1 | |
---|---|
2 | use std::cmp; |
3 | use std::iter; |
4 | use std::mem; |
5 | use std::ops::{Bound, Deref, DerefMut, RangeBounds}; |
6 | use std::ptr; |
7 | use std::slice; |
8 | |
9 | // extra traits |
10 | use std::borrow::{Borrow, BorrowMut}; |
11 | use std::hash::{Hash, Hasher}; |
12 | use std::fmt; |
13 | |
14 | #[cfg(feature= "std")] |
15 | use std::io; |
16 | |
17 | use std::mem::ManuallyDrop; |
18 | use std::mem::MaybeUninit; |
19 | |
20 | #[cfg(feature= "serde")] |
21 | use serde::{Serialize, Deserialize, Serializer, Deserializer}; |
22 | |
23 | use crate::LenUint; |
24 | use crate::errors::CapacityError; |
25 | use crate::arrayvec_impl::ArrayVecImpl; |
26 | use crate::utils::MakeMaybeUninit; |
27 | |
28 | /// A vector with a fixed capacity. |
29 | /// |
30 | /// The `ArrayVec` is a vector backed by a fixed size array. It keeps track of |
31 | /// the number of initialized elements. The `ArrayVec<T, CAP>` is parameterized |
32 | /// by `T` for the element type and `CAP` for the maximum capacity. |
33 | /// |
34 | /// `CAP` is of type `usize` but is range limited to `u32::MAX`; attempting to create larger |
35 | /// arrayvecs with larger capacity will panic. |
36 | /// |
37 | /// The vector is a contiguous value (storing the elements inline) that you can store directly on |
38 | /// the stack if needed. |
39 | /// |
40 | /// It offers a simple API but also dereferences to a slice, so that the full slice API is |
41 | /// available. The ArrayVec can be converted into a by value iterator. |
42 | #[repr(C)] |
43 | pub struct ArrayVec<T, const CAP: usize> { |
44 | len: LenUint, |
45 | // the `len` first elements of the array are initialized |
46 | xs: [MaybeUninit<T>; CAP], |
47 | } |
48 | |
49 | impl<T, const CAP: usize> Drop for ArrayVec<T, CAP> { |
50 | fn drop(&mut self) { |
51 | self.clear(); |
52 | |
53 | // MaybeUninit inhibits array's drop |
54 | } |
55 | } |
56 | |
57 | macro_rules! panic_oob { |
58 | ($method_name:expr, $index:expr, $len:expr) => { |
59 | panic!(concat!("ArrayVec::", $method_name, ": index {} is out of bounds in vector of length {}"), |
60 | $index, $len) |
61 | } |
62 | } |
63 | |
64 | impl<T, const CAP: usize> ArrayVec<T, CAP> { |
65 | /// Capacity |
66 | const CAPACITY: usize = CAP; |
67 | |
68 | /// Create a new empty `ArrayVec`. |
69 | /// |
70 | /// The maximum capacity is given by the generic parameter `CAP`. |
71 | /// |
72 | /// ``` |
73 | /// use arrayvec::ArrayVec; |
74 | /// |
75 | /// let mut array = ArrayVec::<_, 16>::new(); |
76 | /// array.push(1); |
77 | /// array.push(2); |
78 | /// assert_eq!(&array[..], &[1, 2]); |
79 | /// assert_eq!(array.capacity(), 16); |
80 | /// ``` |
81 | #[inline] |
82 | #[track_caller] |
83 | pub fn new() -> ArrayVec<T, CAP> { |
84 | assert_capacity_limit!(CAP); |
85 | unsafe { |
86 | ArrayVec { xs: MaybeUninit::uninit().assume_init(), len: 0 } |
87 | } |
88 | } |
89 | |
90 | /// Create a new empty `ArrayVec` (const fn). |
91 | /// |
92 | /// The maximum capacity is given by the generic parameter `CAP`. |
93 | /// |
94 | /// ``` |
95 | /// use arrayvec::ArrayVec; |
96 | /// |
97 | /// static ARRAY: ArrayVec<u8, 1024> = ArrayVec::new_const(); |
98 | /// ``` |
99 | pub const fn new_const() -> ArrayVec<T, CAP> { |
100 | assert_capacity_limit_const!(CAP); |
101 | ArrayVec { xs: MakeMaybeUninit::ARRAY, len: 0 } |
102 | } |
103 | |
104 | /// Return the number of elements in the `ArrayVec`. |
105 | /// |
106 | /// ``` |
107 | /// use arrayvec::ArrayVec; |
108 | /// |
109 | /// let mut array = ArrayVec::from([1, 2, 3]); |
110 | /// array.pop(); |
111 | /// assert_eq!(array.len(), 2); |
112 | /// ``` |
113 | #[inline(always)] |
114 | pub const fn len(&self) -> usize { self.len as usize } |
115 | |
116 | /// Returns whether the `ArrayVec` is empty. |
117 | /// |
118 | /// ``` |
119 | /// use arrayvec::ArrayVec; |
120 | /// |
121 | /// let mut array = ArrayVec::from([1]); |
122 | /// array.pop(); |
123 | /// assert_eq!(array.is_empty(), true); |
124 | /// ``` |
125 | #[inline] |
126 | pub const fn is_empty(&self) -> bool { self.len() == 0 } |
127 | |
128 | /// Return the capacity of the `ArrayVec`. |
129 | /// |
130 | /// ``` |
131 | /// use arrayvec::ArrayVec; |
132 | /// |
133 | /// let array = ArrayVec::from([1, 2, 3]); |
134 | /// assert_eq!(array.capacity(), 3); |
135 | /// ``` |
136 | #[inline(always)] |
137 | pub const fn capacity(&self) -> usize { CAP } |
138 | |
139 | /// Return true if the `ArrayVec` is completely filled to its capacity, false otherwise. |
140 | /// |
141 | /// ``` |
142 | /// use arrayvec::ArrayVec; |
143 | /// |
144 | /// let mut array = ArrayVec::<_, 1>::new(); |
145 | /// assert!(!array.is_full()); |
146 | /// array.push(1); |
147 | /// assert!(array.is_full()); |
148 | /// ``` |
149 | pub const fn is_full(&self) -> bool { self.len() == self.capacity() } |
150 | |
151 | /// Returns the capacity left in the `ArrayVec`. |
152 | /// |
153 | /// ``` |
154 | /// use arrayvec::ArrayVec; |
155 | /// |
156 | /// let mut array = ArrayVec::from([1, 2, 3]); |
157 | /// array.pop(); |
158 | /// assert_eq!(array.remaining_capacity(), 1); |
159 | /// ``` |
160 | pub const fn remaining_capacity(&self) -> usize { |
161 | self.capacity() - self.len() |
162 | } |
163 | |
164 | /// Push `element` to the end of the vector. |
165 | /// |
166 | /// ***Panics*** if the vector is already full. |
167 | /// |
168 | /// ``` |
169 | /// use arrayvec::ArrayVec; |
170 | /// |
171 | /// let mut array = ArrayVec::<_, 2>::new(); |
172 | /// |
173 | /// array.push(1); |
174 | /// array.push(2); |
175 | /// |
176 | /// assert_eq!(&array[..], &[1, 2]); |
177 | /// ``` |
178 | #[track_caller] |
179 | pub fn push(&mut self, element: T) { |
