| 1 | use core::{iter, slice, str}; |
| 2 | |
| 3 | #[cfg (all(feature = "alloc" , feature = "unicode" ))] |
| 4 | use alloc::vec; |
| 5 | #[cfg (feature = "alloc" )] |
| 6 | use alloc::{borrow::Cow, string::String, vec::Vec}; |
| 7 | |
| 8 | #[cfg (feature = "std" )] |
| 9 | use std::{ffi::OsStr, path::Path}; |
| 10 | |
| 11 | use memchr::{memchr, memmem, memrchr}; |
| 12 | |
| 13 | use crate::escape_bytes::EscapeBytes; |
| 14 | #[cfg (feature = "alloc" )] |
| 15 | use crate::ext_vec::ByteVec; |
| 16 | #[cfg (feature = "unicode" )] |
| 17 | use crate::unicode::{ |
| 18 | whitespace_len_fwd, whitespace_len_rev, GraphemeIndices, Graphemes, |
| 19 | SentenceIndices, Sentences, WordIndices, Words, WordsWithBreakIndices, |
| 20 | WordsWithBreaks, |
| 21 | }; |
| 22 | use crate::{ |
| 23 | ascii, |
| 24 | bstr::BStr, |
| 25 | byteset, |
| 26 | utf8::{self, CharIndices, Chars, Utf8Chunks, Utf8Error}, |
| 27 | }; |
| 28 | |
| 29 | /// A short-hand constructor for building a `&[u8]`. |
| 30 | /// |
| 31 | /// This idiosyncratic constructor is useful for concisely building byte string |
| 32 | /// slices. Its primary utility is in conveniently writing byte string literals |
| 33 | /// in a uniform way. For example, consider this code that does not compile: |
| 34 | /// |
| 35 | /// ```ignore |
| 36 | /// let strs = vec![b"a" , b"xy" ]; |
| 37 | /// ``` |
| 38 | /// |
| 39 | /// The above code doesn't compile because the type of the byte string literal |
| 40 | /// `b"a"` is `&'static [u8; 1]`, and the type of `b"xy"` is |
| 41 | /// `&'static [u8; 2]`. Since their types aren't the same, they can't be stored |
| 42 | /// in the same `Vec`. (This is dissimilar from normal Unicode string slices, |
| 43 | /// where both `"a"` and `"xy"` have the same type of `&'static str`.) |
| 44 | /// |
| 45 | /// One way of getting the above code to compile is to convert byte strings to |
| 46 | /// slices. You might try this: |
| 47 | /// |
| 48 | /// ```ignore |
| 49 | /// let strs = vec![&b"a" , &b"xy" ]; |
| 50 | /// ``` |
| 51 | /// |
| 52 | /// But this just creates values with type `& &'static [u8; 1]` and |
| 53 | /// `& &'static [u8; 2]`. Instead, you need to force the issue like so: |
| 54 | /// |
| 55 | /// ``` |
| 56 | /// let strs = vec![&b"a" [..], &b"xy" [..]]; |
| 57 | /// // or |
| 58 | /// let strs = vec![b"a" .as_ref(), b"xy" .as_ref()]; |
| 59 | /// ``` |
| 60 | /// |
| 61 | /// But neither of these are particularly convenient to type, especially when |
| 62 | /// it's something as common as a string literal. Thus, this constructor |
| 63 | /// permits writing the following instead: |
| 64 | /// |
| 65 | /// ``` |
| 66 | /// use bstr::B; |
| 67 | /// |
| 68 | /// let strs = vec![B("a" ), B(b"xy" )]; |
| 69 | /// ``` |
| 70 | /// |
| 71 | /// Notice that this also lets you mix and match both string literals and byte |
| 72 | /// string literals. This can be quite convenient! |
| 73 | #[allow (non_snake_case)] |
| 74 | #[inline ] |
| 75 | pub fn B<B: ?Sized + AsRef<[u8]>>(bytes: &B) -> &[u8] { |
| 76 | bytes.as_ref() |
| 77 | } |
| 78 | |
| 79 | impl ByteSlice for [u8] { |
| 80 | #[inline ] |
| 81 | fn as_bytes(&self) -> &[u8] { |
| 82 | self |
| 83 | } |
| 84 | |
| 85 | #[inline ] |
| 86 | fn as_bytes_mut(&mut self) -> &mut [u8] { |
| 87 | self |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | impl<const N: usize> ByteSlice for [u8; N] { |
| 92 | #[inline ] |
| 93 | fn as_bytes(&self) -> &[u8] { |
| 94 | self |
| 95 | } |
| 96 | |
| 97 | #[inline ] |
| 98 | fn as_bytes_mut(&mut self) -> &mut [u8] { |
| 99 | self |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | /// Ensure that callers cannot implement `ByteSlice` by making an |
| 104 | /// umplementable trait its super trait. |
| 105 | mod private { |
| 106 | pub trait Sealed {} |
| 107 | } |
| 108 | impl private::Sealed for [u8] {} |
| 109 | impl<const N: usize> private::Sealed for [u8; N] {} |
| 110 | |
| 111 | /// A trait that extends `&[u8]` with string oriented methods. |
| 112 | /// |
| 113 | /// This trait is sealed and cannot be implemented outside of `bstr`. |
| 114 | pub trait ByteSlice: private::Sealed { |
| 115 | /// A method for accessing the raw bytes of this type. This is always a |
| 116 | /// no-op and callers shouldn't care about it. This only exists for making |
| 117 | /// the extension trait work. |
| 118 | #[doc (hidden)] |
| 119 | fn as_bytes(&self) -> &[u8]; |
| 120 | |
| 121 | /// A method for accessing the raw bytes of this type, mutably. This is |
| 122 | /// always a no-op and callers shouldn't care about it. This only exists |
| 123 | /// for making the extension trait work. |
| 124 | #[doc (hidden)] |
| 125 | fn as_bytes_mut(&mut self) -> &mut [u8]; |
| 126 | |
| 127 | /// Return this byte slice as a `&BStr`. |
| 128 | /// |
| 129 | /// Use `&BStr` is useful because of its `fmt::Debug` representation |
| 130 | /// and various other trait implementations (such as `PartialEq` and |
| 131 | /// `PartialOrd`). In particular, the `Debug` implementation for `BStr` |
| 132 | /// shows its bytes as a normal string. For invalid UTF-8, hex escape |
| 133 | /// sequences are used. |
| 134 | /// |
| 135 | /// # Examples |
| 136 | /// |
| 137 | /// Basic usage: |
| 138 | /// |
| 139 | /// ``` |
| 140 | /// use bstr::ByteSlice; |
| 141 | /// |
| 142 | /// println!("{:?}" , b"foo \xFFbar" .as_bstr()); |
| 143 | /// ``` |
| 144 | #[inline ] |
| 145 | fn as_bstr(&self) -> &BStr { |
| 146 | BStr::new(self.as_bytes()) |
| 147 | } |
| 148 | |
| 149 | /// Return this byte slice as a `&mut BStr`. |
| 150 | /// |
| 151 | /// Use `&mut BStr` is useful because of its `fmt::Debug` representation |
| 152 | /// and various other trait implementations (such as `PartialEq` and |
| 153 | /// `PartialOrd`). In particular, the `Debug` implementation for `BStr` |
| 154 | /// shows its bytes as a normal string. For invalid UTF-8, hex escape |
| 155 | /// sequences are used. |
| 156 | /// |
| 157 | /// # Examples |
| 158 | /// |
| 159 | /// Basic usage: |
| 160 | /// |
| 161 | /// ``` |
| 162 | /// use bstr::ByteSlice; |
| 163 | /// |
| 164 | /// let mut bytes = *b"foo \xFFbar" ; |
| 165 | /// println!("{:?}" , &mut bytes.as_bstr_mut()); |
| 166 | /// ``` |
| 167 | #[inline ] |
| 168 | fn as_bstr_mut(&mut self) -> &mut BStr { |
| 169 | BStr::new_mut(self.as_bytes_mut()) |
| 170 | } |
| 171 | |
| 172 | /// Create an immutable byte string from an OS string slice. |
| 173 | /// |
| 174 | /// When the underlying bytes of OS strings are accessible, then this |
| 175 | /// always succeeds and is zero cost. Otherwise, this returns `None` if the |
| 176 | /// given OS string is not valid UTF-8. (For example, when the underlying |
| 177 | /// bytes are inaccessible on Windows, file paths are allowed to be a |
| 178 | /// sequence of arbitrary 16-bit integers. Not all such sequences can be |
| 179 | /// transcoded to valid UTF-8.) |
| 180 | /// |
| 181 | /// # Examples |
| 182 | /// |
| 183 | /// Basic usage: |
| 184 | /// |
| 185 | /// ``` |
| 186 | /// use std::ffi::OsStr; |
| 187 | /// |
| 188 | /// use bstr::{B, ByteSlice}; |
| 189 | /// |
| 190 | /// let os_str = OsStr::new("foo" ); |
| 191 | /// let bs = <[u8]>::from_os_str(os_str).expect("should be valid UTF-8" ); |
| 192 | /// assert_eq!(bs, B("foo" )); |
| 193 | /// ``` |
| 194 | #[cfg (feature = "std" )] |
| 195 | #[inline ] |
| 196 | fn from_os_str(os_str: &OsStr) -> Option<&[u8]> { |
| 197 | #[cfg (unix)] |
| 198 | #[inline ] |
| 199 | fn imp(os_str: &OsStr) -> Option<&[u8]> { |
| 200 | use std::os::unix::ffi::OsStrExt; |
| 201 | |
| 202 | Some(os_str.as_bytes()) |
| 203 | } |
| 204 | |
| 205 | #[cfg (not(unix))] |
| 206 | #[inline ] |
| 207 | fn imp(os_str: &OsStr) -> Option<&[u8]> { |
| 208 | os_str.to_str().map(|s| s.as_bytes()) |
| 209 | } |
| 210 | |
| 211 | imp(os_str) |
| 212 | } |
| 213 | |
| 214 | /// Create an immutable byte string from a file path. |
| 215 | /// |
| 216 | /// When the underlying bytes of paths are accessible, then this always |
| 217 | /// succeeds and is zero cost. Otherwise, this returns `None` if the given |
| 218 | /// path is not valid UTF-8. (For example, when the underlying bytes are |
| 219 | /// inaccessible on Windows, file paths are allowed to be a sequence of |
| 220 | /// arbitrary 16-bit integers. Not all such sequences can be transcoded to |
| 221 | /// valid UTF-8.) |
| 222 | /// |
| 223 | /// # Examples |
| 224 | /// |
| 225 | /// Basic usage: |
| 226 | /// |
| 227 | /// ``` |
| 228 | /// use std::path::Path; |
| 229 | /// |
| 230 | /// use bstr::{B, ByteSlice}; |
| 231 | /// |
| 232 | /// let path = Path::new("foo" ); |
| 233 | /// let bs = <[u8]>::from_path(path).expect("should be valid UTF-8" ); |
| 234 | /// assert_eq!(bs, B("foo" )); |
| 235 | /// ``` |
| 236 | #[cfg (feature = "std" )] |
| 237 | #[inline ] |
| 238 | fn from_path(path: &Path) -> Option<&[u8]> { |
| 239 | Self::from_os_str(path.as_os_str()) |
| 240 | } |
| 241 | |
| 242 | /// Safely convert this byte string into a `&str` if it's valid UTF-8. |
| 243 | /// |
| 244 | /// If this byte string is not valid UTF-8, then an error is returned. The |
| 245 | /// error returned indicates the first invalid byte found and the length |
| 246 | /// of the error. |
| 247 | /// |
| 248 | /// In cases where a lossy conversion to `&str` is acceptable, then use one |
| 249 | /// of the [`to_str_lossy`](trait.ByteSlice.html#method.to_str_lossy) or |
| 250 | /// [`to_str_lossy_into`](trait.ByteSlice.html#method.to_str_lossy_into) |
| 251 | /// methods. |
| 252 | /// |
| 253 | /// # Examples |
| 254 | /// |
| 255 | /// Basic usage: |
| 256 | /// |
| 257 | /// ``` |
| 258 | /// # #[cfg (feature = "alloc" )] { |
| 259 | /// use bstr::{B, ByteSlice, ByteVec}; |
| 260 | /// |
| 261 | /// # fn example() -> Result<(), bstr::Utf8Error> { |
| 262 | /// let s = B("☃βツ" ).to_str()?; |
| 263 | /// assert_eq!("☃βツ" , s); |
| 264 | /// |
| 265 | /// let mut bstring = <Vec<u8>>::from("☃βツ" ); |
| 266 | /// bstring.push(b' \xFF' ); |
| 267 | /// let err = bstring.to_str().unwrap_err(); |
| 268 | /// assert_eq!(8, err.valid_up_to()); |
| 269 | /// # Ok(()) }; example().unwrap() |
| 270 | /// # } |
| 271 | /// ``` |
| 272 | #[inline ] |
| 273 | fn to_str(&self) -> Result<&str, Utf8Error> { |
| 274 | utf8::validate(self.as_bytes()).map(|_| { |
| 275 | // SAFETY: This is safe because of the guarantees provided by |
| 276 | // utf8::validate. |
| 277 | unsafe { str::from_utf8_unchecked(self.as_bytes()) } |
| 278 | }) |
| 279 | } |
| 280 | |
| 281 | /// Unsafely convert this byte string into a `&str`, without checking for |
| 282 | /// valid UTF-8. |
| 283 | /// |
| 284 | /// # Safety |
| 285 | /// |
| 286 | /// Callers *must* ensure that this byte string is valid UTF-8 before |
| 287 | /// calling this method. Converting a byte string into a `&str` that is |
| 288 | /// not valid UTF-8 is considered undefined behavior. |
| 289 | /// |
| 290 | /// This routine is useful in performance sensitive contexts where the |
| 291 | /// UTF-8 validity of the byte string is already known and it is |
| 292 | /// undesirable to pay the cost of an additional UTF-8 validation check |
| 293 | /// that [`to_str`](trait.ByteSlice.html#method.to_str) performs. |
| 294 | /// |
| 295 | /// # Examples |
| 296 | /// |
| 297 | /// Basic usage: |
| 298 | /// |
| 299 | /// ``` |
| 300 | /// use bstr::{B, ByteSlice}; |
| 301 | /// |
| 302 | /// // SAFETY: This is safe because string literals are guaranteed to be |
| 303 | /// // valid UTF-8 by the Rust compiler. |
| 304 | /// let s = unsafe { B("☃βツ" ).to_str_unchecked() }; |
| 305 | /// assert_eq!("☃βツ" , s); |
| 306 | /// ``` |
| 307 | #[inline ] |
| 308 | unsafe fn to_str_unchecked(&self) -> &str { |
| 309 | str::from_utf8_unchecked(self.as_bytes()) |
| 310 | } |
| 311 | |
| 312 | /// Convert this byte string to a valid UTF-8 string by replacing invalid |
| 313 | /// UTF-8 bytes with the Unicode replacement codepoint (`U+FFFD`). |
| 314 | /// |
| 315 | /// If the byte string is already valid UTF-8, then no copying or |
| 316 | /// allocation is performed and a borrrowed string slice is returned. If |
| 317 | /// the byte string is not valid UTF-8, then an owned string buffer is |
| 318 | /// returned with invalid bytes replaced by the replacement codepoint. |
| 319 | /// |
| 320 | /// This method uses the "substitution of maximal subparts" (Unicode |
| 321 | /// Standard, Chapter 3, Section 9) strategy for inserting the replacement |
| 322 | /// codepoint. Specifically, a replacement codepoint is inserted whenever a |
| 323 | /// byte is found that cannot possibly lead to a valid code unit sequence. |
| 324 | /// If there were previous bytes that represented a prefix of a well-formed |
| 325 | /// code unit sequence, then all of those bytes are substituted with a |
| 326 | /// single replacement codepoint. The "substitution of maximal subparts" |
| 327 | /// strategy is the same strategy used by |
| 328 | /// [W3C's Encoding standard](https://www.w3.org/TR/encoding/). |
| 329 | /// For a more precise description of the maximal subpart strategy, see |
| 330 | /// the Unicode Standard, Chapter 3, Section 9. See also |
| 331 | /// [Public Review Issue #121](https://www.unicode.org/review/pr-121.html). |
| 332 | /// |
| 333 | /// N.B. Rust's standard library also appears to use the same strategy, |
| 334 | /// but it does not appear to be an API guarantee. |
| 335 | /// |
| 336 | /// # Examples |
| 337 | /// |
| 338 | /// Basic usage: |
| 339 | /// |
| 340 | /// ``` |
| 341 | /// use std::borrow::Cow; |
| 342 | /// |
| 343 | /// use bstr::ByteSlice; |
| 344 | /// |
| 345 | /// let mut bstring = <Vec<u8>>::from("☃βツ" ); |
| 346 | /// assert_eq!(Cow::Borrowed("☃βツ" ), bstring.to_str_lossy()); |
| 347 | /// |
| 348 | /// // Add a byte that makes the sequence invalid. |
| 349 | /// bstring.push(b' \xFF' ); |
| 350 | /// assert_eq!(Cow::Borrowed("☃βツ \u{FFFD}" ), bstring.to_str_lossy()); |
| 351 | /// ``` |
| 352 | /// |
| 353 | /// This demonstrates the "maximal subpart" substitution logic. |
| 354 | /// |
| 355 | /// ``` |
| 356 | /// use bstr::{B, ByteSlice}; |
| 357 | /// |
| 358 | /// // \x61 is the ASCII codepoint for 'a'. |
| 359 | /// // \xF1\x80\x80 is a valid 3-byte code unit prefix. |
| 360 | /// // \xE1\x80 is a valid 2-byte code unit prefix. |
| 361 | /// // \xC2 is a valid 1-byte code unit prefix. |
| 362 | /// // \x62 is the ASCII codepoint for 'b'. |
| 363 | /// // |
| 364 | /// // In sum, each of the prefixes is replaced by a single replacement |
| 365 | /// // codepoint since none of the prefixes are properly completed. This |
| 366 | /// // is in contrast to other strategies that might insert a replacement |
| 367 | /// // codepoint for every single byte. |
| 368 | /// let bs = B(b" \x61\xF1\x80\x80\xE1\x80\xC2\x62" ); |
| 369 | /// assert_eq!("a \u{FFFD}\u{FFFD}\u{FFFD}b" , bs.to_str_lossy()); |
| 370 | /// ``` |
| 371 | #[cfg (feature = "alloc" )] |
| 372 | #[inline ] |
| 373 | fn to_str_lossy(&self) -> Cow<'_, str> { |
| 374 | match utf8::validate(self.as_bytes()) { |
| 375 | Ok(()) => { |
| 376 | // SAFETY: This is safe because of the guarantees provided by |
| 377 | // utf8::validate. |
| 378 | unsafe { |
| 379 | Cow::Borrowed(str::from_utf8_unchecked(self.as_bytes())) |
| 380 | } |
| 381 | } |
| 382 | Err(err) => { |
| 383 | let mut lossy = String::with_capacity(self.as_bytes().len()); |
| 384 | let (valid, after) = |
| 385 | self.as_bytes().split_at(err.valid_up_to()); |
| 386 | // SAFETY: This is safe because utf8::validate guarantees |
| 387 | // that all of `valid` is valid UTF-8. |
| 388 | lossy.push_str(unsafe { str::from_utf8_unchecked(valid) }); |
| 389 | lossy.push_str(" \u{FFFD}" ); |
| 390 | if let Some(len) = err.error_len() { |
| 391 | after[len..].to_str_lossy_into(&mut lossy); |
| 392 | } |
| 393 | Cow::Owned(lossy) |
| 394 | } |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | /// Copy the contents of this byte string into the given owned string |
| 399 | /// buffer, while replacing invalid UTF-8 code unit sequences with the |
| 400 | /// Unicode replacement codepoint (`U+FFFD`). |
| 401 | /// |
| 402 | /// This method uses the same "substitution of maximal subparts" strategy |
| 403 | /// for inserting the replacement codepoint as the |
| 404 | /// [`to_str_lossy`](trait.ByteSlice.html#method.to_str_lossy) method. |
| 405 | /// |
| 406 | /// This routine is useful for amortizing allocation. However, unlike |
| 407 | /// `to_str_lossy`, this routine will _always_ copy the contents of this |
| 408 | /// byte string into the destination buffer, even if this byte string is |
| 409 | /// valid UTF-8. |
| 410 | /// |
| 411 | /// # Examples |
| 412 | /// |
| 413 | /// Basic usage: |
| 414 | /// |
| 415 | /// ``` |
| 416 | /// use std::borrow::Cow; |
| 417 | /// |
| 418 | /// use bstr::ByteSlice; |
| 419 | /// |
| 420 | /// let mut bstring = <Vec<u8>>::from("☃βツ" ); |
| 421 | /// // Add a byte that makes the sequence invalid. |
| 422 | /// bstring.push(b' \xFF' ); |
| 423 | /// |
| 424 | /// let mut dest = String::new(); |
| 425 | /// bstring.to_str_lossy_into(&mut dest); |
| 426 | /// assert_eq!("☃βツ \u{FFFD}" , dest); |
| 427 | /// ``` |
| 428 | #[cfg (feature = "alloc" )] |
| 429 | #[inline ] |
| 430 | fn to_str_lossy_into(&self, dest: &mut String) { |
| 431 | let mut bytes = self.as_bytes(); |
| 432 | dest.reserve(bytes.len()); |
| 433 | loop { |
| 434 | match utf8::validate(bytes) { |
| 435 | Ok(()) => { |
| 436 | // SAFETY: This is safe because utf8::validate guarantees |
| 437 | // that all of `bytes` is valid UTF-8. |
| 438 | dest.push_str(unsafe { str::from_utf8_unchecked(bytes) }); |
| 439 | break; |
| 440 | } |
| 441 | Err(err) => { |
| 442 | let (valid, after) = bytes.split_at(err.valid_up_to()); |
| 443 | // SAFETY: This is safe because utf8::validate guarantees |
| 444 | // that all of `valid` is valid UTF-8. |
| 445 | dest.push_str(unsafe { str::from_utf8_unchecked(valid) }); |
| 446 | dest.push_str(" \u{FFFD}" ); |
| 447 | match err.error_len() { |
| 448 | None => break, |
| 449 | Some(len) => bytes = &after[len..], |
| 450 | } |
| 451 | } |
| 452 | } |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | /// Create an OS string slice from this byte string. |
| 457 | /// |
| 458 | /// When OS strings can be constructed from arbitrary byte sequences, this |
| 459 | /// always succeeds and is zero cost. Otherwise, this returns a UTF-8 |
| 460 | /// decoding error if this byte string is not valid UTF-8. (For example, |
| 461 | /// assuming the representation of `OsStr` is opaque on Windows, file paths |
| 462 | /// are allowed to be a sequence of arbitrary 16-bit integers. There is |
