| 1 | use core::{char, cmp, fmt, str}; |
| 2 | |
| 3 | use crate::{ascii, bstr::BStr, ext_slice::ByteSlice}; |
| 4 | |
| 5 | // The UTF-8 decoder provided here is based on the one presented here: |
| 6 | // https://bjoern.hoehrmann.de/utf-8/decoder/dfa/ |
| 7 | // |
| 8 | // We *could* have done UTF-8 decoding by using a DFA generated by `\p{any}` |
| 9 | // using regex-automata that is roughly the same size. The real benefit of |
| 10 | // Hoehrmann's formulation is that the byte class mapping below is manually |
| 11 | // tailored such that each byte's class doubles as a shift to mask out the |
| 12 | // bits necessary for constructing the leading bits of each codepoint value |
| 13 | // from the initial byte. |
| 14 | // |
| 15 | // There are some minor differences between this implementation and Hoehrmann's |
| 16 | // formulation. |
| 17 | // |
| 18 | // Firstly, we make REJECT have state ID 0, since it makes the state table |
| 19 | // itself a little easier to read and is consistent with the notion that 0 |
| 20 | // means "false" or "bad." |
| 21 | // |
| 22 | // Secondly, when doing bulk decoding, we add a SIMD accelerated ASCII fast |
| 23 | // path. |
| 24 | // |
| 25 | // Thirdly, we pre-multiply the state IDs to avoid a multiplication instruction |
| 26 | // in the core decoding loop. (Which is what regex-automata would do by |
| 27 | // default.) |
| 28 | // |
| 29 | // Fourthly, we split the byte class mapping and transition table into two |
| 30 | // arrays because it's clearer. |
| 31 | // |
| 32 | // It is unlikely that this is the fastest way to do UTF-8 decoding, however, |
| 33 | // it is fairly simple. |
| 34 | |
| 35 | const ACCEPT: usize = 12; |
| 36 | const REJECT: usize = 0; |
| 37 | |
| 38 | /// SAFETY: The decode below function relies on the correctness of these |
| 39 | /// equivalence classes. |
| 40 | #[rustfmt::skip] |
| 41 | const CLASSES: [u8; 256] = [ |
| 42 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
| 43 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
| 44 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
| 45 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
| 46 | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, |
| 47 | 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, |
| 48 | 8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, |
| 49 | 10,3,3,3,3,3,3,3,3,3,3,3,3,4,3,3, 11,6,6,6,5,8,8,8,8,8,8,8,8,8,8,8, |
| 50 | ]; |
| 51 | |
| 52 | /// SAFETY: The decode below function relies on the correctness of this state |
| 53 | /// machine. |
| 54 | #[rustfmt::skip] |
| 55 | const STATES_FORWARD: &[u8] = &[ |
| 56 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 57 | 12, 0, 24, 36, 60, 96, 84, 0, 0, 0, 48, 72, |
| 58 | 0, 12, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0, |
| 59 | 0, 24, 0, 0, 0, 0, 0, 24, 0, 24, 0, 0, |
| 60 | 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, |
| 61 | 0, 24, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, |
| 62 | 0, 0, 0, 0, 0, 0, 0, 36, 0, 36, 0, 0, |
| 63 | 0, 36, 0, 0, 0, 0, 0, 36, 0, 36, 0, 0, |
| 64 | 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 65 | ]; |
| 66 | |
| 67 | /// An iterator over Unicode scalar values in a byte string. |
| 68 | /// |
| 69 | /// When invalid UTF-8 byte sequences are found, they are substituted with the |
| 70 | /// Unicode replacement codepoint (`U+FFFD`) using the |
| 71 | /// ["maximal subpart" strategy](https://www.unicode.org/review/pr-121.html). |
| 72 | /// |
| 73 | /// This iterator is created by the |
| 74 | /// [`chars`](trait.ByteSlice.html#method.chars) method provided by the |
| 75 | /// [`ByteSlice`](trait.ByteSlice.html) extension trait for `&[u8]`. |
| 76 | #[derive (Clone, Debug)] |
| 77 | pub struct Chars<'a> { |
| 78 | bs: &'a [u8], |
| 79 | } |
| 80 | |
| 81 | impl<'a> Chars<'a> { |
| 82 | pub(crate) fn new(bs: &'a [u8]) -> Chars<'a> { |
| 83 | Chars { bs } |
| 84 | } |
| 85 | |
| 86 | /// View the underlying data as a subslice of the original data. |
| 87 | /// |
| 88 | /// The slice returned has the same lifetime as the original slice, and so |
| 89 | /// the iterator can continue to be used while this exists. |
| 90 | /// |
| 91 | /// # Examples |
| 92 | /// |
| 93 | /// ``` |
| 94 | /// use bstr::ByteSlice; |
| 95 | /// |
| 96 | /// let mut chars = b"abc" .chars(); |
| 97 | /// |
| 98 | /// assert_eq!(b"abc" , chars.as_bytes()); |
| 99 | /// chars.next(); |
| 100 | /// assert_eq!(b"bc" , chars.as_bytes()); |
| 101 | /// chars.next(); |
| 102 | /// chars.next(); |
| 103 | /// assert_eq!(b"" , chars.as_bytes()); |
| 104 | /// ``` |
| 105 | #[inline ] |
| 106 | pub fn as_bytes(&self) -> &'a [u8] { |
| 107 | self.bs |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | impl<'a> Iterator for Chars<'a> { |
| 112 | type Item = char; |
| 113 | |
| 114 | #[inline ] |
| 115 | fn next(&mut self) -> Option<char> { |
| 116 | let (ch: char, size: usize) = decode_lossy(self.bs); |
| 117 | if size == 0 { |
| 118 | return None; |
| 119 | } |
| 120 | self.bs = &self.bs[size..]; |
| 121 | Some(ch) |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | impl<'a> DoubleEndedIterator for Chars<'a> { |
| 126 | #[inline ] |
| 127 | fn next_back(&mut self) -> Option<char> { |
| 128 | let (ch: char, size: usize) = decode_last_lossy(self.bs); |
| 129 | if size == 0 { |
| 130 | return None; |
| 131 | } |
| 132 | self.bs = &self.bs[..self.bs.len() - size]; |
| 133 | Some(ch) |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | /// An iterator over Unicode scalar values in a byte string and their |
| 138 | /// byte index positions. |
| 139 | /// |
| 140 | /// When invalid UTF-8 byte sequences are found, they are substituted with the |
| 141 | /// Unicode replacement codepoint (`U+FFFD`) using the |
| 142 | /// ["maximal subpart" strategy](https://www.unicode.org/review/pr-121.html). |
| 143 | /// |
| 144 | /// Note that this is slightly different from the `CharIndices` iterator |
| 145 | /// provided by the standard library. Aside from working on possibly invalid |
| 146 | /// UTF-8, this iterator provides both the corresponding starting and ending |
| 147 | /// byte indices of each codepoint yielded. The ending position is necessary to |
| 148 | /// slice the original byte string when invalid UTF-8 bytes are converted into |
| 149 | /// a Unicode replacement codepoint, since a single replacement codepoint can |
| 150 | /// substitute anywhere from 1 to 3 invalid bytes (inclusive). |
| 151 | /// |
| 152 | /// This iterator is created by the |
| 153 | /// [`char_indices`](trait.ByteSlice.html#method.char_indices) method provided |
| 154 | /// by the [`ByteSlice`](trait.ByteSlice.html) extension trait for `&[u8]`. |
