1 | use core::ops::Neg; |
2 | |
3 | use super::Float; |
4 | use crate::int::{CastFrom, CastInto, Int, MinInt}; |
5 | |
6 | /// Conversions from integers to floats. |
7 | /// |
8 | /// The algorithm is explained here: <https://blog.m-ou.se/floats/>. It roughly does the following: |
9 | /// - Calculate a base mantissa by shifting the integer into mantissa position. This gives us a |
10 | /// mantissa _with the implicit bit set_! |
11 | /// - Figure out if rounding needs to occur by classifying the bits that are to be truncated. Some |
12 | /// patterns are used to simplify this. Adjust the mantissa with the result if needed. |
13 | /// - Calculate the exponent based on the base-2 logarithm of `i` (leading zeros). Subtract one. |
14 | /// - Shift the exponent and add the mantissa to create the final representation. Subtracting one |
15 | /// from the exponent (above) accounts for the explicit bit being set in the mantissa. |
16 | /// |
17 | /// # Terminology |
18 | /// |
19 | /// - `i`: the original integer |
20 | /// - `i_m`: the integer, shifted fully left (no leading zeros) |
21 | /// - `n`: number of leading zeroes |
22 | /// - `e`: the resulting exponent. Usually 1 is subtracted to offset the mantissa implicit bit. |
23 | /// - `m_base`: the mantissa before adjusting for truncated bits. Implicit bit is usually set. |
24 | /// - `adj`: the bits that will be truncated, possibly compressed in some way. |
25 | /// - `m`: the resulting mantissa. Implicit bit is usually set. |
26 | mod int_to_float { |
27 | use super::*; |
28 | |
29 | /// Calculate the exponent from the number of leading zeros. |
30 | /// |
31 | /// Usually 1 is subtracted from this function's result, so that a mantissa with the implicit |
32 | /// bit set can be added back later. |
33 | fn exp<I: Int, F: Float<Int: CastFrom<u32>>>(n: u32) -> F::Int { |
34 | F::Int::cast_from(F::EXP_BIAS - 1 + I::BITS - n) |
35 | } |
36 | |
37 | /// Adjust a mantissa with dropped bits to perform correct rounding. |
38 | /// |
39 | /// The dropped bits should be exactly the bits that get truncated (left-aligned), but they |
40 | /// can be combined or compressed in some way that simplifies operations. |
41 | fn m_adj<F: Float>(m_base: F::Int, dropped_bits: F::Int) -> F::Int { |
42 | // Branchlessly extract a `1` if rounding up should happen, 0 otherwise |
43 | // This accounts for rounding to even. |
44 | let adj = (dropped_bits - ((dropped_bits >> (F::BITS - 1)) & !m_base)) >> (F::BITS - 1); |
45 | |
46 | // Add one when we need to round up. Break ties to even. |
47 | m_base + adj |
48 | } |
49 | |
50 | /// Shift the exponent to its position and add the mantissa. |
51 | /// |
52 | /// If the mantissa has the implicit bit set, the exponent should be one less than its actual |
53 | /// value to cancel it out. |
54 | fn repr<F: Float>(e: F::Int, m: F::Int) -> F::Int { |
55 | // + rather than | so the mantissa can overflow into the exponent |