| 463 | /// no obvious mapping from an arbitrary sequence of 8-bit integers to an |
| 464 | /// arbitrary sequence of 16-bit integers. If the representation of `OsStr` |
| 465 | /// is even opened up, then this will convert any sequence of bytes to an |
| 466 | /// `OsStr` without cost.) |
| 467 | /// |
| 468 | /// # Examples |
| 469 | /// |
| 470 | /// Basic usage: |
| 471 | /// |
| 472 | /// ``` |
| 473 | /// use bstr::{B, ByteSlice}; |
| 474 | /// |
| 475 | /// let os_str = b"foo" .to_os_str().expect("should be valid UTF-8" ); |
| 476 | /// assert_eq!(os_str, "foo" ); |
| 477 | /// ``` |
| 478 | #[cfg (feature = "std" )] |
| 479 | #[inline ] |
| 480 | fn to_os_str(&self) -> Result<&OsStr, Utf8Error> { |
| 481 | #[cfg (unix)] |
| 482 | #[inline ] |
| 483 | fn imp(bytes: &[u8]) -> Result<&OsStr, Utf8Error> { |
| 484 | use std::os::unix::ffi::OsStrExt; |
| 485 | |
| 486 | Ok(OsStr::from_bytes(bytes)) |
| 487 | } |
| 488 | |
| 489 | #[cfg (not(unix))] |
| 490 | #[inline ] |
| 491 | fn imp(bytes: &[u8]) -> Result<&OsStr, Utf8Error> { |
| 492 | bytes.to_str().map(OsStr::new) |
| 493 | } |
| 494 | |
| 495 | imp(self.as_bytes()) |
| 496 | } |
| 497 | |
| 498 | /// Lossily create an OS string slice from this byte string. |
| 499 | /// |
| 500 | /// When OS strings can be constructed from arbitrary byte sequences, this |
| 501 | /// is zero cost and always returns a slice. Otherwise, this will perform a |
| 502 | /// UTF-8 check and lossily convert this byte string into valid UTF-8 using |
| 503 | /// the Unicode replacement codepoint. |
| 504 | /// |
| 505 | /// Note that this can prevent the correct roundtripping of file paths when |
| 506 | /// the representation of `OsStr` is opaque. |
| 507 | /// |
| 508 | /// # Examples |
| 509 | /// |
| 510 | /// Basic usage: |
| 511 | /// |
| 512 | /// ``` |
| 513 | /// use bstr::ByteSlice; |
| 514 | /// |
| 515 | /// let os_str = b"foo \xFFbar" .to_os_str_lossy(); |
| 516 | /// assert_eq!(os_str.to_string_lossy(), "foo \u{FFFD}bar" ); |
| 517 | /// ``` |
| 518 | #[cfg (feature = "std" )] |
| 519 | #[inline ] |
| 520 | fn to_os_str_lossy(&self) -> Cow<'_, OsStr> { |
| 521 | #[cfg (unix)] |
| 522 | #[inline ] |
| 523 | fn imp(bytes: &[u8]) -> Cow<'_, OsStr> { |
| 524 | use std::os::unix::ffi::OsStrExt; |
| 525 | |
| 526 | Cow::Borrowed(OsStr::from_bytes(bytes)) |
| 527 | } |
| 528 | |
| 529 | #[cfg (not(unix))] |
| 530 | #[inline ] |
| 531 | fn imp(bytes: &[u8]) -> Cow<OsStr> { |
| 532 | use std::ffi::OsString; |
| 533 | |
| 534 | match bytes.to_str_lossy() { |
| 535 | Cow::Borrowed(x) => Cow::Borrowed(OsStr::new(x)), |
| 536 | Cow::Owned(x) => Cow::Owned(OsString::from(x)), |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | imp(self.as_bytes()) |
| 541 | } |
| 542 | |
| 543 | /// Create a path slice from this byte string. |
| 544 | /// |
| 545 | /// When paths can be constructed from arbitrary byte sequences, this |
| 546 | /// always succeeds and is zero cost. Otherwise, this returns a UTF-8 |
| 547 | /// decoding error if this byte string is not valid UTF-8. (For example, |
| 548 | /// assuming the representation of `Path` is opaque on Windows, file paths |
| 549 | /// are allowed to be a sequence of arbitrary 16-bit integers. There is |
| 550 | /// no obvious mapping from an arbitrary sequence of 8-bit integers to an |
| 551 | /// arbitrary sequence of 16-bit integers. If the representation of `Path` |
| 552 | /// is even opened up, then this will convert any sequence of bytes to an |
| 553 | /// `Path` without cost.) |
| 554 | /// |
| 555 | /// # Examples |
| 556 | /// |
| 557 | /// Basic usage: |
| 558 | /// |
| 559 | /// ``` |
| 560 | /// use bstr::ByteSlice; |
| 561 | /// |
| 562 | /// let path = b"foo" .to_path().expect("should be valid UTF-8" ); |
| 563 | /// assert_eq!(path.as_os_str(), "foo" ); |
| 564 | /// ``` |
| 565 | #[cfg (feature = "std" )] |
| 566 | #[inline ] |
| 567 | fn to_path(&self) -> Result<&Path, Utf8Error> { |
| 568 | self.to_os_str().map(Path::new) |
| 569 | } |
| 570 | |
| 571 | /// Lossily create a path slice from this byte string. |
| 572 | /// |
| 573 | /// When paths can be constructed from arbitrary byte sequences, this is |
| 574 | /// zero cost and always returns a slice. Otherwise, this will perform a |
| 575 | /// UTF-8 check and lossily convert this byte string into valid UTF-8 using |
| 576 | /// the Unicode replacement codepoint. |
| 577 | /// |
| 578 | /// Note that this can prevent the correct roundtripping of file paths when |
| 579 | /// the representation of `Path` is opaque. |
| 580 | /// |
| 581 | /// # Examples |
| 582 | /// |
| 583 | /// Basic usage: |
| 584 | /// |
| 585 | /// ``` |
| 586 | /// use bstr::ByteSlice; |
| 587 | /// |
| 588 | /// let bs = b"foo \xFFbar" ; |
| 589 | /// let path = bs.to_path_lossy(); |
| 590 | /// assert_eq!(path.to_string_lossy(), "foo \u{FFFD}bar" ); |
| 591 | /// ``` |
| 592 | #[cfg (feature = "std" )] |
| 593 | #[inline ] |
| 594 | fn to_path_lossy(&self) -> Cow<'_, Path> { |
| 595 | use std::path::PathBuf; |
| 596 | |
| 597 | match self.to_os_str_lossy() { |
| 598 | Cow::Borrowed(x) => Cow::Borrowed(Path::new(x)), |
| 599 | Cow::Owned(x) => Cow::Owned(PathBuf::from(x)), |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | /// Create a new byte string by repeating this byte string `n` times. |
| 604 | /// |
| 605 | /// # Panics |
| 606 | /// |
| 607 | /// This function panics if the capacity of the new byte string would |
| 608 | /// overflow. |
| 609 | /// |
| 610 | /// # Examples |
| 611 | /// |
| 612 | /// Basic usage: |
| 613 | /// |
| 614 | /// ``` |
| 615 | /// use bstr::{B, ByteSlice}; |
| 616 | /// |
| 617 | /// assert_eq!(b"foo" .repeatn(4), B("foofoofoofoo" )); |
| 618 | /// assert_eq!(b"foo" .repeatn(0), B("" )); |
| 619 | /// ``` |
| 620 | #[cfg (feature = "alloc" )] |
| 621 | #[inline ] |
| 622 | fn repeatn(&self, n: usize) -> Vec<u8> { |
| 623 | self.as_bytes().repeat(n) |
| 624 | } |
| 625 | |
| 626 | /// Returns true if and only if this byte string contains the given needle. |
| 627 | /// |
| 628 | /// # Examples |
| 629 | /// |
| 630 | /// Basic usage: |
| 631 | /// |
| 632 | /// ``` |
| 633 | /// use bstr::ByteSlice; |
| 634 | /// |
| 635 | /// assert!(b"foo bar" .contains_str("foo" )); |
| 636 | /// assert!(b"foo bar" .contains_str("bar" )); |
| 637 | /// assert!(!b"foo" .contains_str("foobar" )); |
| 638 | /// ``` |
| 639 | #[inline ] |
| 640 | fn contains_str<B: AsRef<[u8]>>(&self, needle: B) -> bool { |
| 641 | self.find(needle).is_some() |
| 642 | } |
| 643 | |
| 644 | /// Returns true if and only if this byte string has the given prefix. |
| 645 | /// |
| 646 | /// # Examples |
| 647 | /// |
| 648 | /// Basic usage: |
| 649 | /// |
| 650 | /// ``` |
| 651 | /// use bstr::ByteSlice; |
| 652 | /// |
| 653 | /// assert!(b"foo bar" .starts_with_str("foo" )); |
| 654 | /// assert!(!b"foo bar" .starts_with_str("bar" )); |
| 655 | /// assert!(!b"foo" .starts_with_str("foobar" )); |
| 656 | /// ``` |
| 657 | #[inline ] |
| 658 | fn starts_with_str<B: AsRef<[u8]>>(&self, prefix: B) -> bool { |
| 659 | self.as_bytes().starts_with(prefix.as_ref()) |
| 660 | } |
| 661 | |
| 662 | /// Returns true if and only if this byte string has the given suffix. |
| 663 | /// |
| 664 | /// # Examples |
| 665 | /// |
| 666 | /// Basic usage: |
| 667 | /// |
| 668 | /// ``` |
| 669 | /// use bstr::ByteSlice; |
| 670 | /// |
| 671 | /// assert!(b"foo bar" .ends_with_str("bar" )); |
| 672 | /// assert!(!b"foo bar" .ends_with_str("foo" )); |
| 673 | /// assert!(!b"bar" .ends_with_str("foobar" )); |
| 674 | /// ``` |
| 675 | #[inline ] |
| 676 | fn ends_with_str<B: AsRef<[u8]>>(&self, suffix: B) -> bool { |
| 677 | self.as_bytes().ends_with(suffix.as_ref()) |
| 678 | } |
| 679 | |
| 680 | /// Returns the index of the first occurrence of the given needle. |
| 681 | /// |
| 682 | /// The needle may be any type that can be cheaply converted into a |
| 683 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. |
| 684 | /// |
| 685 | /// Note that if you're are searching for the same needle in many |
| 686 | /// different small haystacks, it may be faster to initialize a |
| 687 | /// [`Finder`](struct.Finder.html) once, and reuse it for each search. |
| 688 | /// |
| 689 | /// # Complexity |
| 690 | /// |
| 691 | /// This routine is guaranteed to have worst case linear time complexity |
| 692 | /// with respect to both the needle and the haystack. That is, this runs |
| 693 | /// in `O(needle.len() + haystack.len())` time. |
| 694 | /// |
| 695 | /// This routine is also guaranteed to have worst case constant space |
| 696 | /// complexity. |
| 697 | /// |
| 698 | /// # Examples |
| 699 | /// |
| 700 | /// Basic usage: |
| 701 | /// |
| 702 | /// ``` |
| 703 | /// use bstr::ByteSlice; |
| 704 | /// |
| 705 | /// let s = b"foo bar baz" ; |
| 706 | /// assert_eq!(Some(0), s.find("foo" )); |
| 707 | /// assert_eq!(Some(4), s.find("bar" )); |
| 708 | /// assert_eq!(None, s.find("quux" )); |
| 709 | /// ``` |
| 710 | #[inline ] |
| 711 | fn find<B: AsRef<[u8]>>(&self, needle: B) -> Option<usize> { |
| 712 | Finder::new(needle.as_ref()).find(self.as_bytes()) |
| 713 | } |
| 714 | |
| 715 | /// Returns the index of the last occurrence of the given needle. |
| 716 | /// |
| 717 | /// The needle may be any type that can be cheaply converted into a |
| 718 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. |
| 719 | /// |
| 720 | /// Note that if you're are searching for the same needle in many |
| 721 | /// different small haystacks, it may be faster to initialize a |
| 722 | /// [`FinderReverse`](struct.FinderReverse.html) once, and reuse it for |
| 723 | /// each search. |
| 724 | /// |
| 725 | /// # Complexity |
| 726 | /// |
| 727 | /// This routine is guaranteed to have worst case linear time complexity |
| 728 | /// with respect to both the needle and the haystack. That is, this runs |
| 729 | /// in `O(needle.len() + haystack.len())` time. |
| 730 | /// |
| 731 | /// This routine is also guaranteed to have worst case constant space |
| 732 | /// complexity. |
| 733 | /// |
| 734 | /// # Examples |
| 735 | /// |
| 736 | /// Basic usage: |
| 737 | /// |
| 738 | /// ``` |
| 739 | /// use bstr::ByteSlice; |
| 740 | /// |
| 741 | /// let s = b"foo bar baz" ; |
| 742 | /// assert_eq!(Some(0), s.rfind("foo" )); |
| 743 | /// assert_eq!(Some(4), s.rfind("bar" )); |
| 744 | /// assert_eq!(Some(8), s.rfind("ba" )); |
| 745 | /// assert_eq!(None, s.rfind("quux" )); |
| 746 | /// ``` |
| 747 | #[inline ] |
| 748 | fn rfind<B: AsRef<[u8]>>(&self, needle: B) -> Option<usize> { |
| 749 | FinderReverse::new(needle.as_ref()).rfind(self.as_bytes()) |
| 750 | } |
| 751 | |
| 752 | /// Returns an iterator of the non-overlapping occurrences of the given |
| 753 | /// needle. The iterator yields byte offset positions indicating the start |
| 754 | /// of each match. |
| 755 | /// |
| 756 | /// # Complexity |
| 757 | /// |
| 758 | /// This routine is guaranteed to have worst case linear time complexity |
| 759 | /// with respect to both the needle and the haystack. That is, this runs |
| 760 | /// in `O(needle.len() + haystack.len())` time. |
| 761 | /// |
| 762 | /// This routine is also guaranteed to have worst case constant space |
| 763 | /// complexity. |
| 764 | /// |
| 765 | /// # Examples |
| 766 | /// |
| 767 | /// Basic usage: |
| 768 | /// |
| 769 | /// ``` |
| 770 | /// use bstr::ByteSlice; |
| 771 | /// |
| 772 | /// let s = b"foo bar foo foo quux foo" ; |
| 773 | /// let matches: Vec<usize> = s.find_iter("foo" ).collect(); |
| 774 | /// assert_eq!(matches, vec![0, 8, 12, 21]); |
| 775 | /// ``` |
| 776 | /// |
| 777 | /// An empty string matches at every position, including the position |
| 778 | /// immediately following the last byte: |
| 779 | /// |
| 780 | /// ``` |
| 781 | /// use bstr::ByteSlice; |
| 782 | /// |
| 783 | /// let matches: Vec<usize> = b"foo" .find_iter("" ).collect(); |
| 784 | /// assert_eq!(matches, vec![0, 1, 2, 3]); |
| 785 | /// |
| 786 | /// let matches: Vec<usize> = b"" .find_iter("" ).collect(); |
| 787 | /// assert_eq!(matches, vec![0]); |
| 788 | /// ``` |
| 789 | #[inline ] |
| 790 | fn find_iter<'h, 'n, B: ?Sized + AsRef<[u8]>>( |
| 791 | &'h self, |
| 792 | needle: &'n B, |
| 793 | ) -> Find<'h, 'n> { |
| 794 | Find::new(self.as_bytes(), needle.as_ref()) |
| 795 | } |
| 796 | |
| 797 | /// Returns an iterator of the non-overlapping occurrences of the given |
| 798 | /// needle in reverse. The iterator yields byte offset positions indicating |
| 799 | /// the start of each match. |
| 800 | /// |
| 801 | /// # Complexity |
| 802 | /// |
| 803 | /// This routine is guaranteed to have worst case linear time complexity |
| 804 | /// with respect to both the needle and the haystack. That is, this runs |
| 805 | /// in `O(needle.len() + haystack.len())` time. |
| 806 | /// |
| 807 | /// This routine is also guaranteed to have worst case constant space |
| 808 | /// complexity. |
| 809 | /// |
| 810 | /// # Examples |
| 811 | /// |
| 812 | /// Basic usage: |
| 813 | /// |
| 814 | /// ``` |
| 815 | /// use bstr::ByteSlice; |
| 816 | /// |
| 817 | /// let s = b"foo bar foo foo quux foo" ; |
| 818 | /// let matches: Vec<usize> = s.rfind_iter("foo" ).collect(); |
| 819 | /// assert_eq!(matches, vec![21, 12, 8, 0]); |
| 820 | /// ``` |
| 821 | /// |
| 822 | /// An empty string matches at every position, including the position |
| 823 | /// immediately following the last byte: |
| 824 | /// |
| 825 | /// ``` |
| 826 | /// use bstr::ByteSlice; |
| 827 | /// |
| 828 | /// let matches: Vec<usize> = b"foo" .rfind_iter("" ).collect(); |
| 829 | /// assert_eq!(matches, vec![3, 2, 1, 0]); |
| 830 | /// |
| 831 | /// let matches: Vec<usize> = b"" .rfind_iter("" ).collect(); |
| 832 | /// assert_eq!(matches, vec![0]); |
| 833 | /// ``` |
| 834 | #[inline ] |
| 835 | fn rfind_iter<'h, 'n, B: ?Sized + AsRef<[u8]>>( |
| 836 | &'h self, |
| 837 | needle: &'n B, |
| 838 | ) -> FindReverse<'h, 'n> { |
| 839 | FindReverse::new(self.as_bytes(), needle.as_ref()) |
| 840 | } |
| 841 | |
| 842 | /// Returns the index of the first occurrence of the given byte. If the |
| 843 | /// byte does not occur in this byte string, then `None` is returned. |
| 844 | /// |
| 845 | /// # Examples |
| 846 | /// |
| 847 | /// Basic usage: |
| 848 | /// |
| 849 | /// ``` |
| 850 | /// use bstr::ByteSlice; |
| 851 | /// |
| 852 | /// assert_eq!(Some(10), b"foo bar baz" .find_byte(b'z' )); |
| 853 | /// assert_eq!(None, b"foo bar baz" .find_byte(b'y' )); |
| 854 | /// ``` |
| 855 | #[inline ] |
| 856 | fn find_byte(&self, byte: u8) -> Option<usize> { |
| 857 | memchr(byte, self.as_bytes()) |
| 858 | } |
| 859 | |
| 860 | /// Returns the index of the last occurrence of the given byte. If the |
| 861 | /// byte does not occur in this byte string, then `None` is returned. |
| 862 | /// |
| 863 | /// # Examples |
| 864 | /// |
| 865 | /// Basic usage: |
| 866 | /// |
| 867 | /// ``` |
| 868 | /// use bstr::ByteSlice; |
| 869 | /// |
| 870 | /// assert_eq!(Some(10), b"foo bar baz" .rfind_byte(b'z' )); |
| 871 | /// assert_eq!(None, b"foo bar baz" .rfind_byte(b'y' )); |
| 872 | /// ``` |
| 873 | #[inline ] |
| 874 | fn rfind_byte(&self, byte: u8) -> Option<usize> { |
| 875 | memrchr(byte, self.as_bytes()) |
| 876 | } |
| 877 | |
| 878 | /// Returns the index of the first occurrence of the given codepoint. |
| 879 | /// If the codepoint does not occur in this byte string, then `None` is |
| 880 | /// returned. |
| 881 | /// |
| 882 | /// Note that if one searches for the replacement codepoint, `\u{FFFD}`, |
| 883 | /// then only explicit occurrences of that encoding will be found. Invalid |
| 884 | /// UTF-8 sequences will not be matched. |
| 885 | /// |
| 886 | /// # Examples |
| 887 | /// |
| 888 | /// Basic usage: |
| 889 | /// |
| 890 | /// ``` |
| 891 | /// use bstr::{B, ByteSlice}; |
| 892 | /// |
| 893 | /// assert_eq!(Some(10), b"foo bar baz" .find_char('z' )); |
| 894 | /// assert_eq!(Some(4), B("αβγγδ" ).find_char('γ' )); |
| 895 | /// assert_eq!(None, b"foo bar baz" .find_char('y' )); |
| 896 | /// ``` |
| 897 | #[inline ] |
| 898 | fn find_char(&self, ch: char) -> Option<usize> { |
| 899 | self.find(ch.encode_utf8(&mut [0; 4])) |
| 900 | } |
| 901 | |
| 902 | /// Returns the index of the last occurrence of the given codepoint. |
| 903 | /// If the codepoint does not occur in this byte string, then `None` is |
| 904 | /// returned. |
| 905 | /// |
| 906 | /// Note that if one searches for the replacement codepoint, `\u{FFFD}`, |
| 907 | /// then only explicit occurrences of that encoding will be found. Invalid |
| 908 | /// UTF-8 sequences will not be matched. |
| 909 | /// |
| 910 | /// # Examples |
| 911 | /// |
| 912 | /// Basic usage: |
| 913 | /// |
| 914 | /// ``` |
| 915 | /// use bstr::{B, ByteSlice}; |
| 916 | /// |
| 917 | /// assert_eq!(Some(10), b"foo bar baz" .rfind_char('z' )); |
| 918 | /// assert_eq!(Some(6), B("αβγγδ" ).rfind_char('γ' )); |
| 919 | /// assert_eq!(None, b"foo bar baz" .rfind_char('y' )); |
| 920 | /// ``` |
| 921 | #[inline ] |
| 922 | fn rfind_char(&self, ch: char) -> Option<usize> { |
| 923 | self.rfind(ch.encode_utf8(&mut [0; 4])) |
| 924 | } |
| 925 | |
| 926 | /// Returns the index of the first occurrence of any of the bytes in the |
| 927 | /// provided set. |
| 928 | /// |
| 929 | /// The `byteset` may be any type that can be cheaply converted into a |
| 930 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`, but |
| 931 | /// note that passing a `&str` which contains multibyte characters may not |
| 932 | /// behave as you expect: each byte in the `&str` is treated as an |
| 933 | /// individual member of the byte set. |
| 934 | /// |
| 935 | /// Note that order is irrelevant for the `byteset` parameter, and |
| 936 | /// duplicate bytes present in its body are ignored. |
| 937 | /// |
| 938 | /// # Complexity |
| 939 | /// |
| 940 | /// This routine is guaranteed to have worst case linear time complexity |
| 941 | /// with respect to both the set of bytes and the haystack. That is, this |
| 942 | /// runs in `O(byteset.len() + haystack.len())` time. |
| 943 | /// |
| 944 | /// This routine is also guaranteed to have worst case constant space |
| 945 | /// complexity. |
| 946 | /// |
| 947 | /// # Examples |
| 948 | /// |
| 949 | /// Basic usage: |
| 950 | /// |
| 951 | /// ``` |
| 952 | /// use bstr::ByteSlice; |
| 953 | /// |
| 954 | /// assert_eq!(b"foo bar baz" .find_byteset(b"zr" ), Some(6)); |
| 955 | /// assert_eq!(b"foo baz bar" .find_byteset(b"bzr" ), Some(4)); |
| 956 | /// assert_eq!(None, b"foo baz bar" .find_byteset(b" \t\n" )); |
| 957 | /// // The empty byteset never matches. |
| 958 | /// assert_eq!(None, b"abc" .find_byteset(b"" )); |
