1 | use regex_automata::{dfa::Automaton, Anchored, Input}; |
2 | |
3 | use crate::{ |
4 | ext_slice::ByteSlice, |
5 | unicode::fsm::{ |
6 | simple_word_fwd::SIMPLE_WORD_FWD, word_break_fwd::WORD_BREAK_FWD, |
7 | }, |
8 | utf8, |
9 | }; |
10 | |
11 | /// An iterator over words in a byte string. |
12 | /// |
13 | /// This iterator is typically constructed by |
14 | /// [`ByteSlice::words`](trait.ByteSlice.html#method.words). |
15 | /// |
16 | /// This is similar to the [`WordsWithBreaks`](struct.WordsWithBreaks.html) |
17 | /// iterator, except it only returns elements that contain a "word" character. |
18 | /// A word character is defined by UTS #18 (Annex C) to be the combination |
19 | /// of the `Alphabetic` and `Join_Control` properties, along with the |
20 | /// `Decimal_Number`, `Mark` and `Connector_Punctuation` general categories. |
21 | /// |
22 | /// Since words are made up of one or more codepoints, this iterator yields |
23 | /// `&str` elements. When invalid UTF-8 is encountered, replacement codepoints |
24 | /// are [substituted](index.html#handling-of-invalid-utf-8). |
25 | /// |
26 | /// This iterator yields words in accordance with the default word boundary |
27 | /// rules specified in |
28 | /// [UAX #29](https://www.unicode.org/reports/tr29/tr29-33.html#Word_Boundaries). |
29 | /// In particular, this may not be suitable for Japanese and Chinese scripts |
30 | /// that do not use spaces between words. |
31 | #[derive (Clone, Debug)] |
32 | pub struct Words<'a>(WordsWithBreaks<'a>); |
33 | |
34 | impl<'a> Words<'a> { |
35 | pub(crate) fn new(bs: &'a [u8]) -> Words<'a> { |
36 | Words(WordsWithBreaks::new(bs)) |
37 | } |
38 | |
39 | /// View the underlying data as a subslice of the original data. |
40 | /// |
41 | /// The slice returned has the same lifetime as the original slice, and so |
42 | /// the iterator can continue to be used while this exists. |
43 | /// |
44 | /// # Examples |
45 | /// |
46 | /// ``` |
47 | /// use bstr::ByteSlice; |
48 | /// |
49 | /// let mut it = b"foo bar baz" .words(); |
50 | /// |
51 | /// assert_eq!(b"foo bar baz" , it.as_bytes()); |
52 | /// it.next(); |
53 | /// it.next(); |
54 | /// assert_eq!(b" baz" , it.as_bytes()); |
55 | /// it.next(); |
56 | /// assert_eq!(b"" , it.as_bytes()); |
57 | /// ``` |
58 | #[inline ] |
59 | pub fn as_bytes(&self) -> &'a [u8] { |
60 | self.0.as_bytes() |
61 | } |
62 | } |
63 | |
64 | impl<'a> Iterator for Words<'a> { |
65 | type Item = &'a str; |
66 | |
67 | #[inline ] |
68 | fn next(&mut self) -> Option<&'a str> { |
69 | for word: &'a str in self.0.by_ref() { |
70 | let input: Input<'_> = |
71 | Input::new(word).anchored(Anchored::Yes).earliest(yes:true); |
72 | if SIMPLE_WORD_FWD.try_search_fwd(&input).unwrap().is_some() { |
73 | return Some(word); |
74 | } |
75 | } |
76 | None |
77 | } |
78 | } |
79 | |
80 | /// An iterator over words in a byte string and their byte index positions. |
81 | /// |
82 | /// This iterator is typically constructed by |
83 | /// [`ByteSlice::word_indices`](trait.ByteSlice.html#method.word_indices). |
84 | /// |
85 | /// This is similar to the |
86 | /// [`WordsWithBreakIndices`](struct.WordsWithBreakIndices.html) iterator, |
87 | /// except it only returns elements that contain a "word" character. A |