56 | (e << F::SIG_BITS) + m |
57 | } |
58 | |
59 | /// Shift distance from a left-aligned integer to a smaller float. |
60 | fn shift_f_lt_i<I: Int, F: Float>() -> u32 { |
61 | (I::BITS - F::BITS) + F::EXP_BITS |
62 | } |
63 | |
64 | /// Shift distance from an integer with `n` leading zeros to a smaller float. |
65 | fn shift_f_gt_i<I: Int, F: Float>(n: u32) -> u32 { |
66 | F::SIG_BITS - I::BITS + 1 + n |
67 | } |
68 | |
69 | /// Perform a signed operation as unsigned, then add the sign back. |
70 | pub fn signed<I, F, Conv>(i: I, conv: Conv) -> F |
71 | where |
72 | F: Float, |
73 | I: Int, |
74 | F::Int: CastFrom<I>, |
75 | Conv: Fn(I::Unsigned) -> F::Int, |
76 | { |
77 | let sign_bit = F::Int::cast_from_lossy(i >> (I::BITS - 1)) << (F::BITS - 1); |
78 | F::from_bits(conv(i.unsigned_abs()) | sign_bit) |
79 | } |
80 | |
81 | pub fn u32_to_f32_bits(i: u32) -> u32 { |
82 | if i == 0 { |
83 | return 0; |
84 | } |
85 | let n = i.leading_zeros(); |
86 | // Mantissa with implicit bit set (significant bits) |
87 | let m_base = (i << n) >> f32::EXP_BITS; |
88 | // Bits that will be dropped (insignificant bits) |
89 | let adj = (i << n) << (f32::SIG_BITS + 1); |
90 | let m = m_adj::<f32>(m_base, adj); |
91 | let e = exp::<u32, f32>(n) - 1; |
92 | repr::<f32>(e, m) |
93 | } |
94 | |
95 | pub fn u32_to_f64_bits(i: u32) -> u64 { |
96 | if i == 0 { |
97 | return 0; |
98 | } |
99 | let n = i.leading_zeros(); |
100 | // Mantissa with implicit bit set |
101 | let m = (i as u64) << shift_f_gt_i::<u32, f64>(n); |
102 | let e = exp::<u32, f64>(n) - 1; |
103 | repr::<f64>(e, m) |
104 | } |
105 | |
106 | #[cfg (f128_enabled)] |
107 | pub fn u32_to_f128_bits(i: u32) -> u128 { |
108 | if i == 0 { |
109 | return 0; |
110 | } |
111 | let n = i.leading_zeros(); |
112 | |
113 | // Shift into mantissa position that is correct for the type, but shifted into the lower |
114 | // 64 bits over so can can avoid 128-bit math. |
115 | let m = (i as u64) << (shift_f_gt_i::<u32, f128>(n) - 64); |
116 | let e = exp::<u32, f128>(n) as u64 - 1; |
117 | // High 64 bits of f128 representation. |
118 | let h = (e << (f128::SIG_BITS - 64)) + m; |
119 | |
120 | // Shift back to the high bits, the rest of the mantissa will always be 0. |
121 | (h as u128) << 64 |
122 | } |
123 | |
124 | pub fn u64_to_f32_bits(i: u64) -> u32 { |
125 | let n = i.leading_zeros(); |
126 | let i_m = i.wrapping_shl(n); |
127 | // Mantissa with implicit bit set |
128 | let m_base: u32 = (i_m >> shift_f_lt_i::<u64, f32>()) as u32; |
129 | // The entire lower half of `i` will be truncated (masked portion), plus the |
130 | // next `EXP_BITS` bits. |
131 | let adj = ((i_m >> f32::EXP_BITS) | i_m & 0xFFFF) as u32; |
132 | let m = m_adj::<f32>(m_base, adj); |
133 | let e = if i == 0 { 0 } else { exp::<u64, f32>(n) - 1 }; |
134 | repr::<f32>(e, m) |
135 | } |
136 | |
137 | pub fn u64_to_f64_bits(i: u64) -> u64 { |
138 | if i == 0 { |