| 959 | /// assert_eq!(None, b"" .find_byteset(b"" )); |
| 960 | /// ``` |
| 961 | #[inline ] |
| 962 | fn find_byteset<B: AsRef<[u8]>>(&self, byteset: B) -> Option<usize> { |
| 963 | byteset::find(self.as_bytes(), byteset.as_ref()) |
| 964 | } |
| 965 | |
| 966 | /// Returns the index of the first occurrence of a byte that is not a |
| 967 | /// member of the provided set. |
| 968 | /// |
| 969 | /// The `byteset` may be any type that can be cheaply converted into a |
| 970 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`, but |
| 971 | /// note that passing a `&str` which contains multibyte characters may not |
| 972 | /// behave as you expect: each byte in the `&str` is treated as an |
| 973 | /// individual member of the byte set. |
| 974 | /// |
| 975 | /// Note that order is irrelevant for the `byteset` parameter, and |
| 976 | /// duplicate bytes present in its body are ignored. |
| 977 | /// |
| 978 | /// # Complexity |
| 979 | /// |
| 980 | /// This routine is guaranteed to have worst case linear time complexity |
| 981 | /// with respect to both the set of bytes and the haystack. That is, this |
| 982 | /// runs in `O(byteset.len() + haystack.len())` time. |
| 983 | /// |
| 984 | /// This routine is also guaranteed to have worst case constant space |
| 985 | /// complexity. |
| 986 | /// |
| 987 | /// # Examples |
| 988 | /// |
| 989 | /// Basic usage: |
| 990 | /// |
| 991 | /// ``` |
| 992 | /// use bstr::ByteSlice; |
| 993 | /// |
| 994 | /// assert_eq!(b"foo bar baz" .find_not_byteset(b"fo " ), Some(4)); |
| 995 | /// assert_eq!(b" \t\tbaz bar" .find_not_byteset(b" \t\r\n" ), Some(2)); |
| 996 | /// assert_eq!(b"foo \nbaz \tbar" .find_not_byteset(b" \t\n" ), Some(0)); |
| 997 | /// // The negation of the empty byteset matches everything. |
| 998 | /// assert_eq!(Some(0), b"abc" .find_not_byteset(b"" )); |
| 999 | /// // But an empty string never contains anything. |
| 1000 | /// assert_eq!(None, b"" .find_not_byteset(b"" )); |
| 1001 | /// ``` |
| 1002 | #[inline ] |
| 1003 | fn find_not_byteset<B: AsRef<[u8]>>(&self, byteset: B) -> Option<usize> { |
| 1004 | byteset::find_not(self.as_bytes(), byteset.as_ref()) |
| 1005 | } |
| 1006 | |
| 1007 | /// Returns the index of the last occurrence of any of the bytes in the |
| 1008 | /// provided set. |
| 1009 | /// |
| 1010 | /// The `byteset` may be any type that can be cheaply converted into a |
| 1011 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`, but |
| 1012 | /// note that passing a `&str` which contains multibyte characters may not |
| 1013 | /// behave as you expect: each byte in the `&str` is treated as an |
| 1014 | /// individual member of the byte set. |
| 1015 | /// |
| 1016 | /// Note that order is irrelevant for the `byteset` parameter, and duplicate |
| 1017 | /// bytes present in its body are ignored. |
| 1018 | /// |
| 1019 | /// # Complexity |
| 1020 | /// |
| 1021 | /// This routine is guaranteed to have worst case linear time complexity |
| 1022 | /// with respect to both the set of bytes and the haystack. That is, this |
| 1023 | /// runs in `O(byteset.len() + haystack.len())` time. |
| 1024 | /// |
| 1025 | /// This routine is also guaranteed to have worst case constant space |
| 1026 | /// complexity. |
| 1027 | /// |
| 1028 | /// # Examples |
| 1029 | /// |
| 1030 | /// Basic usage: |
| 1031 | /// |
| 1032 | /// ``` |
| 1033 | /// use bstr::ByteSlice; |
| 1034 | /// |
| 1035 | /// assert_eq!(b"foo bar baz" .rfind_byteset(b"agb" ), Some(9)); |
| 1036 | /// assert_eq!(b"foo baz bar" .rfind_byteset(b"rabz " ), Some(10)); |
| 1037 | /// assert_eq!(b"foo baz bar" .rfind_byteset(b" \n123" ), None); |
| 1038 | /// ``` |
| 1039 | #[inline ] |
| 1040 | fn rfind_byteset<B: AsRef<[u8]>>(&self, byteset: B) -> Option<usize> { |
| 1041 | byteset::rfind(self.as_bytes(), byteset.as_ref()) |
| 1042 | } |
| 1043 | |
| 1044 | /// Returns the index of the last occurrence of a byte that is not a member |
| 1045 | /// of the provided set. |
| 1046 | /// |
| 1047 | /// The `byteset` may be any type that can be cheaply converted into a |
| 1048 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`, but |
| 1049 | /// note that passing a `&str` which contains multibyte characters may not |
| 1050 | /// behave as you expect: each byte in the `&str` is treated as an |
| 1051 | /// individual member of the byte set. |
| 1052 | /// |
| 1053 | /// Note that order is irrelevant for the `byteset` parameter, and |
| 1054 | /// duplicate bytes present in its body are ignored. |
| 1055 | /// |
| 1056 | /// # Complexity |
| 1057 | /// |
| 1058 | /// This routine is guaranteed to have worst case linear time complexity |
| 1059 | /// with respect to both the set of bytes and the haystack. That is, this |
| 1060 | /// runs in `O(byteset.len() + haystack.len())` time. |
| 1061 | /// |
| 1062 | /// This routine is also guaranteed to have worst case constant space |
| 1063 | /// complexity. |
| 1064 | /// |
| 1065 | /// # Examples |
| 1066 | /// |
| 1067 | /// Basic usage: |
| 1068 | /// |
| 1069 | /// ``` |
| 1070 | /// use bstr::ByteSlice; |
| 1071 | /// |
| 1072 | /// assert_eq!(b"foo bar baz, \t" .rfind_not_byteset(b", \t" ), Some(10)); |
| 1073 | /// assert_eq!(b"foo baz bar" .rfind_not_byteset(b"rabz " ), Some(2)); |
| 1074 | /// assert_eq!(None, b"foo baz bar" .rfind_not_byteset(b"barfoz " )); |
| 1075 | /// ``` |
| 1076 | #[inline ] |
| 1077 | fn rfind_not_byteset<B: AsRef<[u8]>>(&self, byteset: B) -> Option<usize> { |
| 1078 | byteset::rfind_not(self.as_bytes(), byteset.as_ref()) |
| 1079 | } |
| 1080 | |
| 1081 | /// Returns an iterator over the fields in a byte string, separated |
| 1082 | /// by contiguous whitespace (according to the Unicode property |
| 1083 | /// `White_Space`). |
| 1084 | /// |
| 1085 | /// # Example |
| 1086 | /// |
| 1087 | /// Basic usage: |
| 1088 | /// |
| 1089 | /// ``` |
| 1090 | /// use bstr::{B, ByteSlice}; |
| 1091 | /// |
| 1092 | /// let s = B(" foo \tbar \t\u{2003}\nquux \n" ); |
| 1093 | /// let fields: Vec<&[u8]> = s.fields().collect(); |
| 1094 | /// assert_eq!(fields, vec![B("foo" ), B("bar" ), B("quux" )]); |
| 1095 | /// ``` |
| 1096 | /// |
| 1097 | /// A byte string consisting of just whitespace yields no elements: |
| 1098 | /// |
| 1099 | /// ``` |
| 1100 | /// use bstr::{B, ByteSlice}; |
| 1101 | /// |
| 1102 | /// assert_eq!(0, B(" \n\t\u{2003}\n \t" ).fields().count()); |
| 1103 | /// ``` |
| 1104 | #[cfg (feature = "unicode" )] |
| 1105 | #[inline ] |
| 1106 | fn fields(&self) -> Fields<'_> { |
| 1107 | Fields::new(self.as_bytes()) |
| 1108 | } |
| 1109 | |
| 1110 | /// Returns an iterator over the fields in a byte string, separated by |
| 1111 | /// contiguous codepoints satisfying the given predicate. |
| 1112 | /// |
| 1113 | /// If this byte string is not valid UTF-8, then the given closure will |
| 1114 | /// be called with a Unicode replacement codepoint when invalid UTF-8 |
| 1115 | /// bytes are seen. |
| 1116 | /// |
| 1117 | /// # Example |
| 1118 | /// |
| 1119 | /// Basic usage: |
| 1120 | /// |
| 1121 | /// ``` |
| 1122 | /// use bstr::{B, ByteSlice}; |
| 1123 | /// |
| 1124 | /// let s = b"123foo999999bar1quux123456" ; |
| 1125 | /// let fields: Vec<&[u8]> = s.fields_with(|c| c.is_numeric()).collect(); |
| 1126 | /// assert_eq!(fields, vec![B("foo" ), B("bar" ), B("quux" )]); |
| 1127 | /// ``` |
| 1128 | /// |
| 1129 | /// A byte string consisting of all codepoints satisfying the predicate |
| 1130 | /// yields no elements: |
| 1131 | /// |
| 1132 | /// ``` |
| 1133 | /// use bstr::ByteSlice; |
| 1134 | /// |
| 1135 | /// assert_eq!(0, b"1911354563" .fields_with(|c| c.is_numeric()).count()); |
| 1136 | /// ``` |
| 1137 | #[inline ] |
| 1138 | fn fields_with<F: FnMut(char) -> bool>(&self, f: F) -> FieldsWith<'_, F> { |
| 1139 | FieldsWith::new(self.as_bytes(), f) |
| 1140 | } |
| 1141 | |
| 1142 | /// Returns an iterator over substrings of this byte string, separated |
| 1143 | /// by the given byte string. Each element yielded is guaranteed not to |
| 1144 | /// include the splitter substring. |
| 1145 | /// |
| 1146 | /// The splitter may be any type that can be cheaply converted into a |
| 1147 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. |
| 1148 | /// |
| 1149 | /// # Examples |
| 1150 | /// |
| 1151 | /// Basic usage: |
| 1152 | /// |
| 1153 | /// ``` |
| 1154 | /// use bstr::{B, ByteSlice}; |
| 1155 | /// |
| 1156 | /// let x: Vec<&[u8]> = b"Mary had a little lamb" .split_str(" " ).collect(); |
| 1157 | /// assert_eq!(x, vec![ |
| 1158 | /// B("Mary" ), B("had" ), B("a" ), B("little" ), B("lamb" ), |
| 1159 | /// ]); |
| 1160 | /// |
| 1161 | /// let x: Vec<&[u8]> = b"" .split_str("X" ).collect(); |
| 1162 | /// assert_eq!(x, vec![b"" ]); |
| 1163 | /// |
| 1164 | /// let x: Vec<&[u8]> = b"lionXXtigerXleopard" .split_str("X" ).collect(); |
| 1165 | /// assert_eq!(x, vec![B("lion" ), B("" ), B("tiger" ), B("leopard" )]); |
| 1166 | /// |
| 1167 | /// let x: Vec<&[u8]> = b"lion::tiger::leopard" .split_str("::" ).collect(); |
| 1168 | /// assert_eq!(x, vec![B("lion" ), B("tiger" ), B("leopard" )]); |
| 1169 | /// ``` |
| 1170 | /// |
| 1171 | /// If a string contains multiple contiguous separators, you will end up |
| 1172 | /// with empty strings yielded by the iterator: |
| 1173 | /// |
| 1174 | /// ``` |
| 1175 | /// use bstr::{B, ByteSlice}; |
| 1176 | /// |
| 1177 | /// let x: Vec<&[u8]> = b"||||a||b|c" .split_str("|" ).collect(); |
| 1178 | /// assert_eq!(x, vec![ |
| 1179 | /// B("" ), B("" ), B("" ), B("" ), B("a" ), B("" ), B("b" ), B("c" ), |
| 1180 | /// ]); |
| 1181 | /// |
| 1182 | /// let x: Vec<&[u8]> = b"(///)" .split_str("/" ).collect(); |
| 1183 | /// assert_eq!(x, vec![B("(" ), B("" ), B("" ), B(")" )]); |
| 1184 | /// ``` |
| 1185 | /// |
| 1186 | /// Separators at the start or end of a string are neighbored by empty |
| 1187 | /// strings. |
| 1188 | /// |
| 1189 | /// ``` |
| 1190 | /// use bstr::{B, ByteSlice}; |
| 1191 | /// |
| 1192 | /// let x: Vec<&[u8]> = b"010" .split_str("0" ).collect(); |
| 1193 | /// assert_eq!(x, vec![B("" ), B("1" ), B("" )]); |
| 1194 | /// ``` |
| 1195 | /// |
| 1196 | /// When the empty string is used as a separator, it splits every **byte** |
| 1197 | /// in the byte string, along with the beginning and end of the byte |
| 1198 | /// string. |
| 1199 | /// |
| 1200 | /// ``` |
| 1201 | /// use bstr::{B, ByteSlice}; |
| 1202 | /// |
| 1203 | /// let x: Vec<&[u8]> = b"rust" .split_str("" ).collect(); |
| 1204 | /// assert_eq!(x, vec![ |
| 1205 | /// B("" ), B("r" ), B("u" ), B("s" ), B("t" ), B("" ), |
| 1206 | /// ]); |
| 1207 | /// |
| 1208 | /// // Splitting by an empty string is not UTF-8 aware. Elements yielded |
| 1209 | /// // may not be valid UTF-8! |
| 1210 | /// let x: Vec<&[u8]> = B("☃" ).split_str("" ).collect(); |
| 1211 | /// assert_eq!(x, vec![ |
| 1212 | /// B("" ), B(b" \xE2" ), B(b" \x98" ), B(b" \x83" ), B("" ), |
| 1213 | /// ]); |
| 1214 | /// ``` |
| 1215 | /// |
| 1216 | /// Contiguous separators, especially whitespace, can lead to possibly |
| 1217 | /// surprising behavior. For example, this code is correct: |
| 1218 | /// |
| 1219 | /// ``` |
| 1220 | /// use bstr::{B, ByteSlice}; |
| 1221 | /// |
| 1222 | /// let x: Vec<&[u8]> = b" a b c" .split_str(" " ).collect(); |
| 1223 | /// assert_eq!(x, vec![ |
| 1224 | /// B("" ), B("" ), B("" ), B("" ), B("a" ), B("" ), B("b" ), B("c" ), |
| 1225 | /// ]); |
| 1226 | /// ``` |
| 1227 | /// |
| 1228 | /// It does *not* give you `["a", "b", "c"]`. For that behavior, use |
| 1229 | /// [`fields`](#method.fields) instead. |
| 1230 | #[inline ] |
| 1231 | fn split_str<'h, 's, B: ?Sized + AsRef<[u8]>>( |
| 1232 | &'h self, |
| 1233 | splitter: &'s B, |
| 1234 | ) -> Split<'h, 's> { |
| 1235 | Split::new(self.as_bytes(), splitter.as_ref()) |
| 1236 | } |
| 1237 | |
| 1238 | /// Returns an iterator over substrings of this byte string, separated by |
| 1239 | /// the given byte string, in reverse. Each element yielded is guaranteed |
| 1240 | /// not to include the splitter substring. |
| 1241 | /// |
| 1242 | /// The splitter may be any type that can be cheaply converted into a |
| 1243 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. |
| 1244 | /// |
| 1245 | /// # Examples |
| 1246 | /// |
| 1247 | /// Basic usage: |
| 1248 | /// |
| 1249 | /// ``` |
| 1250 | /// use bstr::{B, ByteSlice}; |
| 1251 | /// |
| 1252 | /// let x: Vec<&[u8]> = |
| 1253 | /// b"Mary had a little lamb" .rsplit_str(" " ).collect(); |
| 1254 | /// assert_eq!(x, vec![ |
| 1255 | /// B("lamb" ), B("little" ), B("a" ), B("had" ), B("Mary" ), |
| 1256 | /// ]); |
| 1257 | /// |
| 1258 | /// let x: Vec<&[u8]> = b"" .rsplit_str("X" ).collect(); |
| 1259 | /// assert_eq!(x, vec![b"" ]); |
| 1260 | /// |
| 1261 | /// let x: Vec<&[u8]> = b"lionXXtigerXleopard" .rsplit_str("X" ).collect(); |
| 1262 | /// assert_eq!(x, vec![B("leopard" ), B("tiger" ), B("" ), B("lion" )]); |
| 1263 | /// |
| 1264 | /// let x: Vec<&[u8]> = b"lion::tiger::leopard" .rsplit_str("::" ).collect(); |
| 1265 | /// assert_eq!(x, vec![B("leopard" ), B("tiger" ), B("lion" )]); |
| 1266 | /// ``` |
| 1267 | /// |
| 1268 | /// If a string contains multiple contiguous separators, you will end up |
| 1269 | /// with empty strings yielded by the iterator: |
| 1270 | /// |
| 1271 | /// ``` |
| 1272 | /// use bstr::{B, ByteSlice}; |
| 1273 | /// |
| 1274 | /// let x: Vec<&[u8]> = b"||||a||b|c" .rsplit_str("|" ).collect(); |
| 1275 | /// assert_eq!(x, vec![ |
| 1276 | /// B("c" ), B("b" ), B("" ), B("a" ), B("" ), B("" ), B("" ), B("" ), |
| 1277 | /// ]); |
| 1278 | /// |
| 1279 | /// let x: Vec<&[u8]> = b"(///)" .rsplit_str("/" ).collect(); |
| 1280 | /// assert_eq!(x, vec![B(")" ), B("" ), B("" ), B("(" )]); |
| 1281 | /// ``` |
| 1282 | /// |
| 1283 | /// Separators at the start or end of a string are neighbored by empty |
| 1284 | /// strings. |
| 1285 | /// |
| 1286 | /// ``` |
| 1287 | /// use bstr::{B, ByteSlice}; |
| 1288 | /// |
| 1289 | /// let x: Vec<&[u8]> = b"010" .rsplit_str("0" ).collect(); |
| 1290 | /// assert_eq!(x, vec![B("" ), B("1" ), B("" )]); |
| 1291 | /// ``` |
| 1292 | /// |
| 1293 | /// When the empty string is used as a separator, it splits every **byte** |
| 1294 | /// in the byte string, along with the beginning and end of the byte |
| 1295 | /// string. |
| 1296 | /// |
| 1297 | /// ``` |
| 1298 | /// use bstr::{B, ByteSlice}; |
| 1299 | /// |
| 1300 | /// let x: Vec<&[u8]> = b"rust" .rsplit_str("" ).collect(); |
| 1301 | /// assert_eq!(x, vec![ |
| 1302 | /// B("" ), B("t" ), B("s" ), B("u" ), B("r" ), B("" ), |
| 1303 | /// ]); |
| 1304 | /// |
| 1305 | /// // Splitting by an empty string is not UTF-8 aware. Elements yielded |
| 1306 | /// // may not be valid UTF-8! |
| 1307 | /// let x: Vec<&[u8]> = B("☃" ).rsplit_str("" ).collect(); |
| 1308 | /// assert_eq!(x, vec![B("" ), B(b" \x83" ), B(b" \x98" ), B(b" \xE2" ), B("" )]); |
| 1309 | /// ``` |
| 1310 | /// |
| 1311 | /// Contiguous separators, especially whitespace, can lead to possibly |
| 1312 | /// surprising behavior. For example, this code is correct: |
| 1313 | /// |
| 1314 | /// ``` |
| 1315 | /// use bstr::{B, ByteSlice}; |
| 1316 | /// |
| 1317 | /// let x: Vec<&[u8]> = b" a b c" .rsplit_str(" " ).collect(); |
| 1318 | /// assert_eq!(x, vec![ |
| 1319 | /// B("c" ), B("b" ), B("" ), B("a" ), B("" ), B("" ), B("" ), B("" ), |
| 1320 | /// ]); |
| 1321 | /// ``` |
| 1322 | /// |
| 1323 | /// It does *not* give you `["a", "b", "c"]`. |
| 1324 | #[inline ] |
| 1325 | fn rsplit_str<'h, 's, B: ?Sized + AsRef<[u8]>>( |
| 1326 | &'h self, |
| 1327 | splitter: &'s B, |
| 1328 | ) -> SplitReverse<'h, 's> { |
| 1329 | SplitReverse::new(self.as_bytes(), splitter.as_ref()) |
| 1330 | } |
| 1331 | |
| 1332 | /// Split this byte string at the first occurrence of `splitter`. |
| 1333 | /// |
| 1334 | /// If the `splitter` is found in the byte string, returns a tuple |
| 1335 | /// containing the parts of the string before and after the first occurrence |
| 1336 | /// of `splitter` respectively. Otherwise, if there are no occurrences of |
| 1337 | /// `splitter` in the byte string, returns `None`. |
| 1338 | /// |
| 1339 | /// The splitter may be any type that can be cheaply converted into a |
| 1340 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. |
| 1341 | /// |
| 1342 | /// If you need to split on the *last* instance of a delimiter instead, see |
| 1343 | /// the [`ByteSlice::rsplit_once_str`](#method.rsplit_once_str) method . |
| 1344 | /// |
| 1345 | /// # Examples |
| 1346 | /// |
| 1347 | /// Basic usage: |
| 1348 | /// |
| 1349 | /// ``` |
| 1350 | /// use bstr::{B, ByteSlice}; |
| 1351 | /// |
| 1352 | /// assert_eq!( |
| 1353 | /// B("foo,bar" ).split_once_str("," ), |
| 1354 | /// Some((B("foo" ), B("bar" ))), |
| 1355 | /// ); |
| 1356 | /// assert_eq!( |
| 1357 | /// B("foo,bar,baz" ).split_once_str("," ), |
| 1358 | /// Some((B("foo" ), B("bar,baz" ))), |
| 1359 | /// ); |
| 1360 | /// assert_eq!(B("foo" ).split_once_str("," ), None); |
| 1361 | /// assert_eq!(B("foo," ).split_once_str(b"," ), Some((B("foo" ), B("" )))); |
| 1362 | /// assert_eq!(B(",foo" ).split_once_str(b"," ), Some((B("" ), B("foo" )))); |
| 1363 | /// ``` |
| 1364 | #[inline ] |
| 1365 | fn split_once_str<'a, B: ?Sized + AsRef<[u8]>>( |
| 1366 | &'a self, |
| 1367 | splitter: &B, |
| 1368 | ) -> Option<(&'a [u8], &'a [u8])> { |
| 1369 | let bytes = self.as_bytes(); |
| 1370 | let splitter = splitter.as_ref(); |
| 1371 | let start = Finder::new(splitter).find(bytes)?; |
| 1372 | let end = start + splitter.len(); |
| 1373 | Some((&bytes[..start], &bytes[end..])) |
| 1374 | } |
| 1375 | |
| 1376 | /// Split this byte string at the last occurrence of `splitter`. |
| 1377 | /// |
| 1378 | /// If the `splitter` is found in the byte string, returns a tuple |
| 1379 | /// containing the parts of the string before and after the last occurrence |
| 1380 | /// of `splitter`, respectively. Otherwise, if there are no occurrences of |
| 1381 | /// `splitter` in the byte string, returns `None`. |
| 1382 | /// |
| 1383 | /// The splitter may be any type that can be cheaply converted into a |
| 1384 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. |
| 1385 | /// |
| 1386 | /// If you need to split on the *first* instance of a delimiter instead, see |
| 1387 | /// the [`ByteSlice::split_once_str`](#method.split_once_str) method. |
| 1388 | /// |
| 1389 | /// # Examples |
| 1390 | /// |
| 1391 | /// Basic usage: |
| 1392 | /// |
| 1393 | /// ``` |
| 1394 | /// use bstr::{B, ByteSlice}; |
| 1395 | /// |
| 1396 | /// assert_eq!( |
| 1397 | /// B("foo,bar" ).rsplit_once_str("," ), |