| 155 | #[derive (Clone, Debug)] |
| 156 | pub struct CharIndices<'a> { |
| 157 | bs: &'a [u8], |
| 158 | forward_index: usize, |
| 159 | reverse_index: usize, |
| 160 | } |
| 161 | |
| 162 | impl<'a> CharIndices<'a> { |
| 163 | pub(crate) fn new(bs: &'a [u8]) -> CharIndices<'a> { |
| 164 | CharIndices { bs, forward_index: 0, reverse_index: bs.len() } |
| 165 | } |
| 166 | |
| 167 | /// View the underlying data as a subslice of the original data. |
| 168 | /// |
| 169 | /// The slice returned has the same lifetime as the original slice, and so |
| 170 | /// the iterator can continue to be used while this exists. |
| 171 | /// |
| 172 | /// # Examples |
| 173 | /// |
| 174 | /// ``` |
| 175 | /// use bstr::ByteSlice; |
| 176 | /// |
| 177 | /// let mut it = b"abc" .char_indices(); |
| 178 | /// |
| 179 | /// assert_eq!(b"abc" , it.as_bytes()); |
| 180 | /// it.next(); |
| 181 | /// assert_eq!(b"bc" , it.as_bytes()); |
| 182 | /// it.next(); |
| 183 | /// it.next(); |
| 184 | /// assert_eq!(b"" , it.as_bytes()); |
| 185 | /// ``` |
| 186 | #[inline ] |
| 187 | pub fn as_bytes(&self) -> &'a [u8] { |
| 188 | self.bs |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | impl<'a> Iterator for CharIndices<'a> { |
| 193 | type Item = (usize, usize, char); |
| 194 | |
| 195 | #[inline ] |
| 196 | fn next(&mut self) -> Option<(usize, usize, char)> { |
| 197 | let index: usize = self.forward_index; |
| 198 | let (ch: char, size: usize) = decode_lossy(self.bs); |
| 199 | if size == 0 { |
| 200 | return None; |
| 201 | } |
| 202 | self.bs = &self.bs[size..]; |
| 203 | self.forward_index += size; |
| 204 | Some((index, index + size, ch)) |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | impl<'a> DoubleEndedIterator for CharIndices<'a> { |
| 209 | #[inline ] |
| 210 | fn next_back(&mut self) -> Option<(usize, usize, char)> { |
| 211 | let (ch: char, size: usize) = decode_last_lossy(self.bs); |
| 212 | if size == 0 { |
| 213 | return None; |
| 214 | } |
| 215 | self.bs = &self.bs[..self.bs.len() - size]; |
| 216 | self.reverse_index -= size; |
| 217 | Some((self.reverse_index, self.reverse_index + size, ch)) |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | impl<'a> ::core::iter::FusedIterator for CharIndices<'a> {} |
| 222 | |
| 223 | /// An iterator over chunks of valid UTF-8 in a byte slice. |
| 224 | /// |
| 225 | /// See [`utf8_chunks`](trait.ByteSlice.html#method.utf8_chunks). |
| 226 | #[derive (Clone, Debug)] |
| 227 | pub struct Utf8Chunks<'a> { |
| 228 | pub(super) bytes: &'a [u8], |
| 229 | } |
| 230 | |
| 231 | /// A chunk of valid UTF-8, possibly followed by invalid UTF-8 bytes. |
| 232 | /// |
| 233 | /// This is yielded by the |
| 234 | /// [`Utf8Chunks`](struct.Utf8Chunks.html) |
| 235 | /// iterator, which can be created via the |
| 236 | /// [`ByteSlice::utf8_chunks`](trait.ByteSlice.html#method.utf8_chunks) |
| 237 | /// method. |
| 238 | /// |
| 239 | /// The `'a` lifetime parameter corresponds to the lifetime of the bytes that |
| 240 | /// are being iterated over. |
| 241 | #[cfg_attr (test, derive(Debug, PartialEq))] |
| 242 | pub struct Utf8Chunk<'a> { |
| 243 | /// A valid UTF-8 piece, at the start, end, or between invalid UTF-8 bytes. |
| 244 | /// |
| 245 | /// This is empty between adjacent invalid UTF-8 byte sequences. |
| 246 | valid: &'a str, |
| 247 | /// A sequence of invalid UTF-8 bytes. |
| 248 | /// |
| 249 | /// Can only be empty in the last chunk. |
| 250 | /// |
| 251 | /// Should be replaced by a single unicode replacement character, if not |
| 252 | /// empty. |
| 253 | invalid: &'a BStr, |
| 254 | /// Indicates whether the invalid sequence could've been valid if there |
| 255 | /// were more bytes. |
| 256 | /// |
| 257 | /// Can only be true in the last chunk. |
| 258 | incomplete: bool, |
| 259 | } |
| 260 | |
| 261 | impl<'a> Utf8Chunk<'a> { |
| 262 | /// Returns the (possibly empty) valid UTF-8 bytes in this chunk. |
| 263 | /// |
| 264 | /// This may be empty if there are consecutive sequences of invalid UTF-8 |
| 265 | /// bytes. |
| 266 | #[inline ] |
| 267 | pub fn valid(&self) -> &'a str { |
| 268 | self.valid |
| 269 | } |
| 270 | |
| 271 | /// Returns the (possibly empty) invalid UTF-8 bytes in this chunk that |
| 272 | /// immediately follow the valid UTF-8 bytes in this chunk. |
| 273 | /// |
| 274 | /// This is only empty when this chunk corresponds to the last chunk in |
| 275 | /// the original bytes. |
| 276 | /// |
| 277 | /// The maximum length of this slice is 3. That is, invalid UTF-8 byte |
| 278 | /// sequences greater than 1 always correspond to a valid _prefix_ of |
| 279 | /// a valid UTF-8 encoded codepoint. This corresponds to the "substitution |
| 280 | /// of maximal subparts" strategy that is described in more detail in the |
| 281 | /// docs for the |
| 282 | /// [`ByteSlice::to_str_lossy`](trait.ByteSlice.html#method.to_str_lossy) |
| 283 | /// method. |
| 284 | #[inline ] |
| 285 | pub fn invalid(&self) -> &'a [u8] { |
| 286 | self.invalid.as_bytes() |
| 287 | } |
| 288 | |
| 289 | /// Returns whether the invalid sequence might still become valid if more |
| 290 | /// bytes are added. |
| 291 | /// |
| 292 | /// Returns true if the end of the input was reached unexpectedly, |
| 293 | /// without encountering an unexpected byte. |
| 294 | /// |
| 295 | /// This can only be the case for the last chunk. |
| 296 | #[inline ] |
| 297 | pub fn incomplete(&self) -> bool { |
| 298 | self.incomplete |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | impl<'a> Iterator for Utf8Chunks<'a> { |
| 303 | type Item = Utf8Chunk<'a>; |
| 304 | |
| 305 | #[inline ] |
| 306 | fn next(&mut self) -> Option<Utf8Chunk<'a>> { |
| 307 | if self.bytes.is_empty() { |
| 308 | return None; |
| 309 | } |
| 310 | match validate(self.bytes) { |
| 311 | Ok(()) => { |
| 312 | let valid = self.bytes; |
| 313 | self.bytes = &[]; |
| 314 | Some(Utf8Chunk { |
| 315 | // SAFETY: This is safe because of the guarantees provided |
| 316 | // by utf8::validate. |
| 317 | valid: unsafe { str::from_utf8_unchecked(valid) }, |
| 318 | invalid: [].as_bstr(), |
| 319 | incomplete: false, |
| 320 | }) |
| 321 | } |
| 322 | Err(e) => { |
| 323 | let (valid, rest) = self.bytes.split_at(e.valid_up_to()); |
| 324 | // SAFETY: This is safe because of the guarantees provided by |
| 325 | // utf8::validate. |
| 326 | let valid = unsafe { str::from_utf8_unchecked(valid) }; |
| 327 | let (invalid_len, incomplete) = match e.error_len() { |
| 328 | Some(n) => (n, false), |
| 329 | None => (rest.len(), true), |
| 330 | }; |
| 331 | let (invalid, rest) = rest.split_at(invalid_len); |
| 332 | self.bytes = rest; |
