |
| 315 | /// the requested space. This is not really unsafe, but the unsafe |
| 316 | /// code *you* write that relies on the behavior of this function may break. |
| 317 | /// |
| 318 | /// This is ideal for implementing a bulk-push operation like `extend`. |
| 319 | /// |
| 320 | /// # Panics |
| 321 | /// |
| 322 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
| 323 | /// |
| 324 | /// # Aborts |
| 325 | /// |
| 326 | /// Aborts on OOM. |
| 327 | #[cfg (not(no_global_oom_handling))] |
| 328 | #[inline ] |
| 329 | #[track_caller ] |
| 330 | pub(crate) fn reserve(&mut self, len: usize, additional: usize) { |
| 331 | self.inner.reserve(len, additional, T::LAYOUT) |
| 332 | } |
| 333 | |
| 334 | /// A specialized version of `self.reserve(len, 1)` which requires the |
| 335 | /// caller to ensure `len == self.capacity()`. |
| 336 | #[cfg (not(no_global_oom_handling))] |
| 337 | #[inline (never)] |
| 338 | #[track_caller ] |
| 339 | pub(crate) fn grow_one(&mut self) { |
| 340 | self.inner.grow_one(T::LAYOUT) |
| 341 | } |
| 342 | |
| 343 | /// The same as `reserve`, but returns on errors instead of panicking or aborting. |
| 344 | pub(crate) fn try_reserve( |
| 345 | &mut self, |
| 346 | len: usize, |
| 347 | additional: usize, |
| 348 | ) -> Result<(), TryReserveError> { |
| 349 | self.inner.try_reserve(len, additional, T::LAYOUT) |
| 350 | } |
| 351 | |
| 352 | /// Ensures that the buffer contains at least enough space to hold `len + |
| 353 | /// additional` elements. If it doesn't already, will reallocate the |
| 354 | /// minimum possible amount of memory necessary. Generally this will be |
| 355 | /// exactly the amount of memory necessary, but in principle the allocator |
| 356 | /// is free to give back more than we asked for. |
| 357 | /// |
| 358 | /// If `len` exceeds `self.capacity()`, this may fail to actually allocate |
| 359 | /// the requested space. This is not really unsafe, but the unsafe code |
| 360 | /// *you* write that relies on the behavior of this function may break. |
| 361 | /// |
| 362 | /// # Panics |
| 363 | /// |
| 364 | /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
| 365 | /// |
| 366 | /// # Aborts |
| 367 | /// |
| 368 | /// Aborts on OOM. |
| 369 | #[cfg (not(no_global_oom_handling))] |
| 370 | #[track_caller ] |
| 371 | pub(crate) fn reserve_exact(&mut self, len: usize, additional: usize) { |
| 372 | self.inner.reserve_exact(len, additional, T::LAYOUT) |
| 373 | } |
| 374 | |
| 375 | /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting. |
| 376 | pub(crate) fn try_reserve_exact( |
| 377 | &mut self, |
| 378 | len: usize, |
| 379 | additional: usize, |
| 380 | ) -> Result<(), TryReserveError> { |
| 381 | self.inner.try_reserve_exact(len, additional, T::LAYOUT) |
| 382 | } |
| 383 | |
| 384 | /// Shrinks the buffer down to the specified capacity. If the given amount |
| 385 | /// is 0, actually completely deallocates. |
| 386 | /// |
| 387 | /// # Panics |
| 388 | /// |
| 389 | /// Panics if the given amount is *larger* than the current capacity. |
| 390 | /// |
| 391 | /// # Aborts |
| 392 | /// |
| 393 | /// Aborts on OOM. |
| 394 | #[cfg (not(no_global_oom_handling))] |
| 395 | #[track_caller ] |
| 396 | #[inline ] |
| 397 | pub(crate) fn shrink_to_fit(&mut self, cap: usize) { |
| 398 | self.inner.shrink_to_fit(cap, T::LAYOUT) |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | unsafe impl<#[may_dangle ] T, A: Allocator> Drop for RawVec<T, A> { |