180 | ArrayVecImpl::push(self, element) |
181 | } |
182 | |
183 | /// Push `element` to the end of the vector. |
184 | /// |
185 | /// Return `Ok` if the push succeeds, or return an error if the vector |
186 | /// is already full. |
187 | /// |
188 | /// ``` |
189 | /// use arrayvec::ArrayVec; |
190 | /// |
191 | /// let mut array = ArrayVec::<_, 2>::new(); |
192 | /// |
193 | /// let push1 = array.try_push(1); |
194 | /// let push2 = array.try_push(2); |
195 | /// |
196 | /// assert!(push1.is_ok()); |
197 | /// assert!(push2.is_ok()); |
198 | /// |
199 | /// assert_eq!(&array[..], &[1, 2]); |
200 | /// |
201 | /// let overflow = array.try_push(3); |
202 | /// |
203 | /// assert!(overflow.is_err()); |
204 | /// ``` |
205 | pub fn try_push(&mut self, element: T) -> Result<(), CapacityError<T>> { |
206 | ArrayVecImpl::try_push(self, element) |
207 | } |
208 | |
209 | /// Push `element` to the end of the vector without checking the capacity. |
210 | /// |
211 | /// It is up to the caller to ensure the capacity of the vector is |
212 | /// sufficiently large. |
213 | /// |
214 | /// This method uses *debug assertions* to check that the arrayvec is not full. |
215 | /// |
216 | /// ``` |
217 | /// use arrayvec::ArrayVec; |
218 | /// |
219 | /// let mut array = ArrayVec::<_, 2>::new(); |
220 | /// |
221 | /// if array.len() + 2 <= array.capacity() { |
222 | /// unsafe { |
223 | /// array.push_unchecked(1); |
224 | /// array.push_unchecked(2); |
225 | /// } |
226 | /// } |
227 | /// |
228 | /// assert_eq!(&array[..], &[1, 2]); |
229 | /// ``` |
230 | pub unsafe fn push_unchecked(&mut self, element: T) { |
231 | ArrayVecImpl::push_unchecked(self, element) |
232 | } |
233 | |
234 | /// Shortens the vector, keeping the first `len` elements and dropping |
235 | /// the rest. |
236 | /// |
237 | /// If `len` is greater than the vector’s current length this has no |
238 | /// effect. |
239 | /// |
240 | /// ``` |
241 | /// use arrayvec::ArrayVec; |
242 | /// |
243 | /// let mut array = ArrayVec::from([1, 2, 3, 4, 5]); |
244 | /// array.truncate(3); |
245 | /// assert_eq!(&array[..], &[1, 2, 3]); |
246 | /// array.truncate(4); |
247 | /// assert_eq!(&array[..], &[1, 2, 3]); |
248 | /// ``` |
249 | pub fn truncate(&mut self, new_len: usize) { |
250 | ArrayVecImpl::truncate(self, new_len) |
251 | } |
252 | |
253 | /// Remove all elements in the vector. |
254 | pub fn clear(&mut self) { |
255 | ArrayVecImpl::clear(self) |
256 | } |
257 | |
258 | |
259 | /// Get pointer to where element at `index` would be |
260 | unsafe fn get_unchecked_ptr(&mut self, index: usize) -> *mut T { |
261 | self.as_mut_ptr().add(index) |
262 | } |
263 | |
264 | /// Insert `element` at position `index`. |
265 | /// |
266 | /// Shift up all elements after `index`. |
267 | /// |
268 | /// It is an error if the index is greater than the length or if the |
269 | /// arrayvec is full. |
270 | /// |
271 | /// ***Panics*** if the array is full or the `index` is out of bounds. See |
272 | /// `try_insert` for fallible version. |
273 | /// |
274 | /// ``` |
275 | /// use arrayvec::ArrayVec; |
276 | /// |
277 | /// let mut array = ArrayVec::<_, 2>::new(); |
278 | /// |
279 | /// array.insert(0, "x"); |
280 | /// array.insert(0, "y"); |
281 | /// assert_eq!(&array[..], &["y", "x"]); |
282 | /// |
283 | /// ``` |
284 | #[track_caller] |
285 | pub fn insert(&mut self, index: usize, element: T) { |
286 | self.try_insert(index, element).unwrap() |
287 | } |
288 | |
289 | /// Insert `element` at position `index`. |
290 | /// |
291 | /// Shift up all elements after `index`; the `index` must be less than |
292 | /// or equal to the length. |
293 | /// |
294 | /// Returns an error if vector is already at full capacity. |
295 | /// |
296 | /// ***Panics*** `index` is out of bounds. |
297 | /// |
298 | /// ``` |
299 | /// use arrayvec::ArrayVec; |
300 | /// |
301 | /// let mut array = ArrayVec::<_, 2>::new(); |
302 | /// |
303 | /// assert!(array.try_insert(0, "x").is_ok()); |
304 | /// assert!(array.try_insert(0, "y").is_ok()); |
305 | /// assert!(array.try_insert(0, "z").is_err()); |
306 | /// assert_eq!(&array[..], &["y", "x"]); |
307 | /// |
308 | /// ``` |
309 | pub fn try_insert(&mut self, index: usize, element: T) -> Result<(), CapacityError<T>> { |
310 | if index > self.len() { |
311 | panic_oob!("try_insert", index, self.len()) |
312 | } |
313 | if self.len() == self.capacity() { |
314 | return Err(CapacityError::new(element)); |
315 | } |
316 | let len = self.len(); |
317 | |
318 | // follows is just like Vec<T> |
319 | unsafe { // infallible |
320 | // The spot to put the new value |
321 | { |
322 | let p: *mut _ = self.get_unchecked_ptr(index); |
323 | // Shift everything over to make space. (Duplicating the |
324 | // `index`th element into two consecutive places.) |
325 | ptr::copy(p, p.offset(1), len - index); |
326 | // Write it in, overwriting the first copy of the `index`th |
327 | // element. |
328 | ptr::write(p, element); |
329 | } |
330 | self.set_len(len + 1); |
331 | } |
332 | Ok(()) |
333 | } |
334 | |
335 | /// Remove the last element in the vector and return it. |
336 | /// |
337 | /// Return `Some(` *element* `)` if the vector is non-empty, else `None`. |
338 | /// |
339 | /// ``` |
340 | /// use arrayvec::ArrayVec; |
341 | /// |
342 | /// let mut array = ArrayVec::<_, 2>::new(); |
343 | /// |
344 | /// array.push(1); |
345 | /// |
346 | /// assert_eq!(array.pop(), Some(1)); |
347 | /// assert_eq!(array.pop(), None); |
348 | /// ``` |
349 | pub fn pop(&mut self) -> Option<T> { |
350 | ArrayVecImpl::pop(self) |
351 | } |
352 | |
353 | /// Remove the element at `index` and swap the last element into its place. |
354 | /// |
355 | /// This operation is O(1). |
