| 1 | use super::display_buffer::DisplayBuffer; |
| 2 | use crate::cmp::Ordering; |
| 3 | use crate::fmt::{self, Write}; |
| 4 | use crate::hash::{Hash, Hasher}; |
| 5 | use crate::iter; |
| 6 | use crate::mem::transmute; |
| 7 | use crate::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, Not}; |
| 8 | |
| 9 | /// An IP address, either IPv4 or IPv6. |
| 10 | /// |
| 11 | /// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their |
| 12 | /// respective documentation for more details. |
| 13 | /// |
| 14 | /// # Examples |
| 15 | /// |
| 16 | /// ``` |
| 17 | /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 18 | /// |
| 19 | /// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)); |
| 20 | /// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)); |
| 21 | /// |
| 22 | /// assert_eq!("127.0.0.1" .parse(), Ok(localhost_v4)); |
| 23 | /// assert_eq!("::1" .parse(), Ok(localhost_v6)); |
| 24 | /// |
| 25 | /// assert_eq!(localhost_v4.is_ipv6(), false); |
| 26 | /// assert_eq!(localhost_v4.is_ipv4(), true); |
| 27 | /// ``` |
| 28 | #[rustc_diagnostic_item = "IpAddr" ] |
| 29 | #[stable (feature = "ip_addr" , since = "1.7.0" )] |
| 30 | #[derive (Copy, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)] |
| 31 | pub enum IpAddr { |
| 32 | /// An IPv4 address. |
| 33 | #[stable (feature = "ip_addr" , since = "1.7.0" )] |
| 34 | V4(#[stable (feature = "ip_addr" , since = "1.7.0" )] Ipv4Addr), |
| 35 | /// An IPv6 address. |
| 36 | #[stable (feature = "ip_addr" , since = "1.7.0" )] |
| 37 | V6(#[stable (feature = "ip_addr" , since = "1.7.0" )] Ipv6Addr), |
| 38 | } |
| 39 | |
| 40 | /// An IPv4 address. |
| 41 | /// |
| 42 | /// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791]. |
| 43 | /// They are usually represented as four octets. |
| 44 | /// |
| 45 | /// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses. |
| 46 | /// |
| 47 | /// [IETF RFC 791]: https://tools.ietf.org/html/rfc791 |
| 48 | /// |
| 49 | /// # Textual representation |
| 50 | /// |
| 51 | /// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal |
| 52 | /// notation, divided by `.` (this is called "dot-decimal notation"). |
| 53 | /// Notably, octal numbers (which are indicated with a leading `0`) and hexadecimal numbers (which |
| 54 | /// are indicated with a leading `0x`) are not allowed per [IETF RFC 6943]. |
| 55 | /// |
| 56 | /// [IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1 |
| 57 | /// [`FromStr`]: crate::str::FromStr |
| 58 | /// |
| 59 | /// # Examples |
| 60 | /// |
| 61 | /// ``` |
| 62 | /// use std::net::Ipv4Addr; |
| 63 | /// |
| 64 | /// let localhost = Ipv4Addr::new(127, 0, 0, 1); |
| 65 | /// assert_eq!("127.0.0.1" .parse(), Ok(localhost)); |
| 66 | /// assert_eq!(localhost.is_loopback(), true); |
| 67 | /// assert!("012.004.002.000" .parse::<Ipv4Addr>().is_err()); // all octets are in octal |
| 68 | /// assert!("0000000.0.0.0" .parse::<Ipv4Addr>().is_err()); // first octet is a zero in octal |
| 69 | /// assert!("0xcb.0x0.0x71.0x00" .parse::<Ipv4Addr>().is_err()); // all octets are in hex |
| 70 | /// ``` |
| 71 | #[rustc_diagnostic_item = "Ipv4Addr" ] |
| 72 | #[derive (Copy, Clone, PartialEq, Eq)] |
| 73 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 74 | pub struct Ipv4Addr { |
| 75 | octets: [u8; 4], |
| 76 | } |
| 77 | |
| 78 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 79 | impl Hash for Ipv4Addr { |
| 80 | fn hash<H: Hasher>(&self, state: &mut H) { |
| 81 | // Hashers are often more efficient at hashing a fixed-width integer |
| 82 | // than a bytestring, so convert before hashing. We don't use to_bits() |
| 83 | // here as that may involve a byteswap which is unnecessary. |
| 84 | u32::from_ne_bytes(self.octets).hash(state); |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | /// An IPv6 address. |
| 89 | /// |
| 90 | /// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291]. |
| 91 | /// They are usually represented as eight 16-bit segments. |
| 92 | /// |
| 93 | /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 |
| 94 | /// |
| 95 | /// # Embedding IPv4 Addresses |
| 96 | /// |
| 97 | /// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses. |
| 98 | /// |
| 99 | /// To assist in the transition from IPv4 to IPv6 two types of IPv6 addresses that embed an IPv4 address were defined: |
| 100 | /// IPv4-compatible and IPv4-mapped addresses. Of these IPv4-compatible addresses have been officially deprecated. |
| 101 | /// |
| 102 | /// Both types of addresses are not assigned any special meaning by this implementation, |
| 103 | /// other than what the relevant standards prescribe. This means that an address like `::ffff:127.0.0.1`, |
| 104 | /// while representing an IPv4 loopback address, is not itself an IPv6 loopback address; only `::1` is. |
| 105 | /// To handle these so called "IPv4-in-IPv6" addresses, they have to first be converted to their canonical IPv4 address. |
| 106 | /// |
| 107 | /// ### IPv4-Compatible IPv6 Addresses |
| 108 | /// |
| 109 | /// IPv4-compatible IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.1], and have been officially deprecated. |
| 110 | /// The RFC describes the format of an "IPv4-Compatible IPv6 address" as follows: |
| 111 | /// |
| 112 | /// ```text |
| 113 | /// | 80 bits | 16 | 32 bits | |
| 114 | /// +--------------------------------------+--------------------------+ |
| 115 | /// |0000..............................0000|0000| IPv4 address | |
| 116 | /// +--------------------------------------+----+---------------------+ |
| 117 | /// ``` |
| 118 | /// So `::a.b.c.d` would be an IPv4-compatible IPv6 address representing the IPv4 address `a.b.c.d`. |
| 119 | /// |
| 120 | /// To convert from an IPv4 address to an IPv4-compatible IPv6 address, use [`Ipv4Addr::to_ipv6_compatible`]. |
| 121 | /// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-compatible IPv6 address to the canonical IPv4 address. |
| 122 | /// |
| 123 | /// [IETF RFC 4291 Section 2.5.5.1]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.1 |
| 124 | /// |
| 125 | /// ### IPv4-Mapped IPv6 Addresses |
| 126 | /// |
| 127 | /// IPv4-mapped IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.2]. |
| 128 | /// The RFC describes the format of an "IPv4-Mapped IPv6 address" as follows: |
| 129 | /// |
| 130 | /// ```text |
| 131 | /// | 80 bits | 16 | 32 bits | |
| 132 | /// +--------------------------------------+--------------------------+ |
| 133 | /// |0000..............................0000|FFFF| IPv4 address | |
| 134 | /// +--------------------------------------+----+---------------------+ |
| 135 | /// ``` |
| 136 | /// So `::ffff:a.b.c.d` would be an IPv4-mapped IPv6 address representing the IPv4 address `a.b.c.d`. |
| 137 | /// |
| 138 | /// To convert from an IPv4 address to an IPv4-mapped IPv6 address, use [`Ipv4Addr::to_ipv6_mapped`]. |
| 139 | /// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-mapped IPv6 address to the canonical IPv4 address. |
| 140 | /// Note that this will also convert the IPv6 loopback address `::1` to `0.0.0.1`. Use |
| 141 | /// [`Ipv6Addr::to_ipv4_mapped`] to avoid this. |
| 142 | /// |
| 143 | /// [IETF RFC 4291 Section 2.5.5.2]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2 |
| 144 | /// |
| 145 | /// # Textual representation |
| 146 | /// |
| 147 | /// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent |
| 148 | /// an IPv6 address in text, but in general, each segments is written in hexadecimal |
| 149 | /// notation, and segments are separated by `:`. For more information, see |
| 150 | /// [IETF RFC 5952]. |
| 151 | /// |
| 152 | /// [`FromStr`]: crate::str::FromStr |