| 403 | /// Frees the memory owned by the `RawVec` *without* trying to drop its contents. |
| 404 | fn drop(&mut self) { |
| 405 | // SAFETY: We are in a Drop impl, self.inner will not be used again. |
| 406 | unsafe { self.inner.deallocate(T::LAYOUT) } |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | impl<A: Allocator> RawVecInner<A> { |
| 411 | #[inline ] |
| 412 | const fn new_in(alloc: A, align: Alignment) -> Self { |
| 413 | let ptr = Unique::from_non_null(NonNull::without_provenance(align.as_nonzero())); |
| 414 | // `cap: 0` means "unallocated". zero-sized types are ignored. |
| 415 | Self { ptr, cap: ZERO_CAP, alloc } |
| 416 | } |
| 417 | |
| 418 | #[cfg (not(no_global_oom_handling))] |
| 419 | #[inline ] |
| 420 | #[track_caller ] |
| 421 | fn with_capacity_in(capacity: usize, alloc: A, elem_layout: Layout) -> Self { |
| 422 | match Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc, elem_layout) { |
| 423 | Ok(this) => { |
| 424 | unsafe { |
| 425 | // Make it more obvious that a subsequent Vec::reserve(capacity) will not allocate. |
| 426 | hint::assert_unchecked(!this.needs_to_grow(0, capacity, elem_layout)); |
| 427 | } |
| 428 | this |
| 429 | } |
| 430 | Err(err) => handle_error(err), |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | #[inline ] |
| 435 | fn try_with_capacity_in( |
| 436 | capacity: usize, |
| 437 | alloc: A, |
| 438 | elem_layout: Layout, |
| 439 | ) -> Result<Self, TryReserveError> { |
| 440 | Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc, elem_layout) |
| 441 | } |
| 442 | |
| 443 | #[cfg (not(no_global_oom_handling))] |
| 444 | #[inline ] |
| 445 | #[track_caller ] |
| 446 | fn with_capacity_zeroed_in(capacity: usize, alloc: A, elem_layout: Layout) -> Self { |
| 447 | match Self::try_allocate_in(capacity, AllocInit::Zeroed, alloc, elem_layout) { |
| 448 | Ok(res) => res, |
| 449 | Err(err) => handle_error(err), |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | fn try_allocate_in( |
| 454 | capacity: usize, |
| 455 | init: AllocInit, |
| 456 | alloc: A, |
| 457 | elem_layout: Layout, |
| 458 | ) -> Result<Self, TryReserveError> { |
| 459 | // We avoid `unwrap_or_else` here because it bloats the amount of |
| 460 | // LLVM IR generated. |
| 461 | let layout = match layout_array(capacity, elem_layout) { |
| 462 | Ok(layout) => layout, |
| 463 | Err(_) => return Err(CapacityOverflow.into()), |
| 464 | }; |
| 465 | |
| 466 | // Don't allocate here because `Drop` will not deallocate when `capacity` is 0. |
| 467 | if layout.size() == 0 { |
| 468 | return Ok(Self::new_in(alloc, elem_layout.alignment())); |
| 469 | } |
| 470 | |
| 471 | if let Err(err) = alloc_guard(layout.size()) { |
| 472 | return Err(err); |
| 473 | } |
| 474 | |
| 475 | let result = match init { |
| 476 | AllocInit::Uninitialized => alloc.allocate(layout), |
| 477 | #[cfg (not(no_global_oom_handling))] |
| 478 | AllocInit::Zeroed => alloc.allocate_zeroed(layout), |
| 479 | }; |
| 480 | let ptr = match result { |
| 481 | Ok(ptr) => ptr, |
| 482 | Err(_) => return Err(AllocError { layout, non_exhaustive: () }.into()), |
| 483 | }; |
| 484 | |
| 485 | // Allocators currently return a `NonNull<[u8]>` whose length |
| 486 | // matches the size requested. If that ever changes, the capacity |
| 487 | // here should change to `ptr.len() / size_of::<T>()`. |