356 | /// |
357 | /// Return the *element* if the index is in bounds, else panic. |
358 | /// |
359 | /// ***Panics*** if the `index` is out of bounds. |
360 | /// |
361 | /// ``` |
362 | /// use arrayvec::ArrayVec; |
363 | /// |
364 | /// let mut array = ArrayVec::from([1, 2, 3]); |
365 | /// |
366 | /// assert_eq!(array.swap_remove(0), 1); |
367 | /// assert_eq!(&array[..], &[3, 2]); |
368 | /// |
369 | /// assert_eq!(array.swap_remove(1), 2); |
370 | /// assert_eq!(&array[..], &[3]); |
371 | /// ``` |
372 | pub fn swap_remove(&mut self, index: usize) -> T { |
373 | self.swap_pop(index) |
374 | .unwrap_or_else(|| { |
375 | panic_oob!("swap_remove", index, self.len()) |
376 | }) |
377 | } |
378 | |
379 | /// Remove the element at `index` and swap the last element into its place. |
380 | /// |
381 | /// This is a checked version of `.swap_remove`. |
382 | /// This operation is O(1). |
383 | /// |
384 | /// Return `Some(` *element* `)` if the index is in bounds, else `None`. |
385 | /// |
386 | /// ``` |
387 | /// use arrayvec::ArrayVec; |
388 | /// |
389 | /// let mut array = ArrayVec::from([1, 2, 3]); |
390 | /// |
391 | /// assert_eq!(array.swap_pop(0), Some(1)); |
392 | /// assert_eq!(&array[..], &[3, 2]); |
393 | /// |
394 | /// assert_eq!(array.swap_pop(10), None); |
395 | /// ``` |
396 | pub fn swap_pop(&mut self, index: usize) -> Option<T> { |
397 | let len = self.len(); |
398 | if index >= len { |
399 | return None; |
400 | } |
401 | self.swap(index, len - 1); |
402 | self.pop() |
403 | } |
404 | |
405 | /// Remove the element at `index` and shift down the following elements. |
406 | /// |
407 | /// The `index` must be strictly less than the length of the vector. |
408 | /// |
409 | /// ***Panics*** if the `index` is out of bounds. |
410 | /// |
411 | /// ``` |
412 | /// use arrayvec::ArrayVec; |
413 | /// |
414 | /// let mut array = ArrayVec::from([1, 2, 3]); |
415 | /// |
416 | /// let removed_elt = array.remove(0); |
417 | /// assert_eq!(removed_elt, 1); |
418 | /// assert_eq!(&array[..], &[2, 3]); |
419 | /// ``` |
420 | pub fn remove(&mut self, index: usize) -> T { |
421 | self.pop_at(index) |
422 | .unwrap_or_else(|| { |
423 | panic_oob!("remove", index, self.len()) |
424 | }) |
425 | } |
426 | |
427 | /// Remove the element at `index` and shift down the following elements. |
428 | /// |
429 | /// This is a checked version of `.remove(index)`. Returns `None` if there |
430 | /// is no element at `index`. Otherwise, return the element inside `Some`. |
431 | /// |
432 | /// ``` |
433 | /// use arrayvec::ArrayVec; |
434 | /// |
435 | /// let mut array = ArrayVec::from([1, 2, 3]); |
436 | /// |
437 | /// assert!(array.pop_at(0).is_some()); |
438 | /// assert_eq!(&array[..], &[2, 3]); |
439 | /// |
440 | /// assert!(array.pop_at(2).is_none()); |
441 | /// assert!(array.pop_at(10).is_none()); |
442 | /// ``` |
443 | pub fn pop_at(&mut self, index: usize) -> Option<T> { |
444 | if index >= self.len() { |
445 | None |
446 | } else { |
447 | self.drain(index..index + 1).next() |
448 | } |
449 | } |
450 | |
451 | /// Retains only the elements specified by the predicate. |
452 | /// |
453 | /// In other words, remove all elements `e` such that `f(&mut e)` returns false. |
454 | /// This method operates in place and preserves the order of the retained |
455 | /// elements. |
456 | /// |
457 | /// ``` |
458 | /// use arrayvec::ArrayVec; |
459 | /// |
460 | /// let mut array = ArrayVec::from([1, 2, 3, 4]); |
461 | /// array.retain(|x| *x & 1 != 0 ); |
462 | /// assert_eq!(&array[..], &[1, 3]); |
463 | /// ``` |
464 | pub fn retain<F>(&mut self, mut f: F) |
465 | where F: FnMut(&mut T) -> bool |
466 | { |
467 | // Check the implementation of |
468 | // https://doc.rust-lang.org/std/vec/struct.Vec.html#method.retain |
469 | // for safety arguments (especially regarding panics in f and when |
470 | // dropping elements). Implementation closely mirrored here. |
471 | |
472 | let original_len = self.len(); |
473 | unsafe { self.set_len(0) }; |
474 | |
475 | struct BackshiftOnDrop<'a, T, const CAP: usize> { |
476 | v: &'a mut ArrayVec<T, CAP>, |
477 | processed_len: usize, |
478 | deleted_cnt: usize, |
479 | original_len: usize, |
480 | } |
481 | |
482 | impl<T, const CAP: usize> Drop for BackshiftOnDrop<'_, T, CAP> { |
483 | fn drop(&mut self) { |
484 | if self.deleted_cnt > 0 { |
485 | unsafe { |
486 | ptr::copy( |
487 | self.v.as_ptr().add(self.processed_len), |
488 | self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt), |
489 | self.original_len - self.processed_len |
490 | ); |
491 | } |
492 | } |
493 | unsafe { |
494 | self.v.set_len(self.original_len - self.deleted_cnt); |
495 | } |
496 | } |
497 | } |
498 | |
499 | let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len }; |
500 | |
501 | #[inline(always)] |
502 | fn process_one<F: FnMut(&mut T) -> bool, T, const CAP: usize, const DELETED: bool>( |
503 | f: &mut F, |
504 | g: &mut BackshiftOnDrop<'_, T, CAP> |
505 | ) -> bool { |
506 | let cur = unsafe { g.v.as_mut_ptr().add(g.processed_len) }; |
507 | if !f(unsafe { &mut *cur }) { |
508 | g.processed_len += 1; |
509 | g.deleted_cnt += 1; |
510 | unsafe { ptr::drop_in_place(cur) }; |
511 | return false; |
512 | } |
513 | if DELETED { |
514 | unsafe { |
515 | let hole_slot = cur.sub(g.deleted_cnt); |
516 | ptr::copy_nonoverlapping(cur, hole_slot, 1); |
517 | } |
518 | } |
519 | g.processed_len += 1; |
520 | true |
521 | } |
522 | |
523 | // Stage 1: Nothing was deleted. |
524 | while g.processed_len != original_len { |
525 | if !process_one::<F, T, CAP, false>(&mut f, &mut g) { |
526 | break; |
527 | } |
528 | } |
529 | |
530 | // Stage 2: Some elements were deleted. |
531 | while g.processed_len != original_len { |