| 1398 | /// Some((B("foo" ), B("bar" ))), |
| 1399 | /// ); |
| 1400 | /// assert_eq!( |
| 1401 | /// B("foo,bar,baz" ).rsplit_once_str("," ), |
| 1402 | /// Some((B("foo,bar" ), B("baz" ))), |
| 1403 | /// ); |
| 1404 | /// assert_eq!(B("foo" ).rsplit_once_str("," ), None); |
| 1405 | /// assert_eq!(B("foo," ).rsplit_once_str(b"," ), Some((B("foo" ), B("" )))); |
| 1406 | /// assert_eq!(B(",foo" ).rsplit_once_str(b"," ), Some((B("" ), B("foo" )))); |
| 1407 | /// ``` |
| 1408 | #[inline ] |
| 1409 | fn rsplit_once_str<'a, B: ?Sized + AsRef<[u8]>>( |
| 1410 | &'a self, |
| 1411 | splitter: &B, |
| 1412 | ) -> Option<(&'a [u8], &'a [u8])> { |
| 1413 | let bytes = self.as_bytes(); |
| 1414 | let splitter = splitter.as_ref(); |
| 1415 | let start = FinderReverse::new(splitter).rfind(bytes)?; |
| 1416 | let end = start + splitter.len(); |
| 1417 | Some((&bytes[..start], &bytes[end..])) |
| 1418 | } |
| 1419 | |
| 1420 | /// Returns an iterator of at most `limit` substrings of this byte string, |
| 1421 | /// separated by the given byte string. If `limit` substrings are yielded, |
| 1422 | /// then the last substring will contain the remainder of this byte string. |
| 1423 | /// |
| 1424 | /// The needle may be any type that can be cheaply converted into a |
| 1425 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. |
| 1426 | /// |
| 1427 | /// # Examples |
| 1428 | /// |
| 1429 | /// Basic usage: |
| 1430 | /// |
| 1431 | /// ``` |
| 1432 | /// use bstr::{B, ByteSlice}; |
| 1433 | /// |
| 1434 | /// let x: Vec<_> = b"Mary had a little lamb" .splitn_str(3, " " ).collect(); |
| 1435 | /// assert_eq!(x, vec![B("Mary" ), B("had" ), B("a little lamb" )]); |
| 1436 | /// |
| 1437 | /// let x: Vec<_> = b"" .splitn_str(3, "X" ).collect(); |
| 1438 | /// assert_eq!(x, vec![b"" ]); |
| 1439 | /// |
| 1440 | /// let x: Vec<_> = b"lionXXtigerXleopard" .splitn_str(3, "X" ).collect(); |
| 1441 | /// assert_eq!(x, vec![B("lion" ), B("" ), B("tigerXleopard" )]); |
| 1442 | /// |
| 1443 | /// let x: Vec<_> = b"lion::tiger::leopard" .splitn_str(2, "::" ).collect(); |
| 1444 | /// assert_eq!(x, vec![B("lion" ), B("tiger::leopard" )]); |
| 1445 | /// |
| 1446 | /// let x: Vec<_> = b"abcXdef" .splitn_str(1, "X" ).collect(); |
| 1447 | /// assert_eq!(x, vec![B("abcXdef" )]); |
| 1448 | /// |
| 1449 | /// let x: Vec<_> = b"abcdef" .splitn_str(2, "X" ).collect(); |
| 1450 | /// assert_eq!(x, vec![B("abcdef" )]); |
| 1451 | /// |
| 1452 | /// let x: Vec<_> = b"abcXdef" .splitn_str(0, "X" ).collect(); |
| 1453 | /// assert!(x.is_empty()); |
| 1454 | /// ``` |
| 1455 | #[inline ] |
| 1456 | fn splitn_str<'h, 's, B: ?Sized + AsRef<[u8]>>( |
| 1457 | &'h self, |
| 1458 | limit: usize, |
| 1459 | splitter: &'s B, |
| 1460 | ) -> SplitN<'h, 's> { |
| 1461 | SplitN::new(self.as_bytes(), splitter.as_ref(), limit) |
| 1462 | } |
| 1463 | |
| 1464 | /// Returns an iterator of at most `limit` substrings of this byte string, |
| 1465 | /// separated by the given byte string, in reverse. If `limit` substrings |
| 1466 | /// are yielded, then the last substring will contain the remainder of this |
| 1467 | /// byte string. |
| 1468 | /// |
| 1469 | /// The needle may be any type that can be cheaply converted into a |
| 1470 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. |
| 1471 | /// |
| 1472 | /// # Examples |
| 1473 | /// |
| 1474 | /// Basic usage: |
| 1475 | /// |
| 1476 | /// ``` |
| 1477 | /// use bstr::{B, ByteSlice}; |
| 1478 | /// |
| 1479 | /// let x: Vec<_> = |
| 1480 | /// b"Mary had a little lamb" .rsplitn_str(3, " " ).collect(); |
| 1481 | /// assert_eq!(x, vec![B("lamb" ), B("little" ), B("Mary had a" )]); |
| 1482 | /// |
| 1483 | /// let x: Vec<_> = b"" .rsplitn_str(3, "X" ).collect(); |
| 1484 | /// assert_eq!(x, vec![b"" ]); |
| 1485 | /// |
| 1486 | /// let x: Vec<_> = b"lionXXtigerXleopard" .rsplitn_str(3, "X" ).collect(); |
| 1487 | /// assert_eq!(x, vec![B("leopard" ), B("tiger" ), B("lionX" )]); |
| 1488 | /// |
| 1489 | /// let x: Vec<_> = b"lion::tiger::leopard" .rsplitn_str(2, "::" ).collect(); |
| 1490 | /// assert_eq!(x, vec![B("leopard" ), B("lion::tiger" )]); |
| 1491 | /// |
| 1492 | /// let x: Vec<_> = b"abcXdef" .rsplitn_str(1, "X" ).collect(); |
| 1493 | /// assert_eq!(x, vec![B("abcXdef" )]); |
| 1494 | /// |
| 1495 | /// let x: Vec<_> = b"abcdef" .rsplitn_str(2, "X" ).collect(); |
| 1496 | /// assert_eq!(x, vec![B("abcdef" )]); |
| 1497 | /// |
| 1498 | /// let x: Vec<_> = b"abcXdef" .rsplitn_str(0, "X" ).collect(); |
| 1499 | /// assert!(x.is_empty()); |
| 1500 | /// ``` |
| 1501 | #[inline ] |
| 1502 | fn rsplitn_str<'h, 's, B: ?Sized + AsRef<[u8]>>( |
| 1503 | &'h self, |
| 1504 | limit: usize, |
| 1505 | splitter: &'s B, |
| 1506 | ) -> SplitNReverse<'h, 's> { |
| 1507 | SplitNReverse::new(self.as_bytes(), splitter.as_ref(), limit) |
| 1508 | } |
| 1509 | |
| 1510 | /// Replace all matches of the given needle with the given replacement, and |
| 1511 | /// the result as a new `Vec<u8>`. |
| 1512 | /// |
| 1513 | /// This routine is useful as a convenience. If you need to reuse an |
| 1514 | /// allocation, use [`replace_into`](#method.replace_into) instead. |
| 1515 | /// |
| 1516 | /// # Examples |
| 1517 | /// |
| 1518 | /// Basic usage: |
| 1519 | /// |
| 1520 | /// ``` |
| 1521 | /// use bstr::ByteSlice; |
| 1522 | /// |
| 1523 | /// let s = b"this is old" .replace("old" , "new" ); |
| 1524 | /// assert_eq!(s, "this is new" .as_bytes()); |
| 1525 | /// ``` |
| 1526 | /// |
| 1527 | /// When the pattern doesn't match: |
| 1528 | /// |
| 1529 | /// ``` |
| 1530 | /// use bstr::ByteSlice; |
| 1531 | /// |
| 1532 | /// let s = b"this is old" .replace("nada nada" , "limonada" ); |
| 1533 | /// assert_eq!(s, "this is old" .as_bytes()); |
| 1534 | /// ``` |
| 1535 | /// |
| 1536 | /// When the needle is an empty string: |
| 1537 | /// |
| 1538 | /// ``` |
| 1539 | /// use bstr::ByteSlice; |
| 1540 | /// |
| 1541 | /// let s = b"foo" .replace("" , "Z" ); |
| 1542 | /// assert_eq!(s, "ZfZoZoZ" .as_bytes()); |
| 1543 | /// ``` |
| 1544 | #[cfg (feature = "alloc" )] |
| 1545 | #[inline ] |
| 1546 | fn replace<N: AsRef<[u8]>, R: AsRef<[u8]>>( |
| 1547 | &self, |
| 1548 | needle: N, |
| 1549 | replacement: R, |
| 1550 | ) -> Vec<u8> { |
| 1551 | let mut dest = Vec::with_capacity(self.as_bytes().len()); |
| 1552 | self.replace_into(needle, replacement, &mut dest); |
| 1553 | dest |
| 1554 | } |
| 1555 | |
| 1556 | /// Replace up to `limit` matches of the given needle with the given |
| 1557 | /// replacement, and the result as a new `Vec<u8>`. |
| 1558 | /// |
| 1559 | /// This routine is useful as a convenience. If you need to reuse an |
| 1560 | /// allocation, use [`replacen_into`](#method.replacen_into) instead. |
| 1561 | /// |
| 1562 | /// # Examples |
| 1563 | /// |
| 1564 | /// Basic usage: |
| 1565 | /// |
| 1566 | /// ``` |
| 1567 | /// use bstr::ByteSlice; |
| 1568 | /// |
| 1569 | /// let s = b"foofoo" .replacen("o" , "z" , 2); |
| 1570 | /// assert_eq!(s, "fzzfoo" .as_bytes()); |
| 1571 | /// ``` |
| 1572 | /// |
| 1573 | /// When the pattern doesn't match: |
| 1574 | /// |
| 1575 | /// ``` |
| 1576 | /// use bstr::ByteSlice; |
| 1577 | /// |
| 1578 | /// let s = b"foofoo" .replacen("a" , "z" , 2); |
| 1579 | /// assert_eq!(s, "foofoo" .as_bytes()); |
| 1580 | /// ``` |
| 1581 | /// |
| 1582 | /// When the needle is an empty string: |
| 1583 | /// |
| 1584 | /// ``` |
| 1585 | /// use bstr::ByteSlice; |
| 1586 | /// |
| 1587 | /// let s = b"foo" .replacen("" , "Z" , 2); |
| 1588 | /// assert_eq!(s, "ZfZoo" .as_bytes()); |
| 1589 | /// ``` |
| 1590 | #[cfg (feature = "alloc" )] |
| 1591 | #[inline ] |
| 1592 | fn replacen<N: AsRef<[u8]>, R: AsRef<[u8]>>( |
| 1593 | &self, |
| 1594 | needle: N, |
| 1595 | replacement: R, |
| 1596 | limit: usize, |
| 1597 | ) -> Vec<u8> { |
| 1598 | let mut dest = Vec::with_capacity(self.as_bytes().len()); |
| 1599 | self.replacen_into(needle, replacement, limit, &mut dest); |
| 1600 | dest |
| 1601 | } |
| 1602 | |
| 1603 | /// Replace all matches of the given needle with the given replacement, |
| 1604 | /// and write the result into the provided `Vec<u8>`. |
| 1605 | /// |
| 1606 | /// This does **not** clear `dest` before writing to it. |
| 1607 | /// |
| 1608 | /// This routine is useful for reusing allocation. For a more convenient |
| 1609 | /// API, use [`replace`](#method.replace) instead. |
| 1610 | /// |
| 1611 | /// # Examples |
| 1612 | /// |
| 1613 | /// Basic usage: |
| 1614 | /// |
| 1615 | /// ``` |
| 1616 | /// use bstr::ByteSlice; |
| 1617 | /// |
| 1618 | /// let s = b"this is old" ; |
| 1619 | /// |
| 1620 | /// let mut dest = vec![]; |
| 1621 | /// s.replace_into("old" , "new" , &mut dest); |
| 1622 | /// assert_eq!(dest, "this is new" .as_bytes()); |
| 1623 | /// ``` |
| 1624 | /// |
| 1625 | /// When the pattern doesn't match: |
| 1626 | /// |
| 1627 | /// ``` |
| 1628 | /// use bstr::ByteSlice; |
| 1629 | /// |
| 1630 | /// let s = b"this is old" ; |
| 1631 | /// |
| 1632 | /// let mut dest = vec![]; |
| 1633 | /// s.replace_into("nada nada" , "limonada" , &mut dest); |
| 1634 | /// assert_eq!(dest, "this is old" .as_bytes()); |
| 1635 | /// ``` |
| 1636 | /// |
| 1637 | /// When the needle is an empty string: |
| 1638 | /// |
| 1639 | /// ``` |
| 1640 | /// use bstr::ByteSlice; |
| 1641 | /// |
| 1642 | /// let s = b"foo" ; |
| 1643 | /// |
| 1644 | /// let mut dest = vec![]; |
| 1645 | /// s.replace_into("" , "Z" , &mut dest); |
| 1646 | /// assert_eq!(dest, "ZfZoZoZ" .as_bytes()); |
| 1647 | /// ``` |
| 1648 | #[cfg (feature = "alloc" )] |
| 1649 | #[inline ] |
| 1650 | fn replace_into<N: AsRef<[u8]>, R: AsRef<[u8]>>( |
| 1651 | &self, |
| 1652 | needle: N, |
| 1653 | replacement: R, |
| 1654 | dest: &mut Vec<u8>, |
| 1655 | ) { |
| 1656 | let (needle, replacement) = (needle.as_ref(), replacement.as_ref()); |
| 1657 | |
| 1658 | let mut last = 0; |
| 1659 | for start in self.find_iter(needle) { |
| 1660 | dest.push_str(&self.as_bytes()[last..start]); |
| 1661 | dest.push_str(replacement); |
| 1662 | last = start + needle.len(); |
| 1663 | } |
| 1664 | dest.push_str(&self.as_bytes()[last..]); |
| 1665 | } |
| 1666 | |
| 1667 | /// Replace up to `limit` matches of the given needle with the given |
| 1668 | /// replacement, and write the result into the provided `Vec<u8>`. |
| 1669 | /// |
| 1670 | /// This does **not** clear `dest` before writing to it. |
| 1671 | /// |
| 1672 | /// This routine is useful for reusing allocation. For a more convenient |
| 1673 | /// API, use [`replacen`](#method.replacen) instead. |
| 1674 | /// |
| 1675 | /// # Examples |
| 1676 | /// |
| 1677 | /// Basic usage: |
| 1678 | /// |
| 1679 | /// ``` |
| 1680 | /// use bstr::ByteSlice; |
| 1681 | /// |
| 1682 | /// let s = b"foofoo" ; |
| 1683 | /// |
| 1684 | /// let mut dest = vec![]; |
| 1685 | /// s.replacen_into("o" , "z" , 2, &mut dest); |
| 1686 | /// assert_eq!(dest, "fzzfoo" .as_bytes()); |
| 1687 | /// ``` |
| 1688 | /// |
| 1689 | /// When the pattern doesn't match: |
| 1690 | /// |
| 1691 | /// ``` |
| 1692 | /// use bstr::ByteSlice; |
| 1693 | /// |
| 1694 | /// let s = b"foofoo" ; |
| 1695 | /// |
| 1696 | /// let mut dest = vec![]; |
| 1697 | /// s.replacen_into("a" , "z" , 2, &mut dest); |
| 1698 | /// assert_eq!(dest, "foofoo" .as_bytes()); |
| 1699 | /// ``` |
| 1700 | /// |
| 1701 | /// When the needle is an empty string: |
| 1702 | /// |
| 1703 | /// ``` |
| 1704 | /// use bstr::ByteSlice; |
| 1705 | /// |
| 1706 | /// let s = b"foo" ; |
| 1707 | /// |
| 1708 | /// let mut dest = vec![]; |
| 1709 | /// s.replacen_into("" , "Z" , 2, &mut dest); |
| 1710 | /// assert_eq!(dest, "ZfZoo" .as_bytes()); |
| 1711 | /// ``` |
| 1712 | #[cfg (feature = "alloc" )] |
| 1713 | #[inline ] |
| 1714 | fn replacen_into<N: AsRef<[u8]>, R: AsRef<[u8]>>( |
| 1715 | &self, |
| 1716 | needle: N, |
| 1717 | replacement: R, |
| 1718 | limit: usize, |
| 1719 | dest: &mut Vec<u8>, |
| 1720 | ) { |
| 1721 | let (needle, replacement) = (needle.as_ref(), replacement.as_ref()); |
| 1722 | |
| 1723 | let mut last = 0; |
| 1724 | for start in self.find_iter(needle).take(limit) { |
| 1725 | dest.push_str(&self.as_bytes()[last..start]); |
| 1726 | dest.push_str(replacement); |
| 1727 | last = start + needle.len(); |
| 1728 | } |
| 1729 | dest.push_str(&self.as_bytes()[last..]); |
| 1730 | } |
| 1731 | |
| 1732 | /// Returns an iterator over the bytes in this byte string. |
| 1733 | /// |
| 1734 | /// # Examples |
| 1735 | /// |
| 1736 | /// Basic usage: |
| 1737 | /// |
| 1738 | /// ``` |
| 1739 | /// use bstr::ByteSlice; |
| 1740 | /// |
| 1741 | /// let bs = b"foobar" ; |
| 1742 | /// let bytes: Vec<u8> = bs.bytes().collect(); |
| 1743 | /// assert_eq!(bytes, bs); |
| 1744 | /// ``` |
| 1745 | #[inline ] |
| 1746 | fn bytes(&self) -> Bytes<'_> { |
| 1747 | Bytes { it: self.as_bytes().iter() } |
| 1748 | } |
| 1749 | |
| 1750 | /// Returns an iterator over the Unicode scalar values in this byte string. |
| 1751 | /// If invalid UTF-8 is encountered, then the Unicode replacement codepoint |
| 1752 | /// is yielded instead. |
| 1753 | /// |
| 1754 | /// # Examples |
| 1755 | /// |
| 1756 | /// Basic usage: |
| 1757 | /// |
| 1758 | /// ``` |
| 1759 | /// use bstr::ByteSlice; |
| 1760 | /// |
| 1761 | /// let bs = b" \xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61" ; |
| 1762 | /// let chars: Vec<char> = bs.chars().collect(); |
| 1763 | /// assert_eq!(vec!['☃' , ' \u{FFFD}' , '𝞃' , ' \u{FFFD}' , 'a' ], chars); |
| 1764 | /// ``` |
| 1765 | /// |
| 1766 | /// Codepoints can also be iterated over in reverse: |
| 1767 | /// |
| 1768 | /// ``` |
| 1769 | /// use bstr::ByteSlice; |
| 1770 | /// |
| 1771 | /// let bs = b" \xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61" ; |
| 1772 | /// let chars: Vec<char> = bs.chars().rev().collect(); |
| 1773 | /// assert_eq!(vec!['a' , ' \u{FFFD}' , '𝞃' , ' \u{FFFD}' , '☃' ], chars); |
| 1774 | /// ``` |
| 1775 | #[inline ] |
| 1776 | fn chars(&self) -> Chars<'_> { |
| 1777 | Chars::new(self.as_bytes()) |
| 1778 | } |
| 1779 | |
| 1780 | /// Returns an iterator over the Unicode scalar values in this byte string |
| 1781 | /// along with their starting and ending byte index positions. If invalid |
| 1782 | /// UTF-8 is encountered, then the Unicode replacement codepoint is yielded |
| 1783 | /// instead. |
| 1784 | /// |
| 1785 | /// Note that this is slightly different from the `CharIndices` iterator |
| 1786 | /// provided by the standard library. Aside from working on possibly |
| 1787 | /// invalid UTF-8, this iterator provides both the corresponding starting |
| 1788 | /// and ending byte indices of each codepoint yielded. The ending position |
| 1789 | /// is necessary to slice the original byte string when invalid UTF-8 bytes |
| 1790 | /// are converted into a Unicode replacement codepoint, since a single |
| 1791 | /// replacement codepoint can substitute anywhere from 1 to 3 invalid bytes |
| 1792 | /// (inclusive). |
| 1793 | /// |
| 1794 | /// # Examples |
| 1795 | /// |
| 1796 | /// Basic usage: |
| 1797 | /// |
| 1798 | /// ``` |
| 1799 | /// use bstr::ByteSlice; |
| 1800 | /// |
| 1801 | /// let bs = b" \xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61" ; |
| 1802 | /// let chars: Vec<(usize, usize, char)> = bs.char_indices().collect(); |
| 1803 | /// assert_eq!(chars, vec![ |
| 1804 | /// (0, 3, '☃' ), |
| 1805 | /// (3, 4, ' \u{FFFD}' ), |
| 1806 | /// (4, 8, '𝞃' ), |
| 1807 | /// (8, 10, ' \u{FFFD}' ), |
| 1808 | /// (10, 11, 'a' ), |
| 1809 | /// ]); |
| 1810 | /// ``` |
| 1811 | /// |
| 1812 | /// Codepoints can also be iterated over in reverse: |
| 1813 | /// |
| 1814 | /// ``` |
| 1815 | /// use bstr::ByteSlice; |
| 1816 | /// |
| 1817 | /// let bs = b" \xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61" ; |
| 1818 | /// let chars: Vec<(usize, usize, char)> = bs |
| 1819 | /// .char_indices() |
| 1820 | /// .rev() |
| 1821 | /// .collect(); |
| 1822 | /// assert_eq!(chars, vec![ |
| 1823 | /// (10, 11, 'a' ), |
| 1824 | /// (8, 10, ' \u{FFFD}' ), |
| 1825 | /// (4, 8, '𝞃' ), |
| 1826 | /// (3, 4, ' \u{FFFD}' ), |
| 1827 | /// (0, 3, '☃' ), |
| 1828 | /// ]); |
| 1829 | /// ``` |
| 1830 | #[inline ] |
| 1831 | fn char_indices(&self) -> CharIndices<'_> { |
| 1832 | CharIndices::new(self.as_bytes()) |
| 1833 | } |
| 1834 | |
| 1835 | /// Iterate over chunks of valid UTF-8. |
| 1836 | /// |
| 1837 | /// The iterator returned yields chunks of valid UTF-8 separated by invalid |
| 1838 | /// UTF-8 bytes, if they exist. Invalid UTF-8 bytes are always 1-3 bytes, |
| 1839 | /// which are determined via the "substitution of maximal subparts" |
| 1840 | /// strategy described in the docs for the |
| 1841 | /// [`ByteSlice::to_str_lossy`](trait.ByteSlice.html#method.to_str_lossy) |
| 1842 | /// method. |
| 1843 | /// |
| 1844 | /// # Examples |
| 1845 | /// |
| 1846 | /// This example shows how to gather all valid and invalid chunks from a |
| 1847 | /// byte slice: |
| 1848 | /// |
| 1849 | /// ``` |
| 1850 | /// use bstr::{ByteSlice, Utf8Chunk}; |
| 1851 | /// |
| 1852 | /// let bytes = b"foo \xFD\xFEbar \xFF" ; |
| 1853 | /// |
| 1854 | /// let (mut valid_chunks, mut invalid_chunks) = (vec![], vec![]); |
| 1855 | /// for chunk in bytes.utf8_chunks() { |
| 1856 | /// if !chunk.valid().is_empty() { |
| 1857 | /// valid_chunks.push(chunk.valid()); |
| 1858 | /// } |
| 1859 | /// if !chunk.invalid().is_empty() { |
| 1860 | /// invalid_chunks.push(chunk.invalid()); |
| 1861 | /// } |
| 1862 | /// } |
| 1863 | /// |
| 1864 | /// assert_eq!(valid_chunks, vec!["foo" , "bar" ]); |
| 1865 | /// assert_eq!(invalid_chunks, vec![b" \xFD" , b" \xFE" , b" \xFF" ]); |
| 1866 | /// ``` |
| 1867 | #[inline ] |
| 1868 | fn utf8_chunks(&self) -> Utf8Chunks<'_> { |
| 1869 | Utf8Chunks { bytes: self.as_bytes() } |
| 1870 | } |
| 1871 | |
| 1872 | /// Returns an iterator over the grapheme clusters in this byte string. |
| 1873 | /// If invalid UTF-8 is encountered, then the Unicode replacement codepoint |
| 1874 | /// is yielded instead. |
| 1875 | /// |
| 1876 | /// # Examples |
| 1877 | /// |
| 1878 | /// This example shows how multiple codepoints can combine to form a |
| 1879 | /// single grapheme cluster: |
| 1880 | /// |
| 1881 | /// ``` |
| 1882 | /// use bstr::ByteSlice; |
| 1883 | /// |
| 1884 | /// let bs = "a \u{0300}\u{0316}\u{1F1FA}\u{1F1F8}" .as_bytes(); |
| 1885 | /// let graphemes: Vec<&str> = bs.graphemes().collect(); |
| 1886 | /// assert_eq!(vec!["à̖" , "🇺🇸" ], graphemes); |
| 1887 | /// ``` |
| 1888 | /// |
| 1889 | /// This shows that graphemes can be iterated over in reverse: |
| 1890 | /// |
| 1891 | /// ``` |
| 1892 | /// use bstr::ByteSlice; |