| 333 | Some(Utf8Chunk { |
| 334 | valid, |
| 335 | invalid: invalid.as_bstr(), |
| 336 | incomplete, |
| 337 | }) |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | #[inline ] |
| 343 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 344 | if self.bytes.is_empty() { |
| 345 | (0, Some(0)) |
| 346 | } else { |
| 347 | (1, Some(self.bytes.len())) |
| 348 | } |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | impl<'a> ::core::iter::FusedIterator for Utf8Chunks<'a> {} |
| 353 | |
| 354 | /// An error that occurs when UTF-8 decoding fails. |
| 355 | /// |
| 356 | /// This error occurs when attempting to convert a non-UTF-8 byte |
| 357 | /// string to a Rust string that must be valid UTF-8. For example, |
| 358 | /// [`to_str`](trait.ByteSlice.html#method.to_str) is one such method. |
| 359 | /// |
| 360 | /// # Example |
| 361 | /// |
| 362 | /// This example shows what happens when a given byte sequence is invalid, |
| 363 | /// but ends with a sequence that is a possible prefix of valid UTF-8. |
| 364 | /// |
| 365 | /// ``` |
| 366 | /// use bstr::{B, ByteSlice}; |
| 367 | /// |
| 368 | /// let s = B(b"foobar \xF1\x80\x80" ); |
| 369 | /// let err = s.to_str().unwrap_err(); |
| 370 | /// assert_eq!(err.valid_up_to(), 6); |
| 371 | /// assert_eq!(err.error_len(), None); |
| 372 | /// ``` |
| 373 | /// |
| 374 | /// This example shows what happens when a given byte sequence contains |
| 375 | /// invalid UTF-8. |
| 376 | /// |
| 377 | /// ``` |
| 378 | /// use bstr::ByteSlice; |
| 379 | /// |
| 380 | /// let s = b"foobar \xF1\x80\x80quux" ; |
| 381 | /// let err = s.to_str().unwrap_err(); |
| 382 | /// assert_eq!(err.valid_up_to(), 6); |
| 383 | /// // The error length reports the maximum number of bytes that correspond to |
| 384 | /// // a valid prefix of a UTF-8 encoded codepoint. |
| 385 | /// assert_eq!(err.error_len(), Some(3)); |
| 386 | /// |
| 387 | /// // In contrast to the above which contains a single invalid prefix, |
| 388 | /// // consider the case of multiple individual bytes that are never valid |
| 389 | /// // prefixes. Note how the value of error_len changes! |
| 390 | /// let s = b"foobar \xFF\xFFquux" ; |
| 391 | /// let err = s.to_str().unwrap_err(); |
| 392 | /// assert_eq!(err.valid_up_to(), 6); |
| 393 | /// assert_eq!(err.error_len(), Some(1)); |
| 394 | /// |
| 395 | /// // The fact that it's an invalid prefix does not change error_len even |
| 396 | /// // when it immediately precedes the end of the string. |
| 397 | /// let s = b"foobar \xFF" ; |
| 398 | /// let err = s.to_str().unwrap_err(); |
| 399 | /// assert_eq!(err.valid_up_to(), 6); |
| 400 | /// assert_eq!(err.error_len(), Some(1)); |
| 401 | /// ``` |
| 402 | #[derive (Clone, Debug, Eq, PartialEq)] |
| 403 | pub struct Utf8Error { |
| 404 | valid_up_to: usize, |
| 405 | error_len: Option<usize>, |
| 406 | } |
| 407 | |
| 408 | impl Utf8Error { |
| 409 | /// Returns the byte index of the position immediately following the last |
| 410 | /// valid UTF-8 byte. |
| 411 | /// |
| 412 | /// # Example |
| 413 | /// |
| 414 | /// This examples shows how `valid_up_to` can be used to retrieve a |
| 415 | /// possibly empty prefix that is guaranteed to be valid UTF-8: |
| 416 | /// |
| 417 | /// ``` |
| 418 | /// use bstr::ByteSlice; |
| 419 | /// |
| 420 | /// let s = b"foobar \xF1\x80\x80quux" ; |
| 421 | /// let err = s.to_str().unwrap_err(); |
| 422 | /// |
| 423 | /// // This is guaranteed to never panic. |
| 424 | /// let string = s[..err.valid_up_to()].to_str().unwrap(); |
| 425 | /// assert_eq!(string, "foobar" ); |
| 426 | /// ``` |
| 427 | #[inline ] |
| 428 | pub fn valid_up_to(&self) -> usize { |
| 429 | self.valid_up_to |
| 430 | } |
| 431 | |
| 432 | /// Returns the total number of invalid UTF-8 bytes immediately following |
| 433 | /// the position returned by `valid_up_to`. This value is always at least |
| 434 | /// `1`, but can be up to `3` if bytes form a valid prefix of some UTF-8 |
| 435 | /// encoded codepoint. |
| 436 | /// |
| 437 | /// If the end of the original input was found before a valid UTF-8 encoded |
| 438 | /// codepoint could be completed, then this returns `None`. This is useful |
| 439 | /// when processing streams, where a `None` value signals that more input |
| 440 | /// might be needed. |
| 441 | #[inline ] |
| 442 | pub fn error_len(&self) -> Option<usize> { |
| 443 | self.error_len |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | #[cfg (feature = "std" )] |
| 448 | impl std::error::Error for Utf8Error { |
| 449 | fn description(&self) -> &str { |
| 450 | "invalid UTF-8" |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | impl fmt::Display for Utf8Error { |
| 455 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 456 | write!(f, "invalid UTF-8 found at byte offset {}" , self.valid_up_to) |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | /// Returns OK if and only if the given slice is completely valid UTF-8. |
| 461 | /// |
| 462 | /// If the slice isn't valid UTF-8, then an error is returned that explains |
| 463 | /// the first location at which invalid UTF-8 was detected. |
| 464 | pub fn validate(slice: &[u8]) -> Result<(), Utf8Error> { |
| 465 | // The fast path for validating UTF-8. It steps through a UTF-8 automaton |
| 466 | // and uses a SIMD accelerated ASCII fast path on x86_64. If an error is |
| 467 | // detected, it backs up and runs the slower version of the UTF-8 automaton |
| 468 | // to determine correct error information. |
| 469 | fn fast(slice: &[u8]) -> Result<(), Utf8Error> { |
| 470 | let mut state = ACCEPT; |
| 471 | let mut i = 0; |
| 472 | |
| 473 | while i < slice.len() { |
| 474 | let b = slice[i]; |
| 475 | |
| 476 | // ASCII fast path. If we see two consecutive ASCII bytes, then try |
| 477 | // to validate as much ASCII as possible very quickly. |
| 478 | if state == ACCEPT |
| 479 | && b <= 0x7F |
| 480 | && slice.get(i + 1).map_or(false, |&b| b <= 0x7F) |
| 481 | { |
| 482 | i += ascii::first_non_ascii_byte(&slice[i..]); |
| 483 | continue; |
| 484 | } |
| 485 | |
| 486 | state = step(state, b); |
| 487 | if state == REJECT { |
| 488 | return Err(find_valid_up_to(slice, i)); |
| 489 | } |
| 490 | i += 1; |
| 491 | } |
| 492 | if state != ACCEPT { |
| 493 | Err(find_valid_up_to(slice, slice.len())) |
| 494 | } else { |
| 495 | Ok(()) |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | // Given the first position at which a UTF-8 sequence was determined to be |
| 500 | // invalid, return an error that correctly reports the position at which |
| 501 | // the last complete UTF-8 sequence ends. |
| 502 | #[inline (never)] |
| 503 | fn find_valid_up_to(slice: &[u8], rejected_at: usize) -> Utf8Error { |