532 | process_one::<F, T, CAP, true>(&mut f, &mut g); |
533 | } |
534 | |
535 | drop(g); |
536 | } |
537 | |
538 | /// Set the vector’s length without dropping or moving out elements |
539 | /// |
540 | /// This method is `unsafe` because it changes the notion of the |
541 | /// number of “valid” elements in the vector. Use with care. |
542 | /// |
543 | /// This method uses *debug assertions* to check that `length` is |
544 | /// not greater than the capacity. |
545 | pub unsafe fn set_len(&mut self, length: usize) { |
546 | // type invariant that capacity always fits in LenUint |
547 | debug_assert!(length <= self.capacity()); |
548 | self.len = length as LenUint; |
549 | } |
550 | |
551 | /// Copy all elements from the slice and append to the `ArrayVec`. |
552 | /// |
553 | /// ``` |
554 | /// use arrayvec::ArrayVec; |
555 | /// |
556 | /// let mut vec: ArrayVec<usize, 10> = ArrayVec::new(); |
557 | /// vec.push(1); |
558 | /// vec.try_extend_from_slice(&[2, 3]).unwrap(); |
559 | /// assert_eq!(&vec[..], &[1, 2, 3]); |
560 | /// ``` |
561 | /// |
562 | /// # Errors |
563 | /// |
564 | /// This method will return an error if the capacity left (see |
565 | /// [`remaining_capacity`]) is smaller then the length of the provided |
566 | /// slice. |
567 | /// |
568 | /// [`remaining_capacity`]: #method.remaining_capacity |
569 | pub fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), CapacityError> |
570 | where T: Copy, |
571 | { |
572 | if self.remaining_capacity() < other.len() { |
573 | return Err(CapacityError::new(())); |
574 | } |
575 | |
576 | let self_len = self.len(); |
577 | let other_len = other.len(); |
578 | |
579 | unsafe { |
580 | let dst = self.get_unchecked_ptr(self_len); |
581 | ptr::copy_nonoverlapping(other.as_ptr(), dst, other_len); |
582 | self.set_len(self_len + other_len); |
583 | } |
584 | Ok(()) |
585 | } |
586 | |
587 | /// Create a draining iterator that removes the specified range in the vector |
588 | /// and yields the removed items from start to end. The element range is |
589 | /// removed even if the iterator is not consumed until the end. |
590 | /// |
591 | /// Note: It is unspecified how many elements are removed from the vector, |
592 | /// if the `Drain` value is leaked. |
593 | /// |
594 | /// **Panics** if the starting point is greater than the end point or if |
595 | /// the end point is greater than the length of the vector. |
596 | /// |
597 | /// ``` |
598 | /// use arrayvec::ArrayVec; |
599 | /// |
600 | /// let mut v1 = ArrayVec::from([1, 2, 3]); |
601 | /// let v2: ArrayVec<_, 3> = v1.drain(0..2).collect(); |
602 | /// assert_eq!(&v1[..], &[3]); |
603 | /// assert_eq!(&v2[..], &[1, 2]); |
604 | /// ``` |
605 | pub fn drain<R>(&mut self, range: R) -> Drain<T, CAP> |
606 | where R: RangeBounds<usize> |
607 | { |
608 | // Memory safety |
609 | // |
610 | // When the Drain is first created, it shortens the length of |
611 | // the source vector to make sure no uninitialized or moved-from elements |
612 | // are accessible at all if the Drain's destructor never gets to run. |
613 | // |
614 | // Drain will ptr::read out the values to remove. |
615 | // When finished, remaining tail of the vec is copied back to cover |
616 | // the hole, and the vector length is restored to the new length. |
617 | // |
618 | let len = self.len(); |
619 | let start = match range.start_bound() { |
620 | Bound::Unbounded => 0, |
621 | Bound::Included(&i) => i, |
622 | Bound::Excluded(&i) => i.saturating_add(1), |
623 | }; |
624 | let end = match range.end_bound() { |
625 | Bound::Excluded(&j) => j, |
626 | Bound::Included(&j) => j.saturating_add(1), |
627 | Bound::Unbounded => len, |
628 | }; |
629 | self.drain_range(start, end) |
630 | } |
631 | |
632 | fn drain_range(&mut self, start: usize, end: usize) -> Drain<T, CAP> |
633 | { |
634 | let len = self.len(); |
635 | |
636 | // bounds check happens here (before length is changed!) |
637 | let range_slice: *const _ = &self[start..end]; |
638 | |
639 | // Calling `set_len` creates a fresh and thus unique mutable references, making all |
640 | // older aliases we created invalid. So we cannot call that function. |
641 | self.len = start as LenUint; |
642 | |
643 | unsafe { |
644 | Drain { |
645 | tail_start: end, |
646 | tail_len: len - end, |
647 | iter: (*range_slice).iter(), |
648 | vec: self as *mut _, |
649 | } |
650 | } |
651 | } |
652 | |
653 | /// Return the inner fixed size array, if it is full to its capacity. |
654 | /// |
655 | /// Return an `Ok` value with the array if length equals capacity, |
656 | /// return an `Err` with self otherwise. |
657 | pub fn into_inner(self) -> Result<[T; CAP], Self> { |
658 | if self.len() < self.capacity() { |
659 | Err(self) |
660 | } else { |
661 | unsafe { Ok(self.into_inner_unchecked()) } |
662 | } |
663 | } |
664 | |
665 | /// Return the inner fixed size array. |
666 | /// |
667 | /// Safety: |
668 | /// This operation is safe if and only if length equals capacity. |
669 | pub unsafe fn into_inner_unchecked(self) -> [T; CAP] { |
670 | debug_assert_eq!(self.len(), self.capacity()); |
671 | let self_ = ManuallyDrop::new(self); |
672 | let array = ptr::read(self_.as_ptr() as *const [T; CAP]); |
673 | array |
674 | } |
675 | |
676 | /// Returns the ArrayVec, replacing the original with a new empty ArrayVec. |
677 | /// |
678 | /// ``` |
679 | /// use arrayvec::ArrayVec; |
680 | /// |
681 | /// let mut v = ArrayVec::from([0, 1, 2, 3]); |
682 | /// assert_eq!([0, 1, 2, 3], v.take().into_inner().unwrap()); |
683 | /// assert!(v.is_empty()); |
684 | /// ``` |
685 | pub fn take(&mut self) -> Self { |
686 | mem::replace(self, Self::new()) |
687 | } |
688 | |