| 1893 | /// |
| 1894 | /// let bs = "a \u{0300}\u{0316}\u{1F1FA}\u{1F1F8}" .as_bytes(); |
| 1895 | /// let graphemes: Vec<&str> = bs.graphemes().rev().collect(); |
| 1896 | /// assert_eq!(vec!["🇺🇸" , "à̖" ], graphemes); |
| 1897 | /// ``` |
| 1898 | #[cfg (feature = "unicode" )] |
| 1899 | #[inline ] |
| 1900 | fn graphemes(&self) -> Graphemes<'_> { |
| 1901 | Graphemes::new(self.as_bytes()) |
| 1902 | } |
| 1903 | |
| 1904 | /// Returns an iterator over the grapheme clusters in this byte string |
| 1905 | /// along with their starting and ending byte index positions. If invalid |
| 1906 | /// UTF-8 is encountered, then the Unicode replacement codepoint is yielded |
| 1907 | /// instead. |
| 1908 | /// |
| 1909 | /// # Examples |
| 1910 | /// |
| 1911 | /// This example shows how to get the byte offsets of each individual |
| 1912 | /// grapheme cluster: |
| 1913 | /// |
| 1914 | /// ``` |
| 1915 | /// use bstr::ByteSlice; |
| 1916 | /// |
| 1917 | /// let bs = "a \u{0300}\u{0316}\u{1F1FA}\u{1F1F8}" .as_bytes(); |
| 1918 | /// let graphemes: Vec<(usize, usize, &str)> = |
| 1919 | /// bs.grapheme_indices().collect(); |
| 1920 | /// assert_eq!(vec![(0, 5, "à̖" ), (5, 13, "🇺🇸" )], graphemes); |
| 1921 | /// ``` |
| 1922 | /// |
| 1923 | /// This example shows what happens when invalid UTF-8 is encountered. Note |
| 1924 | /// that the offsets are valid indices into the original string, and do |
| 1925 | /// not necessarily correspond to the length of the `&str` returned! |
| 1926 | /// |
| 1927 | /// ``` |
| 1928 | /// # #[cfg (all(feature = "alloc" ))] { |
| 1929 | /// use bstr::{ByteSlice, ByteVec}; |
| 1930 | /// |
| 1931 | /// let mut bytes = vec![]; |
| 1932 | /// bytes.push_str("a \u{0300}\u{0316}" ); |
| 1933 | /// bytes.push(b' \xFF' ); |
| 1934 | /// bytes.push_str(" \u{1F1FA}\u{1F1F8}" ); |
| 1935 | /// |
| 1936 | /// let graphemes: Vec<(usize, usize, &str)> = |
| 1937 | /// bytes.grapheme_indices().collect(); |
| 1938 | /// assert_eq!( |
| 1939 | /// graphemes, |
| 1940 | /// vec![(0, 5, "à̖" ), (5, 6, " \u{FFFD}" ), (6, 14, "🇺🇸" )] |
| 1941 | /// ); |
| 1942 | /// # } |
| 1943 | /// ``` |
| 1944 | #[cfg (feature = "unicode" )] |
| 1945 | #[inline ] |
| 1946 | fn grapheme_indices(&self) -> GraphemeIndices<'_> { |
| 1947 | GraphemeIndices::new(self.as_bytes()) |
| 1948 | } |
| 1949 | |
| 1950 | /// Returns an iterator over the words in this byte string. If invalid |
| 1951 | /// UTF-8 is encountered, then the Unicode replacement codepoint is yielded |
| 1952 | /// instead. |
| 1953 | /// |
| 1954 | /// This is similar to |
| 1955 | /// [`words_with_breaks`](trait.ByteSlice.html#method.words_with_breaks), |
| 1956 | /// except it only returns elements that contain a "word" character. A word |
| 1957 | /// character is defined by UTS #18 (Annex C) to be the combination of the |
| 1958 | /// `Alphabetic` and `Join_Control` properties, along with the |
| 1959 | /// `Decimal_Number`, `Mark` and `Connector_Punctuation` general |
| 1960 | /// categories. |
| 1961 | /// |
| 1962 | /// Since words are made up of one or more codepoints, this iterator |
| 1963 | /// yields `&str` elements. When invalid UTF-8 is encountered, replacement |
| 1964 | /// codepoints are [substituted](index.html#handling-of-invalid-utf-8). |
| 1965 | /// |
| 1966 | /// # Examples |
| 1967 | /// |
| 1968 | /// Basic usage: |
| 1969 | /// |
| 1970 | /// ``` |
| 1971 | /// use bstr::ByteSlice; |
| 1972 | /// |
| 1973 | /// let bs = br#"The quick ("brown") fox can't jump 32.3 feet, right?"# ; |
| 1974 | /// let words: Vec<&str> = bs.words().collect(); |
| 1975 | /// assert_eq!(words, vec![ |
| 1976 | /// "The" , "quick" , "brown" , "fox" , "can't" , |
| 1977 | /// "jump" , "32.3" , "feet" , "right" , |
| 1978 | /// ]); |
| 1979 | /// ``` |
| 1980 | #[cfg (feature = "unicode" )] |
| 1981 | #[inline ] |
| 1982 | fn words(&self) -> Words<'_> { |
| 1983 | Words::new(self.as_bytes()) |
| 1984 | } |
| 1985 | |
| 1986 | /// Returns an iterator over the words in this byte string along with |
| 1987 | /// their starting and ending byte index positions. |
| 1988 | /// |
| 1989 | /// This is similar to |
| 1990 | /// [`words_with_break_indices`](trait.ByteSlice.html#method.words_with_break_indices), |
| 1991 | /// except it only returns elements that contain a "word" character. A word |
| 1992 | /// character is defined by UTS #18 (Annex C) to be the combination of the |
| 1993 | /// `Alphabetic` and `Join_Control` properties, along with the |
| 1994 | /// `Decimal_Number`, `Mark` and `Connector_Punctuation` general |
| 1995 | /// categories. |
| 1996 | /// |
| 1997 | /// Since words are made up of one or more codepoints, this iterator |
| 1998 | /// yields `&str` elements. When invalid UTF-8 is encountered, replacement |
| 1999 | /// codepoints are [substituted](index.html#handling-of-invalid-utf-8). |
| 2000 | /// |
| 2001 | /// # Examples |
| 2002 | /// |
| 2003 | /// This example shows how to get the byte offsets of each individual |
| 2004 | /// word: |
| 2005 | /// |
| 2006 | /// ``` |
| 2007 | /// use bstr::ByteSlice; |
| 2008 | /// |
| 2009 | /// let bs = b"can't jump 32.3 feet" ; |
| 2010 | /// let words: Vec<(usize, usize, &str)> = bs.word_indices().collect(); |
| 2011 | /// assert_eq!(words, vec![ |
| 2012 | /// (0, 5, "can't" ), |
| 2013 | /// (6, 10, "jump" ), |
| 2014 | /// (11, 15, "32.3" ), |
| 2015 | /// (16, 20, "feet" ), |
| 2016 | /// ]); |
| 2017 | /// ``` |
| 2018 | #[cfg (feature = "unicode" )] |
| 2019 | #[inline ] |
| 2020 | fn word_indices(&self) -> WordIndices<'_> { |
| 2021 | WordIndices::new(self.as_bytes()) |
| 2022 | } |
| 2023 | |
| 2024 | /// Returns an iterator over the words in this byte string, along with |
| 2025 | /// all breaks between the words. Concatenating all elements yielded by |
| 2026 | /// the iterator results in the original string (modulo Unicode replacement |
| 2027 | /// codepoint substitutions if invalid UTF-8 is encountered). |
| 2028 | /// |
| 2029 | /// Since words are made up of one or more codepoints, this iterator |
| 2030 | /// yields `&str` elements. When invalid UTF-8 is encountered, replacement |
| 2031 | /// codepoints are [substituted](index.html#handling-of-invalid-utf-8). |
| 2032 | /// |
| 2033 | /// # Examples |
| 2034 | /// |
| 2035 | /// Basic usage: |
| 2036 | /// |
| 2037 | /// ``` |
| 2038 | /// use bstr::ByteSlice; |
| 2039 | /// |
| 2040 | /// let bs = br#"The quick ("brown") fox can't jump 32.3 feet, right?"# ; |
| 2041 | /// let words: Vec<&str> = bs.words_with_breaks().collect(); |
| 2042 | /// assert_eq!(words, vec![ |
| 2043 | /// "The" , " " , "quick" , " " , "(" , " \"" , "brown" , " \"" , ")" , |
| 2044 | /// " " , "fox" , " " , "can't" , " " , "jump" , " " , "32.3" , " " , "feet" , |
| 2045 | /// "," , " " , "right" , "?" , |
| 2046 | /// ]); |
| 2047 | /// ``` |
| 2048 | #[cfg (feature = "unicode" )] |
| 2049 | #[inline ] |
| 2050 | fn words_with_breaks(&self) -> WordsWithBreaks<'_> { |
| 2051 | WordsWithBreaks::new(self.as_bytes()) |
| 2052 | } |
| 2053 | |
| 2054 | /// Returns an iterator over the words and their byte offsets in this |
| 2055 | /// byte string, along with all breaks between the words. Concatenating |
| 2056 | /// all elements yielded by the iterator results in the original string |
| 2057 | /// (modulo Unicode replacement codepoint substitutions if invalid UTF-8 is |
| 2058 | /// encountered). |
| 2059 | /// |
| 2060 | /// Since words are made up of one or more codepoints, this iterator |
| 2061 | /// yields `&str` elements. When invalid UTF-8 is encountered, replacement |
| 2062 | /// codepoints are [substituted](index.html#handling-of-invalid-utf-8). |
| 2063 | /// |
| 2064 | /// # Examples |
| 2065 | /// |
| 2066 | /// This example shows how to get the byte offsets of each individual |
| 2067 | /// word: |
| 2068 | /// |
| 2069 | /// ``` |
| 2070 | /// use bstr::ByteSlice; |
| 2071 | /// |
| 2072 | /// let bs = b"can't jump 32.3 feet" ; |
| 2073 | /// let words: Vec<(usize, usize, &str)> = |
| 2074 | /// bs.words_with_break_indices().collect(); |
| 2075 | /// assert_eq!(words, vec![ |
| 2076 | /// (0, 5, "can't" ), |
| 2077 | /// (5, 6, " " ), |
| 2078 | /// (6, 10, "jump" ), |
| 2079 | /// (10, 11, " " ), |
| 2080 | /// (11, 15, "32.3" ), |
| 2081 | /// (15, 16, " " ), |
| 2082 | /// (16, 20, "feet" ), |
| 2083 | /// ]); |
| 2084 | /// ``` |
| 2085 | #[cfg (feature = "unicode" )] |
| 2086 | #[inline ] |
| 2087 | fn words_with_break_indices(&self) -> WordsWithBreakIndices<'_> { |
| 2088 | WordsWithBreakIndices::new(self.as_bytes()) |
| 2089 | } |
| 2090 | |
| 2091 | /// Returns an iterator over the sentences in this byte string. |
| 2092 | /// |
| 2093 | /// Typically, a sentence will include its trailing punctuation and |
| 2094 | /// whitespace. Concatenating all elements yielded by the iterator |
| 2095 | /// results in the original string (modulo Unicode replacement codepoint |
| 2096 | /// substitutions if invalid UTF-8 is encountered). |
| 2097 | /// |
| 2098 | /// Since sentences are made up of one or more codepoints, this iterator |
| 2099 | /// yields `&str` elements. When invalid UTF-8 is encountered, replacement |
| 2100 | /// codepoints are [substituted](index.html#handling-of-invalid-utf-8). |
| 2101 | /// |
| 2102 | /// # Examples |
| 2103 | /// |
| 2104 | /// Basic usage: |
| 2105 | /// |
| 2106 | /// ``` |
| 2107 | /// use bstr::ByteSlice; |
| 2108 | /// |
| 2109 | /// let bs = b"I want this. Not that. Right now." ; |
| 2110 | /// let sentences: Vec<&str> = bs.sentences().collect(); |
| 2111 | /// assert_eq!(sentences, vec![ |
| 2112 | /// "I want this. " , |
| 2113 | /// "Not that. " , |
| 2114 | /// "Right now." , |
| 2115 | /// ]); |
| 2116 | /// ``` |
| 2117 | #[cfg (feature = "unicode" )] |
| 2118 | #[inline ] |
| 2119 | fn sentences(&self) -> Sentences<'_> { |
| 2120 | Sentences::new(self.as_bytes()) |
| 2121 | } |
| 2122 | |
| 2123 | /// Returns an iterator over the sentences in this byte string along with |
| 2124 | /// their starting and ending byte index positions. |
| 2125 | /// |
| 2126 | /// Typically, a sentence will include its trailing punctuation and |
| 2127 | /// whitespace. Concatenating all elements yielded by the iterator |
| 2128 | /// results in the original string (modulo Unicode replacement codepoint |
| 2129 | /// substitutions if invalid UTF-8 is encountered). |
| 2130 | /// |
| 2131 | /// Since sentences are made up of one or more codepoints, this iterator |
| 2132 | /// yields `&str` elements. When invalid UTF-8 is encountered, replacement |
| 2133 | /// codepoints are [substituted](index.html#handling-of-invalid-utf-8). |
| 2134 | /// |
| 2135 | /// # Examples |
| 2136 | /// |
| 2137 | /// Basic usage: |
| 2138 | /// |
| 2139 | /// ``` |
| 2140 | /// use bstr::ByteSlice; |
| 2141 | /// |
| 2142 | /// let bs = b"I want this. Not that. Right now." ; |
| 2143 | /// let sentences: Vec<(usize, usize, &str)> = |
| 2144 | /// bs.sentence_indices().collect(); |
| 2145 | /// assert_eq!(sentences, vec![ |
| 2146 | /// (0, 13, "I want this. " ), |
| 2147 | /// (13, 23, "Not that. " ), |
| 2148 | /// (23, 33, "Right now." ), |
| 2149 | /// ]); |
| 2150 | /// ``` |
| 2151 | #[cfg (feature = "unicode" )] |
| 2152 | #[inline ] |
| 2153 | fn sentence_indices(&self) -> SentenceIndices<'_> { |
| 2154 | SentenceIndices::new(self.as_bytes()) |
| 2155 | } |
| 2156 | |
| 2157 | /// An iterator over all lines in a byte string, without their |
| 2158 | /// terminators. |
| 2159 | /// |
| 2160 | /// For this iterator, the only line terminators recognized are `\r\n` and |
| 2161 | /// `\n`. |
| 2162 | /// |
| 2163 | /// # Examples |
| 2164 | /// |
| 2165 | /// Basic usage: |
| 2166 | /// |
| 2167 | /// ``` |
| 2168 | /// use bstr::{B, ByteSlice}; |
| 2169 | /// |
| 2170 | /// let s = b"\ |
| 2171 | /// foo |
| 2172 | /// |
| 2173 | /// bar \r |
| 2174 | /// baz |
| 2175 | /// |
| 2176 | /// |
| 2177 | /// quux" ; |
| 2178 | /// let lines: Vec<&[u8]> = s.lines().collect(); |
| 2179 | /// assert_eq!(lines, vec![ |
| 2180 | /// B("foo" ), B("" ), B("bar" ), B("baz" ), B("" ), B("" ), B("quux" ), |
| 2181 | /// ]); |
| 2182 | /// ``` |
| 2183 | #[inline ] |
| 2184 | fn lines(&self) -> Lines<'_> { |
| 2185 | Lines::new(self.as_bytes()) |
| 2186 | } |
| 2187 | |
| 2188 | /// An iterator over all lines in a byte string, including their |
| 2189 | /// terminators. |
| 2190 | /// |
| 2191 | /// For this iterator, the only line terminator recognized is `\n`. (Since |
| 2192 | /// line terminators are included, this also handles `\r\n` line endings.) |
| 2193 | /// |
| 2194 | /// Line terminators are only included if they are present in the original |
| 2195 | /// byte string. For example, the last line in a byte string may not end |
| 2196 | /// with a line terminator. |
| 2197 | /// |
| 2198 | /// Concatenating all elements yielded by this iterator is guaranteed to |
| 2199 | /// yield the original byte string. |
| 2200 | /// |
| 2201 | /// # Examples |
| 2202 | /// |
| 2203 | /// Basic usage: |
| 2204 | /// |
| 2205 | /// ``` |
| 2206 | /// use bstr::{B, ByteSlice}; |
| 2207 | /// |
| 2208 | /// let s = b"\ |
| 2209 | /// foo |
| 2210 | /// |
| 2211 | /// bar \r |
| 2212 | /// baz |
| 2213 | /// |
| 2214 | /// |
| 2215 | /// quux" ; |
| 2216 | /// let lines: Vec<&[u8]> = s.lines_with_terminator().collect(); |
| 2217 | /// assert_eq!(lines, vec![ |
| 2218 | /// B("foo \n" ), |
| 2219 | /// B(" \n" ), |
| 2220 | /// B("bar \r\n" ), |
| 2221 | /// B("baz \n" ), |
| 2222 | /// B(" \n" ), |
| 2223 | /// B(" \n" ), |
| 2224 | /// B("quux" ), |
| 2225 | /// ]); |
| 2226 | /// ``` |
| 2227 | #[inline ] |
| 2228 | fn lines_with_terminator(&self) -> LinesWithTerminator<'_> { |
| 2229 | LinesWithTerminator::new(self.as_bytes()) |
| 2230 | } |
| 2231 | |
| 2232 | /// Return a byte string slice with leading and trailing whitespace |
| 2233 | /// removed. |
| 2234 | /// |
| 2235 | /// Whitespace is defined according to the terms of the `White_Space` |
| 2236 | /// Unicode property. |
| 2237 | /// |
| 2238 | /// # Examples |
| 2239 | /// |
| 2240 | /// Basic usage: |
| 2241 | /// |
| 2242 | /// ``` |
| 2243 | /// use bstr::{B, ByteSlice}; |
| 2244 | /// |
| 2245 | /// let s = B(" foo \tbar \t\u{2003}\n" ); |
| 2246 | /// assert_eq!(s.trim(), B("foo \tbar" )); |
| 2247 | /// ``` |
| 2248 | #[cfg (feature = "unicode" )] |
| 2249 | #[inline ] |
| 2250 | fn trim(&self) -> &[u8] { |
| 2251 | self.trim_start().trim_end() |
| 2252 | } |
| 2253 | |
| 2254 | /// Return a byte string slice with leading whitespace removed. |
| 2255 | /// |
| 2256 | /// Whitespace is defined according to the terms of the `White_Space` |
| 2257 | /// Unicode property. |
| 2258 | /// |
| 2259 | /// # Examples |
| 2260 | /// |
| 2261 | /// Basic usage: |
| 2262 | /// |
| 2263 | /// ``` |
| 2264 | /// use bstr::{B, ByteSlice}; |
| 2265 | /// |
| 2266 | /// let s = B(" foo \tbar \t\u{2003}\n" ); |
| 2267 | /// assert_eq!(s.trim_start(), B("foo \tbar \t\u{2003}\n" )); |
| 2268 | /// ``` |
| 2269 | #[cfg (feature = "unicode" )] |
| 2270 | #[inline ] |
| 2271 | fn trim_start(&self) -> &[u8] { |
| 2272 | let start = whitespace_len_fwd(self.as_bytes()); |
| 2273 | &self.as_bytes()[start..] |
| 2274 | } |
| 2275 | |
| 2276 | /// Return a byte string slice with trailing whitespace removed. |
| 2277 | /// |
| 2278 | /// Whitespace is defined according to the terms of the `White_Space` |
| 2279 | /// Unicode property. |
| 2280 | /// |
| 2281 | /// # Examples |
| 2282 | /// |
| 2283 | /// Basic usage: |
| 2284 | /// |
| 2285 | /// ``` |
| 2286 | /// use bstr::{B, ByteSlice}; |
| 2287 | /// |
| 2288 | /// let s = B(" foo \tbar \t\u{2003}\n" ); |
| 2289 | /// assert_eq!(s.trim_end(), B(" foo \tbar" )); |
| 2290 | /// ``` |
| 2291 | #[cfg (feature = "unicode" )] |
| 2292 | #[inline ] |
| 2293 | fn trim_end(&self) -> &[u8] { |
| 2294 | let end = whitespace_len_rev(self.as_bytes()); |
| 2295 | &self.as_bytes()[..end] |
| 2296 | } |
| 2297 | |
| 2298 | /// Return a byte string slice with leading and trailing characters |
| 2299 | /// satisfying the given predicate removed. |
| 2300 | /// |
| 2301 | /// # Examples |
| 2302 | /// |
| 2303 | /// Basic usage: |
| 2304 | /// |
| 2305 | /// ``` |
| 2306 | /// use bstr::{B, ByteSlice}; |
| 2307 | /// |
| 2308 | /// let s = b"123foo5bar789" ; |
| 2309 | /// assert_eq!(s.trim_with(|c| c.is_numeric()), B("foo5bar" )); |
| 2310 | /// ``` |
| 2311 | #[inline ] |
| 2312 | fn trim_with<F: FnMut(char) -> bool>(&self, mut trim: F) -> &[u8] { |
| 2313 | self.trim_start_with(&mut trim).trim_end_with(&mut trim) |
| 2314 | } |
| 2315 | |
| 2316 | /// Return a byte string slice with leading characters satisfying the given |
| 2317 | /// predicate removed. |
| 2318 | /// |
| 2319 | /// # Examples |
| 2320 | /// |
| 2321 | /// Basic usage: |
| 2322 | /// |
| 2323 | /// ``` |
| 2324 | /// use bstr::{B, ByteSlice}; |
| 2325 | /// |
| 2326 | /// let s = b"123foo5bar789" ; |
| 2327 | /// assert_eq!(s.trim_start_with(|c| c.is_numeric()), B("foo5bar789" )); |
| 2328 | /// ``` |
| 2329 | #[inline ] |
| 2330 | fn trim_start_with<F: FnMut(char) -> bool>(&self, mut trim: F) -> &[u8] { |
| 2331 | for (s, _, ch) in self.char_indices() { |
| 2332 | if !trim(ch) { |
| 2333 | return &self.as_bytes()[s..]; |
| 2334 | } |
| 2335 | } |
| 2336 | b"" |
| 2337 | } |
| 2338 | |
| 2339 | /// Return a byte string slice with trailing characters satisfying the |
| 2340 | /// given predicate removed. |
| 2341 | /// |
| 2342 | /// # Examples |
| 2343 | /// |
| 2344 | /// Basic usage: |
| 2345 | /// |
| 2346 | /// ``` |
| 2347 | /// use bstr::{B, ByteSlice}; |
| 2348 | /// |
| 2349 | /// let s = b"123foo5bar789" ; |
| 2350 | /// assert_eq!(s.trim_end_with(|c| c.is_numeric()), B("123foo5bar" )); |
| 2351 | /// ``` |
| 2352 | #[inline ] |
| 2353 | fn trim_end_with<F: FnMut(char) -> bool>(&self, mut trim: F) -> &[u8] { |
| 2354 | for (_, e, ch) in self.char_indices().rev() { |
| 2355 | if !trim(ch) { |
| 2356 | return &self.as_bytes()[..e]; |
| 2357 | } |
| 2358 | } |
| 2359 | b"" |
| 2360 | } |
| 2361 | |
| 2362 | /// Returns a new `Vec<u8>` containing the lowercase equivalent of this |
| 2363 | /// byte string. |
| 2364 | /// |
| 2365 | /// In this case, lowercase is defined according to the `Lowercase` Unicode |
| 2366 | /// property. |
| 2367 | /// |
| 2368 | /// If invalid UTF-8 is seen, or if a character has no lowercase variant, |
| 2369 | /// then it is written to the given buffer unchanged. |
| 2370 | /// |
| 2371 | /// Note that some characters in this byte string may expand into multiple |
| 2372 | /// characters when changing the case, so the number of bytes written to |