| 504 | // In order to find the last valid byte, we need to back up an amount |
| 505 | // that guarantees every preceding byte is part of a valid UTF-8 |
| 506 | // code unit sequence. To do this, we simply locate the last leading |
| 507 | // byte that occurs before rejected_at. |
| 508 | let mut backup = rejected_at.saturating_sub(1); |
| 509 | while backup > 0 && !is_leading_or_invalid_utf8_byte(slice[backup]) { |
| 510 | backup -= 1; |
| 511 | } |
| 512 | let upto = cmp::min(slice.len(), rejected_at.saturating_add(1)); |
| 513 | let mut err = slow(&slice[backup..upto]).unwrap_err(); |
| 514 | err.valid_up_to += backup; |
| 515 | err |
| 516 | } |
| 517 | |
| 518 | // Like top-level UTF-8 decoding, except it correctly reports a UTF-8 error |
| 519 | // when an invalid sequence is found. This is split out from validate so |
| 520 | // that the fast path doesn't need to keep track of the position of the |
| 521 | // last valid UTF-8 byte. In particular, tracking this requires checking |
| 522 | // for an ACCEPT state on each byte, which degrades throughput pretty |
| 523 | // badly. |
| 524 | fn slow(slice: &[u8]) -> Result<(), Utf8Error> { |
| 525 | let mut state = ACCEPT; |
| 526 | let mut valid_up_to = 0; |
| 527 | for (i, &b) in slice.iter().enumerate() { |
| 528 | state = step(state, b); |
| 529 | if state == ACCEPT { |
| 530 | valid_up_to = i + 1; |
| 531 | } else if state == REJECT { |
| 532 | // Our error length must always be at least 1. |
| 533 | let error_len = Some(cmp::max(1, i - valid_up_to)); |
| 534 | return Err(Utf8Error { valid_up_to, error_len }); |
| 535 | } |
| 536 | } |
| 537 | if state != ACCEPT { |
| 538 | Err(Utf8Error { valid_up_to, error_len: None }) |
| 539 | } else { |
| 540 | Ok(()) |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | // Advance to the next state given the current state and current byte. |
| 545 | fn step(state: usize, b: u8) -> usize { |
| 546 | let class = CLASSES[b as usize]; |
| 547 | // SAFETY: This is safe because 'class' is always <=11 and 'state' is |
| 548 | // always <=96. Therefore, the maximal index is 96+11 = 107, where |
| 549 | // STATES_FORWARD.len() = 108 such that every index is guaranteed to be |
| 550 | // valid by construction of the state machine and the byte equivalence |
| 551 | // classes. |
| 552 | unsafe { |
| 553 | *STATES_FORWARD.get_unchecked(state + class as usize) as usize |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | fast(slice) |
| 558 | } |
| 559 | |
| 560 | /// UTF-8 decode a single Unicode scalar value from the beginning of a slice. |
| 561 | /// |
| 562 | /// When successful, the corresponding Unicode scalar value is returned along |
| 563 | /// with the number of bytes it was encoded with. The number of bytes consumed |
| 564 | /// for a successful decode is always between 1 and 4, inclusive. |
| 565 | /// |
| 566 | /// When unsuccessful, `None` is returned along with the number of bytes that |
| 567 | /// make up a maximal prefix of a valid UTF-8 code unit sequence. In this case, |
| 568 | /// the number of bytes consumed is always between 0 and 3, inclusive, where |
| 569 | /// 0 is only returned when `slice` is empty. |
| 570 | /// |
| 571 | /// # Examples |
| 572 | /// |
| 573 | /// Basic usage: |
| 574 | /// |
| 575 | /// ``` |
| 576 | /// use bstr::decode_utf8; |
| 577 | /// |
| 578 | /// // Decoding a valid codepoint. |
| 579 | /// let (ch, size) = decode_utf8(b" \xE2\x98\x83" ); |
| 580 | /// assert_eq!(Some('☃' ), ch); |
| 581 | /// assert_eq!(3, size); |
| 582 | /// |
| 583 | /// // Decoding an incomplete codepoint. |
| 584 | /// let (ch, size) = decode_utf8(b" \xE2\x98" ); |
| 585 | /// assert_eq!(None, ch); |
| 586 | /// assert_eq!(2, size); |
| 587 | /// ``` |
| 588 | /// |
| 589 | /// This example shows how to iterate over all codepoints in UTF-8 encoded |
| 590 | /// bytes, while replacing invalid UTF-8 sequences with the replacement |
| 591 | /// codepoint: |
| 592 | /// |
| 593 | /// ``` |
| 594 | /// use bstr::{B, decode_utf8}; |
| 595 | /// |
| 596 | /// let mut bytes = B(b" \xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61" ); |
| 597 | /// let mut chars = vec![]; |
| 598 | /// while !bytes.is_empty() { |
| 599 | /// let (ch, size) = decode_utf8(bytes); |
| 600 | /// bytes = &bytes[size..]; |
| 601 | /// chars.push(ch.unwrap_or(' \u{FFFD}' )); |
| 602 | /// } |
| 603 | /// assert_eq!(vec!['☃' , ' \u{FFFD}' , '𝞃' , ' \u{FFFD}' , 'a' ], chars); |
| 604 | /// ``` |
| 605 | #[inline ] |
| 606 | pub fn decode<B: AsRef<[u8]>>(slice: B) -> (Option<char>, usize) { |
| 607 | let slice = slice.as_ref(); |
| 608 | match slice.first() { |
| 609 | None => return (None, 0), |
| 610 | Some(&b) if b <= 0x7F => return (Some(b as char), 1), |
| 611 | _ => {} |
| 612 | } |
| 613 | |
| 614 | let (mut state, mut cp, mut i) = (ACCEPT, 0, 0); |
| 615 | while i < slice.len() { |
| 616 | decode_step(&mut state, &mut cp, slice[i]); |
| 617 | i += 1; |
| 618 | |
| 619 | if state == ACCEPT { |
| 620 | // SAFETY: This is safe because `decode_step` guarantees that |
| 621 | // `cp` is a valid Unicode scalar value in an ACCEPT state. |
| 622 | let ch = unsafe { char::from_u32_unchecked(cp) }; |
| 623 | return (Some(ch), i); |
| 624 | } else if state == REJECT { |
| 625 | // At this point, we always want to advance at least one byte. |
| 626 | return (None, cmp::max(1, i.saturating_sub(1))); |
| 627 | } |
| 628 | } |
| 629 | (None, i) |
| 630 | } |
| 631 | |
| 632 | /// Lossily UTF-8 decode a single Unicode scalar value from the beginning of a |
| 633 | /// slice. |
| 634 | /// |
| 635 | /// When successful, the corresponding Unicode scalar value is returned along |
| 636 | /// with the number of bytes it was encoded with. The number of bytes consumed |
| 637 | /// for a successful decode is always between 1 and 4, inclusive. |
| 638 | /// |
| 639 | /// When unsuccessful, the Unicode replacement codepoint (`U+FFFD`) is returned |
| 640 | /// along with the number of bytes that make up a maximal prefix of a valid |
| 641 | /// UTF-8 code unit sequence. In this case, the number of bytes consumed is |
| 642 | /// always between 0 and 3, inclusive, where 0 is only returned when `slice` is |
| 643 | /// empty. |
| 644 | /// |
| 645 | /// # Examples |
| 646 | /// |
| 647 | /// Basic usage: |
| 648 | /// |
| 649 | /// ```ignore |
| 650 | /// use bstr::decode_utf8_lossy; |
| 651 | /// |
| 652 | /// // Decoding a valid codepoint. |
| 653 | /// let (ch, size) = decode_utf8_lossy(b" \xE2\x98\x83" ); |
| 654 | /// assert_eq!('☃' , ch); |
| 655 | /// assert_eq!(3, size); |
| 656 | /// |
| 657 | /// // Decoding an incomplete codepoint. |