| 153 | /// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952 |
| 154 | /// |
| 155 | /// # Examples |
| 156 | /// |
| 157 | /// ``` |
| 158 | /// use std::net::Ipv6Addr; |
| 159 | /// |
| 160 | /// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1); |
| 161 | /// assert_eq!("::1" .parse(), Ok(localhost)); |
| 162 | /// assert_eq!(localhost.is_loopback(), true); |
| 163 | /// ``` |
| 164 | #[rustc_diagnostic_item = "Ipv6Addr" ] |
| 165 | #[derive (Copy, Clone, PartialEq, Eq)] |
| 166 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 167 | pub struct Ipv6Addr { |
| 168 | octets: [u8; 16], |
| 169 | } |
| 170 | |
| 171 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 172 | impl Hash for Ipv6Addr { |
| 173 | fn hash<H: Hasher>(&self, state: &mut H) { |
| 174 | // Hashers are often more efficient at hashing a fixed-width integer |
| 175 | // than a bytestring, so convert before hashing. We don't use to_bits() |
| 176 | // here as that may involve unnecessary byteswaps. |
| 177 | u128::from_ne_bytes(self.octets).hash(state); |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | /// Scope of an [IPv6 multicast address] as defined in [IETF RFC 7346 section 2]. |
| 182 | /// |
| 183 | /// # Stability Guarantees |
| 184 | /// |
| 185 | /// Not all possible values for a multicast scope have been assigned. |
| 186 | /// Future RFCs may introduce new scopes, which will be added as variants to this enum; |
| 187 | /// because of this the enum is marked as `#[non_exhaustive]`. |
| 188 | /// |
| 189 | /// # Examples |
| 190 | /// ``` |
| 191 | /// #![feature(ip)] |
| 192 | /// |
| 193 | /// use std::net::Ipv6Addr; |
| 194 | /// use std::net::Ipv6MulticastScope::*; |
| 195 | /// |
| 196 | /// // An IPv6 multicast address with global scope (`ff0e::`). |
| 197 | /// let address = Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0); |
| 198 | /// |
| 199 | /// // Will print "Global scope". |
| 200 | /// match address.multicast_scope() { |
| 201 | /// Some(InterfaceLocal) => println!("Interface-Local scope" ), |
| 202 | /// Some(LinkLocal) => println!("Link-Local scope" ), |
| 203 | /// Some(RealmLocal) => println!("Realm-Local scope" ), |
| 204 | /// Some(AdminLocal) => println!("Admin-Local scope" ), |
| 205 | /// Some(SiteLocal) => println!("Site-Local scope" ), |
| 206 | /// Some(OrganizationLocal) => println!("Organization-Local scope" ), |
| 207 | /// Some(Global) => println!("Global scope" ), |
| 208 | /// Some(_) => println!("Unknown scope" ), |
| 209 | /// None => println!("Not a multicast address!" ) |
| 210 | /// } |
| 211 | /// |
| 212 | /// ``` |
| 213 | /// |
| 214 | /// [IPv6 multicast address]: Ipv6Addr |
| 215 | /// [IETF RFC 7346 section 2]: https://tools.ietf.org/html/rfc7346#section-2 |
| 216 | #[derive (Copy, PartialEq, Eq, Clone, Hash, Debug)] |
| 217 | #[unstable (feature = "ip" , issue = "27709" )] |
| 218 | #[non_exhaustive ] |
| 219 | pub enum Ipv6MulticastScope { |
| 220 | /// Interface-Local scope. |
| 221 | InterfaceLocal, |
| 222 | /// Link-Local scope. |
| 223 | LinkLocal, |
| 224 | /// Realm-Local scope. |
| 225 | RealmLocal, |
| 226 | /// Admin-Local scope. |
| 227 | AdminLocal, |
| 228 | /// Site-Local scope. |
| 229 | SiteLocal, |
| 230 | /// Organization-Local scope. |
| 231 | OrganizationLocal, |
| 232 | /// Global scope. |
| 233 | Global, |
| 234 | } |
| 235 | |
| 236 | impl IpAddr { |
| 237 | /// Returns [`true`] for the special 'unspecified' address. |
| 238 | /// |
| 239 | /// See the documentation for [`Ipv4Addr::is_unspecified()`] and |
| 240 | /// [`Ipv6Addr::is_unspecified()`] for more details. |
| 241 | /// |
| 242 | /// # Examples |
| 243 | /// |
| 244 | /// ``` |
| 245 | /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 246 | /// |
| 247 | /// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true); |
| 248 | /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true); |
| 249 | /// ``` |
| 250 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 251 | #[stable (feature = "ip_shared" , since = "1.12.0" )] |
| 252 | #[must_use ] |
| 253 | #[inline ] |
| 254 | pub const fn is_unspecified(&self) -> bool { |
| 255 | match self { |
| 256 | IpAddr::V4(ip) => ip.is_unspecified(), |
| 257 | IpAddr::V6(ip) => ip.is_unspecified(), |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | /// Returns [`true`] if this is a loopback address. |
| 262 | /// |
| 263 | /// See the documentation for [`Ipv4Addr::is_loopback()`] and |
| 264 | /// [`Ipv6Addr::is_loopback()`] for more details. |
| 265 | /// |
| 266 | /// # Examples |
| 267 | /// |
| 268 | /// ``` |
| 269 | /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 270 | /// |
| 271 | /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true); |
| 272 | /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true); |
| 273 | /// ``` |
| 274 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 275 | #[stable (feature = "ip_shared" , since = "1.12.0" )] |
| 276 | #[must_use ] |
| 277 | #[inline ] |
| 278 | pub const fn is_loopback(&self) -> bool { |
| 279 | match self { |
| 280 | IpAddr::V4(ip) => ip.is_loopback(), |
| 281 | IpAddr::V6(ip) => ip.is_loopback(), |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | /// Returns [`true`] if the address appears to be globally routable. |
| 286 | /// |
| 287 | /// See the documentation for [`Ipv4Addr::is_global()`] and |
| 288 | /// [`Ipv6Addr::is_global()`] for more details. |
| 289 | /// |
| 290 | /// # Examples |
| 291 | /// |
| 292 | /// ``` |
| 293 | /// #![feature(ip)] |
| 294 | /// |
| 295 | /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 296 | /// |
| 297 | /// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true); |
| 298 | /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true); |
| 299 | /// ``` |
| 300 | #[unstable (feature = "ip" , issue = "27709" )] |
| 301 | #[must_use ] |
| 302 | #[inline ] |
| 303 | pub const fn is_global(&self) -> bool { |
| 304 | match self { |
| 305 | IpAddr::V4(ip) => ip.is_global(), |
| 306 | IpAddr::V6(ip) => ip.is_global(), |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | /// Returns [`true`] if this is a multicast address. |
| 311 | /// |
| 312 | /// See the documentation for [`Ipv4Addr::is_multicast()`] and |
| 313 | /// [`Ipv6Addr::is_multicast()`] for more details. |
| 314 | /// |
| 315 | /// # Examples |
| 316 | /// |
| 317 | /// ``` |
| 318 | /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 319 | /// |
| 320 | /// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true); |
| 321 | /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true); |
| 322 | /// ``` |
| 323 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 324 | #[stable (feature = "ip_shared" , since = "1.12.0" )] |
| 325 | #[must_use ] |
| 326 | #[inline ] |
| 327 | pub const fn is_multicast(&self) -> bool { |
| 328 | match self { |
| 329 | IpAddr::V4(ip) => ip.is_multicast(), |
| 330 | IpAddr::V6(ip) => ip.is_multicast(), |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | /// Returns [`true`] if this address is in a range designated for documentation. |
| 335 | /// |
| 336 | /// See the documentation for [`Ipv4Addr::is_documentation()`] and |
| 337 | /// [`Ipv6Addr::is_documentation()`] for more details. |
| 338 | /// |
| 339 | /// # Examples |
| 340 | /// |
| 341 | /// ``` |
| 342 | /// #![feature(ip)] |
| 343 | /// |
| 344 | /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 345 | /// |
| 346 | /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true); |
| 347 | /// assert_eq!( |
| 348 | /// IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(), |
| 349 | /// true |
| 350 | /// ); |
| 351 | /// ``` |