689 | /// Return a slice containing all elements of the vector. |
690 | pub fn as_slice(&self) -> &[T] { |
691 | ArrayVecImpl::as_slice(self) |
692 | } |
693 | |
694 | /// Return a mutable slice containing all elements of the vector. |
695 | pub fn as_mut_slice(&mut self) -> &mut [T] { |
696 | ArrayVecImpl::as_mut_slice(self) |
697 | } |
698 | |
699 | /// Return a raw pointer to the vector's buffer. |
700 | pub fn as_ptr(&self) -> *const T { |
701 | ArrayVecImpl::as_ptr(self) |
702 | } |
703 | |
704 | /// Return a raw mutable pointer to the vector's buffer. |
705 | pub fn as_mut_ptr(&mut self) -> *mut T { |
706 | ArrayVecImpl::as_mut_ptr(self) |
707 | } |
708 | } |
709 | |
710 | impl<T, const CAP: usize> ArrayVecImpl for ArrayVec<T, CAP> { |
711 | type Item = T; |
712 | const CAPACITY: usize = CAP; |
713 | |
714 | fn len(&self) -> usize { self.len() } |
715 | |
716 | unsafe fn set_len(&mut self, length: usize) { |
717 | debug_assert!(length <= CAP); |
718 | self.len = length as LenUint; |
719 | } |
720 | |
721 | fn as_ptr(&self) -> *const Self::Item { |
722 | self.xs.as_ptr() as _ |
723 | } |
724 | |
725 | fn as_mut_ptr(&mut self) -> *mut Self::Item { |
726 | self.xs.as_mut_ptr() as _ |
727 | } |
728 | } |
729 | |
730 | impl<T, const CAP: usize> Deref for ArrayVec<T, CAP> { |
731 | type Target = [T]; |
732 | #[inline] |
733 | fn deref(&self) -> &Self::Target { |
734 | self.as_slice() |
735 | } |
736 | } |
737 | |
738 | impl<T, const CAP: usize> DerefMut for ArrayVec<T, CAP> { |
739 | #[inline] |
740 | fn deref_mut(&mut self) -> &mut Self::Target { |
741 | self.as_mut_slice() |
742 | } |
743 | } |
744 | |
745 | |
746 | /// Create an `ArrayVec` from an array. |
747 | /// |
748 | /// ``` |
749 | /// use arrayvec::ArrayVec; |
750 | /// |
751 | /// let mut array = ArrayVec::from([1, 2, 3]); |
752 | /// assert_eq!(array.len(), 3); |
753 | /// assert_eq!(array.capacity(), 3); |
754 | /// ``` |
755 | impl<T, const CAP: usize> From<[T; CAP]> for ArrayVec<T, CAP> { |
756 | #[track_caller] |
757 | fn from(array: [T; CAP]) -> Self { |
758 | let array: ManuallyDrop<[T; CAP]> = ManuallyDrop::new(array); |
759 | let mut vec: ArrayVec |
760 | unsafe { |
761 | (&*array as *const [T; CAP] as *const [MaybeUninit<T>; CAP]) |
762 | .copy_to_nonoverlapping(&mut vec.xs as *mut [MaybeUninit<T>; CAP], count:1); |
763 | vec.set_len(CAP); |
764 | } |
765 | vec |
766 | } |
767 | } |
768 | |
769 | |
770 | /// Try to create an `ArrayVec` from a slice. This will return an error if the slice was too big to |
771 | /// fit. |
772 | /// |
773 | /// ``` |
774 | /// use arrayvec::ArrayVec; |
775 | /// use std::convert::TryInto as _; |
776 | /// |
777 | /// let array: ArrayVec<_, 4> = (&[1, 2, 3] as &[_]).try_into().unwrap(); |
778 | /// assert_eq!(array.len(), 3); |
779 | /// assert_eq!(array.capacity(), 4); |
780 | /// ``` |
781 | impl<T, const CAP: usize> std::convert::TryFrom<&[T]> for ArrayVec<T, CAP> |
782 | where T: Clone, |
783 | { |
784 | type Error = CapacityError; |
785 | |
786 | fn try_from(slice: &[T]) -> Result<Self, Self::Error> { |
787 | if Self::CAPACITY < slice.len() { |
788 | Err(CapacityError::new(())) |
789 | } else { |
790 | let mut array: ArrayVec |
791 | array.extend_from_slice(slice); |
792 | Ok(array) |
793 | } |
794 | } |
795 | } |
796 | |
797 | |
798 | /// Iterate the `ArrayVec` with references to each element. |
799 | /// |
800 | /// ``` |
801 | /// use arrayvec::ArrayVec; |
802 | /// |
803 | /// let array = ArrayVec::from([1, 2, 3]); |
804 | /// |
805 | /// for elt in &array { |
806 | /// // ... |
807 | /// } |
808 | /// ``` |
809 | impl<'a, T: 'a, const CAP: usize> IntoIterator for &'a ArrayVec<T, CAP> { |
810 | type Item = &'a T; |
811 | type IntoIter = slice::Iter<'a, T>; |
812 | fn into_iter(self) -> Self::IntoIter { self.iter() } |
813 | } |
814 | |
815 | /// Iterate the `ArrayVec` with mutable references to each element. |
816 | /// |
817 | /// ``` |
818 | /// use arrayvec::ArrayVec; |
819 | /// |
820 | /// let mut array = ArrayVec::from([1, 2, 3]); |
821 | /// |
822 | /// for elt in &mut array { |
823 | /// // ... |
824 | /// } |
825 | /// ``` |
826 | impl<'a, T: 'a, const CAP: usize> IntoIterator for &'a mut ArrayVec<T, CAP> { |
827 | type Item = &'a mut T; |
828 | type IntoIter = slice::IterMut<'a, T>; |
829 | fn into_iter(self) -> Self::IntoIter { self.iter_mut() } |
830 | } |
831 | |
832 | /// Iterate the `ArrayVec` with each element by value. |
833 | /// |
834 | /// The vector is consumed by this operation. |
835 | /// |
836 | /// ``` |
837 | /// use arrayvec::ArrayVec; |
838 | /// |
839 | /// for elt in ArrayVec::from([1, 2, 3]) { |
840 | /// // ... |
841 | /// } |
842 | /// ``` |
843 | impl<T, const CAP: usize> IntoIterator for ArrayVec<T, CAP> { |
844 | type Item = T; |
845 | type IntoIter = IntoIter<T, CAP>; |
846 | fn into_iter(self) -> IntoIter<T, CAP> { |
847 | IntoIter { index: 0, v: self, } |
848 | } |
849 | } |
850 | |
851 | |
852 | #[cfg(feature = "zeroize")] |
853 | /// "Best efforts" zeroing of the `ArrayVec`'s buffer when the `zeroize` feature is enabled. |
854 | /// |
855 | /// The length is set to 0, and the buffer is dropped and zeroized. |
856 | /// Cannot ensure that previous moves of the `ArrayVec` did not leave values on the stack. |
857 | /// |
858 | /// ``` |
859 | /// use arrayvec::ArrayVec; |
860 | /// use zeroize::Zeroize; |
861 | /// let mut array = ArrayVec::from([1, 2, 3]); |
862 | /// array.zeroize(); |
863 | /// assert_eq!(array.len(), 0); |
864 | /// let data = unsafe { core::slice::from_raw_parts(array.as_ptr(), array.capacity()) }; |
865 | /// assert_eq!(data, [0, 0, 0]); |
866 | /// ``` |
867 | impl<Z: zeroize::Zeroize, const CAP: usize> zeroize::Zeroize for ArrayVec<Z, CAP> { |