| 658 | /// let (ch, size) = decode_utf8_lossy(b" \xE2\x98" ); |
| 659 | /// assert_eq!(' \u{FFFD}' , ch); |
| 660 | /// assert_eq!(2, size); |
| 661 | /// ``` |
| 662 | /// |
| 663 | /// This example shows how to iterate over all codepoints in UTF-8 encoded |
| 664 | /// bytes, while replacing invalid UTF-8 sequences with the replacement |
| 665 | /// codepoint: |
| 666 | /// |
| 667 | /// ```ignore |
| 668 | /// use bstr::{B, decode_utf8_lossy}; |
| 669 | /// |
| 670 | /// let mut bytes = B(b" \xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61" ); |
| 671 | /// let mut chars = vec![]; |
| 672 | /// while !bytes.is_empty() { |
| 673 | /// let (ch, size) = decode_utf8_lossy(bytes); |
| 674 | /// bytes = &bytes[size..]; |
| 675 | /// chars.push(ch); |
| 676 | /// } |
| 677 | /// assert_eq!(vec!['☃' , ' \u{FFFD}' , '𝞃' , ' \u{FFFD}' , 'a' ], chars); |
| 678 | /// ``` |
| 679 | #[inline ] |
| 680 | pub fn decode_lossy<B: AsRef<[u8]>>(slice: B) -> (char, usize) { |
| 681 | match decode(slice) { |
| 682 | (Some(ch: char), size: usize) => (ch, size), |
| 683 | (None, size: usize) => (' \u{FFFD}' , size), |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | /// UTF-8 decode a single Unicode scalar value from the end of a slice. |
| 688 | /// |
| 689 | /// When successful, the corresponding Unicode scalar value is returned along |
| 690 | /// with the number of bytes it was encoded with. The number of bytes consumed |
| 691 | /// for a successful decode is always between 1 and 4, inclusive. |
| 692 | /// |
| 693 | /// When unsuccessful, `None` is returned along with the number of bytes that |
| 694 | /// make up a maximal prefix of a valid UTF-8 code unit sequence. In this case, |
| 695 | /// the number of bytes consumed is always between 0 and 3, inclusive, where |
| 696 | /// 0 is only returned when `slice` is empty. |
| 697 | /// |
| 698 | /// # Examples |
| 699 | /// |
| 700 | /// Basic usage: |
| 701 | /// |
| 702 | /// ``` |
| 703 | /// use bstr::decode_last_utf8; |
| 704 | /// |
| 705 | /// // Decoding a valid codepoint. |
| 706 | /// let (ch, size) = decode_last_utf8(b" \xE2\x98\x83" ); |
| 707 | /// assert_eq!(Some('☃' ), ch); |
| 708 | /// assert_eq!(3, size); |
| 709 | /// |
| 710 | /// // Decoding an incomplete codepoint. |
| 711 | /// let (ch, size) = decode_last_utf8(b" \xE2\x98" ); |
| 712 | /// assert_eq!(None, ch); |
| 713 | /// assert_eq!(2, size); |
| 714 | /// ``` |
| 715 | /// |
| 716 | /// This example shows how to iterate over all codepoints in UTF-8 encoded |
| 717 | /// bytes in reverse, while replacing invalid UTF-8 sequences with the |
| 718 | /// replacement codepoint: |
| 719 | /// |
| 720 | /// ``` |
| 721 | /// use bstr::{B, decode_last_utf8}; |
| 722 | /// |
| 723 | /// let mut bytes = B(b" \xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61" ); |
| 724 | /// let mut chars = vec![]; |
| 725 | /// while !bytes.is_empty() { |
| 726 | /// let (ch, size) = decode_last_utf8(bytes); |
| 727 | /// bytes = &bytes[..bytes.len()-size]; |
| 728 | /// chars.push(ch.unwrap_or(' \u{FFFD}' )); |
| 729 | /// } |
| 730 | /// assert_eq!(vec!['a' , ' \u{FFFD}' , '𝞃' , ' \u{FFFD}' , '☃' ], chars); |
| 731 | /// ``` |
| 732 | #[inline ] |
| 733 | pub fn decode_last<B: AsRef<[u8]>>(slice: B) -> (Option<char>, usize) { |
| 734 | // TODO: We could implement this by reversing the UTF-8 automaton, but for |
| 735 | // now, we do it the slow way by using the forward automaton. |
| 736 | |
| 737 | let slice: &[u8] = slice.as_ref(); |
| 738 | if slice.is_empty() { |
| 739 | return (None, 0); |
| 740 | } |
| 741 | let mut start: usize = slice.len() - 1; |
| 742 | let limit: usize = slice.len().saturating_sub(4); |
| 743 | while start > limit && !is_leading_or_invalid_utf8_byte(slice[start]) { |
| 744 | start -= 1; |
| 745 | } |
| 746 | let (ch: Option, size: usize) = decode(&slice[start..]); |
| 747 | // If we didn't consume all of the bytes, then that means there's at least |
| 748 | // one stray byte that never occurs in a valid code unit prefix, so we can |
| 749 | // advance by one byte. |
| 750 | if start + size != slice.len() { |
| 751 | (None, 1) |
| 752 | } else { |
| 753 | (ch, size) |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | /// Lossily UTF-8 decode a single Unicode scalar value from the end of a slice. |
| 758 | /// |
| 759 | /// When successful, the corresponding Unicode scalar value is returned along |
| 760 | /// with the number of bytes it was encoded with. The number of bytes consumed |
| 761 | /// for a successful decode is always between 1 and 4, inclusive. |
| 762 | /// |
| 763 | /// When unsuccessful, the Unicode replacement codepoint (`U+FFFD`) is returned |
| 764 | /// along with the number of bytes that make up a maximal prefix of a valid |
| 765 | /// UTF-8 code unit sequence. In this case, the number of bytes consumed is |
| 766 | /// always between 0 and 3, inclusive, where 0 is only returned when `slice` is |
| 767 | /// empty. |
| 768 | /// |
| 769 | /// # Examples |
| 770 | /// |
| 771 | /// Basic usage: |
| 772 | /// |
| 773 | /// ```ignore |
| 774 | /// use bstr::decode_last_utf8_lossy; |
| 775 | /// |
| 776 | /// // Decoding a valid codepoint. |
| 777 | /// let (ch, size) = decode_last_utf8_lossy(b" \xE2\x98\x83" ); |
| 778 | /// assert_eq!('☃' , ch); |
| 779 | /// assert_eq!(3, size); |
| 780 | /// |
| 781 | /// // Decoding an incomplete codepoint. |
| 782 | /// let (ch, size) = decode_last_utf8_lossy(b" \xE2\x98" ); |
| 783 | /// assert_eq!(' \u{FFFD}' , ch); |
| 784 | /// assert_eq!(2, size); |
| 785 | /// ``` |
| 786 | /// |
| 787 | /// This example shows how to iterate over all codepoints in UTF-8 encoded |
| 788 | /// bytes in reverse, while replacing invalid UTF-8 sequences with the |
| 789 | /// replacement codepoint: |
| 790 | /// |
| 791 | /// ```ignore |
| 792 | /// use bstr::decode_last_utf8_lossy; |
| 793 | /// |
| 794 | /// let mut bytes = B(b" \xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61" ); |
| 795 | /// let mut chars = vec![]; |
| 796 | /// while !bytes.is_empty() { |
| 797 | /// let (ch, size) = decode_last_utf8_lossy(bytes); |
| 798 | /// bytes = &bytes[..bytes.len()-size]; |
| 799 | /// chars.push(ch); |
| 800 | /// } |
| 801 | /// assert_eq!(vec!['a' , ' \u{FFFD}' , '𝞃' , ' \u{FFFD}' , '☃' ], chars); |
| 802 | /// ``` |
| 803 | #[inline ] |
| 804 | pub fn decode_last_lossy<B: AsRef<[u8]>>(slice: B) -> (char, usize) { |
| 805 | match decode_last(slice) { |
| 806 | (Some(ch: char), size: usize) => (ch, size), |
| 807 | (None, size: usize) => (' \u{FFFD}' , size), |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | /// SAFETY: The decode function relies on state being equal to ACCEPT only if |