| 352 | #[unstable (feature = "ip" , issue = "27709" )] |
| 353 | #[must_use ] |
| 354 | #[inline ] |
| 355 | pub const fn is_documentation(&self) -> bool { |
| 356 | match self { |
| 357 | IpAddr::V4(ip) => ip.is_documentation(), |
| 358 | IpAddr::V6(ip) => ip.is_documentation(), |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | /// Returns [`true`] if this address is in a range designated for benchmarking. |
| 363 | /// |
| 364 | /// See the documentation for [`Ipv4Addr::is_benchmarking()`] and |
| 365 | /// [`Ipv6Addr::is_benchmarking()`] for more details. |
| 366 | /// |
| 367 | /// # Examples |
| 368 | /// |
| 369 | /// ``` |
| 370 | /// #![feature(ip)] |
| 371 | /// |
| 372 | /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 373 | /// |
| 374 | /// assert_eq!(IpAddr::V4(Ipv4Addr::new(198, 19, 255, 255)).is_benchmarking(), true); |
| 375 | /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0)).is_benchmarking(), true); |
| 376 | /// ``` |
| 377 | #[unstable (feature = "ip" , issue = "27709" )] |
| 378 | #[must_use ] |
| 379 | #[inline ] |
| 380 | pub const fn is_benchmarking(&self) -> bool { |
| 381 | match self { |
| 382 | IpAddr::V4(ip) => ip.is_benchmarking(), |
| 383 | IpAddr::V6(ip) => ip.is_benchmarking(), |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | /// Returns [`true`] if this address is an [`IPv4` address], and [`false`] |
| 388 | /// otherwise. |
| 389 | /// |
| 390 | /// [`IPv4` address]: IpAddr::V4 |
| 391 | /// |
| 392 | /// # Examples |
| 393 | /// |
| 394 | /// ``` |
| 395 | /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 396 | /// |
| 397 | /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true); |
| 398 | /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false); |
| 399 | /// ``` |
| 400 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 401 | #[stable (feature = "ipaddr_checker" , since = "1.16.0" )] |
| 402 | #[must_use ] |
| 403 | #[inline ] |
| 404 | pub const fn is_ipv4(&self) -> bool { |
| 405 | matches!(self, IpAddr::V4(_)) |
| 406 | } |
| 407 | |
| 408 | /// Returns [`true`] if this address is an [`IPv6` address], and [`false`] |
| 409 | /// otherwise. |
| 410 | /// |
| 411 | /// [`IPv6` address]: IpAddr::V6 |
| 412 | /// |
| 413 | /// # Examples |
| 414 | /// |
| 415 | /// ``` |
| 416 | /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 417 | /// |
| 418 | /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false); |
| 419 | /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true); |
| 420 | /// ``` |
| 421 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 422 | #[stable (feature = "ipaddr_checker" , since = "1.16.0" )] |
| 423 | #[must_use ] |
| 424 | #[inline ] |
| 425 | pub const fn is_ipv6(&self) -> bool { |
| 426 | matches!(self, IpAddr::V6(_)) |
| 427 | } |
| 428 | |
| 429 | /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped IPv6 |
| 430 | /// address, otherwise returns `self` as-is. |
| 431 | /// |
| 432 | /// # Examples |
| 433 | /// |
| 434 | /// ``` |
| 435 | /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 436 | /// |
| 437 | /// let localhost_v4 = Ipv4Addr::new(127, 0, 0, 1); |
| 438 | /// |
| 439 | /// assert_eq!(IpAddr::V4(localhost_v4).to_canonical(), localhost_v4); |
| 440 | /// assert_eq!(IpAddr::V6(localhost_v4.to_ipv6_mapped()).to_canonical(), localhost_v4); |
| 441 | /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).to_canonical().is_loopback(), true); |
| 442 | /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).is_loopback(), false); |
| 443 | /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).to_canonical().is_loopback(), true); |
| 444 | /// ``` |
| 445 | #[inline ] |
| 446 | #[must_use = "this returns the result of the operation, \ |
| 447 | without modifying the original" ] |
| 448 | #[stable (feature = "ip_to_canonical" , since = "1.75.0" )] |
| 449 | #[rustc_const_stable (feature = "ip_to_canonical" , since = "1.75.0" )] |
| 450 | pub const fn to_canonical(&self) -> IpAddr { |
| 451 | match self { |
| 452 | IpAddr::V4(_) => *self, |
| 453 | IpAddr::V6(v6) => v6.to_canonical(), |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | /// Returns the eight-bit integers this address consists of as a slice. |
| 458 | /// |
| 459 | /// # Examples |
| 460 | /// |
| 461 | /// ``` |
| 462 | /// #![feature(ip_as_octets)] |
| 463 | /// |
| 464 | /// use std::net::{Ipv4Addr, Ipv6Addr, IpAddr}; |
| 465 | /// |
| 466 | /// assert_eq!(IpAddr::V4(Ipv4Addr::LOCALHOST).as_octets(), &[127, 0, 0, 1]); |
| 467 | /// assert_eq!(IpAddr::V6(Ipv6Addr::LOCALHOST).as_octets(), |
| 468 | /// &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]) |
| 469 | /// ``` |
| 470 | #[unstable (feature = "ip_as_octets" , issue = "137259" )] |
| 471 | #[inline ] |
| 472 | pub const fn as_octets(&self) -> &[u8] { |
| 473 | match self { |
| 474 | IpAddr::V4(ip) => ip.as_octets().as_slice(), |
| 475 | IpAddr::V6(ip) => ip.as_octets().as_slice(), |
| 476 | } |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | impl Ipv4Addr { |
| 481 | /// Creates a new IPv4 address from four eight-bit octets. |
| 482 | /// |
| 483 | /// The result will represent the IP address `a`.`b`.`c`.`d`. |
| 484 | /// |
| 485 | /// # Examples |
| 486 | /// |
| 487 | /// ``` |
| 488 | /// use std::net::Ipv4Addr; |
| 489 | /// |
| 490 | /// let addr = Ipv4Addr::new(127, 0, 0, 1); |
| 491 | /// ``` |
| 492 | #[rustc_const_stable (feature = "const_ip_32" , since = "1.32.0" )] |
| 493 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 494 | #[must_use ] |
| 495 | #[inline ] |
| 496 | pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr { |
| 497 | Ipv4Addr { octets: [a, b, c, d] } |
| 498 | } |
| 499 | |
| 500 | /// The size of an IPv4 address in bits. |
| 501 | /// |
| 502 | /// # Examples |
| 503 | /// |
| 504 | /// ``` |
| 505 | /// use std::net::Ipv4Addr; |
| 506 | /// |
| 507 | /// assert_eq!(Ipv4Addr::BITS, 32); |
| 508 | /// ``` |
| 509 | #[stable (feature = "ip_bits" , since = "1.80.0" )] |
| 510 | pub const BITS: u32 = 32; |
| 511 | |
| 512 | /// Converts an IPv4 address into a `u32` representation using native byte order. |
| 513 | /// |
| 514 | /// Although IPv4 addresses are big-endian, the `u32` value will use the target platform's |
| 515 | /// native byte order. That is, the `u32` value is an integer representation of the IPv4 |
| 516 | /// address and not an integer interpretation of the IPv4 address's big-endian bitstring. This |
| 517 | /// means that the `u32` value masked with `0xffffff00` will set the last octet in the address |
| 518 | /// to 0, regardless of the target platform's endianness. |
| 519 | /// |
| 520 | /// # Examples |
| 521 | /// |
| 522 | /// ``` |
| 523 | /// use std::net::Ipv4Addr; |
| 524 | /// |
| 525 | /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78); |
| 526 | /// assert_eq!(0x12345678, addr.to_bits()); |
| 527 | /// ``` |
| 528 | /// |
| 529 | /// ``` |
| 530 | /// use std::net::Ipv4Addr; |
| 531 | /// |
| 532 | /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78); |
| 533 | /// let addr_bits = addr.to_bits() & 0xffffff00; |
| 534 | /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x00), Ipv4Addr::from_bits(addr_bits)); |
| 535 | /// |
| 536 | /// ``` |
| 537 | #[rustc_const_stable (feature = "ip_bits" , since = "1.80.0" )] |
| 538 | #[stable (feature = "ip_bits" , since = "1.80.0" )] |
| 539 | #[must_use ] |
| 540 | #[inline ] |
| 541 | pub const fn to_bits(self) -> u32 { |
| 542 | u32::from_be_bytes(self.octets) |
| 543 | } |
| 544 | |
| 545 | /// Converts a native byte order `u32` into an IPv4 address. |
| 546 | /// |
| 547 | /// See [`Ipv4Addr::to_bits`] for an explanation on endianness. |