868 | fn zeroize(&mut self) { |
869 | // Zeroize all the contained elements. |
870 | self.iter_mut().zeroize(); |
871 | // Drop all the elements and set the length to 0. |
872 | self.clear(); |
873 | // Zeroize the backing array. |
874 | self.xs.zeroize(); |
875 | } |
876 | } |
877 | |
878 | /// By-value iterator for `ArrayVec`. |
879 | pub struct IntoIter<T, const CAP: usize> { |
880 | index: usize, |
881 | v: ArrayVec<T, CAP>, |
882 | } |
883 | impl<T, const CAP: usize> IntoIter<T, CAP> { |
884 | /// Returns the remaining items of this iterator as a slice. |
885 | pub fn as_slice(&self) -> &[T] { |
886 | &self.v[self.index..] |
887 | } |
888 | |
889 | /// Returns the remaining items of this iterator as a mutable slice. |
890 | pub fn as_mut_slice(&mut self) -> &mut [T] { |
891 | &mut self.v[self.index..] |
892 | } |
893 | } |
894 | |
895 | impl<T, const CAP: usize> Iterator for IntoIter<T, CAP> { |
896 | type Item = T; |
897 | |
898 | fn next(&mut self) -> Option<Self::Item> { |
899 | if self.index == self.v.len() { |
900 | None |
901 | } else { |
902 | unsafe { |
903 | let index: usize = self.index; |
904 | self.index = index + 1; |
905 | Some(ptr::read(self.v.get_unchecked_ptr(index))) |
906 | } |
907 | } |
908 | } |
909 | |
910 | fn size_hint(&self) -> (usize, Option<usize>) { |
911 | let len: usize = self.v.len() - self.index; |
912 | (len, Some(len)) |
913 | } |
914 | } |
915 | |
916 | impl<T, const CAP: usize> DoubleEndedIterator for IntoIter<T, CAP> { |
917 | fn next_back(&mut self) -> Option<Self::Item> { |
918 | if self.index == self.v.len() { |
919 | None |
920 | } else { |
921 | unsafe { |
922 | let new_len: usize = self.v.len() - 1; |
923 | self.v.set_len(length:new_len); |
924 | Some(ptr::read(self.v.get_unchecked_ptr(index:new_len))) |
925 | } |
926 | } |
927 | } |
928 | } |
929 | |
930 | impl<T, const CAP: usize> ExactSizeIterator for IntoIter<T, CAP> { } |
931 | |
932 | impl<T, const CAP: usize> Drop for IntoIter<T, CAP> { |
933 | fn drop(&mut self) { |
934 | // panic safety: Set length to 0 before dropping elements. |
935 | let index: usize = self.index; |
936 | let len: usize = self.v.len(); |
937 | unsafe { |
938 | self.v.set_len(length:0); |
939 | let elements: &mut [T] = slice::from_raw_parts_mut( |
940 | self.v.get_unchecked_ptr(index), |
941 | len:len - index); |
942 | ptr::drop_in_place(to_drop:elements); |
943 | } |
944 | } |
945 | } |
946 | |
947 | impl<T, const CAP: usize> Clone for IntoIter<T, CAP> |
948 | where T: Clone, |
949 | { |
950 | fn clone(&self) -> IntoIter<T, CAP> { |
951 | let mut v: ArrayVec |
952 | v.extend_from_slice(&self.v[self.index..]); |
953 | v.into_iter() |
954 | } |
955 | } |
956 | |
957 | impl<T, const CAP: usize> fmt::Debug for IntoIter<T, CAP> |
958 | where |
959 | T: fmt::Debug, |
960 | { |
961 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
962 | f&mut DebugList<'_, '_>.debug_list() |
963 | .entries(&self.v[self.index..]) |
964 | .finish() |
965 | } |
966 | } |
967 | |
968 | /// A draining iterator for `ArrayVec`. |
969 | pub struct Drain<'a, T: 'a, const CAP: usize> { |
970 | /// Index of tail to preserve |
971 | tail_start: usize, |
972 | /// Length of tail |
973 | tail_len: usize, |
974 | /// Current remaining range to remove |
975 | iter: slice::Iter<'a, T>, |
976 | vec: *mut ArrayVec<T, CAP>, |
977 | } |
978 | |
979 | unsafe impl<'a, T: Sync, const CAP: usize> Sync for Drain<'a, T, CAP> {} |
980 | unsafe impl<'a, T: Send, const CAP: usize> Send for Drain<'a, T, CAP> {} |
981 | |
982 | impl<'a, T: 'a, const CAP: usize> Iterator for Drain<'a, T, CAP> { |
983 | type Item = T; |
984 | |
985 | fn next(&mut self) -> Option<Self::Item> { |
986 | self.iter.next().map(|elt: &'a T| |
987 | unsafe { |
988 | ptr::read(src:elt as *const _) |
989 | } |
990 | ) |
991 | } |
992 | |
993 | fn size_hint(&self) -> (usize, Option<usize>) { |
994 | self.iter.size_hint() |
995 | } |
996 | } |
997 | |
998 | impl<'a, T: 'a, const CAP: usize> DoubleEndedIterator for Drain<'a, T, CAP> |
999 | { |
1000 | fn next_back(&mut self) -> Option<Self::Item> { |
1001 | self.iter.next_back().map(|elt: &'a T| |
1002 | unsafe { |
1003 | ptr::read(src:elt as *const _) |
1004 | } |
1005 | ) |
1006 | } |
1007 | } |
1008 | |
1009 | impl<'a, T: 'a, const CAP: usize> ExactSizeIterator for Drain<'a, T, CAP> {} |
1010 | |
1011 | impl<'a, T: 'a, const CAP: usize> Drop for Drain<'a, T, CAP> { |
1012 | fn drop(&mut self) { |
1013 | // len is currently 0 so panicking while dropping will not cause a double drop. |
1014 | |
1015 | // exhaust self first |
1016 | while let Some(_) = self.next() { } |
1017 | |
1018 | if self.tail_len > 0 { |
1019 | unsafe { |
1020 | let source_vec: &mut ArrayVec |
1021 | // memmove back untouched tail, update to new length |
1022 | let start: usize = source_vec.len(); |
1023 | let tail: usize = self.tail_start; |
1024 | let ptr: *mut T = source_vec.as_mut_ptr(); |
1025 | ptr::copy(src:ptr.add(tail), dst:ptr.add(start), self.tail_len); |
1026 | source_vec.set_len(length:start + self.tail_len); |
1027 | } |
1028 | } |
1029 | } |
1030 | } |
1031 | |
1032 | struct ScopeExitGuard<T, Data, F> |
1033 | where F: FnMut(&Data, &mut T) |
1034 | { |
1035 | value: T, |
1036 | data: Data, |
1037 | f: F, |
1038 | } |
1039 | |
1040 | impl<T, Data, F> Drop for ScopeExitGuard<T, Data, F> |
1041 | where F: FnMut(&Data, &mut T) |
1042 | { |
1043 | fn drop(&mut self) { |
1044 | (self.f)(&self.data, &mut self.value) |
1045 | } |
1046 | } |
1047 | |
1048 | |
1049 | |
1050 | /// Extend the `ArrayVec` with an iterator. |
1051 | /// |
1052 | /// ***Panics*** if extending the vector exceeds its capacity. |
1053 | impl<T, const CAP: usize> Extend<T> for ArrayVec<T, CAP> { |
1054 | /// Extend the `ArrayVec` with an iterator. |