139 | return 0; |
140 | } |
141 | let n = i.leading_zeros(); |
142 | // Mantissa with implicit bit set |
143 | let m_base = (i << n) >> f64::EXP_BITS; |
144 | let adj = (i << n) << (f64::SIG_BITS + 1); |
145 | let m = m_adj::<f64>(m_base, adj); |
146 | let e = exp::<u64, f64>(n) - 1; |
147 | repr::<f64>(e, m) |
148 | } |
149 | |
150 | #[cfg (f128_enabled)] |
151 | pub fn u64_to_f128_bits(i: u64) -> u128 { |
152 | if i == 0 { |
153 | return 0; |
154 | } |
155 | let n = i.leading_zeros(); |
156 | // Mantissa with implicit bit set |
157 | let m = (i as u128) << shift_f_gt_i::<u64, f128>(n); |
158 | let e = exp::<u64, f128>(n) - 1; |
159 | repr::<f128>(e, m) |
160 | } |
161 | |
162 | pub fn u128_to_f32_bits(i: u128) -> u32 { |
163 | let n = i.leading_zeros(); |
164 | let i_m = i.wrapping_shl(n); // Mantissa, shifted so the first bit is nonzero |
165 | let m_base: u32 = (i_m >> shift_f_lt_i::<u128, f32>()) as u32; |
166 | |
167 | // Within the upper `F::BITS`, everything except for the signifcand |
168 | // gets truncated |
169 | let d1: u32 = (i_m >> (u128::BITS - f32::BITS - f32::SIG_BITS - 1)).cast_lossy(); |
170 | |
171 | // The entire rest of `i_m` gets truncated. Zero the upper `F::BITS` then just |
172 | // check if it is nonzero. |
173 | let d2: u32 = (i_m << f32::BITS >> f32::BITS != 0).into(); |
174 | let adj = d1 | d2; |
175 | |
176 | // Mantissa with implicit bit set |
177 | let m = m_adj::<f32>(m_base, adj); |
178 | let e = if i == 0 { 0 } else { exp::<u128, f32>(n) - 1 }; |
179 | repr::<f32>(e, m) |
180 | } |
181 | |
182 | pub fn u128_to_f64_bits(i: u128) -> u64 { |
183 | let n = i.leading_zeros(); |
184 | let i_m = i.wrapping_shl(n); |
185 | // Mantissa with implicit bit set |
186 | let m_base: u64 = (i_m >> shift_f_lt_i::<u128, f64>()) as u64; |
187 | // The entire lower half of `i` will be truncated (masked portion), plus the |
188 | // next `EXP_BITS` bits. |
189 | let adj = ((i_m >> f64::EXP_BITS) | i_m & 0xFFFF_FFFF) as u64; |
190 | let m = m_adj::<f64>(m_base, adj); |
191 | let e = if i == 0 { 0 } else { exp::<u128, f64>(n) - 1 }; |
192 | repr::<f64>(e, m) |
193 | } |
194 | |
195 | #[cfg (f128_enabled)] |
196 | pub fn u128_to_f128_bits(i: u128) -> u128 { |
197 | if i == 0 { |
198 | return 0; |
199 | } |
200 | let n = i.leading_zeros(); |
201 | // Mantissa with implicit bit set |
202 | let m_base = (i << n) >> f128::EXP_BITS; |
203 | let adj = (i << n) << (f128::SIG_BITS + 1); |
204 | let m = m_adj::<f128>(m_base, adj); |
205 | let e = exp::<u128, f128>(n) - 1; |
206 | repr::<f128>(e, m) |
207 | } |
208 | } |
209 | |
210 | // Conversions from unsigned integers to floats. |
211 | intrinsics! { |
212 | #[arm_aeabi_alias = __aeabi_ui2f] |
213 | pub extern "C" fn __floatunsisf(i: u32) -> f32 { |
214 | f32::from_bits(int_to_float::u32_to_f32_bits(i)) |
215 | } |
216 | |
217 | #[arm_aeabi_alias = __aeabi_ui2d] |
218 | pub extern "C" fn __floatunsidf(i: u32) -> f64 { |
