1 | #[cfg (any(feature = "alloc" , feature = "std" , test))] |
2 | use alloc::string::String; |
3 | use core::cmp; |
4 | #[cfg (any(feature = "alloc" , feature = "std" , test))] |
5 | use core::str; |
6 | |
7 | use crate::encode::add_padding; |
8 | use crate::engine::{Config, Engine}; |
9 | |
10 | /// The output mechanism for ChunkedEncoder's encoded bytes. |
11 | pub trait Sink { |
12 | type Error; |
13 | |
14 | /// Handle a chunk of encoded base64 data (as UTF-8 bytes) |
15 | fn write_encoded_bytes(&mut self, encoded: &[u8]) -> Result<(), Self::Error>; |
16 | } |
17 | |
18 | const BUF_SIZE: usize = 1024; |
19 | |
20 | /// A base64 encoder that emits encoded bytes in chunks without heap allocation. |
21 | pub struct ChunkedEncoder<'e, E: Engine + ?Sized> { |
22 | engine: &'e E, |
23 | max_input_chunk_len: usize, |
24 | } |
25 | |
26 | impl<'e, E: Engine + ?Sized> ChunkedEncoder<'e, E> { |
27 | pub fn new(engine: &'e E) -> ChunkedEncoder<'e, E> { |
28 | ChunkedEncoder { |
29 | engine, |
30 | max_input_chunk_len: max_input_length(BUF_SIZE, engine.config().encode_padding()), |
31 | } |
32 | } |
33 | |
34 | pub fn encode<S: Sink>(&self, bytes: &[u8], sink: &mut S) -> Result<(), S::Error> { |
35 | let mut encode_buf: [u8; BUF_SIZE] = [0; BUF_SIZE]; |
36 | let mut input_index = 0; |
37 | |
38 | while input_index < bytes.len() { |
39 | // either the full input chunk size, or it's the last iteration |
40 | let input_chunk_len = cmp::min(self.max_input_chunk_len, bytes.len() - input_index); |
41 | |
42 | let chunk = &bytes[input_index..(input_index + input_chunk_len)]; |
43 | |
44 | let mut b64_bytes_written = self.engine.internal_encode(chunk, &mut encode_buf); |
45 | |
46 | input_index += input_chunk_len; |
47 | let more_input_left = input_index < bytes.len(); |
48 | |
49 | if self.engine.config().encode_padding() && !more_input_left { |
50 | // no more input, add padding if needed. Buffer will have room because |
51 | // max_input_length leaves room for it. |
52 | b64_bytes_written += |
53 | add_padding(b64_bytes_written, &mut encode_buf[b64_bytes_written..]); |
54 | } |
55 | |
56 | sink.write_encoded_bytes(&encode_buf[0..b64_bytes_written])?; |
57 | } |
58 | |
59 | Ok(()) |
60 | } |
61 | } |
62 | |
63 | /// Calculate the longest input that can be encoded for the given output buffer size. |
64 | /// |
65 | /// If the config requires padding, two bytes of buffer space will be set aside so that the last |
66 | /// chunk of input can be encoded safely. |
67 | /// |
68 | /// The input length will always be a multiple of 3 so that no encoding state has to be carried over |
69 | /// between chunks. |
70 | fn max_input_length(encoded_buf_len: usize, padded: bool) -> usize { |
71 | let effective_buf_len: usize = if padded { |
72 | // make room for padding |
73 | encoded_buf_len |
74 | .checked_sub(2) |
75 | .expect(msg:"Don't use a tiny buffer" ) |
76 | } else { |
77 | encoded_buf_len |
78 | }; |
79 | |
80 | // No padding, so just normal base64 expansion. |
81 | (effective_buf_len / 4) * 3 |
82 | } |
83 | |
84 | // A really simple sink that just appends to a string |
85 | #[cfg (any(feature = "alloc" , feature = "std" , test))] |
86 | pub(crate) struct StringSink<'a> { |
87 | string: &'a mut String, |
88 | } |
89 | |
90 | #[cfg (any(feature = "alloc" , feature = "std" , test))] |
91 | impl<'a> StringSink<'a> { |
92 | pub(crate) fn new(s: &mut String) -> StringSink { |
93 | StringSink { string: s } |
94 | } |
95 | } |
96 | |
97 | #[cfg (any(feature = "alloc" , feature = "std" , test))] |
98 | impl<'a> Sink for StringSink<'a> { |
99 | type Error = (); |
100 | |
101 | fn write_encoded_bytes(&mut self, s: &[u8]) -> Result<(), Self::Error> { |
102 | self.string.push_str(string:str::from_utf8(s).unwrap()); |
103 | |
104 | Ok(()) |
105 | } |
106 | } |
107 | |
108 | #[cfg (test)] |
109 | pub mod tests { |
110 | use rand::{ |
111 | distributions::{Distribution, Uniform}, |
112 | Rng, SeedableRng, |