88 | /// word character is defined by UTS #18 (Annex C) to be the combination |
89 | /// of the `Alphabetic` and `Join_Control` properties, along with the |
90 | /// `Decimal_Number`, `Mark` and `Connector_Punctuation` general categories. |
91 | /// |
92 | /// Since words are made up of one or more codepoints, this iterator |
93 | /// yields `&str` elements (along with their start and end byte offsets). |
94 | /// When invalid UTF-8 is encountered, replacement codepoints are |
95 | /// [substituted](index.html#handling-of-invalid-utf-8). Because of this, the |
96 | /// indices yielded by this iterator may not correspond to the length of the |
97 | /// word yielded with those indices. For example, when this iterator encounters |
98 | /// `\xFF` in the byte string, then it will yield a pair of indices ranging |
99 | /// over a single byte, but will provide an `&str` equivalent to `"\u{FFFD}"`, |
100 | /// which is three bytes in length. However, when given only valid UTF-8, then |
101 | /// all indices are in exact correspondence with their paired word. |
102 | /// |
103 | /// This iterator yields words in accordance with the default word boundary |
104 | /// rules specified in |
105 | /// [UAX #29](https://www.unicode.org/reports/tr29/tr29-33.html#Word_Boundaries). |
106 | /// In particular, this may not be suitable for Japanese and Chinese scripts |
107 | /// that do not use spaces between words. |
108 | #[derive (Clone, Debug)] |
109 | pub struct WordIndices<'a>(WordsWithBreakIndices<'a>); |
110 | |
111 | impl<'a> WordIndices<'a> { |
112 | pub(crate) fn new(bs: &'a [u8]) -> WordIndices<'a> { |
113 | WordIndices(WordsWithBreakIndices::new(bs)) |
114 | } |
115 | |
116 | /// View the underlying data as a subslice of the original data. |
117 | /// |
118 | /// The slice returned has the same lifetime as the original slice, and so |
119 | /// the iterator can continue to be used while this exists. |
120 | /// |
121 | /// # Examples |
122 | /// |
123 | /// ``` |
124 | /// use bstr::ByteSlice; |
125 | /// |
126 | /// let mut it = b"foo bar baz" .word_indices(); |
127 | /// |
128 | /// assert_eq!(b"foo bar baz" , it.as_bytes()); |
129 | /// it.next(); |
130 | /// it.next(); |
131 | /// assert_eq!(b" baz" , it.as_bytes()); |
132 | /// it.next(); |
133 | /// it.next(); |
134 | /// assert_eq!(b"" , it.as_bytes()); |
135 | /// ``` |
136 | #[inline ] |
137 | pub fn as_bytes(&self) -> &'a [u8] { |
138 | self.0.as_bytes() |
139 | } |
140 | } |
141 | |
142 | impl<'a> Iterator for WordIndices<'a> { |
143 | type Item = (usize, usize, &'a str); |
144 | |
145 | #[inline ] |
146 | fn next(&mut self) -> Option<(usize, usize, &'a str)> { |
147 | for (start: usize, end: usize, word: &'a str) in self.0.by_ref() { |
148 | let input: Input<'_> = |
149 | Input::new(word).anchored(Anchored::Yes).earliest(yes:true); |
150 | if SIMPLE_WORD_FWD.try_search_fwd(&input).unwrap().is_some() { |
151 | return Some((start, end, word)); |
152 | } |
153 | } |
154 | None |
155 | } |
156 | } |
157 | |
158 | /// An iterator over all word breaks in a byte string. |
159 | /// |
160 | /// This iterator is typically constructed by |
161 | /// [`ByteSlice::words_with_breaks`](trait.ByteSlice.html#method.words_with_breaks). |
162 | /// |
163 | /// This iterator yields not only all words, but the content that comes between |