| 488 | Ok(Self { |
| 489 | ptr: Unique::from(ptr.cast()), |
| 490 | cap: unsafe { Cap::new_unchecked(capacity) }, |
| 491 | alloc, |
| 492 | }) |
| 493 | } |
| 494 | |
| 495 | #[inline ] |
| 496 | unsafe fn from_raw_parts_in(ptr: *mut u8, cap: Cap, alloc: A) -> Self { |
| 497 | Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap, alloc } |
| 498 | } |
| 499 | |
| 500 | #[inline ] |
| 501 | unsafe fn from_nonnull_in(ptr: NonNull<u8>, cap: Cap, alloc: A) -> Self { |
| 502 | Self { ptr: Unique::from(ptr), cap, alloc } |
| 503 | } |
| 504 | |
| 505 | #[inline ] |
| 506 | const fn ptr<T>(&self) -> *mut T { |
| 507 | self.non_null::<T>().as_ptr() |
| 508 | } |
| 509 | |
| 510 | #[inline ] |
| 511 | const fn non_null<T>(&self) -> NonNull<T> { |
| 512 | self.ptr.cast().as_non_null_ptr() |
| 513 | } |
| 514 | |
| 515 | #[inline ] |
| 516 | const fn capacity(&self, elem_size: usize) -> usize { |
| 517 | if elem_size == 0 { usize::MAX } else { self.cap.as_inner() } |
| 518 | } |
| 519 | |
| 520 | #[inline ] |
| 521 | fn allocator(&self) -> &A { |
| 522 | &self.alloc |
| 523 | } |
| 524 | |
| 525 | #[inline ] |
| 526 | fn current_memory(&self, elem_layout: Layout) -> Option<(NonNull<u8>, Layout)> { |
| 527 | if elem_layout.size() == 0 || self.cap.as_inner() == 0 { |
| 528 | None |
| 529 | } else { |
| 530 | // We could use Layout::array here which ensures the absence of isize and usize overflows |
| 531 | // and could hypothetically handle differences between stride and size, but this memory |
| 532 | // has already been allocated so we know it can't overflow and currently Rust does not |
| 533 | // support such types. So we can do better by skipping some checks and avoid an unwrap. |
| 534 | unsafe { |
| 535 | let alloc_size = elem_layout.size().unchecked_mul(self.cap.as_inner()); |
| 536 | let layout = Layout::from_size_align_unchecked(alloc_size, elem_layout.align()); |
| 537 | Some((self.ptr.into(), layout)) |
| 538 | } |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | #[cfg (not(no_global_oom_handling))] |
| 543 | #[inline ] |
| 544 | #[track_caller ] |
| 545 | fn reserve(&mut self, len: usize, additional: usize, elem_layout: Layout) { |
| 546 | // Callers expect this function to be very cheap when there is already sufficient capacity. |
| 547 | // Therefore, we move all the resizing and error-handling logic from grow_amortized and |
| 548 | // handle_reserve behind a call, while making sure that this function is likely to be |
| 549 | // inlined as just a comparison and a call if the comparison fails. |
| 550 | #[cold ] |
| 551 | fn do_reserve_and_handle<A: Allocator>( |
| 552 | slf: &mut RawVecInner<A>, |
| 553 | len: usize, |
| 554 | additional: usize, |
| 555 | elem_layout: Layout, |
| 556 | ) { |
| 557 | if let Err(err) = slf.grow_amortized(len, additional, elem_layout) { |
| 558 | handle_error(err); |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | if self.needs_to_grow(len, additional, elem_layout) { |
| 563 | do_reserve_and_handle(self, len, additional, elem_layout); |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | #[cfg (not(no_global_oom_handling))] |
| 568 | #[inline ] |
| 569 | #[track_caller ] |
| 570 | fn grow_one(&mut self, elem_layout: Layout) { |
| 571 | if let Err(err) = self.grow_amortized(self.cap.as_inner(), 1, elem_layout) { |
| 572 | handle_error(err); |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | fn try_reserve( |