| 548 | /// |
| 549 | /// # Examples |
| 550 | /// |
| 551 | /// ``` |
| 552 | /// use std::net::Ipv4Addr; |
| 553 | /// |
| 554 | /// let addr = Ipv4Addr::from_bits(0x12345678); |
| 555 | /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78), addr); |
| 556 | /// ``` |
| 557 | #[rustc_const_stable (feature = "ip_bits" , since = "1.80.0" )] |
| 558 | #[stable (feature = "ip_bits" , since = "1.80.0" )] |
| 559 | #[must_use ] |
| 560 | #[inline ] |
| 561 | pub const fn from_bits(bits: u32) -> Ipv4Addr { |
| 562 | Ipv4Addr { octets: bits.to_be_bytes() } |
| 563 | } |
| 564 | |
| 565 | /// An IPv4 address with the address pointing to localhost: `127.0.0.1` |
| 566 | /// |
| 567 | /// # Examples |
| 568 | /// |
| 569 | /// ``` |
| 570 | /// use std::net::Ipv4Addr; |
| 571 | /// |
| 572 | /// let addr = Ipv4Addr::LOCALHOST; |
| 573 | /// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1)); |
| 574 | /// ``` |
| 575 | #[stable (feature = "ip_constructors" , since = "1.30.0" )] |
| 576 | pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1); |
| 577 | |
| 578 | /// An IPv4 address representing an unspecified address: `0.0.0.0` |
| 579 | /// |
| 580 | /// This corresponds to the constant `INADDR_ANY` in other languages. |
| 581 | /// |
| 582 | /// # Examples |
| 583 | /// |
| 584 | /// ``` |
| 585 | /// use std::net::Ipv4Addr; |
| 586 | /// |
| 587 | /// let addr = Ipv4Addr::UNSPECIFIED; |
| 588 | /// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0)); |
| 589 | /// ``` |
| 590 | #[doc (alias = "INADDR_ANY" )] |
| 591 | #[stable (feature = "ip_constructors" , since = "1.30.0" )] |
| 592 | pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0); |
| 593 | |
| 594 | /// An IPv4 address representing the broadcast address: `255.255.255.255`. |
| 595 | /// |
| 596 | /// # Examples |
| 597 | /// |
| 598 | /// ``` |
| 599 | /// use std::net::Ipv4Addr; |
| 600 | /// |
| 601 | /// let addr = Ipv4Addr::BROADCAST; |
| 602 | /// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255)); |
| 603 | /// ``` |
| 604 | #[stable (feature = "ip_constructors" , since = "1.30.0" )] |
| 605 | pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255); |
| 606 | |
| 607 | /// Returns the four eight-bit integers that make up this address. |
| 608 | /// |
| 609 | /// # Examples |
| 610 | /// |
| 611 | /// ``` |
| 612 | /// use std::net::Ipv4Addr; |
| 613 | /// |
| 614 | /// let addr = Ipv4Addr::new(127, 0, 0, 1); |
| 615 | /// assert_eq!(addr.octets(), [127, 0, 0, 1]); |
| 616 | /// ``` |
| 617 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 618 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 619 | #[must_use ] |
| 620 | #[inline ] |
| 621 | pub const fn octets(&self) -> [u8; 4] { |
| 622 | self.octets |
| 623 | } |
| 624 | |
| 625 | /// Creates an `Ipv4Addr` from a four element byte array. |
| 626 | /// |
| 627 | /// # Examples |
| 628 | /// |
| 629 | /// ``` |
| 630 | /// #![feature(ip_from)] |
| 631 | /// use std::net::Ipv4Addr; |
| 632 | /// |
| 633 | /// let addr = Ipv4Addr::from_octets([13u8, 12u8, 11u8, 10u8]); |
| 634 | /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr); |
| 635 | /// ``` |
| 636 | #[unstable (feature = "ip_from" , issue = "131360" )] |
| 637 | #[must_use ] |
| 638 | #[inline ] |
| 639 | pub const fn from_octets(octets: [u8; 4]) -> Ipv4Addr { |
| 640 | Ipv4Addr { octets } |
| 641 | } |
| 642 | |
| 643 | /// Returns the four eight-bit integers that make up this address |
| 644 | /// as a slice. |
| 645 | /// |
| 646 | /// # Examples |
| 647 | /// |
| 648 | /// ``` |
| 649 | /// #![feature(ip_as_octets)] |
| 650 | /// |
| 651 | /// use std::net::Ipv4Addr; |
| 652 | /// |
| 653 | /// let addr = Ipv4Addr::new(127, 0, 0, 1); |
| 654 | /// assert_eq!(addr.as_octets(), &[127, 0, 0, 1]); |
| 655 | /// ``` |
| 656 | #[unstable (feature = "ip_as_octets" , issue = "137259" )] |
| 657 | #[inline ] |
| 658 | pub const fn as_octets(&self) -> &[u8; 4] { |
| 659 | &self.octets |
| 660 | } |
| 661 | |
| 662 | /// Returns [`true`] for the special 'unspecified' address (`0.0.0.0`). |
| 663 | /// |
| 664 | /// This property is defined in _UNIX Network Programming, Second Edition_, |
| 665 | /// W. Richard Stevens, p. 891; see also [ip7]. |
| 666 | /// |
| 667 | /// [ip7]: https://man7.org/linux/man-pages/man7/ip.7.html |
| 668 | /// |
| 669 | /// # Examples |
| 670 | /// |
| 671 | /// ``` |
| 672 | /// use std::net::Ipv4Addr; |
| 673 | /// |
| 674 | /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true); |
| 675 | /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false); |
| 676 | /// ``` |
| 677 | #[rustc_const_stable (feature = "const_ip_32" , since = "1.32.0" )] |
| 678 | #[stable (feature = "ip_shared" , since = "1.12.0" )] |
| 679 | #[must_use ] |
| 680 | #[inline ] |
| 681 | pub const fn is_unspecified(&self) -> bool { |
| 682 | u32::from_be_bytes(self.octets) == 0 |
| 683 | } |
| 684 | |
| 685 | /// Returns [`true`] if this is a loopback address (`127.0.0.0/8`). |
| 686 | /// |
| 687 | /// This property is defined by [IETF RFC 1122]. |
| 688 | /// |
| 689 | /// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122 |
| 690 | /// |
| 691 | /// # Examples |
| 692 | /// |
| 693 | /// ``` |
| 694 | /// use std::net::Ipv4Addr; |
| 695 | /// |
| 696 | /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true); |
| 697 | /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false); |
| 698 | /// ``` |
| 699 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 700 | #[stable (since = "1.7.0" , feature = "ip_17" )] |
| 701 | #[must_use ] |
| 702 | #[inline ] |
| 703 | pub const fn is_loopback(&self) -> bool { |
| 704 | self.octets()[0] == 127 |
| 705 | } |
| 706 | |
| 707 | /// Returns [`true`] if this is a private address. |
| 708 | /// |
| 709 | /// The private address ranges are defined in [IETF RFC 1918] and include: |
| 710 | /// |
| 711 | /// - `10.0.0.0/8` |
| 712 | /// - `172.16.0.0/12` |
| 713 | /// - `192.168.0.0/16` |
| 714 | /// |
| 715 | /// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918 |
| 716 | /// |
| 717 | /// # Examples |
| 718 | /// |
| 719 | /// ``` |
| 720 | /// use std::net::Ipv4Addr; |
| 721 | /// |
| 722 | /// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true); |
| 723 | /// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true); |
| 724 | /// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true); |
| 725 | /// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true); |
| 726 | /// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false); |
| 727 | /// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true); |
| 728 | /// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false); |
| 729 | /// ``` |
| 730 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 731 | #[stable (since = "1.7.0" , feature = "ip_17" )] |
| 732 | #[must_use ] |
| 733 | #[inline ] |
| 734 | pub const fn is_private(&self) -> bool { |
| 735 | match self.octets() { |
| 736 | [10, ..] => true, |
| 737 | [172, b, ..] if b >= 16 && b <= 31 => true, |
| 738 | [192, 168, ..] => true, |
| 739 | _ => false, |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | /// Returns [`true`] if the address is link-local (`169.254.0.0/16`). |
| 744 | /// |
| 745 | /// This property is defined by [IETF RFC 3927]. |
| 746 | /// |
| 747 | /// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927 |
| 748 | /// |
| 749 | /// # Examples |
| 750 | /// |
| 751 | /// ``` |
| 752 | /// use std::net::Ipv4Addr; |
| 753 | /// |
| 754 | /// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true); |
| 755 | /// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true); |