164 | /// words. In particular, if all elements yielded by this iterator are |
165 | /// concatenated, then the result is the original string (subject to Unicode |
166 | /// replacement codepoint substitutions). |
167 | /// |
168 | /// Since words are made up of one or more codepoints, this iterator yields |
169 | /// `&str` elements. When invalid UTF-8 is encountered, replacement codepoints |
170 | /// are [substituted](index.html#handling-of-invalid-utf-8). |
171 | /// |
172 | /// This iterator yields words in accordance with the default word boundary |
173 | /// rules specified in |
174 | /// [UAX #29](https://www.unicode.org/reports/tr29/tr29-33.html#Word_Boundaries). |
175 | /// In particular, this may not be suitable for Japanese and Chinese scripts |
176 | /// that do not use spaces between words. |
177 | #[derive (Clone, Debug)] |
178 | pub struct WordsWithBreaks<'a> { |
179 | bs: &'a [u8], |
180 | } |
181 | |
182 | impl<'a> WordsWithBreaks<'a> { |
183 | pub(crate) fn new(bs: &'a [u8]) -> WordsWithBreaks<'a> { |
184 | WordsWithBreaks { bs } |
185 | } |
186 | |
187 | /// View the underlying data as a subslice of the original data. |
188 | /// |
189 | /// The slice returned has the same lifetime as the original slice, and so |
190 | /// the iterator can continue to be used while this exists. |
191 | /// |
192 | /// # Examples |
193 | /// |
194 | /// ``` |
195 | /// use bstr::ByteSlice; |
196 | /// |
197 | /// let mut it = b"foo bar baz" .words_with_breaks(); |
198 | /// |
199 | /// assert_eq!(b"foo bar baz" , it.as_bytes()); |
200 | /// it.next(); |
201 | /// assert_eq!(b" bar baz" , it.as_bytes()); |
202 | /// it.next(); |
203 | /// it.next(); |
204 | /// assert_eq!(b" baz" , it.as_bytes()); |
205 | /// it.next(); |
206 | /// it.next(); |
207 | /// assert_eq!(b"" , it.as_bytes()); |
208 | /// ``` |
209 | #[inline ] |
210 | pub fn as_bytes(&self) -> &'a [u8] { |
211 | self.bs |
212 | } |
213 | } |
214 | |
215 | impl<'a> Iterator for WordsWithBreaks<'a> { |
216 | type Item = &'a str; |
217 | |
218 | #[inline ] |
219 | fn next(&mut self) -> Option<&'a str> { |
220 | let (word: &str, size: usize) = decode_word(self.bs); |
221 | if size == 0 { |
222 | return None; |
223 | } |
224 | self.bs = &self.bs[size..]; |
225 | Some(word) |
226 | } |
227 | } |
228 | |
229 | /// An iterator over all word breaks in a byte string, along with their byte |
230 | /// index positions. |
231 | /// |
232 | /// This iterator is typically constructed by |
233 | /// [`ByteSlice::words_with_break_indices`](trait.ByteSlice.html#method.words_with_break_indices). |
234 | /// |
235 | /// This iterator yields not only all words, but the content that comes between |
236 | /// words. In particular, if all elements yielded by this iterator are |
237 | /// concatenated, then the result is the original string (subject to Unicode |
238 | /// replacement codepoint substitutions). |
239 | /// |
240 | /// Since words are made up of one or more codepoints, this iterator |
241 | /// yields `&str` elements (along with their start and end byte offsets). |
242 | /// When invalid UTF-8 is encountered, replacement codepoints are |
243 | /// [substituted](index.html#handling-of-invalid-utf-8). Because of this, the |
244 | /// indices yielded by this iterator may not correspond to the length of the |