1055 | /// |
1056 | /// ***Panics*** if extending the vector exceeds its capacity. |
1057 | #[track_caller] |
1058 | fn extend<I: IntoIterator<Item=T>>(&mut self, iter: I) { |
1059 | unsafe { |
1060 | self.extend_from_iter::<_, true>(iterable:iter) |
1061 | } |
1062 | } |
1063 | } |
1064 | |
1065 | #[inline(never)] |
1066 | #[cold] |
1067 | #[track_caller] |
1068 | fn extend_panic() { |
1069 | panic!("ArrayVec: capacity exceeded in extend/from_iter"); |
1070 | } |
1071 | |
1072 | impl<T, const CAP: usize> ArrayVec<T, CAP> { |
1073 | /// Extend the arrayvec from the iterable. |
1074 | /// |
1075 | /// ## Safety |
1076 | /// |
1077 | /// Unsafe because if CHECK is false, the length of the input is not checked. |
1078 | /// The caller must ensure the length of the input fits in the capacity. |
1079 | #[track_caller] |
1080 | pub(crate) unsafe fn extend_from_iter<I, const CHECK: bool>(&mut self, iterable: I) |
1081 | where I: IntoIterator<Item = T> |
1082 | { |
1083 | let take = self.capacity() - self.len(); |
1084 | let len = self.len(); |
1085 | let mut ptr = raw_ptr_add(self.as_mut_ptr(), len); |
1086 | let end_ptr = raw_ptr_add(ptr, take); |
1087 | // Keep the length in a separate variable, write it back on scope |
1088 | // exit. To help the compiler with alias analysis and stuff. |
1089 | // We update the length to handle panic in the iteration of the |
1090 | // user's iterator, without dropping any elements on the floor. |
1091 | let mut guard = ScopeExitGuard { |
1092 | value: &mut self.len, |
1093 | data: len, |
1094 | f: move |&len, self_len| { |
1095 | **self_len = len as LenUint; |
1096 | } |
1097 | }; |
1098 | let mut iter = iterable.into_iter(); |
1099 | loop { |
1100 | if let Some(elt) = iter.next() { |
1101 | if ptr == end_ptr && CHECK { extend_panic(); } |
1102 | debug_assert_ne!(ptr, end_ptr); |
1103 | if mem::size_of::<T>() != 0 { |
1104 | ptr.write(elt); |
1105 | } |
1106 | ptr = raw_ptr_add(ptr, 1); |
1107 | guard.data += 1; |
1108 | } else { |
1109 | return; // success |
1110 | } |
1111 | } |
1112 | } |
1113 | |
1114 | /// Extend the ArrayVec with clones of elements from the slice; |
1115 | /// the length of the slice must be <= the remaining capacity in the arrayvec. |
1116 | pub(crate) fn extend_from_slice(&mut self, slice: &[T]) |
1117 | where T: Clone |
1118 | { |
1119 | let take = self.capacity() - self.len(); |
1120 | debug_assert!(slice.len() <= take); |
1121 | unsafe { |
1122 | let slice = if take < slice.len() { &slice[..take] } else { slice }; |
1123 | self.extend_from_iter::<_, false>(slice.iter().cloned()); |
1124 | } |
1125 | } |
1126 | } |
1127 | |
1128 | /// Rawptr add but uses arithmetic distance for ZST |
1129 | unsafe fn raw_ptr_add<T>(ptr: *mut T, offset: usize) -> *mut T { |
1130 | if mem::size_of::<T>() == 0 { |
1131 | // Special case for ZST |
1132 | ptr.cast::<u8>().wrapping_add(count:offset).cast::<T>() |
1133 | } else { |
1134 | ptr.add(count:offset) |
1135 | } |
1136 | } |
1137 | |
1138 | /// Create an `ArrayVec` from an iterator. |
1139 | /// |
1140 | /// ***Panics*** if the number of elements in the iterator exceeds the arrayvec's capacity. |
1141 | impl<T, const CAP: usize> iter::FromIterator<T> for ArrayVec<T, CAP> { |
1142 | /// Create an `ArrayVec` from an iterator. |
1143 | /// |
1144 | /// ***Panics*** if the number of elements in the iterator exceeds the arrayvec's capacity. |
1145 | fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> Self { |
1146 | let mut array: ArrayVec |
1147 | array.extend(iter); |
1148 | array |
1149 | } |
1150 | } |
1151 | |
1152 | impl<T, const CAP: usize> Clone for ArrayVec<T, CAP> |
1153 | where T: Clone |
1154 | { |
1155 | fn clone(&self) -> Self { |
1156 | self.iter().cloned().collect() |
1157 | } |
1158 | |
1159 | fn clone_from(&mut self, rhs: &Self) { |
1160 | // recursive case for the common prefix |
1161 | let prefix: usize = cmp::min(self.len(), v2:rhs.len()); |
1162 | self[..prefix].clone_from_slice(&rhs[..prefix]); |
1163 | |
1164 | if prefix < self.len() { |
1165 | // rhs was shorter |
1166 | self.truncate(new_len:prefix); |
1167 | } else { |
1168 | let rhs_elems: &[T] = &rhs[self.len()..]; |
1169 | self.extend_from_slice(rhs_elems); |
1170 | } |
1171 | } |
1172 | } |
1173 | |
1174 | impl<T, const CAP: usize> Hash for ArrayVec<T, CAP> |
1175 | where T: Hash |
1176 | { |
1177 | fn hash<H: Hasher>(&self, state: &mut H) { |
1178 | Hash::hash(&**self, state) |
1179 | } |
1180 | } |
1181 | |
1182 | impl<T, const CAP: usize> PartialEq for ArrayVec<T, CAP> |
1183 | where T: PartialEq |
1184 | { |
1185 | fn eq(&self, other: &Self) -> bool { |
1186 | **self == **other |
1187 | } |
1188 | } |
1189 | |
1190 | impl<T, const CAP: usize> PartialEq<[T]> for ArrayVec<T, CAP> |
1191 | where T: PartialEq |
1192 | { |
1193 | fn eq(&self, other: &[T]) -> bool { |
1194 | **self == *other |
1195 | } |
1196 | } |
1197 | |
1198 | impl<T, const CAP: usize> Eq for ArrayVec<T, CAP> where T: Eq { } |
1199 | |
1200 | impl<T, const CAP: usize> Borrow<[T]> for ArrayVec<T, CAP> { |
1201 | fn borrow(&self) -> &[T] { self } |
1202 | } |
1203 | |
1204 | impl<T, const CAP: usize> BorrowMut<[T]> for ArrayVec<T, CAP> { |
1205 | fn borrow_mut(&mut self) -> &mut [T] { self } |
1206 | } |
1207 | |
1208 | impl<T, const CAP: usize> AsRef<[T]> for ArrayVec<T, CAP> { |
1209 | fn as_ref(&self) -> &[T] { self } |
1210 | } |
1211 | |
1212 | impl<T, const CAP: usize> AsMut<[T]> for ArrayVec<T, CAP> { |
1213 | fn as_mut(&mut self) -> &mut [T] { self } |
1214 | } |
1215 | |
1216 | impl<T, const CAP: usize> fmt::Debug for ArrayVec<T, CAP> where T: fmt::Debug { |
1217 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) } |
1218 | } |
1219 | |