| 2373 | /// the given byte string may not be equivalent to the number of bytes in |
| 2374 | /// this byte string. |
| 2375 | /// |
| 2376 | /// If you'd like to reuse an allocation for performance reasons, then use |
| 2377 | /// [`to_lowercase_into`](#method.to_lowercase_into) instead. |
| 2378 | /// |
| 2379 | /// # Examples |
| 2380 | /// |
| 2381 | /// Basic usage: |
| 2382 | /// |
| 2383 | /// ``` |
| 2384 | /// use bstr::{B, ByteSlice}; |
| 2385 | /// |
| 2386 | /// let s = B("HELLO Β" ); |
| 2387 | /// assert_eq!("hello β" .as_bytes(), s.to_lowercase().as_bytes()); |
| 2388 | /// ``` |
| 2389 | /// |
| 2390 | /// Scripts without case are not changed: |
| 2391 | /// |
| 2392 | /// ``` |
| 2393 | /// use bstr::{B, ByteSlice}; |
| 2394 | /// |
| 2395 | /// let s = B("农历新年" ); |
| 2396 | /// assert_eq!("农历新年" .as_bytes(), s.to_lowercase().as_bytes()); |
| 2397 | /// ``` |
| 2398 | /// |
| 2399 | /// Invalid UTF-8 remains as is: |
| 2400 | /// |
| 2401 | /// ``` |
| 2402 | /// use bstr::{B, ByteSlice}; |
| 2403 | /// |
| 2404 | /// let s = B(b"FOO \xFFBAR \xE2\x98BAZ" ); |
| 2405 | /// assert_eq!(B(b"foo \xFFbar \xE2\x98baz" ), s.to_lowercase().as_bytes()); |
| 2406 | /// ``` |
| 2407 | #[cfg (all(feature = "alloc" , feature = "unicode" ))] |
| 2408 | #[inline ] |
| 2409 | fn to_lowercase(&self) -> Vec<u8> { |
| 2410 | let mut buf = vec![]; |
| 2411 | self.to_lowercase_into(&mut buf); |
| 2412 | buf |
| 2413 | } |
| 2414 | |
| 2415 | /// Writes the lowercase equivalent of this byte string into the given |
| 2416 | /// buffer. The buffer is not cleared before written to. |
| 2417 | /// |
| 2418 | /// In this case, lowercase is defined according to the `Lowercase` |
| 2419 | /// Unicode property. |
| 2420 | /// |
| 2421 | /// If invalid UTF-8 is seen, or if a character has no lowercase variant, |
| 2422 | /// then it is written to the given buffer unchanged. |
| 2423 | /// |
| 2424 | /// Note that some characters in this byte string may expand into multiple |
| 2425 | /// characters when changing the case, so the number of bytes written to |
| 2426 | /// the given byte string may not be equivalent to the number of bytes in |
| 2427 | /// this byte string. |
| 2428 | /// |
| 2429 | /// If you don't need to amortize allocation and instead prefer |
| 2430 | /// convenience, then use [`to_lowercase`](#method.to_lowercase) instead. |
| 2431 | /// |
| 2432 | /// # Examples |
| 2433 | /// |
| 2434 | /// Basic usage: |
| 2435 | /// |
| 2436 | /// ``` |
| 2437 | /// use bstr::{B, ByteSlice}; |
| 2438 | /// |
| 2439 | /// let s = B("HELLO Β" ); |
| 2440 | /// |
| 2441 | /// let mut buf = vec![]; |
| 2442 | /// s.to_lowercase_into(&mut buf); |
| 2443 | /// assert_eq!("hello β" .as_bytes(), buf.as_bytes()); |
| 2444 | /// ``` |
| 2445 | /// |
| 2446 | /// Scripts without case are not changed: |
| 2447 | /// |
| 2448 | /// ``` |
| 2449 | /// use bstr::{B, ByteSlice}; |
| 2450 | /// |
| 2451 | /// let s = B("农历新年" ); |
| 2452 | /// |
| 2453 | /// let mut buf = vec![]; |
| 2454 | /// s.to_lowercase_into(&mut buf); |
| 2455 | /// assert_eq!("农历新年" .as_bytes(), buf.as_bytes()); |
| 2456 | /// ``` |
| 2457 | /// |
| 2458 | /// Invalid UTF-8 remains as is: |
| 2459 | /// |
| 2460 | /// ``` |
| 2461 | /// use bstr::{B, ByteSlice}; |
| 2462 | /// |
| 2463 | /// let s = B(b"FOO \xFFBAR \xE2\x98BAZ" ); |
| 2464 | /// |
| 2465 | /// let mut buf = vec![]; |
| 2466 | /// s.to_lowercase_into(&mut buf); |
| 2467 | /// assert_eq!(B(b"foo \xFFbar \xE2\x98baz" ), buf.as_bytes()); |
| 2468 | /// ``` |
| 2469 | #[cfg (all(feature = "alloc" , feature = "unicode" ))] |
| 2470 | #[inline ] |
| 2471 | fn to_lowercase_into(&self, buf: &mut Vec<u8>) { |
| 2472 | // TODO: This is the best we can do given what std exposes I think. |
| 2473 | // If we roll our own case handling, then we might be able to do this |
| 2474 | // a bit faster. We shouldn't roll our own case handling unless we |
| 2475 | // need to, e.g., for doing caseless matching or case folding. |
| 2476 | |
| 2477 | // TODO(BUG): This doesn't handle any special casing rules. |
| 2478 | |
| 2479 | buf.reserve(self.as_bytes().len()); |
| 2480 | for (s, e, ch) in self.char_indices() { |
| 2481 | if ch == ' \u{FFFD}' { |
| 2482 | buf.push_str(&self.as_bytes()[s..e]); |
| 2483 | } else if ch.is_ascii() { |
| 2484 | buf.push_char(ch.to_ascii_lowercase()); |
| 2485 | } else { |
| 2486 | for upper in ch.to_lowercase() { |
| 2487 | buf.push_char(upper); |
| 2488 | } |
| 2489 | } |
| 2490 | } |
| 2491 | } |
| 2492 | |
| 2493 | /// Returns a new `Vec<u8>` containing the ASCII lowercase equivalent of |
| 2494 | /// this byte string. |
| 2495 | /// |
| 2496 | /// In this case, lowercase is only defined in ASCII letters. Namely, the |
| 2497 | /// letters `A-Z` are converted to `a-z`. All other bytes remain unchanged. |
| 2498 | /// In particular, the length of the byte string returned is always |
| 2499 | /// equivalent to the length of this byte string. |
| 2500 | /// |
| 2501 | /// If you'd like to reuse an allocation for performance reasons, then use |
| 2502 | /// [`make_ascii_lowercase`](#method.make_ascii_lowercase) to perform |
| 2503 | /// the conversion in place. |
| 2504 | /// |
| 2505 | /// # Examples |
| 2506 | /// |
| 2507 | /// Basic usage: |
| 2508 | /// |
| 2509 | /// ``` |
| 2510 | /// use bstr::{B, ByteSlice}; |
| 2511 | /// |
| 2512 | /// let s = B("HELLO Β" ); |
| 2513 | /// assert_eq!("hello Β" .as_bytes(), s.to_ascii_lowercase().as_bytes()); |
| 2514 | /// ``` |
| 2515 | /// |
| 2516 | /// Invalid UTF-8 remains as is: |
| 2517 | /// |
| 2518 | /// ``` |
| 2519 | /// use bstr::{B, ByteSlice}; |
| 2520 | /// |
| 2521 | /// let s = B(b"FOO \xFFBAR \xE2\x98BAZ" ); |
| 2522 | /// assert_eq!(s.to_ascii_lowercase(), B(b"foo \xFFbar \xE2\x98baz" )); |
| 2523 | /// ``` |
| 2524 | #[cfg (feature = "alloc" )] |
| 2525 | #[inline ] |
| 2526 | fn to_ascii_lowercase(&self) -> Vec<u8> { |
| 2527 | self.as_bytes().to_ascii_lowercase() |
| 2528 | } |
| 2529 | |
| 2530 | /// Convert this byte string to its lowercase ASCII equivalent in place. |
| 2531 | /// |
| 2532 | /// In this case, lowercase is only defined in ASCII letters. Namely, the |
| 2533 | /// letters `A-Z` are converted to `a-z`. All other bytes remain unchanged. |
| 2534 | /// |
| 2535 | /// If you don't need to do the conversion in |
| 2536 | /// place and instead prefer convenience, then use |
| 2537 | /// [`to_ascii_lowercase`](#method.to_ascii_lowercase) instead. |
| 2538 | /// |
| 2539 | /// # Examples |
| 2540 | /// |
| 2541 | /// Basic usage: |
| 2542 | /// |
| 2543 | /// ``` |
| 2544 | /// use bstr::ByteSlice; |
| 2545 | /// |
| 2546 | /// let mut s = <Vec<u8>>::from("HELLO Β" ); |
| 2547 | /// s.make_ascii_lowercase(); |
| 2548 | /// assert_eq!(s, "hello Β" .as_bytes()); |
| 2549 | /// ``` |
| 2550 | /// |
| 2551 | /// Invalid UTF-8 remains as is: |
| 2552 | /// |
| 2553 | /// ``` |
| 2554 | /// # #[cfg (feature = "alloc" )] { |
| 2555 | /// use bstr::{B, ByteSlice, ByteVec}; |
| 2556 | /// |
| 2557 | /// let mut s = <Vec<u8>>::from_slice(b"FOO \xFFBAR \xE2\x98BAZ" ); |
| 2558 | /// s.make_ascii_lowercase(); |
| 2559 | /// assert_eq!(s, B(b"foo \xFFbar \xE2\x98baz" )); |
| 2560 | /// # } |
| 2561 | /// ``` |
| 2562 | #[inline ] |
| 2563 | fn make_ascii_lowercase(&mut self) { |
| 2564 | self.as_bytes_mut().make_ascii_lowercase(); |
| 2565 | } |
| 2566 | |
| 2567 | /// Returns a new `Vec<u8>` containing the uppercase equivalent of this |
| 2568 | /// byte string. |
| 2569 | /// |
| 2570 | /// In this case, uppercase is defined according to the `Uppercase` |
| 2571 | /// Unicode property. |
| 2572 | /// |
| 2573 | /// If invalid UTF-8 is seen, or if a character has no uppercase variant, |
| 2574 | /// then it is written to the given buffer unchanged. |
| 2575 | /// |
| 2576 | /// Note that some characters in this byte string may expand into multiple |
| 2577 | /// characters when changing the case, so the number of bytes written to |
| 2578 | /// the given byte string may not be equivalent to the number of bytes in |
| 2579 | /// this byte string. |
| 2580 | /// |
| 2581 | /// If you'd like to reuse an allocation for performance reasons, then use |
| 2582 | /// [`to_uppercase_into`](#method.to_uppercase_into) instead. |
| 2583 | /// |
| 2584 | /// # Examples |
| 2585 | /// |
| 2586 | /// Basic usage: |
| 2587 | /// |
| 2588 | /// ``` |
| 2589 | /// use bstr::{B, ByteSlice}; |
| 2590 | /// |
| 2591 | /// let s = B("hello β" ); |
| 2592 | /// assert_eq!(s.to_uppercase(), B("HELLO Β" )); |
| 2593 | /// ``` |
| 2594 | /// |
| 2595 | /// Scripts without case are not changed: |
| 2596 | /// |
| 2597 | /// ``` |
| 2598 | /// use bstr::{B, ByteSlice}; |
| 2599 | /// |
| 2600 | /// let s = B("农历新年" ); |
| 2601 | /// assert_eq!(s.to_uppercase(), B("农历新年" )); |
| 2602 | /// ``` |
| 2603 | /// |
| 2604 | /// Invalid UTF-8 remains as is: |
| 2605 | /// |
| 2606 | /// ``` |
| 2607 | /// use bstr::{B, ByteSlice}; |
| 2608 | /// |
| 2609 | /// let s = B(b"foo \xFFbar \xE2\x98baz" ); |
| 2610 | /// assert_eq!(s.to_uppercase(), B(b"FOO \xFFBAR \xE2\x98BAZ" )); |
| 2611 | /// ``` |
| 2612 | #[cfg (all(feature = "alloc" , feature = "unicode" ))] |
| 2613 | #[inline ] |
| 2614 | fn to_uppercase(&self) -> Vec<u8> { |
| 2615 | let mut buf = vec![]; |
| 2616 | self.to_uppercase_into(&mut buf); |
| 2617 | buf |
| 2618 | } |
| 2619 | |
| 2620 | /// Writes the uppercase equivalent of this byte string into the given |
| 2621 | /// buffer. The buffer is not cleared before written to. |
| 2622 | /// |
| 2623 | /// In this case, uppercase is defined according to the `Uppercase` |
| 2624 | /// Unicode property. |
| 2625 | /// |
| 2626 | /// If invalid UTF-8 is seen, or if a character has no uppercase variant, |
| 2627 | /// then it is written to the given buffer unchanged. |
| 2628 | /// |
| 2629 | /// Note that some characters in this byte string may expand into multiple |
| 2630 | /// characters when changing the case, so the number of bytes written to |
| 2631 | /// the given byte string may not be equivalent to the number of bytes in |
| 2632 | /// this byte string. |
| 2633 | /// |
| 2634 | /// If you don't need to amortize allocation and instead prefer |
| 2635 | /// convenience, then use [`to_uppercase`](#method.to_uppercase) instead. |
| 2636 | /// |
| 2637 | /// # Examples |
| 2638 | /// |
| 2639 | /// Basic usage: |
| 2640 | /// |
| 2641 | /// ``` |
| 2642 | /// use bstr::{B, ByteSlice}; |
| 2643 | /// |
| 2644 | /// let s = B("hello β" ); |
| 2645 | /// |
| 2646 | /// let mut buf = vec![]; |
| 2647 | /// s.to_uppercase_into(&mut buf); |
| 2648 | /// assert_eq!(buf, B("HELLO Β" )); |
| 2649 | /// ``` |
| 2650 | /// |
| 2651 | /// Scripts without case are not changed: |
| 2652 | /// |
| 2653 | /// ``` |
| 2654 | /// use bstr::{B, ByteSlice}; |
| 2655 | /// |
| 2656 | /// let s = B("农历新年" ); |
| 2657 | /// |
| 2658 | /// let mut buf = vec![]; |
| 2659 | /// s.to_uppercase_into(&mut buf); |
| 2660 | /// assert_eq!(buf, B("农历新年" )); |
| 2661 | /// ``` |
| 2662 | /// |
| 2663 | /// Invalid UTF-8 remains as is: |
| 2664 | /// |
| 2665 | /// ``` |
| 2666 | /// use bstr::{B, ByteSlice}; |
| 2667 | /// |
| 2668 | /// let s = B(b"foo \xFFbar \xE2\x98baz" ); |
| 2669 | /// |
| 2670 | /// let mut buf = vec![]; |
| 2671 | /// s.to_uppercase_into(&mut buf); |
| 2672 | /// assert_eq!(buf, B(b"FOO \xFFBAR \xE2\x98BAZ" )); |
| 2673 | /// ``` |
| 2674 | #[cfg (all(feature = "alloc" , feature = "unicode" ))] |
| 2675 | #[inline ] |
| 2676 | fn to_uppercase_into(&self, buf: &mut Vec<u8>) { |
| 2677 | // TODO: This is the best we can do given what std exposes I think. |
| 2678 | // If we roll our own case handling, then we might be able to do this |
| 2679 | // a bit faster. We shouldn't roll our own case handling unless we |
| 2680 | // need to, e.g., for doing caseless matching or case folding. |
| 2681 | buf.reserve(self.as_bytes().len()); |
| 2682 | for (s, e, ch) in self.char_indices() { |
| 2683 | if ch == ' \u{FFFD}' { |
| 2684 | buf.push_str(&self.as_bytes()[s..e]); |
| 2685 | } else if ch.is_ascii() { |
| 2686 | buf.push_char(ch.to_ascii_uppercase()); |
| 2687 | } else { |
| 2688 | for upper in ch.to_uppercase() { |
| 2689 | buf.push_char(upper); |
| 2690 | } |
| 2691 | } |
| 2692 | } |
| 2693 | } |
| 2694 | |
| 2695 | /// Returns a new `Vec<u8>` containing the ASCII uppercase equivalent of |
| 2696 | /// this byte string. |
| 2697 | /// |
| 2698 | /// In this case, uppercase is only defined in ASCII letters. Namely, the |
| 2699 | /// letters `a-z` are converted to `A-Z`. All other bytes remain unchanged. |
| 2700 | /// In particular, the length of the byte string returned is always |
| 2701 | /// equivalent to the length of this byte string. |
| 2702 | /// |
| 2703 | /// If you'd like to reuse an allocation for performance reasons, then use |
| 2704 | /// [`make_ascii_uppercase`](#method.make_ascii_uppercase) to perform |
| 2705 | /// the conversion in place. |
| 2706 | /// |
| 2707 | /// # Examples |
| 2708 | /// |
| 2709 | /// Basic usage: |
| 2710 | /// |
| 2711 | /// ``` |
| 2712 | /// use bstr::{B, ByteSlice}; |
| 2713 | /// |
| 2714 | /// let s = B("hello β" ); |
| 2715 | /// assert_eq!(s.to_ascii_uppercase(), B("HELLO β" )); |
| 2716 | /// ``` |
| 2717 | /// |
| 2718 | /// Invalid UTF-8 remains as is: |
| 2719 | /// |
| 2720 | /// ``` |
| 2721 | /// use bstr::{B, ByteSlice}; |
| 2722 | /// |
| 2723 | /// let s = B(b"foo \xFFbar \xE2\x98baz" ); |
| 2724 | /// assert_eq!(s.to_ascii_uppercase(), B(b"FOO \xFFBAR \xE2\x98BAZ" )); |
| 2725 | /// ``` |
| 2726 | #[cfg (feature = "alloc" )] |
| 2727 | #[inline ] |
| 2728 | fn to_ascii_uppercase(&self) -> Vec<u8> { |
| 2729 | self.as_bytes().to_ascii_uppercase() |
| 2730 | } |
| 2731 | |
| 2732 | /// Convert this byte string to its uppercase ASCII equivalent in place. |
| 2733 | /// |
| 2734 | /// In this case, uppercase is only defined in ASCII letters. Namely, the |
| 2735 | /// letters `a-z` are converted to `A-Z`. All other bytes remain unchanged. |
| 2736 | /// |
| 2737 | /// If you don't need to do the conversion in |
| 2738 | /// place and instead prefer convenience, then use |
| 2739 | /// [`to_ascii_uppercase`](#method.to_ascii_uppercase) instead. |
| 2740 | /// |
| 2741 | /// # Examples |
| 2742 | /// |
| 2743 | /// Basic usage: |
| 2744 | /// |
| 2745 | /// ``` |
| 2746 | /// use bstr::{B, ByteSlice}; |
| 2747 | /// |
| 2748 | /// let mut s = <Vec<u8>>::from("hello β" ); |
| 2749 | /// s.make_ascii_uppercase(); |
| 2750 | /// assert_eq!(s, B("HELLO β" )); |
| 2751 | /// ``` |
| 2752 | /// |
| 2753 | /// Invalid UTF-8 remains as is: |
| 2754 | /// |
| 2755 | /// ``` |
| 2756 | /// # #[cfg (feature = "alloc" )] { |
| 2757 | /// use bstr::{B, ByteSlice, ByteVec}; |
| 2758 | /// |
| 2759 | /// let mut s = <Vec<u8>>::from_slice(b"foo \xFFbar \xE2\x98baz" ); |
| 2760 | /// s.make_ascii_uppercase(); |
| 2761 | /// assert_eq!(s, B(b"FOO \xFFBAR \xE2\x98BAZ" )); |
| 2762 | /// # } |
| 2763 | /// ``` |
| 2764 | #[inline ] |
| 2765 | fn make_ascii_uppercase(&mut self) { |
| 2766 | self.as_bytes_mut().make_ascii_uppercase(); |
| 2767 | } |
| 2768 | |
| 2769 | /// Escapes this byte string into a sequence of `char` values. |
| 2770 | /// |
| 2771 | /// When the sequence of `char` values is concatenated into a string, the |
| 2772 | /// result is always valid UTF-8. Any unprintable or invalid UTF-8 in this |
| 2773 | /// byte string are escaped using using `\xNN` notation. Moreover, the |
| 2774 | /// characters `\0`, `\r`, `\n`, `\t` and `\` are escaped as well. |
| 2775 | /// |
| 2776 | /// This is useful when one wants to get a human readable view of the raw |
| 2777 | /// bytes that is also valid UTF-8. |
| 2778 | /// |
| 2779 | /// The iterator returned implements the `Display` trait. So one can do |
| 2780 | /// `b"foo\xFFbar".escape_bytes().to_string()` to get a `String` with its |
| 2781 | /// bytes escaped. |
| 2782 | /// |
| 2783 | /// The dual of this function is [`ByteVec::unescape_bytes`]. |
| 2784 | /// |
| 2785 | /// Note that this is similar to, but not equivalent to the `Debug` |
| 2786 | /// implementation on [`BStr`] and [`BString`]. The `Debug` implementations |
| 2787 | /// also use the debug representation for all Unicode codepoints. However, |
| 2788 | /// this escaping routine only escapes individual bytes. All Unicode |
| 2789 | /// codepoints above `U+007F` are passed through unchanged without any |
| 2790 | /// escaping. |
| 2791 | /// |
| 2792 | /// # Examples |
| 2793 | /// |
| 2794 | /// ``` |
| 2795 | /// # #[cfg (feature = "alloc" )] { |
| 2796 | /// use bstr::{B, ByteSlice}; |
| 2797 | /// |
| 2798 | /// assert_eq!(r"foo\xFFbar" , b"foo \xFFbar" .escape_bytes().to_string()); |
| 2799 | /// assert_eq!(r"foo\nbar" , b"foo \nbar" .escape_bytes().to_string()); |
| 2800 | /// assert_eq!(r"foo\tbar" , b"foo \tbar" .escape_bytes().to_string()); |
| 2801 | /// assert_eq!(r"foo\\bar" , b"foo \\bar" .escape_bytes().to_string()); |
| 2802 | /// assert_eq!(r"foo☃bar" , B("foo☃bar" ).escape_bytes().to_string()); |
| 2803 | /// # } |
| 2804 | /// ``` |
| 2805 | #[inline ] |
| 2806 | fn escape_bytes(&self) -> EscapeBytes<'_> { |
| 2807 | EscapeBytes::new(self.as_bytes()) |
| 2808 | } |
| 2809 | |
| 2810 | /// Reverse the bytes in this string, in place. |
| 2811 | /// |
| 2812 | /// This is not necessarily a well formed operation! For example, if this |
| 2813 | /// byte string contains valid UTF-8 that isn't ASCII, then reversing the |
| 2814 | /// string will likely result in invalid UTF-8 and otherwise non-sensical |
| 2815 | /// content. |
| 2816 | /// |
| 2817 | /// Note that this is equivalent to the generic `[u8]::reverse` method. |
| 2818 | /// This method is provided to permit callers to explicitly differentiate |
| 2819 | /// between reversing bytes, codepoints and graphemes. |
| 2820 | /// |
| 2821 | /// # Examples |
| 2822 | /// |
| 2823 | /// Basic usage: |
| 2824 | /// |
| 2825 | /// ``` |
| 2826 | /// use bstr::ByteSlice; |
| 2827 | /// |
| 2828 | /// let mut s = <Vec<u8>>::from("hello" ); |
| 2829 | /// s.reverse_bytes(); |
| 2830 | /// assert_eq!(s, "olleh" .as_bytes()); |
| 2831 | /// ``` |
| 2832 | #[inline ] |
| 2833 | fn reverse_bytes(&mut self) { |
| 2834 | self.as_bytes_mut().reverse(); |
| 2835 | } |
| 2836 | |
| 2837 | /// Reverse the codepoints in this string, in place. |
| 2838 | /// |
| 2839 | /// If this byte string is valid UTF-8, then its reversal by codepoint |
| 2840 | /// is also guaranteed to be valid UTF-8. |
| 2841 | /// |
| 2842 | /// This operation is equivalent to the following, but without allocating: |
| 2843 | /// |
| 2844 | /// ``` |
| 2845 | /// use bstr::ByteSlice; |
| 2846 | /// |
| 2847 | /// let mut s = <Vec<u8>>::from("foo☃bar" ); |