219 | f64::from_bits(int_to_float::u32_to_f64_bits(i)) |
220 | } |
221 | |
222 | #[arm_aeabi_alias = __aeabi_ul2f] |
223 | pub extern "C" fn __floatundisf(i: u64) -> f32 { |
224 | f32::from_bits(int_to_float::u64_to_f32_bits(i)) |
225 | } |
226 | |
227 | #[arm_aeabi_alias = __aeabi_ul2d] |
228 | pub extern "C" fn __floatundidf(i: u64) -> f64 { |
229 | f64::from_bits(int_to_float::u64_to_f64_bits(i)) |
230 | } |
231 | |
232 | #[cfg_attr(target_os = "uefi" , unadjusted_on_win64)] |
233 | pub extern "C" fn __floatuntisf(i: u128) -> f32 { |
234 | f32::from_bits(int_to_float::u128_to_f32_bits(i)) |
235 | } |
236 | |
237 | #[cfg_attr(target_os = "uefi" , unadjusted_on_win64)] |
238 | pub extern "C" fn __floatuntidf(i: u128) -> f64 { |
239 | f64::from_bits(int_to_float::u128_to_f64_bits(i)) |
240 | } |
241 | |
242 | #[ppc_alias = __floatunsikf] |
243 | #[cfg (f128_enabled)] |
244 | pub extern "C" fn __floatunsitf(i: u32) -> f128 { |
245 | f128::from_bits(int_to_float::u32_to_f128_bits(i)) |
246 | } |
247 | |
248 | #[ppc_alias = __floatundikf] |
249 | #[cfg (f128_enabled)] |
250 | pub extern "C" fn __floatunditf(i: u64) -> f128 { |
251 | f128::from_bits(int_to_float::u64_to_f128_bits(i)) |
252 | } |
253 | |
254 | #[ppc_alias = __floatuntikf] |
255 | #[cfg (f128_enabled)] |
256 | pub extern "C" fn __floatuntitf(i: u128) -> f128 { |
257 | f128::from_bits(int_to_float::u128_to_f128_bits(i)) |
258 | } |
259 | } |
260 | |
261 | // Conversions from signed integers to floats. |
262 | intrinsics! { |
263 | #[arm_aeabi_alias = __aeabi_i2f] |
264 | pub extern "C" fn __floatsisf(i: i32) -> f32 { |
265 | int_to_float::signed(i, int_to_float::u32_to_f32_bits) |
266 | } |
267 | |
268 | #[arm_aeabi_alias = __aeabi_i2d] |
269 | pub extern "C" fn __floatsidf(i: i32) -> f64 { |
270 | int_to_float::signed(i, int_to_float::u32_to_f64_bits) |
271 | } |
272 | |
273 | #[arm_aeabi_alias = __aeabi_l2f] |
274 | pub extern "C" fn __floatdisf(i: i64) -> f32 { |
275 | int_to_float::signed(i, int_to_float::u64_to_f32_bits) |
276 | } |
277 | |
278 | #[arm_aeabi_alias = __aeabi_l2d] |
279 | pub extern "C" fn __floatdidf(i: i64) -> f64 { |
280 | int_to_float::signed(i, int_to_float::u64_to_f64_bits) |
281 | } |
282 | |
283 | #[cfg_attr(target_os = "uefi" , unadjusted_on_win64)] |
284 | pub extern "C" fn __floattisf(i: i128) -> f32 { |
285 | int_to_float::signed(i, int_to_float::u128_to_f32_bits) |
286 | } |
287 | |
288 | #[cfg_attr(target_os = "uefi" , unadjusted_on_win64)] |
289 | pub extern "C" fn __floattidf(i: i128) -> f64 { |
290 | int_to_float::signed(i, int_to_float::u128_to_f64_bits) |
291 | } |
292 | |
293 | #[ppc_alias = __floatsikf] |
294 | #[cfg (f128_enabled)] |
295 | pub extern "C" fn __floatsitf(i: i32) -> f128 { |
296 | int_to_float::signed(i, int_to_float::u32_to_f128_bits) |
297 | } |
298 | |
299 | #[ppc_alias = __floatdikf] |
300 | #[cfg (f128_enabled)] |
301 | pub extern "C" fn __floatditf(i: i64) -> f128 { |