| 812 | /// cp is a valid Unicode scalar value. |
| 813 | #[inline ] |
| 814 | pub fn decode_step(state: &mut usize, cp: &mut u32, b: u8) { |
| 815 | let class: u8 = CLASSES[b as usize]; |
| 816 | let b: u32 = u32::from(b); |
| 817 | if *state == ACCEPT { |
| 818 | *cp = (0xFF >> class) & b; |
| 819 | } else { |
| 820 | *cp = (b & 0b0011_1111) | (*cp << 6); |
| 821 | } |
| 822 | *state = STATES_FORWARD[*state + class as usize] as usize; |
| 823 | } |
| 824 | |
| 825 | /// Returns true if and only if the given byte is either a valid leading UTF-8 |
| 826 | /// byte, or is otherwise an invalid byte that can never appear anywhere in a |
| 827 | /// valid UTF-8 sequence. |
| 828 | fn is_leading_or_invalid_utf8_byte(b: u8) -> bool { |
| 829 | // In the ASCII case, the most significant bit is never set. The leading |
| 830 | // byte of a 2/3/4-byte sequence always has the top two most significant |
| 831 | // bits set. For bytes that can never appear anywhere in valid UTF-8, this |
| 832 | // also returns true, since every such byte has its two most significant |
| 833 | // bits set: |
| 834 | // |
| 835 | // \xC0 :: 11000000 |
| 836 | // \xC1 :: 11000001 |
| 837 | // \xF5 :: 11110101 |
| 838 | // \xF6 :: 11110110 |
| 839 | // \xF7 :: 11110111 |
| 840 | // \xF8 :: 11111000 |
| 841 | // \xF9 :: 11111001 |
| 842 | // \xFA :: 11111010 |
| 843 | // \xFB :: 11111011 |
| 844 | // \xFC :: 11111100 |
| 845 | // \xFD :: 11111101 |
| 846 | // \xFE :: 11111110 |
| 847 | // \xFF :: 11111111 |
| 848 | (b & 0b1100_0000) != 0b1000_0000 |
| 849 | } |
| 850 | |
| 851 | #[cfg (all(test, feature = "std" ))] |
| 852 | mod tests { |
| 853 | use core::char; |
| 854 | |
| 855 | use alloc::{string::String, vec, vec::Vec}; |
| 856 | |
| 857 | use crate::{ |
| 858 | ext_slice::{ByteSlice, B}, |
| 859 | tests::LOSSY_TESTS, |
| 860 | utf8::{self, Utf8Error}, |
| 861 | }; |
| 862 | |
| 863 | fn utf8e(valid_up_to: usize) -> Utf8Error { |
| 864 | Utf8Error { valid_up_to, error_len: None } |
| 865 | } |
| 866 | |
| 867 | fn utf8e2(valid_up_to: usize, error_len: usize) -> Utf8Error { |
| 868 | Utf8Error { valid_up_to, error_len: Some(error_len) } |
| 869 | } |
| 870 | |
| 871 | #[test ] |
| 872 | #[cfg (not(miri))] |
| 873 | fn validate_all_codepoints() { |
| 874 | for i in 0..(0x10FFFF + 1) { |
| 875 | let cp = match char::from_u32(i) { |
| 876 | None => continue, |
| 877 | Some(cp) => cp, |
| 878 | }; |
| 879 | let mut buf = [0; 4]; |
| 880 | let s = cp.encode_utf8(&mut buf); |
| 881 | assert_eq!(Ok(()), utf8::validate(s.as_bytes())); |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | #[test ] |
| 886 | fn validate_multiple_codepoints() { |
| 887 | assert_eq!(Ok(()), utf8::validate(b"abc" )); |
| 888 | assert_eq!(Ok(()), utf8::validate(b"a \xE2\x98\x83a" )); |
| 889 | assert_eq!(Ok(()), utf8::validate(b"a \xF0\x9D\x9C\xB7a" )); |
| 890 | assert_eq!(Ok(()), utf8::validate(b" \xE2\x98\x83\xF0\x9D\x9C\xB7" ,)); |
| 891 | assert_eq!( |
| 892 | Ok(()), |
| 893 | utf8::validate(b"a \xE2\x98\x83a \xF0\x9D\x9C\xB7a" ,) |
| 894 | ); |
| 895 | assert_eq!( |
| 896 | Ok(()), |
| 897 | utf8::validate(b" \xEF\xBF\xBD\xE2\x98\x83\xEF\xBF\xBD" ,) |
| 898 | ); |
| 899 | } |
| 900 | |
| 901 | #[test ] |
| 902 | fn validate_errors() { |
| 903 | // single invalid byte |
| 904 | assert_eq!(Err(utf8e2(0, 1)), utf8::validate(b" \xFF" )); |
| 905 | // single invalid byte after ASCII |
| 906 | assert_eq!(Err(utf8e2(1, 1)), utf8::validate(b"a \xFF" )); |
| 907 | // single invalid byte after 2 byte sequence |
| 908 | assert_eq!(Err(utf8e2(2, 1)), utf8::validate(b" \xCE\xB2\xFF" )); |
| 909 | // single invalid byte after 3 byte sequence |
| 910 | assert_eq!(Err(utf8e2(3, 1)), utf8::validate(b" \xE2\x98\x83\xFF" )); |
| 911 | // single invalid byte after 4 byte sequence |
| 912 | assert_eq!(Err(utf8e2(4, 1)), utf8::validate(b" \xF0\x9D\x9D\xB1\xFF" )); |
| 913 | |
| 914 | // An invalid 2-byte sequence with a valid 1-byte prefix. |
| 915 | assert_eq!(Err(utf8e2(0, 1)), utf8::validate(b" \xCE\xF0" )); |
| 916 | // An invalid 3-byte sequence with a valid 2-byte prefix. |
| 917 | assert_eq!(Err(utf8e2(0, 2)), utf8::validate(b" \xE2\x98\xF0" )); |
| 918 | // An invalid 4-byte sequence with a valid 3-byte prefix. |
| 919 | assert_eq!(Err(utf8e2(0, 3)), utf8::validate(b" \xF0\x9D\x9D\xF0" )); |
| 920 | |
| 921 | // An overlong sequence. Should be \xE2\x82\xAC, but we encode the |
| 922 | // same codepoint value in 4 bytes. This not only tests that we reject |
| 923 | // overlong sequences, but that we get valid_up_to correct. |
| 924 | assert_eq!(Err(utf8e2(0, 1)), utf8::validate(b" \xF0\x82\x82\xAC" )); |
| 925 | assert_eq!(Err(utf8e2(1, 1)), utf8::validate(b"a \xF0\x82\x82\xAC" )); |
| 926 | assert_eq!( |
| 927 | Err(utf8e2(3, 1)), |
| 928 | utf8::validate(b" \xE2\x98\x83\xF0\x82\x82\xAC" ,) |
| 929 | ); |
| 930 | |
| 931 | // Check that encoding a surrogate codepoint using the UTF-8 scheme |
| 932 | // fails validation. |
| 933 | assert_eq!(Err(utf8e2(0, 1)), utf8::validate(b" \xED\xA0\x80" )); |
| 934 | assert_eq!(Err(utf8e2(1, 1)), utf8::validate(b"a \xED\xA0\x80" )); |
| 935 | assert_eq!( |
| 936 | Err(utf8e2(3, 1)), |
| 937 | utf8::validate(b" \xE2\x98\x83\xED\xA0\x80" ,) |
| 938 | ); |
| 939 | |
| 940 | // Check that an incomplete 2-byte sequence fails. |
| 941 | assert_eq!(Err(utf8e2(0, 1)), utf8::validate(b" \xCEa" )); |
| 942 | assert_eq!(Err(utf8e2(1, 1)), utf8::validate(b"a \xCEa" )); |
| 943 | assert_eq!( |
| 944 | Err(utf8e2(3, 1)), |
| 945 | utf8::validate(b" \xE2\x98\x83\xCE\xE2\x98\x83" ,) |
| 946 | ); |
| 947 | // Check that an incomplete 3-byte sequence fails. |
| 948 | assert_eq!(Err(utf8e2(0, 2)), utf8::validate(b" \xE2\x98a" )); |
| 949 | assert_eq!(Err(utf8e2(1, 2)), utf8::validate(b"a \xE2\x98a" )); |
| 950 | assert_eq!( |
| 951 | Err(utf8e2(3, 2)), |
| 952 | utf8::validate(b" \xE2\x98\x83\xE2\x98\xE2\x98\x83" ,) |
| 953 | ); |
| 954 | // Check that an incomplete 4-byte sequence fails. |
| 955 | assert_eq!(Err(utf8e2(0, 3)), utf8::validate(b" \xF0\x9D\x9Ca" )); |
| 956 | assert_eq!(Err(utf8e2(1, 3)), utf8::validate(b"a \xF0\x9D\x9Ca" )); |
| 957 | assert_eq!( |
| 958 | Err(utf8e2(4, 3)), |
| 959 | utf8::validate(b" \xF0\x9D\x9C\xB1\xF0\x9D\x9C\xE2\x98\x83" ,) |
| 960 | ); |
| 961 | assert_eq!( |
| 962 | Err(utf8e2(6, 3)), |
| 963 | utf8::validate(b"foobar \xF1\x80\x80quux" ,) |
| 964 | ); |
| 965 | |
| 966 | // Check that an incomplete (EOF) 2-byte sequence fails. |
| 967 | assert_eq!(Err(utf8e(0)), utf8::validate(b" \xCE" )); |
| 968 | assert_eq!(Err(utf8e(1)), utf8::validate(b"a \xCE" )); |
| 969 | assert_eq!(Err(utf8e(3)), utf8::validate(b" \xE2\x98\x83\xCE" )); |