245 | /// word yielded with those indices. For example, when this iterator encounters |
246 | /// `\xFF` in the byte string, then it will yield a pair of indices ranging |
247 | /// over a single byte, but will provide an `&str` equivalent to `"\u{FFFD}"`, |
248 | /// which is three bytes in length. However, when given only valid UTF-8, then |
249 | /// all indices are in exact correspondence with their paired word. |
250 | /// |
251 | /// This iterator yields words in accordance with the default word boundary |
252 | /// rules specified in |
253 | /// [UAX #29](https://www.unicode.org/reports/tr29/tr29-33.html#Word_Boundaries). |
254 | /// In particular, this may not be suitable for Japanese and Chinese scripts |
255 | /// that do not use spaces between words. |
256 | #[derive (Clone, Debug)] |
257 | pub struct WordsWithBreakIndices<'a> { |
258 | bs: &'a [u8], |
259 | forward_index: usize, |
260 | } |
261 | |
262 | impl<'a> WordsWithBreakIndices<'a> { |
263 | pub(crate) fn new(bs: &'a [u8]) -> WordsWithBreakIndices<'a> { |
264 | WordsWithBreakIndices { bs, forward_index: 0 } |
265 | } |
266 | |
267 | /// View the underlying data as a subslice of the original data. |
268 | /// |
269 | /// The slice returned has the same lifetime as the original slice, and so |
270 | /// the iterator can continue to be used while this exists. |
271 | /// |
272 | /// # Examples |
273 | /// |
274 | /// ``` |
275 | /// use bstr::ByteSlice; |
276 | /// |
277 | /// let mut it = b"foo bar baz" .words_with_break_indices(); |
278 | /// |
279 | /// assert_eq!(b"foo bar baz" , it.as_bytes()); |
280 | /// it.next(); |
281 | /// assert_eq!(b" bar baz" , it.as_bytes()); |
282 | /// it.next(); |
283 | /// it.next(); |
284 | /// assert_eq!(b" baz" , it.as_bytes()); |
285 | /// it.next(); |
286 | /// it.next(); |
287 | /// assert_eq!(b"" , it.as_bytes()); |
288 | /// ``` |
289 | #[inline ] |
290 | pub fn as_bytes(&self) -> &'a [u8] { |
291 | self.bs |
292 | } |
293 | } |
294 | |
295 | impl<'a> Iterator for WordsWithBreakIndices<'a> { |
296 | type Item = (usize, usize, &'a str); |
297 | |
298 | #[inline ] |
299 | fn next(&mut self) -> Option<(usize, usize, &'a str)> { |
300 | let index: usize = self.forward_index; |
301 | let (word: &str, size: usize) = decode_word(self.bs); |
302 | if size == 0 { |
303 | return None; |
304 | } |
305 | self.bs = &self.bs[size..]; |
306 | self.forward_index += size; |
307 | Some((index, index + size, word)) |
308 | } |
309 | } |
310 | |
311 | fn decode_word(bs: &[u8]) -> (&str, usize) { |
312 | if bs.is_empty() { |
313 | ("" , 0) |
314 | } else if let Some(hm: HalfMatch) = { |
315 | let input: Input<'_> = Input::new(bs).anchored(mode:Anchored::Yes); |
316 | WORD_BREAK_FWD.try_search_fwd(&input).unwrap() |
317 | } { |
318 | // Safe because a match can only occur for valid UTF-8. |
319 | let word: &str = unsafe { bs[..hm.offset()].to_str_unchecked() }; |
320 | (word, word.len()) |
321 | } else { |
322 | const INVALID: &str = " \u{FFFD}" ; |
323 | // No match on non-empty bytes implies we found invalid UTF-8. |
324 | let (_, size: usize) = utf8::decode_lossy(slice:bs); |
325 | (INVALID, size) |
326 | } |
327 | } |
328 | |
329 | #[cfg (all(test, feature = "std" ))] |
330 | mod tests { |
331 | use alloc::{vec, vec::Vec}; |
332 | |
333 | #[cfg (not(miri))] |