| 756 | /// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false); |
| 757 | /// ``` |
| 758 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 759 | #[stable (since = "1.7.0" , feature = "ip_17" )] |
| 760 | #[must_use ] |
| 761 | #[inline ] |
| 762 | pub const fn is_link_local(&self) -> bool { |
| 763 | matches!(self.octets(), [169, 254, ..]) |
| 764 | } |
| 765 | |
| 766 | /// Returns [`true`] if the address appears to be globally reachable |
| 767 | /// as specified by the [IANA IPv4 Special-Purpose Address Registry]. |
| 768 | /// |
| 769 | /// Whether or not an address is practically reachable will depend on your |
| 770 | /// network configuration. Most IPv4 addresses are globally reachable, unless |
| 771 | /// they are specifically defined as *not* globally reachable. |
| 772 | /// |
| 773 | /// Non-exhaustive list of notable addresses that are not globally reachable: |
| 774 | /// |
| 775 | /// - The [unspecified address] ([`is_unspecified`](Ipv4Addr::is_unspecified)) |
| 776 | /// - Addresses reserved for private use ([`is_private`](Ipv4Addr::is_private)) |
| 777 | /// - Addresses in the shared address space ([`is_shared`](Ipv4Addr::is_shared)) |
| 778 | /// - Loopback addresses ([`is_loopback`](Ipv4Addr::is_loopback)) |
| 779 | /// - Link-local addresses ([`is_link_local`](Ipv4Addr::is_link_local)) |
| 780 | /// - Addresses reserved for documentation ([`is_documentation`](Ipv4Addr::is_documentation)) |
| 781 | /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv4Addr::is_benchmarking)) |
| 782 | /// - Reserved addresses ([`is_reserved`](Ipv4Addr::is_reserved)) |
| 783 | /// - The [broadcast address] ([`is_broadcast`](Ipv4Addr::is_broadcast)) |
| 784 | /// |
| 785 | /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv4 Special-Purpose Address Registry]. |
| 786 | /// |
| 787 | /// [IANA IPv4 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml |
| 788 | /// [unspecified address]: Ipv4Addr::UNSPECIFIED |
| 789 | /// [broadcast address]: Ipv4Addr::BROADCAST |
| 790 | |
| 791 | /// |
| 792 | /// # Examples |
| 793 | /// |
| 794 | /// ``` |
| 795 | /// #![feature(ip)] |
| 796 | /// |
| 797 | /// use std::net::Ipv4Addr; |
| 798 | /// |
| 799 | /// // Most IPv4 addresses are globally reachable: |
| 800 | /// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true); |
| 801 | /// |
| 802 | /// // However some addresses have been assigned a special meaning |
| 803 | /// // that makes them not globally reachable. Some examples are: |
| 804 | /// |
| 805 | /// // The unspecified address (`0.0.0.0`) |
| 806 | /// assert_eq!(Ipv4Addr::UNSPECIFIED.is_global(), false); |
| 807 | /// |
| 808 | /// // Addresses reserved for private use (`10.0.0.0/8`, `172.16.0.0/12`, 192.168.0.0/16) |
| 809 | /// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false); |
| 810 | /// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false); |
| 811 | /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false); |
| 812 | /// |
| 813 | /// // Addresses in the shared address space (`100.64.0.0/10`) |
| 814 | /// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false); |
| 815 | /// |
| 816 | /// // The loopback addresses (`127.0.0.0/8`) |
| 817 | /// assert_eq!(Ipv4Addr::LOCALHOST.is_global(), false); |
| 818 | /// |
| 819 | /// // Link-local addresses (`169.254.0.0/16`) |
| 820 | /// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false); |
| 821 | /// |
| 822 | /// // Addresses reserved for documentation (`192.0.2.0/24`, `198.51.100.0/24`, `203.0.113.0/24`) |
| 823 | /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false); |
| 824 | /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false); |
| 825 | /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false); |
| 826 | /// |
| 827 | /// // Addresses reserved for benchmarking (`198.18.0.0/15`) |
| 828 | /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false); |
| 829 | /// |
| 830 | /// // Reserved addresses (`240.0.0.0/4`) |
| 831 | /// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false); |
| 832 | /// |
| 833 | /// // The broadcast address (`255.255.255.255`) |
| 834 | /// assert_eq!(Ipv4Addr::BROADCAST.is_global(), false); |
| 835 | /// |
| 836 | /// // For a complete overview see the IANA IPv4 Special-Purpose Address Registry. |
| 837 | /// ``` |
| 838 | #[unstable (feature = "ip" , issue = "27709" )] |
| 839 | #[must_use ] |
| 840 | #[inline ] |
| 841 | pub const fn is_global(&self) -> bool { |
| 842 | !(self.octets()[0] == 0 // "This network" |
| 843 | || self.is_private() |
| 844 | || self.is_shared() |
| 845 | || self.is_loopback() |
| 846 | || self.is_link_local() |
| 847 | // addresses reserved for future protocols (`192.0.0.0/24`) |
| 848 | // .9 and .10 are documented as globally reachable so they're excluded |
| 849 | || ( |
| 850 | self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0 |
| 851 | && self.octets()[3] != 9 && self.octets()[3] != 10 |
| 852 | ) |
| 853 | || self.is_documentation() |
| 854 | || self.is_benchmarking() |
| 855 | || self.is_reserved() |
| 856 | || self.is_broadcast()) |
| 857 | } |
| 858 | |
| 859 | /// Returns [`true`] if this address is part of the Shared Address Space defined in |
| 860 | /// [IETF RFC 6598] (`100.64.0.0/10`). |
| 861 | /// |
| 862 | /// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598 |
| 863 | /// |
| 864 | /// # Examples |
| 865 | /// |
| 866 | /// ``` |
| 867 | /// #![feature(ip)] |
| 868 | /// use std::net::Ipv4Addr; |
| 869 | /// |
| 870 | /// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true); |
| 871 | /// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true); |
| 872 | /// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false); |
| 873 | /// ``` |
| 874 | #[unstable (feature = "ip" , issue = "27709" )] |
| 875 | #[must_use ] |
| 876 | #[inline ] |
| 877 | pub const fn is_shared(&self) -> bool { |
| 878 | self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000) |
| 879 | } |
| 880 | |
| 881 | /// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for |
| 882 | /// network devices benchmarking. |
| 883 | /// |
| 884 | /// This range is defined in [IETF RFC 2544] as `192.18.0.0` through |
| 885 | /// `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`. |
| 886 | /// |
| 887 | /// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544 |
| 888 | /// [errata 423]: https://www.rfc-editor.org/errata/eid423 |
| 889 | /// |
| 890 | /// # Examples |
| 891 | /// |
| 892 | /// ``` |
| 893 | /// #![feature(ip)] |
| 894 | /// use std::net::Ipv4Addr; |
| 895 | /// |
| 896 | /// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false); |
| 897 | /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true); |
| 898 | /// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true); |
| 899 | /// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false); |
| 900 | /// ``` |
| 901 | #[unstable (feature = "ip" , issue = "27709" )] |
| 902 | #[must_use ] |
| 903 | #[inline ] |
| 904 | pub const fn is_benchmarking(&self) -> bool { |
| 905 | self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18 |
| 906 | } |
| 907 | |
| 908 | /// Returns [`true`] if this address is reserved by IANA for future use. |
| 909 | /// |
| 910 | /// [IETF RFC 1112] defines the block of reserved addresses as `240.0.0.0/4`. |
| 911 | /// This range normally includes the broadcast address `255.255.255.255`, but |
| 912 | /// this implementation explicitly excludes it, since it is obviously not |
| 913 | /// reserved for future use. |
| 914 | /// |
| 915 | /// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112 |
| 916 | /// |
| 917 | /// # Warning |
| 918 | /// |