| 2848 | /// |
| 2849 | /// let mut chars: Vec<char> = s.chars().collect(); |
| 2850 | /// chars.reverse(); |
| 2851 | /// |
| 2852 | /// let reversed: String = chars.into_iter().collect(); |
| 2853 | /// assert_eq!(reversed, "rab☃oof" ); |
| 2854 | /// ``` |
| 2855 | /// |
| 2856 | /// Note that this is not necessarily a well formed operation. For example, |
| 2857 | /// if this byte string contains grapheme clusters with more than one |
| 2858 | /// codepoint, then those grapheme clusters will not necessarily be |
| 2859 | /// preserved. If you'd like to preserve grapheme clusters, then use |
| 2860 | /// [`reverse_graphemes`](#method.reverse_graphemes) instead. |
| 2861 | /// |
| 2862 | /// # Examples |
| 2863 | /// |
| 2864 | /// Basic usage: |
| 2865 | /// |
| 2866 | /// ``` |
| 2867 | /// use bstr::ByteSlice; |
| 2868 | /// |
| 2869 | /// let mut s = <Vec<u8>>::from("foo☃bar" ); |
| 2870 | /// s.reverse_chars(); |
| 2871 | /// assert_eq!(s, "rab☃oof" .as_bytes()); |
| 2872 | /// ``` |
| 2873 | /// |
| 2874 | /// This example shows that not all reversals lead to a well formed string. |
| 2875 | /// For example, in this case, combining marks are used to put accents over |
| 2876 | /// some letters, and those accent marks must appear after the codepoints |
| 2877 | /// they modify. |
| 2878 | /// |
| 2879 | /// ``` |
| 2880 | /// use bstr::{B, ByteSlice}; |
| 2881 | /// |
| 2882 | /// let mut s = <Vec<u8>>::from("résumé" ); |
| 2883 | /// s.reverse_chars(); |
| 2884 | /// assert_eq!(s, B(b" \xCC\x81emus \xCC\x81er" )); |
| 2885 | /// ``` |
| 2886 | /// |
| 2887 | /// A word of warning: the above example relies on the fact that |
| 2888 | /// `résumé` is in decomposed normal form, which means there are separate |
| 2889 | /// codepoints for the accents above `e`. If it is instead in composed |
| 2890 | /// normal form, then the example works: |
| 2891 | /// |
| 2892 | /// ``` |
| 2893 | /// use bstr::{B, ByteSlice}; |
| 2894 | /// |
| 2895 | /// let mut s = <Vec<u8>>::from("résumé" ); |
| 2896 | /// s.reverse_chars(); |
| 2897 | /// assert_eq!(s, B("émusér" )); |
| 2898 | /// ``` |
| 2899 | /// |
| 2900 | /// The point here is to be cautious and not assume that just because |
| 2901 | /// `reverse_chars` works in one case, that it therefore works in all |
| 2902 | /// cases. |
| 2903 | #[inline ] |
| 2904 | fn reverse_chars(&mut self) { |
| 2905 | let mut i = 0; |
| 2906 | loop { |
| 2907 | let (_, size) = utf8::decode(&self.as_bytes()[i..]); |
| 2908 | if size == 0 { |
| 2909 | break; |
| 2910 | } |
| 2911 | if size > 1 { |
| 2912 | self.as_bytes_mut()[i..i + size].reverse_bytes(); |
| 2913 | } |
| 2914 | i += size; |
| 2915 | } |
| 2916 | self.reverse_bytes(); |
| 2917 | } |
| 2918 | |
| 2919 | /// Reverse the graphemes in this string, in place. |
| 2920 | /// |
| 2921 | /// If this byte string is valid UTF-8, then its reversal by grapheme |
| 2922 | /// is also guaranteed to be valid UTF-8. |
| 2923 | /// |
| 2924 | /// This operation is equivalent to the following, but without allocating: |
| 2925 | /// |
| 2926 | /// ``` |
| 2927 | /// use bstr::ByteSlice; |
| 2928 | /// |
| 2929 | /// let mut s = <Vec<u8>>::from("foo☃bar" ); |
| 2930 | /// |
| 2931 | /// let mut graphemes: Vec<&str> = s.graphemes().collect(); |
| 2932 | /// graphemes.reverse(); |
| 2933 | /// |
| 2934 | /// let reversed = graphemes.concat(); |
| 2935 | /// assert_eq!(reversed, "rab☃oof" ); |
| 2936 | /// ``` |
| 2937 | /// |
| 2938 | /// # Examples |
| 2939 | /// |
| 2940 | /// Basic usage: |
| 2941 | /// |
| 2942 | /// ``` |
| 2943 | /// use bstr::ByteSlice; |
| 2944 | /// |
| 2945 | /// let mut s = <Vec<u8>>::from("foo☃bar" ); |
| 2946 | /// s.reverse_graphemes(); |
| 2947 | /// assert_eq!(s, "rab☃oof" .as_bytes()); |
| 2948 | /// ``` |
| 2949 | /// |
| 2950 | /// This example shows how this correctly handles grapheme clusters, |
| 2951 | /// unlike `reverse_chars`. |
| 2952 | /// |
| 2953 | /// ``` |
| 2954 | /// use bstr::ByteSlice; |
| 2955 | /// |
| 2956 | /// let mut s = <Vec<u8>>::from("résumé" ); |
| 2957 | /// s.reverse_graphemes(); |
| 2958 | /// assert_eq!(s, "émusér" .as_bytes()); |
| 2959 | /// ``` |
| 2960 | #[cfg (feature = "unicode" )] |
| 2961 | #[inline ] |
| 2962 | fn reverse_graphemes(&mut self) { |
| 2963 | use crate::unicode::decode_grapheme; |
| 2964 | |
| 2965 | let mut i = 0; |
| 2966 | loop { |
| 2967 | let (_, size) = decode_grapheme(&self.as_bytes()[i..]); |
| 2968 | if size == 0 { |
| 2969 | break; |
| 2970 | } |
| 2971 | if size > 1 { |
| 2972 | self.as_bytes_mut()[i..i + size].reverse_bytes(); |
| 2973 | } |
| 2974 | i += size; |
| 2975 | } |
| 2976 | self.reverse_bytes(); |
| 2977 | } |
| 2978 | |
| 2979 | /// Returns true if and only if every byte in this byte string is ASCII. |
| 2980 | /// |
| 2981 | /// ASCII is an encoding that defines 128 codepoints. A byte corresponds to |
| 2982 | /// an ASCII codepoint if and only if it is in the inclusive range |
| 2983 | /// `[0, 127]`. |
| 2984 | /// |
| 2985 | /// # Examples |
| 2986 | /// |
| 2987 | /// Basic usage: |
| 2988 | /// |
| 2989 | /// ``` |
| 2990 | /// use bstr::{B, ByteSlice}; |
| 2991 | /// |
| 2992 | /// assert!(B("abc" ).is_ascii()); |
| 2993 | /// assert!(!B("☃βツ" ).is_ascii()); |
| 2994 | /// assert!(!B(b" \xFF" ).is_ascii()); |
| 2995 | /// ``` |
| 2996 | #[inline ] |
| 2997 | fn is_ascii(&self) -> bool { |
| 2998 | ascii::first_non_ascii_byte(self.as_bytes()) == self.as_bytes().len() |
| 2999 | } |
| 3000 | |
| 3001 | /// Returns true if and only if the entire byte string is valid UTF-8. |
| 3002 | /// |
| 3003 | /// If you need location information about where a byte string's first |
| 3004 | /// invalid UTF-8 byte is, then use the [`to_str`](#method.to_str) method. |
| 3005 | /// |
| 3006 | /// # Examples |
| 3007 | /// |
| 3008 | /// Basic usage: |
| 3009 | /// |
| 3010 | /// ``` |
| 3011 | /// use bstr::{B, ByteSlice}; |
| 3012 | /// |
| 3013 | /// assert!(B("abc" ).is_utf8()); |
| 3014 | /// assert!(B("☃βツ" ).is_utf8()); |
| 3015 | /// // invalid bytes |
| 3016 | /// assert!(!B(b"abc \xFF" ).is_utf8()); |
| 3017 | /// // surrogate encoding |
| 3018 | /// assert!(!B(b" \xED\xA0\x80" ).is_utf8()); |
| 3019 | /// // incomplete sequence |
| 3020 | /// assert!(!B(b" \xF0\x9D\x9Ca" ).is_utf8()); |
| 3021 | /// // overlong sequence |
| 3022 | /// assert!(!B(b" \xF0\x82\x82\xAC" ).is_utf8()); |
| 3023 | /// ``` |
| 3024 | #[inline ] |
| 3025 | fn is_utf8(&self) -> bool { |
| 3026 | utf8::validate(self.as_bytes()).is_ok() |
| 3027 | } |
| 3028 | |
| 3029 | /// Returns the last byte in this byte string, if it's non-empty. If this |
| 3030 | /// byte string is empty, this returns `None`. |
| 3031 | /// |
| 3032 | /// Note that this is like the generic `[u8]::last`, except this returns |
| 3033 | /// the byte by value instead of a reference to the byte. |
| 3034 | /// |
| 3035 | /// # Examples |
| 3036 | /// |
| 3037 | /// Basic usage: |
| 3038 | /// |
| 3039 | /// ``` |
| 3040 | /// use bstr::ByteSlice; |
| 3041 | /// |
| 3042 | /// assert_eq!(Some(b'z' ), b"baz" .last_byte()); |
| 3043 | /// assert_eq!(None, b"" .last_byte()); |
| 3044 | /// ``` |
| 3045 | #[inline ] |
| 3046 | fn last_byte(&self) -> Option<u8> { |
| 3047 | let bytes = self.as_bytes(); |
| 3048 | bytes.last().copied() |
| 3049 | } |
| 3050 | |
| 3051 | /// Returns the index of the first non-ASCII byte in this byte string (if |
| 3052 | /// any such indices exist). Specifically, it returns the index of the |
| 3053 | /// first byte with a value greater than or equal to `0x80`. |
| 3054 | /// |
| 3055 | /// # Examples |
| 3056 | /// |
| 3057 | /// Basic usage: |
| 3058 | /// |
| 3059 | /// ``` |
| 3060 | /// use bstr::{ByteSlice, B}; |
| 3061 | /// |
| 3062 | /// assert_eq!(Some(3), b"abc \xff" .find_non_ascii_byte()); |
| 3063 | /// assert_eq!(None, b"abcde" .find_non_ascii_byte()); |
| 3064 | /// assert_eq!(Some(0), B("😀" ).find_non_ascii_byte()); |
| 3065 | /// ``` |
| 3066 | #[inline ] |
| 3067 | fn find_non_ascii_byte(&self) -> Option<usize> { |
| 3068 | let index = ascii::first_non_ascii_byte(self.as_bytes()); |
| 3069 | if index == self.as_bytes().len() { |
| 3070 | None |
| 3071 | } else { |
| 3072 | Some(index) |
| 3073 | } |
| 3074 | } |
| 3075 | } |
| 3076 | |
| 3077 | /// A single substring searcher fixed to a particular needle. |
| 3078 | /// |
| 3079 | /// The purpose of this type is to permit callers to construct a substring |
| 3080 | /// searcher that can be used to search haystacks without the overhead of |
| 3081 | /// constructing the searcher in the first place. This is a somewhat niche |
| 3082 | /// concern when it's necessary to re-use the same needle to search multiple |
| 3083 | /// different haystacks with as little overhead as possible. In general, using |
| 3084 | /// [`ByteSlice::find`](trait.ByteSlice.html#method.find) |
| 3085 | /// or |
| 3086 | /// [`ByteSlice::find_iter`](trait.ByteSlice.html#method.find_iter) |
| 3087 | /// is good enough, but `Finder` is useful when you can meaningfully observe |
| 3088 | /// searcher construction time in a profile. |
| 3089 | /// |
| 3090 | /// When the `std` feature is enabled, then this type has an `into_owned` |
| 3091 | /// version which permits building a `Finder` that is not connected to the |
| 3092 | /// lifetime of its needle. |
| 3093 | #[derive (Clone, Debug)] |
| 3094 | pub struct Finder<'a>(memmem::Finder<'a>); |
| 3095 | |
| 3096 | impl<'a> Finder<'a> { |
| 3097 | /// Create a new finder for the given needle. |
| 3098 | #[inline ] |
| 3099 | pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'a B) -> Finder<'a> { |
| 3100 | Finder(memmem::Finder::new(needle.as_ref())) |
| 3101 | } |
| 3102 | |
| 3103 | /// Convert this finder into its owned variant, such that it no longer |
| 3104 | /// borrows the needle. |
| 3105 | /// |
| 3106 | /// If this is already an owned finder, then this is a no-op. Otherwise, |
| 3107 | /// this copies the needle. |
| 3108 | /// |
| 3109 | /// This is only available when the `alloc` feature is enabled. |
| 3110 | #[cfg (feature = "alloc" )] |
| 3111 | #[inline ] |
| 3112 | pub fn into_owned(self) -> Finder<'static> { |
| 3113 | Finder(self.0.into_owned()) |
| 3114 | } |
| 3115 | |
| 3116 | /// Returns the needle that this finder searches for. |
| 3117 | /// |
| 3118 | /// Note that the lifetime of the needle returned is tied to the lifetime |
| 3119 | /// of the finder, and may be shorter than the `'a` lifetime. Namely, a |
| 3120 | /// finder's needle can be either borrowed or owned, so the lifetime of the |
| 3121 | /// needle returned must necessarily be the shorter of the two. |
| 3122 | #[inline ] |
| 3123 | pub fn needle(&self) -> &[u8] { |
| 3124 | self.0.needle() |
| 3125 | } |
| 3126 | |
| 3127 | /// Returns the index of the first occurrence of this needle in the given |
| 3128 | /// haystack. |
| 3129 | /// |
| 3130 | /// The haystack may be any type that can be cheaply converted into a |
| 3131 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. |
| 3132 | /// |
| 3133 | /// # Complexity |
| 3134 | /// |
| 3135 | /// This routine is guaranteed to have worst case linear time complexity |
| 3136 | /// with respect to both the needle and the haystack. That is, this runs |
| 3137 | /// in `O(needle.len() + haystack.len())` time. |
| 3138 | /// |
| 3139 | /// This routine is also guaranteed to have worst case constant space |
| 3140 | /// complexity. |
| 3141 | /// |
| 3142 | /// # Examples |
| 3143 | /// |
| 3144 | /// Basic usage: |
| 3145 | /// |
| 3146 | /// ``` |
| 3147 | /// use bstr::Finder; |
| 3148 | /// |
| 3149 | /// let haystack = "foo bar baz" ; |
| 3150 | /// assert_eq!(Some(0), Finder::new("foo" ).find(haystack)); |
| 3151 | /// assert_eq!(Some(4), Finder::new("bar" ).find(haystack)); |
| 3152 | /// assert_eq!(None, Finder::new("quux" ).find(haystack)); |
| 3153 | /// ``` |
| 3154 | #[inline ] |
| 3155 | pub fn find<B: AsRef<[u8]>>(&self, haystack: B) -> Option<usize> { |
| 3156 | self.0.find(haystack.as_ref()) |
| 3157 | } |
| 3158 | } |
| 3159 | |
| 3160 | /// A single substring reverse searcher fixed to a particular needle. |
| 3161 | /// |
| 3162 | /// The purpose of this type is to permit callers to construct a substring |
| 3163 | /// searcher that can be used to search haystacks without the overhead of |
| 3164 | /// constructing the searcher in the first place. This is a somewhat niche |
| 3165 | /// concern when it's necessary to re-use the same needle to search multiple |
| 3166 | /// different haystacks with as little overhead as possible. In general, using |
| 3167 | /// [`ByteSlice::rfind`](trait.ByteSlice.html#method.rfind) |
| 3168 | /// or |
| 3169 | /// [`ByteSlice::rfind_iter`](trait.ByteSlice.html#method.rfind_iter) |
| 3170 | /// is good enough, but `FinderReverse` is useful when you can meaningfully |
| 3171 | /// observe searcher construction time in a profile. |
| 3172 | /// |
| 3173 | /// When the `std` feature is enabled, then this type has an `into_owned` |
| 3174 | /// version which permits building a `FinderReverse` that is not connected to |
| 3175 | /// the lifetime of its needle. |
| 3176 | #[derive (Clone, Debug)] |
| 3177 | pub struct FinderReverse<'a>(memmem::FinderRev<'a>); |
| 3178 | |
| 3179 | impl<'a> FinderReverse<'a> { |
| 3180 | /// Create a new reverse finder for the given needle. |
| 3181 | #[inline ] |
| 3182 | pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'a B) -> FinderReverse<'a> { |
| 3183 | FinderReverse(memmem::FinderRev::new(needle.as_ref())) |
| 3184 | } |
| 3185 | |
| 3186 | /// Convert this finder into its owned variant, such that it no longer |
| 3187 | /// borrows the needle. |
| 3188 | /// |
| 3189 | /// If this is already an owned finder, then this is a no-op. Otherwise, |
| 3190 | /// this copies the needle. |
| 3191 | /// |
| 3192 | /// This is only available when the `alloc` feature is enabled. |
| 3193 | #[cfg (feature = "alloc" )] |
| 3194 | #[inline ] |
| 3195 | pub fn into_owned(self) -> FinderReverse<'static> { |
| 3196 | FinderReverse(self.0.into_owned()) |
| 3197 | } |
| 3198 | |
| 3199 | /// Returns the needle that this finder searches for. |
| 3200 | /// |
| 3201 | /// Note that the lifetime of the needle returned is tied to the lifetime |
| 3202 | /// of this finder, and may be shorter than the `'a` lifetime. Namely, |
| 3203 | /// a finder's needle can be either borrowed or owned, so the lifetime of |
| 3204 | /// the needle returned must necessarily be the shorter of the two. |
| 3205 | #[inline ] |
| 3206 | pub fn needle(&self) -> &[u8] { |
| 3207 | self.0.needle() |
| 3208 | } |
| 3209 | |
| 3210 | /// Returns the index of the last occurrence of this needle in the given |
| 3211 | /// haystack. |
| 3212 | /// |
| 3213 | /// The haystack may be any type that can be cheaply converted into a |
| 3214 | /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. |
| 3215 | /// |
| 3216 | /// # Complexity |
| 3217 | /// |
| 3218 | /// This routine is guaranteed to have worst case linear time complexity |
| 3219 | /// with respect to both the needle and the haystack. That is, this runs |
| 3220 | /// in `O(needle.len() + haystack.len())` time. |
| 3221 | /// |
| 3222 | /// This routine is also guaranteed to have worst case constant space |
| 3223 | /// complexity. |
| 3224 | /// |
| 3225 | /// # Examples |
| 3226 | /// |
| 3227 | /// Basic usage: |
| 3228 | /// |
| 3229 | /// ``` |
| 3230 | /// use bstr::FinderReverse; |
| 3231 | /// |
| 3232 | /// let haystack = "foo bar baz" ; |
| 3233 | /// assert_eq!(Some(0), FinderReverse::new("foo" ).rfind(haystack)); |
| 3234 | /// assert_eq!(Some(4), FinderReverse::new("bar" ).rfind(haystack)); |
| 3235 | /// assert_eq!(None, FinderReverse::new("quux" ).rfind(haystack)); |
| 3236 | /// ``` |
| 3237 | #[inline ] |
| 3238 | pub fn rfind<B: AsRef<[u8]>>(&self, haystack: B) -> Option<usize> { |
| 3239 | self.0.rfind(haystack.as_ref()) |
| 3240 | } |
| 3241 | } |
| 3242 | |
| 3243 | /// An iterator over non-overlapping substring matches. |
| 3244 | /// |
| 3245 | /// Matches are reported by the byte offset at which they begin. |
| 3246 | /// |
| 3247 | /// `'h` is the lifetime of the haystack while `'n` is the lifetime of the |
| 3248 | /// needle. |
| 3249 | #[derive (Clone, Debug)] |
| 3250 | pub struct Find<'h, 'n> { |
| 3251 | it: memmem::FindIter<'h, 'n>, |
| 3252 | haystack: &'h [u8], |
| 3253 | needle: &'n [u8], |
| 3254 | } |
| 3255 | |
| 3256 | impl<'h, 'n> Find<'h, 'n> { |
| 3257 | fn new(haystack: &'h [u8], needle: &'n [u8]) -> Find<'h, 'n> { |
| 3258 | Find { it: memmem::find_iter(haystack, needle), haystack, needle } |
| 3259 | } |
| 3260 | } |
| 3261 | |
| 3262 | impl<'h, 'n> Iterator for Find<'h, 'n> { |
| 3263 | type Item = usize; |
| 3264 | |
| 3265 | #[inline ] |
| 3266 | fn next(&mut self) -> Option<usize> { |
| 3267 | self.it.next() |
| 3268 | } |
| 3269 | } |
| 3270 | |
| 3271 | /// An iterator over non-overlapping substring matches in reverse. |
| 3272 | /// |
| 3273 | /// Matches are reported by the byte offset at which they begin. |
| 3274 | /// |
| 3275 | /// `'h` is the lifetime of the haystack while `'n` is the lifetime of the |
| 3276 | /// needle. |
| 3277 | #[derive (Clone, Debug)] |
| 3278 | pub struct FindReverse<'h, 'n> { |
| 3279 | it: memmem::FindRevIter<'h, 'n>, |
| 3280 | haystack: &'h [u8], |
| 3281 | needle: &'n [u8], |
| 3282 | } |
| 3283 | |
| 3284 | impl<'h, 'n> FindReverse<'h, 'n> { |
| 3285 | fn new(haystack: &'h [u8], needle: &'n [u8]) -> FindReverse<'h, 'n> { |
| 3286 | FindReverse { |
| 3287 | it: memmem::rfind_iter(haystack, needle), |
| 3288 | haystack, |
| 3289 | needle, |
| 3290 | } |
| 3291 | } |
| 3292 | |
| 3293 | fn haystack(&self) -> &'h [u8] { |
| 3294 | self.haystack |
| 3295 | } |
| 3296 | |
| 3297 | fn needle(&self) -> &'n [u8] { |
| 3298 | self.needle |
| 3299 | } |
| 3300 | } |
| 3301 | |
| 3302 | impl<'h, 'n> Iterator for FindReverse<'h, 'n> { |
| 3303 | type Item = usize; |
| 3304 | |
| 3305 | #[inline ] |
| 3306 | fn next(&mut self) -> Option<usize> { |
| 3307 | self.it.next() |
| 3308 | } |
| 3309 | } |
| 3310 | |
| 3311 | /// An iterator over the bytes in a byte string. |
| 3312 | /// |
| 3313 | /// `'a` is the lifetime of the byte string being traversed. |
| 3314 | #[derive (Clone, Debug)] |
| 3315 | pub struct Bytes<'a> { |
| 3316 | it: slice::Iter<'a, u8>, |
| 3317 | } |
| 3318 | |
| 3319 | impl<'a> Bytes<'a> { |
| 3320 | /// Views the remaining underlying data as a subslice of the original data. |
| 3321 | /// This has the same lifetime as the original slice, |
| 3322 | /// and so the iterator can continue to be used while this exists. |
| 3323 | #[inline ] |
| 3324 | pub fn as_bytes(&self) -> &'a [u8] { |