| 970 | // Check that an incomplete (EOF) 3-byte sequence fails. |
| 971 | assert_eq!(Err(utf8e(0)), utf8::validate(b" \xE2\x98" )); |
| 972 | assert_eq!(Err(utf8e(1)), utf8::validate(b"a \xE2\x98" )); |
| 973 | assert_eq!(Err(utf8e(3)), utf8::validate(b" \xE2\x98\x83\xE2\x98" )); |
| 974 | // Check that an incomplete (EOF) 4-byte sequence fails. |
| 975 | assert_eq!(Err(utf8e(0)), utf8::validate(b" \xF0\x9D\x9C" )); |
| 976 | assert_eq!(Err(utf8e(1)), utf8::validate(b"a \xF0\x9D\x9C" )); |
| 977 | assert_eq!( |
| 978 | Err(utf8e(4)), |
| 979 | utf8::validate(b" \xF0\x9D\x9C\xB1\xF0\x9D\x9C" ,) |
| 980 | ); |
| 981 | |
| 982 | // Test that we errors correct even after long valid sequences. This |
| 983 | // checks that our "backup" logic for detecting errors is correct. |
| 984 | assert_eq!( |
| 985 | Err(utf8e2(8, 1)), |
| 986 | utf8::validate(b" \xe2\x98\x83\xce\xb2\xe3\x83\x84\xFF" ,) |
| 987 | ); |
| 988 | } |
| 989 | |
| 990 | #[test ] |
| 991 | fn decode_valid() { |
| 992 | fn d(mut s: &str) -> Vec<char> { |
| 993 | let mut chars = vec![]; |
| 994 | while !s.is_empty() { |
| 995 | let (ch, size) = utf8::decode(s.as_bytes()); |
| 996 | s = &s[size..]; |
| 997 | chars.push(ch.unwrap()); |
| 998 | } |
| 999 | chars |
| 1000 | } |
| 1001 | |
| 1002 | assert_eq!(vec!['☃' ], d("☃" )); |
| 1003 | assert_eq!(vec!['☃' , '☃' ], d("☃☃" )); |
| 1004 | assert_eq!(vec!['α' , 'β' , 'γ' , 'δ' , 'ε' ], d("αβγδε" )); |
| 1005 | assert_eq!(vec!['☃' , '⛄' , '⛇' ], d("☃⛄⛇" )); |
| 1006 | assert_eq!(vec!['𝗮' , '𝗯' , '𝗰' , '𝗱' , '𝗲' ], d("𝗮𝗯𝗰𝗱𝗲" )); |
| 1007 | } |
| 1008 | |
| 1009 | #[test ] |
| 1010 | fn decode_invalid() { |
| 1011 | let (ch, size) = utf8::decode(b"" ); |
| 1012 | assert_eq!(None, ch); |
| 1013 | assert_eq!(0, size); |
| 1014 | |
| 1015 | let (ch, size) = utf8::decode(b" \xFF" ); |
| 1016 | assert_eq!(None, ch); |
| 1017 | assert_eq!(1, size); |
| 1018 | |
| 1019 | let (ch, size) = utf8::decode(b" \xCE\xF0" ); |
| 1020 | assert_eq!(None, ch); |
| 1021 | assert_eq!(1, size); |
| 1022 | |
| 1023 | let (ch, size) = utf8::decode(b" \xE2\x98\xF0" ); |
| 1024 | assert_eq!(None, ch); |
| 1025 | assert_eq!(2, size); |
| 1026 | |
| 1027 | let (ch, size) = utf8::decode(b" \xF0\x9D\x9D" ); |
| 1028 | assert_eq!(None, ch); |
| 1029 | assert_eq!(3, size); |
| 1030 | |
| 1031 | let (ch, size) = utf8::decode(b" \xF0\x9D\x9D\xF0" ); |
| 1032 | assert_eq!(None, ch); |
| 1033 | assert_eq!(3, size); |
| 1034 | |
| 1035 | let (ch, size) = utf8::decode(b" \xF0\x82\x82\xAC" ); |
| 1036 | assert_eq!(None, ch); |
| 1037 | assert_eq!(1, size); |
| 1038 | |
| 1039 | let (ch, size) = utf8::decode(b" \xED\xA0\x80" ); |
| 1040 | assert_eq!(None, ch); |
| 1041 | assert_eq!(1, size); |
| 1042 | |
| 1043 | let (ch, size) = utf8::decode(b" \xCEa" ); |
| 1044 | assert_eq!(None, ch); |
| 1045 | assert_eq!(1, size); |
| 1046 | |
| 1047 | let (ch, size) = utf8::decode(b" \xE2\x98a" ); |
| 1048 | assert_eq!(None, ch); |
| 1049 | assert_eq!(2, size); |
| 1050 | |
| 1051 | let (ch, size) = utf8::decode(b" \xF0\x9D\x9Ca" ); |
| 1052 | assert_eq!(None, ch); |
| 1053 | assert_eq!(3, size); |
| 1054 | } |
| 1055 | |
| 1056 | #[test ] |
| 1057 | fn decode_lossy() { |
| 1058 | let (ch, size) = utf8::decode_lossy(b"" ); |
| 1059 | assert_eq!(' \u{FFFD}' , ch); |
| 1060 | assert_eq!(0, size); |
| 1061 | |
| 1062 | let (ch, size) = utf8::decode_lossy(b" \xFF" ); |
| 1063 | assert_eq!(' \u{FFFD}' , ch); |
| 1064 | assert_eq!(1, size); |
| 1065 | |
| 1066 | let (ch, size) = utf8::decode_lossy(b" \xCE\xF0" ); |
| 1067 | assert_eq!(' \u{FFFD}' , ch); |
| 1068 | assert_eq!(1, size); |
| 1069 | |
| 1070 | let (ch, size) = utf8::decode_lossy(b" \xE2\x98\xF0" ); |
| 1071 | assert_eq!(' \u{FFFD}' , ch); |
| 1072 | assert_eq!(2, size); |
| 1073 | |
| 1074 | let (ch, size) = utf8::decode_lossy(b" \xF0\x9D\x9D\xF0" ); |
| 1075 | assert_eq!(' \u{FFFD}' , ch); |
| 1076 | assert_eq!(3, size); |
| 1077 | |
| 1078 | let (ch, size) = utf8::decode_lossy(b" \xF0\x82\x82\xAC" ); |
| 1079 | assert_eq!(' \u{FFFD}' , ch); |
| 1080 | assert_eq!(1, size); |
| 1081 | |
| 1082 | let (ch, size) = utf8::decode_lossy(b" \xED\xA0\x80" ); |
| 1083 | assert_eq!(' \u{FFFD}' , ch); |
| 1084 | assert_eq!(1, size); |
| 1085 | |
| 1086 | let (ch, size) = utf8::decode_lossy(b" \xCEa" ); |
| 1087 | assert_eq!(' \u{FFFD}' , ch); |
| 1088 | assert_eq!(1, size); |
| 1089 | |
| 1090 | let (ch, size) = utf8::decode_lossy(b" \xE2\x98a" ); |
| 1091 | assert_eq!(' \u{FFFD}' , ch); |
| 1092 | assert_eq!(2, size); |
| 1093 | |
| 1094 | let (ch, size) = utf8::decode_lossy(b" \xF0\x9D\x9Ca" ); |
| 1095 | assert_eq!(' \u{FFFD}' , ch); |
| 1096 | assert_eq!(3, size); |
| 1097 | } |
| 1098 | |
| 1099 | #[test ] |
| 1100 | fn decode_last_valid() { |
| 1101 | fn d(mut s: &str) -> Vec<char> { |
| 1102 | let mut chars = vec![]; |
| 1103 | while !s.is_empty() { |
| 1104 | let (ch, size) = utf8::decode_last(s.as_bytes()); |
| 1105 | s = &s[..s.len() - size]; |
| 1106 | chars.push(ch.unwrap()); |
| 1107 | } |
| 1108 | chars |
| 1109 | } |
| 1110 | |
| 1111 | assert_eq!(vec!['☃' ], d("☃" )); |
| 1112 | assert_eq!(vec!['☃' , '☃' ], d("☃☃" )); |
| 1113 | assert_eq!(vec!['ε' , 'δ' , 'γ' , 'β' , 'α' ], d("αβγδε" )); |
| 1114 | assert_eq!(vec!['⛇' , '⛄' , '☃' ], d("☃⛄⛇" )); |
| 1115 | assert_eq!(vec!['𝗲' , '𝗱' , '𝗰' , '𝗯' , '𝗮' ], d("𝗮𝗯𝗰𝗱𝗲" )); |
| 1116 | } |
| 1117 | |
| 1118 | #[test ] |
| 1119 | fn decode_last_invalid() { |
| 1120 | let (ch, size) = utf8::decode_last(b"" ); |
| 1121 | assert_eq!(None, ch); |
| 1122 | assert_eq!(0, size); |
| 1123 | |
| 1124 | let (ch, size) = utf8::decode_last(b" \xFF" ); |
| 1125 | assert_eq!(None, ch); |
| 1126 | assert_eq!(1, size); |
| 1127 | |
| 1128 | let (ch, size) = utf8::decode_last(b" \xCE\xF0" ); |
| 1129 | assert_eq!(None, ch); |
| 1130 | assert_eq!(1, size); |
| 1131 | |
| 1132 | let (ch, size) = utf8::decode_last(b" \xCE" ); |
| 1133 | assert_eq!(None, ch); |
| 1134 | assert_eq!(1, size); |
| 1135 | |
| 1136 | let (ch, size) = utf8::decode_last(b" \xE2\x98\xF0" ); |
| 1137 | assert_eq!(None, ch); |
| 1138 | assert_eq!(1, size); |
| 1139 | |
| 1140 | let (ch, size) = utf8::decode_last(b" \xE2\x98" ); |
| 1141 | assert_eq!(None, ch); |
| 1142 | assert_eq!(2, size); |
| 1143 | |
| 1144 | let (ch, size) = utf8::decode_last(b" \xF0\x9D\x9D\xF0" ); |
| 1145 | assert_eq!(None, ch); |
| 1146 | assert_eq!(1, size); |
| 1147 | |
| 1148 | let (ch, size) = utf8::decode_last(b" \xF0\x9D\x9D" ); |
| 1149 | assert_eq!(None, ch); |
| 1150 | assert_eq!(3, size); |
| 1151 | |
| 1152 | let (ch, size) = utf8::decode_last(b" \xF0\x82\x82\xAC" ); |
| 1153 | assert_eq!(None, ch); |
| 1154 | assert_eq!(1, size); |
| 1155 | |
| 1156 | let (ch, size) = utf8::decode_last(b" \xED\xA0\x80" ); |