| 919 | /// As IANA assigns new addresses, this method will be |
| 920 | /// updated. This may result in non-reserved addresses being |
| 921 | /// treated as reserved in code that relies on an outdated version |
| 922 | /// of this method. |
| 923 | /// |
| 924 | /// # Examples |
| 925 | /// |
| 926 | /// ``` |
| 927 | /// #![feature(ip)] |
| 928 | /// use std::net::Ipv4Addr; |
| 929 | /// |
| 930 | /// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true); |
| 931 | /// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true); |
| 932 | /// |
| 933 | /// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false); |
| 934 | /// // The broadcast address is not considered as reserved for future use by this implementation |
| 935 | /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false); |
| 936 | /// ``` |
| 937 | #[unstable (feature = "ip" , issue = "27709" )] |
| 938 | #[must_use ] |
| 939 | #[inline ] |
| 940 | pub const fn is_reserved(&self) -> bool { |
| 941 | self.octets()[0] & 240 == 240 && !self.is_broadcast() |
| 942 | } |
| 943 | |
| 944 | /// Returns [`true`] if this is a multicast address (`224.0.0.0/4`). |
| 945 | /// |
| 946 | /// Multicast addresses have a most significant octet between `224` and `239`, |
| 947 | /// and is defined by [IETF RFC 5771]. |
| 948 | /// |
| 949 | /// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771 |
| 950 | /// |
| 951 | /// # Examples |
| 952 | /// |
| 953 | /// ``` |
| 954 | /// use std::net::Ipv4Addr; |
| 955 | /// |
| 956 | /// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true); |
| 957 | /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true); |
| 958 | /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false); |
| 959 | /// ``` |
| 960 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 961 | #[stable (since = "1.7.0" , feature = "ip_17" )] |
| 962 | #[must_use ] |
| 963 | #[inline ] |
| 964 | pub const fn is_multicast(&self) -> bool { |
| 965 | self.octets()[0] >= 224 && self.octets()[0] <= 239 |
| 966 | } |
| 967 | |
| 968 | /// Returns [`true`] if this is a broadcast address (`255.255.255.255`). |
| 969 | /// |
| 970 | /// A broadcast address has all octets set to `255` as defined in [IETF RFC 919]. |
| 971 | /// |
| 972 | /// [IETF RFC 919]: https://tools.ietf.org/html/rfc919 |
| 973 | /// |
| 974 | /// # Examples |
| 975 | /// |
| 976 | /// ``` |
| 977 | /// use std::net::Ipv4Addr; |
| 978 | /// |
| 979 | /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true); |
| 980 | /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false); |
| 981 | /// ``` |
| 982 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 983 | #[stable (since = "1.7.0" , feature = "ip_17" )] |
| 984 | #[must_use ] |
| 985 | #[inline ] |
| 986 | pub const fn is_broadcast(&self) -> bool { |
| 987 | u32::from_be_bytes(self.octets()) == u32::from_be_bytes(Self::BROADCAST.octets()) |
| 988 | } |
| 989 | |
| 990 | /// Returns [`true`] if this address is in a range designated for documentation. |
| 991 | /// |
| 992 | /// This is defined in [IETF RFC 5737]: |
| 993 | /// |
| 994 | /// - `192.0.2.0/24` (TEST-NET-1) |
| 995 | /// - `198.51.100.0/24` (TEST-NET-2) |
| 996 | /// - `203.0.113.0/24` (TEST-NET-3) |
| 997 | /// |
| 998 | /// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737 |
| 999 | /// |
| 1000 | /// # Examples |
| 1001 | /// |
| 1002 | /// ``` |
| 1003 | /// use std::net::Ipv4Addr; |
| 1004 | /// |
| 1005 | /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true); |
| 1006 | /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true); |
| 1007 | /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true); |
| 1008 | /// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false); |
| 1009 | /// ``` |
| 1010 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 1011 | #[stable (since = "1.7.0" , feature = "ip_17" )] |
| 1012 | #[must_use ] |
| 1013 | #[inline ] |
| 1014 | pub const fn is_documentation(&self) -> bool { |
| 1015 | matches!(self.octets(), [192, 0, 2, _] | [198, 51, 100, _] | [203, 0, 113, _]) |
| 1016 | } |
| 1017 | |
| 1018 | /// Converts this address to an [IPv4-compatible] [`IPv6` address]. |
| 1019 | /// |
| 1020 | /// `a.b.c.d` becomes `::a.b.c.d` |
| 1021 | /// |
| 1022 | /// Note that IPv4-compatible addresses have been officially deprecated. |
| 1023 | /// If you don't explicitly need an IPv4-compatible address for legacy reasons, consider using `to_ipv6_mapped` instead. |
| 1024 | /// |
| 1025 | /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses |
| 1026 | /// [`IPv6` address]: Ipv6Addr |
| 1027 | /// |
| 1028 | /// # Examples |
| 1029 | /// |
| 1030 | /// ``` |
| 1031 | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
| 1032 | /// |
| 1033 | /// assert_eq!( |
| 1034 | /// Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(), |
| 1035 | /// Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff) |
| 1036 | /// ); |
| 1037 | /// ``` |
| 1038 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 1039 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1040 | #[must_use = "this returns the result of the operation, \ |
| 1041 | without modifying the original" ] |
| 1042 | #[inline ] |
| 1043 | pub const fn to_ipv6_compatible(&self) -> Ipv6Addr { |
| 1044 | let [a, b, c, d] = self.octets(); |
| 1045 | Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d] } |
| 1046 | } |
| 1047 | |
| 1048 | /// Converts this address to an [IPv4-mapped] [`IPv6` address]. |
| 1049 | /// |
| 1050 | /// `a.b.c.d` becomes `::ffff:a.b.c.d` |
| 1051 | /// |
| 1052 | /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses |
| 1053 | /// [`IPv6` address]: Ipv6Addr |
| 1054 | /// |
| 1055 | /// # Examples |
| 1056 | /// |
| 1057 | /// ``` |
| 1058 | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
| 1059 | /// |
| 1060 | /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(), |
| 1061 | /// Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff)); |
| 1062 | /// ``` |
| 1063 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 1064 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1065 | #[must_use = "this returns the result of the operation, \ |
| 1066 | without modifying the original" ] |
| 1067 | #[inline ] |
| 1068 | pub const fn to_ipv6_mapped(&self) -> Ipv6Addr { |
| 1069 | let [a, b, c, d] = self.octets(); |
| 1070 | Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d] } |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | #[stable (feature = "ip_addr" , since = "1.7.0" )] |
| 1075 | impl fmt::Display for IpAddr { |
| 1076 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1077 | match self { |
| 1078 | IpAddr::V4(ip: &Ipv4Addr) => ip.fmt(fmt), |
| 1079 | IpAddr::V6(ip: &Ipv6Addr) => ip.fmt(fmt), |
| 1080 | } |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | #[stable (feature = "ip_addr" , since = "1.7.0" )] |
| 1085 | impl fmt::Debug for IpAddr { |
| 1086 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1087 | fmt::Display::fmt(self, f:fmt) |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | #[stable (feature = "ip_from_ip" , since = "1.16.0" )] |
| 1092 | impl From<Ipv4Addr> for IpAddr { |
| 1093 | /// Copies this address to a new `IpAddr::V4`. |
| 1094 | /// |
| 1095 | /// # Examples |
| 1096 | /// |
| 1097 | /// ``` |
| 1098 | /// use std::net::{IpAddr, Ipv4Addr}; |
| 1099 | /// |
| 1100 | /// let addr = Ipv4Addr::new(127, 0, 0, 1); |
| 1101 | /// |
| 1102 | /// assert_eq!( |
| 1103 | /// IpAddr::V4(addr), |
| 1104 | /// IpAddr::from(addr) |
| 1105 | /// ) |
| 1106 | /// ``` |
| 1107 | #[inline ] |
| 1108 | fn from(ipv4: Ipv4Addr) -> IpAddr { |
| 1109 | IpAddr::V4(ipv4) |
| 1110 | } |