| 577 | &mut self, |
| 578 | len: usize, |
| 579 | additional: usize, |
| 580 | elem_layout: Layout, |
| 581 | ) -> Result<(), TryReserveError> { |
| 582 | if self.needs_to_grow(len, additional, elem_layout) { |
| 583 | self.grow_amortized(len, additional, elem_layout)?; |
| 584 | } |
| 585 | unsafe { |
| 586 | // Inform the optimizer that the reservation has succeeded or wasn't needed |
| 587 | hint::assert_unchecked(!self.needs_to_grow(len, additional, elem_layout)); |
| 588 | } |
| 589 | Ok(()) |
| 590 | } |
| 591 | |
| 592 | #[cfg (not(no_global_oom_handling))] |
| 593 | #[track_caller ] |
| 594 | fn reserve_exact(&mut self, len: usize, additional: usize, elem_layout: Layout) { |
| 595 | if let Err(err) = self.try_reserve_exact(len, additional, elem_layout) { |
| 596 | handle_error(err); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | fn try_reserve_exact( |
| 601 | &mut self, |
| 602 | len: usize, |
| 603 | additional: usize, |
| 604 | elem_layout: Layout, |
| 605 | ) -> Result<(), TryReserveError> { |
| 606 | if self.needs_to_grow(len, additional, elem_layout) { |
| 607 | self.grow_exact(len, additional, elem_layout)?; |
| 608 | } |
| 609 | unsafe { |
| 610 | // Inform the optimizer that the reservation has succeeded or wasn't needed |
| 611 | hint::assert_unchecked(!self.needs_to_grow(len, additional, elem_layout)); |
| 612 | } |
| 613 | Ok(()) |
| 614 | } |
| 615 | |
| 616 | #[cfg (not(no_global_oom_handling))] |
| 617 | #[inline ] |
| 618 | #[track_caller ] |
| 619 | fn shrink_to_fit(&mut self, cap: usize, elem_layout: Layout) { |
| 620 | if let Err(err) = self.shrink(cap, elem_layout) { |
| 621 | handle_error(err); |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | #[inline ] |
| 626 | fn needs_to_grow(&self, len: usize, additional: usize, elem_layout: Layout) -> bool { |
| 627 | additional > self.capacity(elem_layout.size()).wrapping_sub(len) |
| 628 | } |
| 629 | |
| 630 | #[inline ] |
| 631 | unsafe fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) { |
| 632 | // Allocators currently return a `NonNull<[u8]>` whose length matches |
| 633 | // the size requested. If that ever changes, the capacity here should |
| 634 | // change to `ptr.len() / size_of::<T>()`. |
| 635 | self.ptr = Unique::from(ptr.cast()); |
| 636 | self.cap = unsafe { Cap::new_unchecked(cap) }; |
| 637 | } |
| 638 | |
| 639 | fn grow_amortized( |
| 640 | &mut self, |
| 641 | len: usize, |
| 642 | additional: usize, |
| 643 | elem_layout: Layout, |
| 644 | ) -> Result<(), TryReserveError> { |
| 645 | // This is ensured by the calling contexts. |
| 646 | debug_assert!(additional > 0); |
| 647 | |
| 648 | if elem_layout.size() == 0 { |
| 649 | // Since we return a capacity of `usize::MAX` when `elem_size` is |
| 650 | // 0, getting to here necessarily means the `RawVec` is overfull. |
| 651 | return Err(CapacityOverflow.into()); |
| 652 | } |
| 653 | |
| 654 | // Nothing we can really do about these checks, sadly. |
| 655 | let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?; |
| 656 | |
| 657 | // This guarantees exponential growth. The doubling cannot overflow |
| 658 | // because `cap <= isize::MAX` and the type of `cap` is `usize`. |
| 659 | let cap = cmp::max(self.cap.as_inner() * 2, required_cap); |
| 660 | let cap = cmp::max(min_non_zero_cap(elem_layout.size()), cap); |
| 661 | |