| 1157 | assert_eq!(None, ch); |
| 1158 | assert_eq!(1, size); |
| 1159 | |
| 1160 | let (ch, size) = utf8::decode_last(b" \xED\xA0" ); |
| 1161 | assert_eq!(None, ch); |
| 1162 | assert_eq!(1, size); |
| 1163 | |
| 1164 | let (ch, size) = utf8::decode_last(b" \xED" ); |
| 1165 | assert_eq!(None, ch); |
| 1166 | assert_eq!(1, size); |
| 1167 | |
| 1168 | let (ch, size) = utf8::decode_last(b"a \xCE" ); |
| 1169 | assert_eq!(None, ch); |
| 1170 | assert_eq!(1, size); |
| 1171 | |
| 1172 | let (ch, size) = utf8::decode_last(b"a \xE2\x98" ); |
| 1173 | assert_eq!(None, ch); |
| 1174 | assert_eq!(2, size); |
| 1175 | |
| 1176 | let (ch, size) = utf8::decode_last(b"a \xF0\x9D\x9C" ); |
| 1177 | assert_eq!(None, ch); |
| 1178 | assert_eq!(3, size); |
| 1179 | } |
| 1180 | |
| 1181 | #[test ] |
| 1182 | fn decode_last_lossy() { |
| 1183 | let (ch, size) = utf8::decode_last_lossy(b"" ); |
| 1184 | assert_eq!(' \u{FFFD}' , ch); |
| 1185 | assert_eq!(0, size); |
| 1186 | |
| 1187 | let (ch, size) = utf8::decode_last_lossy(b" \xFF" ); |
| 1188 | assert_eq!(' \u{FFFD}' , ch); |
| 1189 | assert_eq!(1, size); |
| 1190 | |
| 1191 | let (ch, size) = utf8::decode_last_lossy(b" \xCE\xF0" ); |
| 1192 | assert_eq!(' \u{FFFD}' , ch); |
| 1193 | assert_eq!(1, size); |
| 1194 | |
| 1195 | let (ch, size) = utf8::decode_last_lossy(b" \xCE" ); |
| 1196 | assert_eq!(' \u{FFFD}' , ch); |
| 1197 | assert_eq!(1, size); |
| 1198 | |
| 1199 | let (ch, size) = utf8::decode_last_lossy(b" \xE2\x98\xF0" ); |
| 1200 | assert_eq!(' \u{FFFD}' , ch); |
| 1201 | assert_eq!(1, size); |
| 1202 | |
| 1203 | let (ch, size) = utf8::decode_last_lossy(b" \xE2\x98" ); |
| 1204 | assert_eq!(' \u{FFFD}' , ch); |
| 1205 | assert_eq!(2, size); |
| 1206 | |
| 1207 | let (ch, size) = utf8::decode_last_lossy(b" \xF0\x9D\x9D\xF0" ); |
| 1208 | assert_eq!(' \u{FFFD}' , ch); |
| 1209 | assert_eq!(1, size); |
| 1210 | |
| 1211 | let (ch, size) = utf8::decode_last_lossy(b" \xF0\x9D\x9D" ); |
| 1212 | assert_eq!(' \u{FFFD}' , ch); |
| 1213 | assert_eq!(3, size); |
| 1214 | |
| 1215 | let (ch, size) = utf8::decode_last_lossy(b" \xF0\x82\x82\xAC" ); |
| 1216 | assert_eq!(' \u{FFFD}' , ch); |
| 1217 | assert_eq!(1, size); |
| 1218 | |
| 1219 | let (ch, size) = utf8::decode_last_lossy(b" \xED\xA0\x80" ); |
| 1220 | assert_eq!(' \u{FFFD}' , ch); |
| 1221 | assert_eq!(1, size); |
| 1222 | |
| 1223 | let (ch, size) = utf8::decode_last_lossy(b" \xED\xA0" ); |
| 1224 | assert_eq!(' \u{FFFD}' , ch); |
| 1225 | assert_eq!(1, size); |
| 1226 | |
| 1227 | let (ch, size) = utf8::decode_last_lossy(b" \xED" ); |
| 1228 | assert_eq!(' \u{FFFD}' , ch); |
| 1229 | assert_eq!(1, size); |
| 1230 | |
| 1231 | let (ch, size) = utf8::decode_last_lossy(b"a \xCE" ); |
| 1232 | assert_eq!(' \u{FFFD}' , ch); |
| 1233 | assert_eq!(1, size); |
| 1234 | |
| 1235 | let (ch, size) = utf8::decode_last_lossy(b"a \xE2\x98" ); |
| 1236 | assert_eq!(' \u{FFFD}' , ch); |
| 1237 | assert_eq!(2, size); |
| 1238 | |
| 1239 | let (ch, size) = utf8::decode_last_lossy(b"a \xF0\x9D\x9C" ); |
| 1240 | assert_eq!(' \u{FFFD}' , ch); |
| 1241 | assert_eq!(3, size); |
| 1242 | } |
| 1243 | |
| 1244 | #[test ] |
| 1245 | fn chars() { |
| 1246 | for (i, &(expected, input)) in LOSSY_TESTS.iter().enumerate() { |
| 1247 | let got: String = B(input).chars().collect(); |
| 1248 | assert_eq!( |
| 1249 | expected, got, |
| 1250 | "chars(ith: {:?}, given: {:?})" , |
| 1251 | i, input, |
| 1252 | ); |
| 1253 | let got: String = |
| 1254 | B(input).char_indices().map(|(_, _, ch)| ch).collect(); |
| 1255 | assert_eq!( |
| 1256 | expected, got, |
| 1257 | "char_indices(ith: {:?}, given: {:?})" , |
| 1258 | i, input, |
| 1259 | ); |
| 1260 | |
| 1261 | let expected: String = expected.chars().rev().collect(); |
| 1262 | |
| 1263 | let got: String = B(input).chars().rev().collect(); |
| 1264 | assert_eq!( |
| 1265 | expected, got, |
| 1266 | "chars.rev(ith: {:?}, given: {:?})" , |
| 1267 | i, input, |
| 1268 | ); |
| 1269 | let got: String = |
| 1270 | B(input).char_indices().rev().map(|(_, _, ch)| ch).collect(); |
| 1271 | assert_eq!( |
| 1272 | expected, got, |
| 1273 | "char_indices.rev(ith: {:?}, given: {:?})" , |
| 1274 | i, input, |
| 1275 | ); |
| 1276 | } |
| 1277 | } |
| 1278 | |
| 1279 | #[test ] |
| 1280 | fn utf8_chunks() { |
| 1281 | let mut c = utf8::Utf8Chunks { bytes: b"123 \xC0" }; |
| 1282 | assert_eq!( |
| 1283 | (c.next(), c.next()), |
| 1284 | ( |
| 1285 | Some(utf8::Utf8Chunk { |
| 1286 | valid: "123" , |
| 1287 | invalid: b" \xC0" .as_bstr(), |
| 1288 | incomplete: false, |
| 1289 | }), |
| 1290 | None, |
| 1291 | ) |
| 1292 | ); |
| 1293 | |
| 1294 | let mut c = utf8::Utf8Chunks { bytes: b"123 \xFF\xFF" }; |
| 1295 | assert_eq!( |
| 1296 | (c.next(), c.next(), c.next()), |
| 1297 | ( |
| 1298 | Some(utf8::Utf8Chunk { |
| 1299 | valid: "123" , |
| 1300 | invalid: b" \xFF" .as_bstr(), |
| 1301 | incomplete: false, |
| 1302 | }), |
| 1303 | Some(utf8::Utf8Chunk { |
| 1304 | valid: "" , |
| 1305 | invalid: b" \xFF" .as_bstr(), |
| 1306 | incomplete: false, |
| 1307 | }), |
| 1308 | None, |
| 1309 | ) |
| 1310 | ); |
| 1311 | |
| 1312 | let mut c = utf8::Utf8Chunks { bytes: b"123 \xD0" }; |
| 1313 | assert_eq!( |
| 1314 | (c.next(), c.next()), |
| 1315 | ( |
| 1316 | Some(utf8::Utf8Chunk { |
| 1317 | valid: "123" , |
| 1318 | invalid: b" \xD0" .as_bstr(), |
| 1319 | incomplete: true, |
| 1320 | }), |
| 1321 | None, |
| 1322 | ) |
| 1323 | ); |
| 1324 | |
| 1325 | let mut c = utf8::Utf8Chunks { bytes: b"123 \xD0456" }; |
| 1326 | assert_eq!( |
| 1327 | (c.next(), c.next(), c.next()), |
| 1328 | ( |
| 1329 | Some(utf8::Utf8Chunk { |
| 1330 | valid: "123" , |
| 1331 | invalid: b" \xD0" .as_bstr(), |
| 1332 | incomplete: false, |
| 1333 | }), |
| 1334 | Some(utf8::Utf8Chunk { |
| 1335 | valid: "456" , |
| 1336 | invalid: b"" .as_bstr(), |
| 1337 | incomplete: false, |
| 1338 | }), |
| 1339 | None, |
| 1340 | ) |
| 1341 | ); |
| 1342 | |
| 1343 | let mut c = utf8::Utf8Chunks { bytes: b"123 \xE2\x98" }; |
| 1344 | assert_eq!( |
| 1345 | (c.next(), c.next()), |
| 1346 | ( |
| 1347 | Some(utf8::Utf8Chunk { |
| 1348 | valid: "123" , |
| 1349 | invalid: b" \xE2\x98" .as_bstr(), |
| 1350 | incomplete: true, |
| 1351 | }), |
| 1352 | None, |
| 1353 | ) |
| 1354 | ); |
| 1355 | |
| 1356 | let mut c = utf8::Utf8Chunks { bytes: b"123 \xF4\x8F\xBF" }; |
| 1357 | assert_eq!( |
| 1358 | (c.next(), c.next()), |
| 1359 | ( |
| 1360 | Some(utf8::Utf8Chunk { |
| 1361 | valid: "123" , |
| 1362 | invalid: b" \xF4\x8F\xBF" .as_bstr(), |
| 1363 | incomplete: true, |
| 1364 | }), |
| 1365 | None, |
| 1366 | ) |
| 1367 | ); |
| 1368 | } |
| 1369 | } |
| 1370 | |