334 | use ucd_parse::WordBreakTest; |
335 | |
336 | use crate::ext_slice::ByteSlice; |
337 | |
338 | #[test ] |
339 | #[cfg (not(miri))] |
340 | fn forward_ucd() { |
341 | for (i, test) in ucdtests().into_iter().enumerate() { |
342 | let given = test .words.concat(); |
343 | let got = words(given.as_bytes()); |
344 | assert_eq!( |
345 | test.words, |
346 | got, |
347 | " \n\nword forward break test {} failed: \n\ |
348 | given: {:?} \n\ |
349 | expected: {:?} \n\ |
350 | got: {:?} \n" , |
351 | i, |
352 | given, |
353 | strs_to_bstrs(&test.words), |
354 | strs_to_bstrs(&got), |
355 | ); |
356 | } |
357 | } |
358 | |
359 | // Some additional tests that don't seem to be covered by the UCD tests. |
360 | // |
361 | // It's pretty amazing that the UCD tests miss these cases. I only found |
362 | // them by running this crate's segmenter and ICU's segmenter on the same |
363 | // text and comparing the output. |
364 | #[test ] |
365 | fn forward_additional() { |
366 | assert_eq!(vec!["a" , "." , " " , "Y" ], words(b"a. Y" )); |
367 | assert_eq!(vec!["r" , "." , " " , "Yo" ], words(b"r. Yo" )); |
368 | assert_eq!( |
369 | vec!["whatsoever" , "." , " " , "You" , " " , "may" ], |
370 | words(b"whatsoever. You may" ) |
371 | ); |
372 | assert_eq!( |
373 | vec!["21stcentury'syesterday" ], |
374 | words(b"21stcentury'syesterday" ) |
375 | ); |
376 | |
377 | assert_eq!(vec!["Bonta_" , "'" , "s" ], words(b"Bonta_'s" )); |
378 | assert_eq!(vec!["_vhat's" ], words(b"_vhat's" )); |
379 | assert_eq!(vec!["__on'anima" ], words(b"__on'anima" )); |
380 | assert_eq!(vec!["123_" , "'" , "4" ], words(b"123_'4" )); |
381 | assert_eq!(vec!["_123'4" ], words(b"_123'4" )); |
382 | assert_eq!(vec!["__12'345" ], words(b"__12'345" )); |
383 | |
384 | assert_eq!( |
385 | vec!["tomorrowat4" , ":" , "00" , "," ], |
386 | words(b"tomorrowat4:00," ) |
387 | ); |
388 | assert_eq!(vec!["RS1" , "'" , "s" ], words(b"RS1's" )); |
389 | assert_eq!(vec!["X38" ], words(b"X38" )); |
390 | |
391 | assert_eq!(vec!["4abc" , ":" , "00" , "," ], words(b"4abc:00," )); |
392 | assert_eq!(vec!["12S" , "'" , "1" ], words(b"12S'1" )); |
393 | assert_eq!(vec!["1XY" ], words(b"1XY" )); |
394 | |
395 | assert_eq!(vec![" \u{FEFF}" , "Ты" ], words(" \u{FEFF}Ты" .as_bytes())); |
396 | |
397 | // Tests that Vithkuqi works, which was introduced in Unicode 14. |
398 | // This test fails prior to Unicode 14. |
399 | assert_eq!( |
400 | vec![" \u{10570}\u{10597}" ], |
401 | words(" \u{10570}\u{10597}" .as_bytes()) |
402 | ); |
403 | } |
404 | |
405 | fn words(bytes: &[u8]) -> Vec<&str> { |
406 | bytes.words_with_breaks().collect() |
407 | } |
408 | |
409 | #[cfg (not(miri))] |
410 | fn strs_to_bstrs<S: AsRef<str>>(strs: &[S]) -> Vec<&[u8]> { |
411 | strs.iter().map(|s| s.as_ref().as_bytes()).collect() |
412 | } |
413 | |
414 | /// Return all of the UCD for word breaks. |
415 | #[cfg (not(miri))] |
416 | fn ucdtests() -> Vec<WordBreakTest> { |
417 | const TESTDATA: &str = include_str!("data/WordBreakTest.txt" ); |
418 | |
419 | let mut tests = vec![]; |
420 | for mut line in TESTDATA.lines() { |
421 | line = line.trim(); |
422 | if line.starts_with("#" ) || line.contains("surrogate" ) { |
423 | continue; |
424 | } |
425 | tests.push(line.parse().unwrap()); |
426 | } |
427 | tests |
428 | } |
429 | } |
430 | |