| 662 | let new_layout = layout_array(cap, elem_layout)?; |
| 663 | |
| 664 | let ptr = finish_grow(new_layout, self.current_memory(elem_layout), &mut self.alloc)?; |
| 665 | // SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than `isize::MAX` items |
| 666 | |
| 667 | unsafe { self.set_ptr_and_cap(ptr, cap) }; |
| 668 | Ok(()) |
| 669 | } |
| 670 | |
| 671 | fn grow_exact( |
| 672 | &mut self, |
| 673 | len: usize, |
| 674 | additional: usize, |
| 675 | elem_layout: Layout, |
| 676 | ) -> Result<(), TryReserveError> { |
| 677 | if elem_layout.size() == 0 { |
| 678 | // Since we return a capacity of `usize::MAX` when the type size is |
| 679 | // 0, getting to here necessarily means the `RawVec` is overfull. |
| 680 | return Err(CapacityOverflow.into()); |
| 681 | } |
| 682 | |
| 683 | let cap = len.checked_add(additional).ok_or(CapacityOverflow)?; |
| 684 | let new_layout = layout_array(cap, elem_layout)?; |
| 685 | |
| 686 | let ptr = finish_grow(new_layout, self.current_memory(elem_layout), &mut self.alloc)?; |
| 687 | // SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than `isize::MAX` items |
| 688 | unsafe { |
| 689 | self.set_ptr_and_cap(ptr, cap); |
| 690 | } |
| 691 | Ok(()) |
| 692 | } |
| 693 | |
| 694 | #[cfg (not(no_global_oom_handling))] |
| 695 | #[inline ] |
| 696 | fn shrink(&mut self, cap: usize, elem_layout: Layout) -> Result<(), TryReserveError> { |
| 697 | assert!(cap <= self.capacity(elem_layout.size()), "Tried to shrink to a larger capacity" ); |
| 698 | // SAFETY: Just checked this isn't trying to grow |
| 699 | unsafe { self.shrink_unchecked(cap, elem_layout) } |
| 700 | } |
| 701 | |
| 702 | /// `shrink`, but without the capacity check. |
| 703 | /// |
| 704 | /// This is split out so that `shrink` can inline the check, since it |
| 705 | /// optimizes out in things like `shrink_to_fit`, without needing to |
| 706 | /// also inline all this code, as doing that ends up failing the |
| 707 | /// `vec-shrink-panic` codegen test when `shrink_to_fit` ends up being too |
| 708 | /// big for LLVM to be willing to inline. |
| 709 | /// |
| 710 | /// # Safety |
| 711 | /// `cap <= self.capacity()` |
| 712 | #[cfg (not(no_global_oom_handling))] |
| 713 | unsafe fn shrink_unchecked( |
| 714 | &mut self, |
| 715 | cap: usize, |
| 716 | elem_layout: Layout, |
| 717 | ) -> Result<(), TryReserveError> { |
| 718 | let (ptr, layout) = |
| 719 | if let Some(mem) = self.current_memory(elem_layout) { mem } else { return Ok(()) }; |
| 720 | |
| 721 | // If shrinking to 0, deallocate the buffer. We don't reach this point |
| 722 | // for the T::IS_ZST case since current_memory() will have returned |
| 723 | // None. |
| 724 | if cap == 0 { |
| 725 | unsafe { self.alloc.deallocate(ptr, layout) }; |
| 726 | self.ptr = |
| 727 | unsafe { Unique::new_unchecked(ptr::without_provenance_mut(elem_layout.align())) }; |
| 728 | self.cap = ZERO_CAP; |
| 729 | } else { |
| 730 | let ptr = unsafe { |
| 731 | // Layout cannot overflow here because it would have |
| 732 | // overflowed earlier when capacity was larger. |
| 733 | let new_size = elem_layout.size().unchecked_mul(cap); |
| 734 | let new_layout = Layout::from_size_align_unchecked(new_size, layout.align()); |
| 735 | self.alloc |
| 736 | .shrink(ptr, layout, new_layout) |
| 737 | .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })? |
| 738 | }; |