| 1111 | } |
| 1112 | |
| 1113 | #[stable (feature = "ip_from_ip" , since = "1.16.0" )] |
| 1114 | impl From<Ipv6Addr> for IpAddr { |
| 1115 | /// Copies this address to a new `IpAddr::V6`. |
| 1116 | /// |
| 1117 | /// # Examples |
| 1118 | /// |
| 1119 | /// ``` |
| 1120 | /// use std::net::{IpAddr, Ipv6Addr}; |
| 1121 | /// |
| 1122 | /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff); |
| 1123 | /// |
| 1124 | /// assert_eq!( |
| 1125 | /// IpAddr::V6(addr), |
| 1126 | /// IpAddr::from(addr) |
| 1127 | /// ); |
| 1128 | /// ``` |
| 1129 | #[inline ] |
| 1130 | fn from(ipv6: Ipv6Addr) -> IpAddr { |
| 1131 | IpAddr::V6(ipv6) |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1136 | impl fmt::Display for Ipv4Addr { |
| 1137 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1138 | let octets: [u8; 4] = self.octets(); |
| 1139 | |
| 1140 | // If there are no alignment requirements, write the IP address directly to `f`. |
| 1141 | // Otherwise, write it to a local buffer and then use `f.pad`. |
| 1142 | if fmt.precision().is_none() && fmt.width().is_none() { |
| 1143 | write!(fmt, " {}. {}. {}. {}" , octets[0], octets[1], octets[2], octets[3]) |
| 1144 | } else { |
| 1145 | const LONGEST_IPV4_ADDR: &str = "255.255.255.255" ; |
| 1146 | |
| 1147 | let mut buf: DisplayBuffer<_> = DisplayBuffer::<{ LONGEST_IPV4_ADDR.len() }>::new(); |
| 1148 | // Buffer is long enough for the longest possible IPv4 address, so this should never fail. |
| 1149 | write!(buf, " {}. {}. {}. {}" , octets[0], octets[1], octets[2], octets[3]).unwrap(); |
| 1150 | |
| 1151 | fmt.pad(buf.as_str()) |
| 1152 | } |
| 1153 | } |
| 1154 | } |
| 1155 | |
| 1156 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1157 | impl fmt::Debug for Ipv4Addr { |
| 1158 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1159 | fmt::Display::fmt(self, f:fmt) |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | #[stable (feature = "ip_cmp" , since = "1.16.0" )] |
| 1164 | impl PartialEq<Ipv4Addr> for IpAddr { |
| 1165 | #[inline ] |
| 1166 | fn eq(&self, other: &Ipv4Addr) -> bool { |
| 1167 | match self { |
| 1168 | IpAddr::V4(v4: &Ipv4Addr) => v4 == other, |
| 1169 | IpAddr::V6(_) => false, |
| 1170 | } |
| 1171 | } |
| 1172 | } |
| 1173 | |
| 1174 | #[stable (feature = "ip_cmp" , since = "1.16.0" )] |
| 1175 | impl PartialEq<IpAddr> for Ipv4Addr { |
| 1176 | #[inline ] |
| 1177 | fn eq(&self, other: &IpAddr) -> bool { |
| 1178 | match other { |
| 1179 | IpAddr::V4(v4: &Ipv4Addr) => self == v4, |
| 1180 | IpAddr::V6(_) => false, |
| 1181 | } |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1186 | impl PartialOrd for Ipv4Addr { |
| 1187 | #[inline ] |
| 1188 | fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> { |
| 1189 | Some(self.cmp(other)) |
| 1190 | } |
| 1191 | } |
| 1192 | |
| 1193 | #[stable (feature = "ip_cmp" , since = "1.16.0" )] |
| 1194 | impl PartialOrd<Ipv4Addr> for IpAddr { |
| 1195 | #[inline ] |
| 1196 | fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> { |
| 1197 | match self { |
| 1198 | IpAddr::V4(v4: &Ipv4Addr) => v4.partial_cmp(other), |
| 1199 | IpAddr::V6(_) => Some(Ordering::Greater), |
| 1200 | } |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | #[stable (feature = "ip_cmp" , since = "1.16.0" )] |
| 1205 | impl PartialOrd<IpAddr> for Ipv4Addr { |
| 1206 | #[inline ] |
| 1207 | fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> { |
| 1208 | match other { |
| 1209 | IpAddr::V4(v4: &Ipv4Addr) => self.partial_cmp(v4), |
| 1210 | IpAddr::V6(_) => Some(Ordering::Less), |
| 1211 | } |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1216 | impl Ord for Ipv4Addr { |
| 1217 | #[inline ] |
| 1218 | fn cmp(&self, other: &Ipv4Addr) -> Ordering { |
| 1219 | self.octets.cmp(&other.octets) |
| 1220 | } |
| 1221 | } |
| 1222 | |
| 1223 | #[stable (feature = "ip_u32" , since = "1.1.0" )] |
| 1224 | impl From<Ipv4Addr> for u32 { |
| 1225 | /// Uses [`Ipv4Addr::to_bits`] to convert an IPv4 address to a host byte order `u32`. |
| 1226 | #[inline ] |
| 1227 | fn from(ip: Ipv4Addr) -> u32 { |
| 1228 | ip.to_bits() |
| 1229 | } |
| 1230 | } |
| 1231 | |
| 1232 | #[stable (feature = "ip_u32" , since = "1.1.0" )] |
| 1233 | impl From<u32> for Ipv4Addr { |
| 1234 | /// Uses [`Ipv4Addr::from_bits`] to convert a host byte order `u32` into an IPv4 address. |
| 1235 | #[inline ] |
| 1236 | fn from(ip: u32) -> Ipv4Addr { |
| 1237 | Ipv4Addr::from_bits(ip) |
| 1238 | } |
| 1239 | } |
| 1240 | |
| 1241 | #[stable (feature = "from_slice_v4" , since = "1.9.0" )] |
| 1242 | impl From<[u8; 4]> for Ipv4Addr { |
| 1243 | /// Creates an `Ipv4Addr` from a four element byte array. |
| 1244 | /// |
| 1245 | /// # Examples |
| 1246 | /// |
| 1247 | /// ``` |
| 1248 | /// use std::net::Ipv4Addr; |
| 1249 | /// |
| 1250 | /// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]); |
| 1251 | /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr); |
| 1252 | /// ``` |
| 1253 | #[inline ] |
| 1254 | fn from(octets: [u8; 4]) -> Ipv4Addr { |
| 1255 | Ipv4Addr { octets } |
| 1256 | } |
| 1257 | } |
| 1258 | |
| 1259 | #[stable (feature = "ip_from_slice" , since = "1.17.0" )] |
| 1260 | impl From<[u8; 4]> for IpAddr { |
| 1261 | /// Creates an `IpAddr::V4` from a four element byte array. |
| 1262 | /// |
| 1263 | /// # Examples |
| 1264 | /// |
| 1265 | /// ``` |
| 1266 | /// use std::net::{IpAddr, Ipv4Addr}; |
| 1267 | /// |
| 1268 | /// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]); |
| 1269 | /// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr); |
| 1270 | /// ``` |
| 1271 | #[inline ] |
| 1272 | fn from(octets: [u8; 4]) -> IpAddr { |
| 1273 | IpAddr::V4(Ipv4Addr::from(octets)) |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | impl Ipv6Addr { |
| 1278 | /// Creates a new IPv6 address from eight 16-bit segments. |
| 1279 | /// |
| 1280 | /// The result will represent the IP address `a:b:c:d:e:f:g:h`. |
| 1281 | /// |
| 1282 | /// # Examples |
| 1283 | /// |
| 1284 | /// ``` |
| 1285 | /// use std::net::Ipv6Addr; |
| 1286 | /// |
| 1287 | /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff); |
| 1288 | /// ``` |
| 1289 | #[rustc_const_stable (feature = "const_ip_32" , since = "1.32.0" )] |
| 1290 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1291 | #[must_use ] |
| 1292 | #[inline ] |
| 1293 | pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr { |
| 1294 | let addr16 = [ |
| 1295 | a.to_be(), |
| 1296 | b.to_be(), |
| 1297 | c.to_be(), |
| 1298 | d.to_be(), |
| 1299 | e.to_be(), |
| 1300 | f.to_be(), |
| 1301 | g.to_be(), |
| 1302 | h.to_be(), |
| 1303 | ]; |
| 1304 | Ipv6Addr { |
| 1305 | // All elements in `addr16` are big endian. |
| 1306 | // SAFETY: `[u16; 8]` is always safe to transmute to `[u8; 16]`. |
| 1307 | octets: unsafe { transmute::<_, [u8; 16]>(addr16) }, |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | /// The size of an IPv6 address in bits. |
| 1312 | /// |
| 1313 | /// # Examples |
| 1314 | /// |
| 1315 | /// ``` |
| 1316 | /// use std::net::Ipv6Addr; |
| 1317 | /// |
| 1318 | /// assert_eq!(Ipv6Addr::BITS, 128); |
| 1319 | /// ``` |
| 1320 | #[stable (feature = "ip_bits" , since = "1.80.0" )] |
| 1321 | pub const BITS: u32 = 128; |
| 1322 | |
| 1323 | /// Converts an IPv6 address into a `u128` representation using native byte order. |
| 1324 | /// |
| 1325 | /// Although IPv6 addresses are big-endian, the `u128` value will use the target platform's |
| 1326 | /// native byte order. That is, the `u128` value is an integer representation of the IPv6 |
| 1327 | /// address and not an integer interpretation of the IPv6 address's big-endian bitstring. This |