302 | int_to_float::signed(i, int_to_float::u64_to_f128_bits) |
303 | } |
304 | |
305 | #[ppc_alias = __floattikf] |
306 | #[cfg (f128_enabled)] |
307 | pub extern "C" fn __floattitf(i: i128) -> f128 { |
308 | int_to_float::signed(i, int_to_float::u128_to_f128_bits) |
309 | } |
310 | } |
311 | |
312 | /// Generic float to unsigned int conversions. |
313 | fn float_to_unsigned_int<F, U>(f: F) -> U |
314 | where |
315 | F: Float, |
316 | U: Int<Unsigned = U>, |
317 | F::Int: CastInto<U>, |
318 | F::Int: CastFrom<u32>, |
319 | F::Int: CastInto<U::Unsigned>, |
320 | u32: CastFrom<F::Int>, |
321 | { |
322 | float_to_int_inner::<F, U, _, _>(fbits:f.to_bits(), |i: U| i, || U::MAX) |
323 | } |
324 | |
325 | /// Generic float to signed int conversions. |
326 | fn float_to_signed_int<F, I>(f: F) -> I |
327 | where |
328 | F: Float, |
329 | I: Int + Neg<Output = I>, |
330 | I::Unsigned: Int, |
331 | F::Int: CastInto<I::Unsigned>, |
332 | F::Int: CastFrom<u32>, |
333 | u32: CastFrom<F::Int>, |
334 | { |
335 | float_to_int_inner::<F, I, _, _>( |
336 | fbits:f.to_bits() & !F::SIGN_MASK, |
337 | |i: I| if f.is_sign_negative() { -i } else { i }, |
338 | || if f.is_sign_negative() { I::MIN } else { I::MAX }, |
339 | ) |
340 | } |
341 | |
342 | /// Float to int conversions, generic for both signed and unsigned. |
343 | /// |
344 | /// Parameters: |
345 | /// - `fbits`: `abg(f)` bitcasted to an integer. |
346 | /// - `map_inbounds`: apply this transformation to integers that are within range (add the sign back). |
347 | /// - `out_of_bounds`: return value when out of range for `I`. |
348 | fn float_to_int_inner<F, I, FnFoo, FnOob>( |
349 | fbits: F::Int, |
350 | map_inbounds: FnFoo, |
351 | out_of_bounds: FnOob, |
352 | ) -> I |
353 | where |
354 | F: Float, |
355 | I: Int, |
356 | FnFoo: FnOnce(I) -> I, |
357 | FnOob: FnOnce() -> I, |
358 | I::Unsigned: Int, |
359 | F::Int: CastInto<I::Unsigned>, |
360 | F::Int: CastFrom<u32>, |
361 | u32: CastFrom<F::Int>, |
362 | { |
363 | let int_max_exp = F::EXP_BIAS + I::MAX.ilog2() + 1; |
364 | let foobar = F::EXP_BIAS + I::Unsigned::BITS - 1; |
365 | |
366 | if fbits < F::ONE.to_bits() { |
367 | // < 0 gets rounded to 0 |
368 | I::ZERO |
369 | } else if fbits < F::Int::cast_from(int_max_exp) << F::SIG_BITS { |
370 | // >= 1, < integer max |
371 | let m_base = if I::Unsigned::BITS >= F::Int::BITS { |
372 | I::Unsigned::cast_from(fbits) << (I::BITS - F::SIG_BITS - 1) |
373 | } else { |
374 | I::Unsigned::cast_from_lossy(fbits >> (F::SIG_BITS - I::BITS + 1)) |
375 | }; |
376 | |
377 | // Set the implicit 1-bit. |
378 | let m: I::Unsigned = (I::Unsigned::ONE << (I::BITS - 1)) | m_base; |
379 | |
380 | // Shift based on the exponent and bias. |
381 | let s: u32 = (foobar) - u32::cast_from(fbits >> F::SIG_BITS); |
382 | |
383 | let unsigned = m >> s; |
384 | map_inbounds(I::from_unsigned(unsigned)) |
385 | } else if fbits <= F::EXP_MASK { |