| 739 | // SAFETY: if the allocation is valid, then the capacity is too |
| 740 | unsafe { |
| 741 | self.set_ptr_and_cap(ptr, cap); |
| 742 | } |
| 743 | } |
| 744 | Ok(()) |
| 745 | } |
| 746 | |
| 747 | /// # Safety |
| 748 | /// |
| 749 | /// This function deallocates the owned allocation, but does not update `ptr` or `cap` to |
| 750 | /// prevent double-free or use-after-free. Essentially, do not do anything with the caller |
| 751 | /// after this function returns. |
| 752 | /// Ideally this function would take `self` by move, but it cannot because it exists to be |
| 753 | /// called from a `Drop` impl. |
| 754 | unsafe fn deallocate(&mut self, elem_layout: Layout) { |
| 755 | if let Some((ptr, layout)) = self.current_memory(elem_layout) { |
| 756 | unsafe { |
| 757 | self.alloc.deallocate(ptr, layout); |
| 758 | } |
| 759 | } |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | // not marked inline(never) since we want optimizers to be able to observe the specifics of this |
| 764 | // function, see tests/codegen/vec-reserve-extend.rs. |
| 765 | #[cold ] |
| 766 | fn finish_grow<A>( |
| 767 | new_layout: Layout, |
| 768 | current_memory: Option<(NonNull<u8>, Layout)>, |
| 769 | alloc: &mut A, |
| 770 | ) -> Result<NonNull<[u8]>, TryReserveError> |
| 771 | where |
| 772 | A: Allocator, |
| 773 | { |
| 774 | alloc_guard(alloc_size:new_layout.size())?; |
| 775 | |
| 776 | let memory: Result, AllocError> = if let Some((ptr: NonNull, old_layout: Layout)) = current_memory { |
| 777 | debug_assert_eq!(old_layout.align(), new_layout.align()); |
| 778 | unsafe { |
| 779 | // The allocator checks for alignment equality |
| 780 | hint::assert_unchecked(cond:old_layout.align() == new_layout.align()); |
| 781 | alloc.grow(ptr, old_layout, new_layout) |
| 782 | } |
| 783 | } else { |
| 784 | alloc.allocate(new_layout) |
| 785 | }; |
| 786 | |
| 787 | memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into()) |
| 788 | } |
| 789 | |
| 790 | // Central function for reserve error handling. |
| 791 | #[cfg (not(no_global_oom_handling))] |
| 792 | #[cold ] |
| 793 | #[optimize (size)] |
| 794 | #[track_caller ] |
| 795 | fn handle_error(e: TryReserveError) -> ! { |
| 796 | match e.kind() { |
| 797 | CapacityOverflow => capacity_overflow(), |
| 798 | AllocError { layout: Layout, .. } => handle_alloc_error(layout), |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | // We need to guarantee the following: |
| 803 | // * We don't ever allocate `> isize::MAX` byte-size objects. |
| 804 | // * We don't overflow `usize::MAX` and actually allocate too little. |
| 805 | // |
| 806 | // On 64-bit we just need to check for overflow since trying to allocate |
| 807 | // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add |
| 808 | // an extra guard for this in case we're running on a platform which can use |
| 809 | // all 4GB in user-space, e.g., PAE or x32. |
| 810 | #[inline ] |
| 811 | fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> { |
| 812 | if usize::BITS < 64 && alloc_size > isize::MAX as usize { |
| 813 | Err(CapacityOverflow.into()) |
| 814 | } else { |
| 815 | Ok(()) |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | #[inline ] |
| 820 | fn layout_array(cap: usize, elem_layout: Layout) -> Result<Layout, TryReserveError> { |
| 821 | elem_layout.repeat(cap).map(|(layout, _pad)| layout).map_err(|_| CapacityOverflow.into()) |
| 822 | } |
| 823 | |