113 | }; |
114 | |
115 | use crate::{ |
116 | alphabet::STANDARD, |
117 | engine::general_purpose::{GeneralPurpose, GeneralPurposeConfig, PAD}, |
118 | tests::random_engine, |
119 | }; |
120 | |
121 | use super::*; |
122 | |
123 | #[test ] |
124 | fn chunked_encode_empty() { |
125 | assert_eq!("" , chunked_encode_str(&[], PAD)); |
126 | } |
127 | |
128 | #[test ] |
129 | fn chunked_encode_intermediate_fast_loop() { |
130 | // > 8 bytes input, will enter the pretty fast loop |
131 | assert_eq!("Zm9vYmFyYmF6cXV4" , chunked_encode_str(b"foobarbazqux" , PAD)); |
132 | } |
133 | |
134 | #[test ] |
135 | fn chunked_encode_fast_loop() { |
136 | // > 32 bytes input, will enter the uber fast loop |
137 | assert_eq!( |
138 | "Zm9vYmFyYmF6cXV4cXV1eGNvcmdlZ3JhdWx0Z2FycGx5eg==" , |
139 | chunked_encode_str(b"foobarbazquxquuxcorgegraultgarplyz" , PAD) |
140 | ); |
141 | } |
142 | |
143 | #[test ] |
144 | fn chunked_encode_slow_loop_only() { |
145 | // < 8 bytes input, slow loop only |
146 | assert_eq!("Zm9vYmFy" , chunked_encode_str(b"foobar" , PAD)); |
147 | } |
148 | |
149 | #[test ] |
150 | fn chunked_encode_matches_normal_encode_random_string_sink() { |
151 | let helper = StringSinkTestHelper; |
152 | chunked_encode_matches_normal_encode_random(&helper); |
153 | } |
154 | |
155 | #[test ] |
156 | fn max_input_length_no_pad() { |
157 | assert_eq!(768, max_input_length(1024, false)); |
158 | } |
159 | |
160 | #[test ] |
161 | fn max_input_length_with_pad_decrements_one_triple() { |
162 | assert_eq!(765, max_input_length(1024, true)); |
163 | } |
164 | |
165 | #[test ] |
166 | fn max_input_length_with_pad_one_byte_short() { |
167 | assert_eq!(765, max_input_length(1025, true)); |
168 | } |
169 | |
170 | #[test ] |
171 | fn max_input_length_with_pad_fits_exactly() { |
172 | assert_eq!(768, max_input_length(1026, true)); |
173 | } |
174 | |
175 | #[test ] |
176 | fn max_input_length_cant_use_extra_single_encoded_byte() { |
177 | assert_eq!(300, max_input_length(401, false)); |
178 | } |
179 | |
180 | pub fn chunked_encode_matches_normal_encode_random<S: SinkTestHelper>(sink_test_helper: &S) { |
181 | let mut input_buf: Vec<u8> = Vec::new(); |
182 | let mut output_buf = String::new(); |
183 | let mut rng = rand::rngs::SmallRng::from_entropy(); |
184 | let input_len_range = Uniform::new(1, 10_000); |
185 | |
186 | for _ in 0..5_000 { |
187 | input_buf.clear(); |
188 | output_buf.clear(); |
189 | |
190 | let buf_len = input_len_range.sample(&mut rng); |
191 | for _ in 0..buf_len { |
192 | input_buf.push(rng.gen()); |
193 | } |
194 | |
195 | let engine = random_engine(&mut rng); |
196 | |
197 | let chunk_encoded_string = sink_test_helper.encode_to_string(&engine, &input_buf); |
198 | engine.encode_string(&input_buf, &mut output_buf); |
199 | |
200 | assert_eq!(output_buf, chunk_encoded_string, "input len= {}" , buf_len); |
201 | } |
202 | } |
203 | |
204 | fn chunked_encode_str(bytes: &[u8], config: GeneralPurposeConfig) -> String { |
205 | let mut s = String::new(); |
206 | |
207 | let mut sink = StringSink::new(&mut s); |
208 | let engine = GeneralPurpose::new(&STANDARD, config); |
209 | let encoder = ChunkedEncoder::new(&engine); |
210 | encoder.encode(bytes, &mut sink).unwrap(); |
211 | |
212 | s |
213 | } |
214 | |
215 | // An abstraction around sinks so that we can have tests that easily to any sink implementation |
216 | pub trait SinkTestHelper { |
217 | fn encode_to_string<E: Engine>(&self, engine: &E, bytes: &[u8]) -> String; |
218 | } |
219 | |
220 | struct StringSinkTestHelper; |
221 | |
222 | impl SinkTestHelper for StringSinkTestHelper { |
223 | fn encode_to_string<E: Engine>(&self, engine: &E, bytes: &[u8]) -> String { |
224 | let encoder = ChunkedEncoder::new(engine); |
225 | let mut s = String::new(); |
226 | let mut sink = StringSink::new(&mut s); |
227 | encoder.encode(bytes, &mut sink).unwrap(); |
228 | |
229 | s |
230 | } |
231 | } |
232 | } |
233 | |