1220 | impl<T, const CAP: usize> Default for ArrayVec<T, CAP> { |
1221 | /// Return an empty array |
1222 | fn default() -> ArrayVec<T, CAP> { |
1223 | ArrayVec::new() |
1224 | } |
1225 | } |
1226 | |
1227 | impl<T, const CAP: usize> PartialOrd for ArrayVec<T, CAP> where T: PartialOrd { |
1228 | fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { |
1229 | (**self).partial_cmp(other) |
1230 | } |
1231 | |
1232 | fn lt(&self, other: &Self) -> bool { |
1233 | (**self).lt(other) |
1234 | } |
1235 | |
1236 | fn le(&self, other: &Self) -> bool { |
1237 | (**self).le(other) |
1238 | } |
1239 | |
1240 | fn ge(&self, other: &Self) -> bool { |
1241 | (**self).ge(other) |
1242 | } |
1243 | |
1244 | fn gt(&self, other: &Self) -> bool { |
1245 | (**self).gt(other) |
1246 | } |
1247 | } |
1248 | |
1249 | impl<T, const CAP: usize> Ord for ArrayVec<T, CAP> where T: Ord { |
1250 | fn cmp(&self, other: &Self) -> cmp::Ordering { |
1251 | (**self).cmp(other) |
1252 | } |
1253 | } |
1254 | |
1255 | #[cfg(feature= "std")] |
1256 | /// `Write` appends written data to the end of the vector. |
1257 | /// |
1258 | /// Requires `features="std"`. |
1259 | impl<const CAP: usize> io::Write for ArrayVec<u8, CAP> { |
1260 | fn write(&mut self, data: &[u8]) -> io::Result<usize> { |
1261 | let len = cmp::min(self.remaining_capacity(), data.len()); |
1262 | let _result = self.try_extend_from_slice(&data[..len]); |
1263 | debug_assert!(_result.is_ok()); |
1264 | Ok(len) |
1265 | } |
1266 | fn flush(&mut self) -> io::Result<()> { Ok(()) } |
1267 | } |
1268 | |
1269 | #[cfg(feature= "serde")] |
1270 | /// Requires crate feature `"serde"` |
1271 | impl<T: Serialize, const CAP: usize> Serialize for ArrayVec<T, CAP> { |
1272 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
1273 | where S: Serializer |
1274 | { |
1275 | serializer.collect_seq(self) |
1276 | } |
1277 | } |
1278 | |
1279 | #[cfg(feature= "serde")] |
1280 | /// Requires crate feature `"serde"` |
1281 | impl<'de, T: Deserialize<'de>, const CAP: usize> Deserialize<'de> for ArrayVec<T, CAP> { |
1282 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
1283 | where D: Deserializer<'de> |
1284 | { |
1285 | use serde::de::{Visitor, SeqAccess, Error}; |
1286 | use std::marker::PhantomData; |
1287 | |
1288 | struct ArrayVecVisitor<'de, T: Deserialize<'de>, const CAP: usize>(PhantomData<(&'de (), [T; CAP])>); |
1289 | |
1290 | impl<'de, T: Deserialize<'de>, const CAP: usize> Visitor<'de> for ArrayVecVisitor<'de, T, CAP> { |
1291 | type Value = ArrayVec<T, CAP>; |
1292 | |
1293 | fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { |
1294 | write!(formatter, "an array with no more than {} items", CAP) |
1295 | } |
1296 | |
1297 | fn visit_seq<SA>(self, mut seq: SA) -> Result<Self::Value, SA::Error> |
1298 | where SA: SeqAccess<'de>, |
1299 | { |
1300 | let mut values = ArrayVec::<T, CAP>::new(); |
1301 | |
1302 | while let Some(value) = seq.next_element()? { |
1303 | if let Err(_) = values.try_push(value) { |
1304 | return Err(SA::Error::invalid_length(CAP + 1, &self)); |
1305 | } |
1306 | } |
1307 | |
1308 | Ok(values) |
1309 | } |
1310 | } |
1311 | |
1312 | deserializer.deserialize_seq(ArrayVecVisitor::<T, CAP>(PhantomData)) |
1313 | } |
1314 | } |
1315 | |
1316 | #[cfg(feature = "borsh")] |
1317 | /// Requires crate feature `"borsh"` |
1318 | impl<T, const CAP: usize> borsh::BorshSerialize for ArrayVec<T, CAP> |
1319 | where |
1320 | T: borsh::BorshSerialize, |
1321 | { |
1322 | fn serialize<W: borsh::io::Write>(&self, writer: &mut W) -> borsh::io::Result<()> { |
1323 | <[T] as borsh::BorshSerialize>::serialize(self.as_slice(), writer) |
1324 | } |
1325 | } |
1326 | |
1327 | #[cfg(feature = "borsh")] |
1328 | /// Requires crate feature `"borsh"` |
1329 | impl<T, const CAP: usize> borsh::BorshDeserialize for ArrayVec<T, CAP> |
1330 | where |
1331 | T: borsh::BorshDeserialize, |
1332 | { |
1333 | fn deserialize_reader<R: borsh::io::Read>(reader: &mut R) -> borsh::io::Result<Self> { |
1334 | let mut values = Self::new(); |
1335 | let len = <u32 as borsh::BorshDeserialize>::deserialize_reader(reader)?; |
1336 | for _ in 0..len { |
1337 | let elem = <T as borsh::BorshDeserialize>::deserialize_reader(reader)?; |
1338 | if let Err(_) = values.try_push(elem) { |
1339 | return Err(borsh::io::Error::new( |
1340 | borsh::io::ErrorKind::InvalidData, |
1341 | format!("Expected an array with no more than {} items", CAP), |
1342 | )); |
1343 | } |
1344 | } |
1345 | |
1346 | Ok(values) |
1347 | } |
1348 | } |
1349 |
Definitions
- ArrayVec
- len
- xs
- drop
- panic_oob
- new
- new_const
- len
- is_empty
- capacity
- is_full
- remaining_capacity
- push
- try_push
- push_unchecked
- truncate
- clear
- get_unchecked_ptr
- insert
- try_insert
- pop
- swap_remove
- swap_pop
- remove
- pop_at
- retain
- BackshiftOnDrop
- v
- processed_len
- deleted_cnt
- original_len
- drop
- process_one
- set_len
- try_extend_from_slice
- drain
- drain_range
- into_inner
- into_inner_unchecked
- take
- as_slice
- as_mut_slice
- as_ptr
- as_mut_ptr
- Item
- len
- set_len
- as_ptr
- as_mut_ptr
- Target
- deref
- deref_mut
- from
- Error
- try_from
- Item
- IntoIter
- into_iter
- Item
- IntoIter
- into_iter
- Item
- IntoIter
- into_iter
- IntoIter
- index
- v
- as_slice
- as_mut_slice
- Item
- next
- size_hint
- next_back
- drop
- clone
- fmt
- Drain
- tail_start
- tail_len
- iter
- vec
- Item
- next
- size_hint
- next_back
- drop
- ScopeExitGuard
- value
- data
- f
- drop
- extend
- extend_panic
- extend_from_iter
- extend_from_slice
- raw_ptr_add
- from_iter
- clone
- clone_from
- hash
- eq
- eq
- borrow
- borrow_mut
- as_ref
- as_mut
- fmt
- default
- partial_cmp
- lt
- le
- ge
- gt
Learn Rust with the experts
Find out more