386 | // >= max (incl. inf) |
387 | out_of_bounds() |
388 | } else { |
389 | I::ZERO |
390 | } |
391 | } |
392 | |
393 | // Conversions from floats to unsigned integers. |
394 | intrinsics! { |
395 | #[arm_aeabi_alias = __aeabi_f2uiz] |
396 | pub extern "C" fn __fixunssfsi(f: f32) -> u32 { |
397 | float_to_unsigned_int(f) |
398 | } |
399 | |
400 | #[arm_aeabi_alias = __aeabi_f2ulz] |
401 | pub extern "C" fn __fixunssfdi(f: f32) -> u64 { |
402 | float_to_unsigned_int(f) |
403 | } |
404 | |
405 | pub extern "C" fn __fixunssfti(f: f32) -> u128 { |
406 | float_to_unsigned_int(f) |
407 | } |
408 | |
409 | #[arm_aeabi_alias = __aeabi_d2uiz] |
410 | pub extern "C" fn __fixunsdfsi(f: f64) -> u32 { |
411 | float_to_unsigned_int(f) |
412 | } |
413 | |
414 | #[arm_aeabi_alias = __aeabi_d2ulz] |
415 | pub extern "C" fn __fixunsdfdi(f: f64) -> u64 { |
416 | float_to_unsigned_int(f) |
417 | } |
418 | |
419 | pub extern "C" fn __fixunsdfti(f: f64) -> u128 { |
420 | float_to_unsigned_int(f) |
421 | } |
422 | |
423 | #[ppc_alias = __fixunskfsi] |
424 | #[cfg (f128_enabled)] |
425 | pub extern "C" fn __fixunstfsi(f: f128) -> u32 { |
426 | float_to_unsigned_int(f) |
427 | } |
428 | |
429 | #[ppc_alias = __fixunskfdi] |
430 | #[cfg (f128_enabled)] |
431 | pub extern "C" fn __fixunstfdi(f: f128) -> u64 { |
432 | float_to_unsigned_int(f) |
433 | } |
434 | |
435 | #[ppc_alias = __fixunskfti] |
436 | #[cfg (f128_enabled)] |
437 | pub extern "C" fn __fixunstfti(f: f128) -> u128 { |
438 | float_to_unsigned_int(f) |
439 | } |
440 | } |
441 | |
442 | // Conversions from floats to signed integers. |
443 | intrinsics! { |
444 | #[arm_aeabi_alias = __aeabi_f2iz] |
445 | pub extern "C" fn __fixsfsi(f: f32) -> i32 { |
446 | float_to_signed_int(f) |
447 | } |
448 | |
449 | #[arm_aeabi_alias = __aeabi_f2lz] |
450 | pub extern "C" fn __fixsfdi(f: f32) -> i64 { |
451 | float_to_signed_int(f) |
452 | } |
453 | |
454 | pub extern "C" fn __fixsfti(f: f32) -> i128 { |
455 | float_to_signed_int(f) |
456 | } |
457 | |
458 | #[arm_aeabi_alias = __aeabi_d2iz] |
459 | pub extern "C" fn __fixdfsi(f: f64) -> i32 { |
460 | float_to_signed_int(f) |
461 | } |
462 | |
463 | #[arm_aeabi_alias = __aeabi_d2lz] |
464 | pub extern "C" fn __fixdfdi(f: f64) -> i64 { |
465 | float_to_signed_int(f) |
466 | } |
467 | |
468 | pub extern "C" fn __fixdfti(f: f64) -> i128 { |
469 | float_to_signed_int(f) |
470 | } |
471 | |
472 | #[ppc_alias = __fixkfsi] |
473 | #[cfg (f128_enabled)] |
474 | pub extern "C" fn __fixtfsi(f: f128) -> i32 { |
475 | float_to_signed_int(f) |
476 | } |
477 | |
478 | #[ppc_alias = __fixkfdi] |
479 | #[cfg (f128_enabled)] |
480 | pub extern "C" fn __fixtfdi(f: f128) -> i64 { |
481 | float_to_signed_int(f) |
482 | } |
483 | |
484 | #[ppc_alias = __fixkfti] |
485 | #[cfg (f128_enabled)] |
486 | pub extern "C" fn __fixtfti(f: f128) -> i128 { |
487 | float_to_signed_int(f) |
488 | } |
489 | } |
490 | |