| 3325 | self.it.as_slice() |
| 3326 | } |
| 3327 | } |
| 3328 | |
| 3329 | impl<'a> Iterator for Bytes<'a> { |
| 3330 | type Item = u8; |
| 3331 | |
| 3332 | #[inline ] |
| 3333 | fn next(&mut self) -> Option<u8> { |
| 3334 | self.it.next().copied() |
| 3335 | } |
| 3336 | |
| 3337 | #[inline ] |
| 3338 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 3339 | self.it.size_hint() |
| 3340 | } |
| 3341 | } |
| 3342 | |
| 3343 | impl<'a> DoubleEndedIterator for Bytes<'a> { |
| 3344 | #[inline ] |
| 3345 | fn next_back(&mut self) -> Option<u8> { |
| 3346 | self.it.next_back().copied() |
| 3347 | } |
| 3348 | } |
| 3349 | |
| 3350 | impl<'a> ExactSizeIterator for Bytes<'a> { |
| 3351 | #[inline ] |
| 3352 | fn len(&self) -> usize { |
| 3353 | self.it.len() |
| 3354 | } |
| 3355 | } |
| 3356 | |
| 3357 | impl<'a> iter::FusedIterator for Bytes<'a> {} |
| 3358 | |
| 3359 | /// An iterator over the fields in a byte string, separated by whitespace. |
| 3360 | /// |
| 3361 | /// Whitespace for this iterator is defined by the Unicode property |
| 3362 | /// `White_Space`. |
| 3363 | /// |
| 3364 | /// This iterator splits on contiguous runs of whitespace, such that the fields |
| 3365 | /// in `foo\t\t\n \nbar` are `foo` and `bar`. |
| 3366 | /// |
| 3367 | /// `'a` is the lifetime of the byte string being split. |
| 3368 | #[cfg (feature = "unicode" )] |
| 3369 | #[derive (Clone, Debug)] |
| 3370 | pub struct Fields<'a> { |
| 3371 | it: FieldsWith<'a, fn(char) -> bool>, |
| 3372 | } |
| 3373 | |
| 3374 | #[cfg (feature = "unicode" )] |
| 3375 | impl<'a> Fields<'a> { |
| 3376 | fn new(bytes: &'a [u8]) -> Fields<'a> { |
| 3377 | Fields { it: bytes.fields_with(char::is_whitespace) } |
| 3378 | } |
| 3379 | } |
| 3380 | |
| 3381 | #[cfg (feature = "unicode" )] |
| 3382 | impl<'a> Iterator for Fields<'a> { |
| 3383 | type Item = &'a [u8]; |
| 3384 | |
| 3385 | #[inline ] |
| 3386 | fn next(&mut self) -> Option<&'a [u8]> { |
| 3387 | self.it.next() |
| 3388 | } |
| 3389 | } |
| 3390 | |
| 3391 | /// An iterator over fields in the byte string, separated by a predicate over |
| 3392 | /// codepoints. |
| 3393 | /// |
| 3394 | /// This iterator splits a byte string based on its predicate function such |
| 3395 | /// that the elements returned are separated by contiguous runs of codepoints |
| 3396 | /// for which the predicate returns true. |
| 3397 | /// |
| 3398 | /// `'a` is the lifetime of the byte string being split, while `F` is the type |
| 3399 | /// of the predicate, i.e., `FnMut(char) -> bool`. |
| 3400 | #[derive (Clone, Debug)] |
| 3401 | pub struct FieldsWith<'a, F> { |
| 3402 | f: F, |
| 3403 | bytes: &'a [u8], |
| 3404 | chars: CharIndices<'a>, |
| 3405 | } |
| 3406 | |
| 3407 | impl<'a, F: FnMut(char) -> bool> FieldsWith<'a, F> { |
| 3408 | fn new(bytes: &'a [u8], f: F) -> FieldsWith<'a, F> { |
| 3409 | FieldsWith { f, bytes, chars: bytes.char_indices() } |
| 3410 | } |
| 3411 | } |
| 3412 | |
| 3413 | impl<'a, F: FnMut(char) -> bool> Iterator for FieldsWith<'a, F> { |
| 3414 | type Item = &'a [u8]; |
| 3415 | |
| 3416 | #[inline ] |
| 3417 | fn next(&mut self) -> Option<&'a [u8]> { |
| 3418 | let (start, mut end); |
| 3419 | loop { |
| 3420 | match self.chars.next() { |
| 3421 | None => return None, |
| 3422 | Some((s, e, ch)) => { |
| 3423 | if !(self.f)(ch) { |
| 3424 | start = s; |
| 3425 | end = e; |
| 3426 | break; |
| 3427 | } |
| 3428 | } |
| 3429 | } |
| 3430 | } |
| 3431 | for (_, e, ch) in self.chars.by_ref() { |
| 3432 | if (self.f)(ch) { |
| 3433 | break; |
| 3434 | } |
| 3435 | end = e; |
| 3436 | } |
| 3437 | Some(&self.bytes[start..end]) |
| 3438 | } |
| 3439 | } |
| 3440 | |
| 3441 | /// An iterator over substrings in a byte string, split by a separator. |
| 3442 | /// |
| 3443 | /// `'h` is the lifetime of the byte string being split (the haystack), while |
| 3444 | /// `'s` is the lifetime of the byte string doing the splitting. |
| 3445 | #[derive (Clone, Debug)] |
| 3446 | pub struct Split<'h, 's> { |
| 3447 | finder: Find<'h, 's>, |
| 3448 | /// The end position of the previous match of our splitter. The element |
| 3449 | /// we yield corresponds to the substring starting at `last` up to the |
| 3450 | /// beginning of the next match of the splitter. |
| 3451 | last: usize, |
| 3452 | /// Only set when iteration is complete. A corner case here is when a |
| 3453 | /// splitter is matched at the end of the haystack. At that point, we still |
| 3454 | /// need to yield an empty string following it. |
| 3455 | done: bool, |
| 3456 | } |
| 3457 | |
| 3458 | impl<'h, 's> Split<'h, 's> { |
| 3459 | fn new(haystack: &'h [u8], splitter: &'s [u8]) -> Split<'h, 's> { |
| 3460 | let finder: Find<'_, '_> = haystack.find_iter(needle:splitter); |
| 3461 | Split { finder, last: 0, done: false } |
| 3462 | } |
| 3463 | } |
| 3464 | |
| 3465 | impl<'h, 's> Iterator for Split<'h, 's> { |
| 3466 | type Item = &'h [u8]; |
| 3467 | |
| 3468 | #[inline ] |
| 3469 | fn next(&mut self) -> Option<&'h [u8]> { |
| 3470 | let haystack = self.finder.haystack; |
| 3471 | match self.finder.next() { |
| 3472 | Some(start) => { |
| 3473 | let next = &haystack[self.last..start]; |
| 3474 | self.last = start + self.finder.needle.len(); |
| 3475 | Some(next) |
| 3476 | } |
| 3477 | None => { |
| 3478 | if self.last >= haystack.len() { |
| 3479 | if !self.done { |
| 3480 | self.done = true; |
| 3481 | Some(b"" ) |
| 3482 | } else { |
| 3483 | None |
| 3484 | } |
| 3485 | } else { |
| 3486 | let s = &haystack[self.last..]; |
| 3487 | self.last = haystack.len(); |
| 3488 | self.done = true; |
| 3489 | Some(s) |
| 3490 | } |
| 3491 | } |
| 3492 | } |
| 3493 | } |
| 3494 | } |
| 3495 | |
| 3496 | /// An iterator over substrings in a byte string, split by a separator, in |
| 3497 | /// reverse. |
| 3498 | /// |
| 3499 | /// `'h` is the lifetime of the byte string being split (the haystack), while |
| 3500 | /// `'s` is the lifetime of the byte string doing the splitting. |
| 3501 | #[derive (Clone, Debug)] |
| 3502 | pub struct SplitReverse<'h, 's> { |
| 3503 | finder: FindReverse<'h, 's>, |
| 3504 | /// The end position of the previous match of our splitter. The element |
| 3505 | /// we yield corresponds to the substring starting at `last` up to the |
| 3506 | /// beginning of the next match of the splitter. |
| 3507 | last: usize, |
| 3508 | /// Only set when iteration is complete. A corner case here is when a |
| 3509 | /// splitter is matched at the end of the haystack. At that point, we still |
| 3510 | /// need to yield an empty string following it. |
| 3511 | done: bool, |
| 3512 | } |
| 3513 | |
| 3514 | impl<'h, 's> SplitReverse<'h, 's> { |
| 3515 | fn new(haystack: &'h [u8], splitter: &'s [u8]) -> SplitReverse<'h, 's> { |
| 3516 | let finder: FindReverse<'_, '_> = haystack.rfind_iter(needle:splitter); |
| 3517 | SplitReverse { finder, last: haystack.len(), done: false } |
| 3518 | } |
| 3519 | } |
| 3520 | |
| 3521 | impl<'h, 's> Iterator for SplitReverse<'h, 's> { |
| 3522 | type Item = &'h [u8]; |
| 3523 | |
| 3524 | #[inline ] |
| 3525 | fn next(&mut self) -> Option<&'h [u8]> { |
| 3526 | let haystack = self.finder.haystack(); |
| 3527 | match self.finder.next() { |
| 3528 | Some(start) => { |
| 3529 | let nlen = self.finder.needle().len(); |
| 3530 | let next = &haystack[start + nlen..self.last]; |
| 3531 | self.last = start; |
| 3532 | Some(next) |
| 3533 | } |
| 3534 | None => { |
| 3535 | if self.last == 0 { |
| 3536 | if !self.done { |
| 3537 | self.done = true; |
| 3538 | Some(b"" ) |
| 3539 | } else { |
| 3540 | None |
| 3541 | } |
| 3542 | } else { |
| 3543 | let s = &haystack[..self.last]; |
| 3544 | self.last = 0; |
| 3545 | self.done = true; |
| 3546 | Some(s) |
| 3547 | } |
| 3548 | } |
| 3549 | } |
| 3550 | } |
| 3551 | } |
| 3552 | |
| 3553 | /// An iterator over at most `n` substrings in a byte string, split by a |
| 3554 | /// separator. |
| 3555 | /// |
| 3556 | /// `'h` is the lifetime of the byte string being split (the haystack), while |
| 3557 | /// `'s` is the lifetime of the byte string doing the splitting. |
| 3558 | #[derive (Clone, Debug)] |
| 3559 | pub struct SplitN<'h, 's> { |
| 3560 | split: Split<'h, 's>, |
| 3561 | limit: usize, |
| 3562 | count: usize, |
| 3563 | } |
| 3564 | |
| 3565 | impl<'h, 's> SplitN<'h, 's> { |
| 3566 | fn new( |
| 3567 | haystack: &'h [u8], |
| 3568 | splitter: &'s [u8], |
| 3569 | limit: usize, |
| 3570 | ) -> SplitN<'h, 's> { |
| 3571 | let split: Split<'_, '_> = haystack.split_str(splitter); |
| 3572 | SplitN { split, limit, count: 0 } |
| 3573 | } |
| 3574 | } |
| 3575 | |
| 3576 | impl<'h, 's> Iterator for SplitN<'h, 's> { |
| 3577 | type Item = &'h [u8]; |
| 3578 | |
| 3579 | #[inline ] |
| 3580 | fn next(&mut self) -> Option<&'h [u8]> { |
| 3581 | self.count += 1; |
| 3582 | if self.count > self.limit || self.split.done { |
| 3583 | None |
| 3584 | } else if self.count == self.limit { |
| 3585 | Some(&self.split.finder.haystack[self.split.last..]) |
| 3586 | } else { |
| 3587 | self.split.next() |
| 3588 | } |
| 3589 | } |
| 3590 | } |
| 3591 | |
| 3592 | /// An iterator over at most `n` substrings in a byte string, split by a |
| 3593 | /// separator, in reverse. |
| 3594 | /// |
| 3595 | /// `'h` is the lifetime of the byte string being split (the haystack), while |
| 3596 | /// `'s` is the lifetime of the byte string doing the splitting. |
| 3597 | #[derive (Clone, Debug)] |
| 3598 | pub struct SplitNReverse<'h, 's> { |
| 3599 | split: SplitReverse<'h, 's>, |
| 3600 | limit: usize, |
| 3601 | count: usize, |
| 3602 | } |
| 3603 | |
| 3604 | impl<'h, 's> SplitNReverse<'h, 's> { |
| 3605 | fn new( |
| 3606 | haystack: &'h [u8], |
| 3607 | splitter: &'s [u8], |
| 3608 | limit: usize, |
| 3609 | ) -> SplitNReverse<'h, 's> { |
| 3610 | let split: SplitReverse<'_, '_> = haystack.rsplit_str(splitter); |
| 3611 | SplitNReverse { split, limit, count: 0 } |
| 3612 | } |
| 3613 | } |
| 3614 | |
| 3615 | impl<'h, 's> Iterator for SplitNReverse<'h, 's> { |
| 3616 | type Item = &'h [u8]; |
| 3617 | |
| 3618 | #[inline ] |
| 3619 | fn next(&mut self) -> Option<&'h [u8]> { |
| 3620 | self.count += 1; |
| 3621 | if self.count > self.limit || self.split.done { |
| 3622 | None |
| 3623 | } else if self.count == self.limit { |
| 3624 | Some(&self.split.finder.haystack()[..self.split.last]) |
| 3625 | } else { |
| 3626 | self.split.next() |
| 3627 | } |
| 3628 | } |
| 3629 | } |
| 3630 | |
| 3631 | /// An iterator over all lines in a byte string, without their terminators. |
| 3632 | /// |
| 3633 | /// For this iterator, the only line terminators recognized are `\r\n` and |
| 3634 | /// `\n`. |
| 3635 | /// |
| 3636 | /// `'a` is the lifetime of the byte string being iterated over. |
| 3637 | #[derive (Clone, Debug)] |
| 3638 | pub struct Lines<'a> { |
| 3639 | it: LinesWithTerminator<'a>, |
| 3640 | } |
| 3641 | |
| 3642 | impl<'a> Lines<'a> { |
| 3643 | fn new(bytes: &'a [u8]) -> Lines<'a> { |
| 3644 | Lines { it: LinesWithTerminator::new(bytes) } |
| 3645 | } |
| 3646 | |
| 3647 | /// Return a copy of the rest of the underlying bytes without affecting the |
| 3648 | /// iterator itself. |
| 3649 | /// |
| 3650 | /// # Examples |
| 3651 | /// |
| 3652 | /// Basic usage: |
| 3653 | /// |
| 3654 | /// ``` |
| 3655 | /// use bstr::{B, ByteSlice}; |
| 3656 | /// |
| 3657 | /// let s = b"\ |
| 3658 | /// foo |
| 3659 | /// bar \r |
| 3660 | /// baz" ; |
| 3661 | /// let mut lines = s.lines(); |
| 3662 | /// assert_eq!(lines.next(), Some(B("foo" ))); |
| 3663 | /// assert_eq!(lines.as_bytes(), B("bar \r\nbaz" )); |
| 3664 | /// ``` |
| 3665 | pub fn as_bytes(&self) -> &'a [u8] { |
| 3666 | self.it.bytes |
| 3667 | } |
| 3668 | } |
| 3669 | |
| 3670 | impl<'a> Iterator for Lines<'a> { |
| 3671 | type Item = &'a [u8]; |
| 3672 | |
| 3673 | #[inline ] |
| 3674 | fn next(&mut self) -> Option<&'a [u8]> { |
| 3675 | Some(trim_last_terminator(self.it.next()?)) |
| 3676 | } |
| 3677 | } |
| 3678 | |
| 3679 | impl<'a> DoubleEndedIterator for Lines<'a> { |
| 3680 | #[inline ] |
| 3681 | fn next_back(&mut self) -> Option<Self::Item> { |
| 3682 | Some(trim_last_terminator(self.it.next_back()?)) |
| 3683 | } |
| 3684 | } |
| 3685 | |
| 3686 | impl<'a> iter::FusedIterator for Lines<'a> {} |
| 3687 | |
| 3688 | /// An iterator over all lines in a byte string, including their terminators. |
| 3689 | /// |
| 3690 | /// For this iterator, the only line terminator recognized is `\n`. (Since |
| 3691 | /// line terminators are included, this also handles `\r\n` line endings.) |
| 3692 | /// |
| 3693 | /// Line terminators are only included if they are present in the original |
| 3694 | /// byte string. For example, the last line in a byte string may not end with |
| 3695 | /// a line terminator. |
| 3696 | /// |
| 3697 | /// Concatenating all elements yielded by this iterator is guaranteed to yield |
| 3698 | /// the original byte string. |
| 3699 | /// |
| 3700 | /// `'a` is the lifetime of the byte string being iterated over. |
| 3701 | #[derive (Clone, Debug)] |
| 3702 | pub struct LinesWithTerminator<'a> { |
| 3703 | bytes: &'a [u8], |
| 3704 | } |
| 3705 | |
| 3706 | impl<'a> LinesWithTerminator<'a> { |
| 3707 | fn new(bytes: &'a [u8]) -> LinesWithTerminator<'a> { |
| 3708 | LinesWithTerminator { bytes } |
| 3709 | } |
| 3710 | |
| 3711 | /// Return a copy of the rest of the underlying bytes without affecting the |
| 3712 | /// iterator itself. |
| 3713 | /// |
| 3714 | /// # Examples |
| 3715 | /// |
| 3716 | /// Basic usage: |
| 3717 | /// |
| 3718 | /// ``` |
| 3719 | /// use bstr::{B, ByteSlice}; |
| 3720 | /// |
| 3721 | /// let s = b"\ |
| 3722 | /// foo |
| 3723 | /// bar \r |
| 3724 | /// baz" ; |
| 3725 | /// let mut lines = s.lines_with_terminator(); |
| 3726 | /// assert_eq!(lines.next(), Some(B("foo \n" ))); |
| 3727 | /// assert_eq!(lines.as_bytes(), B("bar \r\nbaz" )); |
| 3728 | /// ``` |
| 3729 | pub fn as_bytes(&self) -> &'a [u8] { |
| 3730 | self.bytes |
| 3731 | } |
| 3732 | } |
| 3733 | |
| 3734 | impl<'a> Iterator for LinesWithTerminator<'a> { |
| 3735 | type Item = &'a [u8]; |
| 3736 | |
| 3737 | #[inline ] |
| 3738 | fn next(&mut self) -> Option<&'a [u8]> { |
| 3739 | match self.bytes.find_byte(b' \n' ) { |
| 3740 | None if self.bytes.is_empty() => None, |
| 3741 | None => { |
| 3742 | let line: &'a [u8] = self.bytes; |
| 3743 | self.bytes = b"" ; |
| 3744 | Some(line) |
| 3745 | } |
| 3746 | Some(end: usize) => { |
| 3747 | let line: &[u8] = &self.bytes[..=end]; |
| 3748 | self.bytes = &self.bytes[end + 1..]; |
| 3749 | Some(line) |
| 3750 | } |
| 3751 | } |
| 3752 | } |
| 3753 | } |
| 3754 | |
| 3755 | impl<'a> DoubleEndedIterator for LinesWithTerminator<'a> { |
| 3756 | #[inline ] |
| 3757 | fn next_back(&mut self) -> Option<Self::Item> { |
| 3758 | let end: usize = self.bytes.len().checked_sub(1)?; |
| 3759 | match self.bytes[..end].rfind_byte(b' \n' ) { |
| 3760 | None => { |
| 3761 | let line: &'a [u8] = self.bytes; |
| 3762 | self.bytes = b"" ; |
| 3763 | Some(line) |
| 3764 | } |
| 3765 | Some(end: usize) => { |
| 3766 | let line: &[u8] = &self.bytes[end + 1..]; |
| 3767 | self.bytes = &self.bytes[..=end]; |
| 3768 | Some(line) |
| 3769 | } |
| 3770 | } |
| 3771 | } |
| 3772 | } |
| 3773 | |
| 3774 | impl<'a> iter::FusedIterator for LinesWithTerminator<'a> {} |
| 3775 | |
| 3776 | fn trim_last_terminator(mut s: &[u8]) -> &[u8] { |
| 3777 | if s.last_byte() == Some(b' \n' ) { |
| 3778 | s = &s[..s.len() - 1]; |
| 3779 | if s.last_byte() == Some(b' \r' ) { |
| 3780 | s = &s[..s.len() - 1]; |
| 3781 | } |
| 3782 | } |
| 3783 | s |
| 3784 | } |
| 3785 | |
| 3786 | #[cfg (all(test, feature = "std" ))] |
| 3787 | mod tests { |
| 3788 | use alloc::{string::String, vec::Vec}; |
| 3789 | |
| 3790 | use crate::{ |
| 3791 | ext_slice::{ByteSlice, Lines, LinesWithTerminator, B}, |
| 3792 | tests::LOSSY_TESTS, |
| 3793 | }; |
| 3794 | |
| 3795 | #[test ] |
| 3796 | fn to_str_lossy() { |
| 3797 | for (i, &(expected, input)) in LOSSY_TESTS.iter().enumerate() { |
| 3798 | let got = B(input).to_str_lossy(); |
| 3799 | assert_eq!( |
| 3800 | expected.as_bytes(), |
| 3801 | got.as_bytes(), |
| 3802 | "to_str_lossy(ith: {:?}, given: {:?})" , |
| 3803 | i, |
| 3804 | input, |
| 3805 | ); |
| 3806 | |
| 3807 | let mut got = String::new(); |
| 3808 | B(input).to_str_lossy_into(&mut got); |
| 3809 | assert_eq!( |
| 3810 | expected.as_bytes(), |
| 3811 | got.as_bytes(), |
| 3812 | "to_str_lossy_into" , |
| 3813 | ); |
| 3814 | |
| 3815 | let got = String::from_utf8_lossy(input); |
| 3816 | assert_eq!(expected.as_bytes(), got.as_bytes(), "std" ); |
| 3817 | } |
| 3818 | } |
| 3819 | |
| 3820 | #[test ] |
| 3821 | fn lines_iteration() { |
| 3822 | macro_rules! t { |
| 3823 | ($it:expr, $forward:expr) => { |
| 3824 | let mut res: Vec<&[u8]> = Vec::from($forward); |
| 3825 | assert_eq!($it.collect::<Vec<_>>(), res); |
| 3826 | res.reverse(); |
| 3827 | assert_eq!($it.rev().collect::<Vec<_>>(), res); |
| 3828 | }; |
| 3829 | } |
| 3830 | |
| 3831 | t!(Lines::new(b"" ), []); |
| 3832 | t!(LinesWithTerminator::new(b"" ), []); |
| 3833 | |
| 3834 | t!(Lines::new(b" \n" ), [B("" )]); |
| 3835 | t!(Lines::new(b" \r\n" ), [B("" )]); |
| 3836 | t!(LinesWithTerminator::new(b" \n" ), [B(" \n" )]); |
| 3837 | |
| 3838 | t!(Lines::new(b"a" ), [B("a" )]); |
| 3839 | t!(LinesWithTerminator::new(b"a" ), [B("a" )]); |
| 3840 | |
| 3841 | t!(Lines::new(b"abc" ), [B("abc" )]); |
| 3842 | t!(LinesWithTerminator::new(b"abc" ), [B("abc" )]); |
| 3843 | |
| 3844 | t!(Lines::new(b"abc \n" ), [B("abc" )]); |
| 3845 | t!(Lines::new(b"abc \r\n" ), [B("abc" )]); |
| 3846 | t!(LinesWithTerminator::new(b"abc \n" ), [B("abc \n" )]); |
| 3847 | |
| 3848 | t!(Lines::new(b"abc \n\n" ), [B("abc" ), B("" )]); |
| 3849 | t!(LinesWithTerminator::new(b"abc \n\n" ), [B("abc \n" ), B(" \n" )]); |
| 3850 | |
| 3851 | t!(Lines::new(b"abc \n\ndef" ), [B("abc" ), B("" ), B("def" )]); |
| 3852 | t!( |
| 3853 | LinesWithTerminator::new(b"abc \n\ndef" ), |
| 3854 | [B("abc \n" ), B(" \n" ), B("def" )] |
| 3855 | ); |
| 3856 | |
| 3857 | t!(Lines::new(b"abc \n\ndef \n" ), [B("abc" ), B("" ), B("def" )]); |
| 3858 | t!( |
| 3859 | LinesWithTerminator::new(b"abc \n\ndef \n" ), |
| 3860 | [B("abc \n" ), B(" \n" ), B("def \n" )] |
| 3861 | ); |
| 3862 | |
| 3863 | t!(Lines::new(b" \na \nb \n" ), [B("" ), B("a" ), B("b" )]); |
| 3864 | t!( |
| 3865 | LinesWithTerminator::new(b" \na \nb \n" ), |
| 3866 | [B(" \n" ), B("a \n" ), B("b \n" )] |
| 3867 | ); |
| 3868 | |
| 3869 | t!(Lines::new(b" \n\n\n" ), [B("" ), B("" ), B("" )]); |
| 3870 | t!(LinesWithTerminator::new(b" \n\n\n" ), [B(" \n" ), B(" \n" ), B(" \n" )]); |
| 3871 | } |
| 3872 | } |
| 3873 | |