| 1328 | /// means that the `u128` value masked with `0xffffffffffffffffffffffffffff0000_u128` will set |
| 1329 | /// the last segment in the address to 0, regardless of the target platform's endianness. |
| 1330 | /// |
| 1331 | /// # Examples |
| 1332 | /// |
| 1333 | /// ``` |
| 1334 | /// use std::net::Ipv6Addr; |
| 1335 | /// |
| 1336 | /// let addr = Ipv6Addr::new( |
| 1337 | /// 0x1020, 0x3040, 0x5060, 0x7080, |
| 1338 | /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D, |
| 1339 | /// ); |
| 1340 | /// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, addr.to_bits()); |
| 1341 | /// ``` |
| 1342 | /// |
| 1343 | /// ``` |
| 1344 | /// use std::net::Ipv6Addr; |
| 1345 | /// |
| 1346 | /// let addr = Ipv6Addr::new( |
| 1347 | /// 0x1020, 0x3040, 0x5060, 0x7080, |
| 1348 | /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D, |
| 1349 | /// ); |
| 1350 | /// let addr_bits = addr.to_bits() & 0xffffffffffffffffffffffffffff0000_u128; |
| 1351 | /// assert_eq!( |
| 1352 | /// Ipv6Addr::new( |
| 1353 | /// 0x1020, 0x3040, 0x5060, 0x7080, |
| 1354 | /// 0x90A0, 0xB0C0, 0xD0E0, 0x0000, |
| 1355 | /// ), |
| 1356 | /// Ipv6Addr::from_bits(addr_bits)); |
| 1357 | /// |
| 1358 | /// ``` |
| 1359 | #[rustc_const_stable (feature = "ip_bits" , since = "1.80.0" )] |
| 1360 | #[stable (feature = "ip_bits" , since = "1.80.0" )] |
| 1361 | #[must_use ] |
| 1362 | #[inline ] |
| 1363 | pub const fn to_bits(self) -> u128 { |
| 1364 | u128::from_be_bytes(self.octets) |
| 1365 | } |
| 1366 | |
| 1367 | /// Converts a native byte order `u128` into an IPv6 address. |
| 1368 | /// |
| 1369 | /// See [`Ipv6Addr::to_bits`] for an explanation on endianness. |
| 1370 | /// |
| 1371 | /// # Examples |
| 1372 | /// |
| 1373 | /// ``` |
| 1374 | /// use std::net::Ipv6Addr; |
| 1375 | /// |
| 1376 | /// let addr = Ipv6Addr::from_bits(0x102030405060708090A0B0C0D0E0F00D_u128); |
| 1377 | /// assert_eq!( |
| 1378 | /// Ipv6Addr::new( |
| 1379 | /// 0x1020, 0x3040, 0x5060, 0x7080, |
| 1380 | /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D, |
| 1381 | /// ), |
| 1382 | /// addr); |
| 1383 | /// ``` |
| 1384 | #[rustc_const_stable (feature = "ip_bits" , since = "1.80.0" )] |
| 1385 | #[stable (feature = "ip_bits" , since = "1.80.0" )] |
| 1386 | #[must_use ] |
| 1387 | #[inline ] |
| 1388 | pub const fn from_bits(bits: u128) -> Ipv6Addr { |
| 1389 | Ipv6Addr { octets: bits.to_be_bytes() } |
| 1390 | } |
| 1391 | |
| 1392 | /// An IPv6 address representing localhost: `::1`. |
| 1393 | /// |
| 1394 | /// This corresponds to constant `IN6ADDR_LOOPBACK_INIT` or `in6addr_loopback` in other |
| 1395 | /// languages. |
| 1396 | /// |
| 1397 | /// # Examples |
| 1398 | /// |
| 1399 | /// ``` |
| 1400 | /// use std::net::Ipv6Addr; |
| 1401 | /// |
| 1402 | /// let addr = Ipv6Addr::LOCALHOST; |
| 1403 | /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)); |
| 1404 | /// ``` |
| 1405 | #[doc (alias = "IN6ADDR_LOOPBACK_INIT" )] |
| 1406 | #[doc (alias = "in6addr_loopback" )] |
| 1407 | #[stable (feature = "ip_constructors" , since = "1.30.0" )] |
| 1408 | pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1); |
| 1409 | |
| 1410 | /// An IPv6 address representing the unspecified address: `::`. |
| 1411 | /// |
| 1412 | /// This corresponds to constant `IN6ADDR_ANY_INIT` or `in6addr_any` in other languages. |
| 1413 | /// |
| 1414 | /// # Examples |
| 1415 | /// |
| 1416 | /// ``` |
| 1417 | /// use std::net::Ipv6Addr; |
| 1418 | /// |
| 1419 | /// let addr = Ipv6Addr::UNSPECIFIED; |
| 1420 | /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)); |
| 1421 | /// ``` |
| 1422 | #[doc (alias = "IN6ADDR_ANY_INIT" )] |
| 1423 | #[doc (alias = "in6addr_any" )] |
| 1424 | #[stable (feature = "ip_constructors" , since = "1.30.0" )] |
| 1425 | pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0); |
| 1426 | |
| 1427 | /// Returns the eight 16-bit segments that make up this address. |
| 1428 | /// |
| 1429 | /// # Examples |
| 1430 | /// |
| 1431 | /// ``` |
| 1432 | /// use std::net::Ipv6Addr; |
| 1433 | /// |
| 1434 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(), |
| 1435 | /// [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]); |
| 1436 | /// ``` |
| 1437 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 1438 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1439 | #[must_use ] |
| 1440 | #[inline ] |
| 1441 | pub const fn segments(&self) -> [u16; 8] { |
| 1442 | // All elements in `self.octets` must be big endian. |
| 1443 | // SAFETY: `[u8; 16]` is always safe to transmute to `[u16; 8]`. |
| 1444 | let [a, b, c, d, e, f, g, h] = unsafe { transmute::<_, [u16; 8]>(self.octets) }; |
| 1445 | // We want native endian u16 |
| 1446 | [ |
| 1447 | u16::from_be(a), |
| 1448 | u16::from_be(b), |
| 1449 | u16::from_be(c), |
| 1450 | u16::from_be(d), |
| 1451 | u16::from_be(e), |
| 1452 | u16::from_be(f), |
| 1453 | u16::from_be(g), |
| 1454 | u16::from_be(h), |
| 1455 | ] |
| 1456 | } |
| 1457 | |
| 1458 | /// Creates an `Ipv6Addr` from an eight element 16-bit array. |
| 1459 | /// |
| 1460 | /// # Examples |
| 1461 | /// |
| 1462 | /// ``` |
| 1463 | /// #![feature(ip_from)] |
| 1464 | /// use std::net::Ipv6Addr; |
| 1465 | /// |
| 1466 | /// let addr = Ipv6Addr::from_segments([ |
| 1467 | /// 0x20du16, 0x20cu16, 0x20bu16, 0x20au16, |
| 1468 | /// 0x209u16, 0x208u16, 0x207u16, 0x206u16, |
| 1469 | /// ]); |
| 1470 | /// assert_eq!( |
| 1471 | /// Ipv6Addr::new( |
| 1472 | /// 0x20d, 0x20c, 0x20b, 0x20a, |
| 1473 | /// 0x209, 0x208, 0x207, 0x206, |
| 1474 | /// ), |
| 1475 | /// addr |
| 1476 | /// ); |
| 1477 | /// ``` |
| 1478 | #[unstable (feature = "ip_from" , issue = "131360" )] |
| 1479 | #[must_use ] |
| 1480 | #[inline ] |
| 1481 | pub const fn from_segments(segments: [u16; 8]) -> Ipv6Addr { |
| 1482 | let [a, b, c, d, e, f, g, h] = segments; |
| 1483 | Ipv6Addr::new(a, b, c, d, e, f, g, h) |
| 1484 | } |
| 1485 | |
| 1486 | /// Returns [`true`] for the special 'unspecified' address (`::`). |
| 1487 | /// |
| 1488 | /// This property is defined in [IETF RFC 4291]. |
| 1489 | /// |
| 1490 | /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 |
| 1491 | /// |
| 1492 | /// # Examples |
| 1493 | /// |
| 1494 | /// ``` |
| 1495 | /// use std::net::Ipv6Addr; |
| 1496 | /// |
| 1497 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false); |
| 1498 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true); |
| 1499 | /// ``` |
| 1500 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 1501 | #[stable (since = "1.7.0" , feature = "ip_17" )] |
| 1502 | #[must_use ] |
| 1503 | #[inline ] |
| 1504 | pub const fn is_unspecified(&self) -> bool { |
| 1505 | u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::UNSPECIFIED.octets()) |
| 1506 | } |
| 1507 | |
| 1508 | /// Returns [`true`] if this is the [loopback address] (`::1`), |
| 1509 | /// as defined in [IETF RFC 4291 section 2.5.3]. |
| 1510 | /// |
| 1511 | /// Contrary to IPv4, in IPv6 there is only one loopback address. |
| 1512 | /// |
| 1513 | /// [loopback address]: Ipv6Addr::LOCALHOST |
| 1514 | /// [IETF RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3 |
| 1515 | /// |
| 1516 | /// # Examples |
| 1517 | /// |
| 1518 | /// ``` |
| 1519 | /// use std::net::Ipv6Addr; |
| 1520 | /// |
| 1521 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false); |
| 1522 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true); |
| 1523 | /// ``` |
| 1524 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 1525 | #[stable (since = "1.7.0" , feature = "ip_17" )] |
| 1526 | #[must_use ] |
| 1527 | #[inline ] |
| 1528 | pub const fn is_loopback(&self) -> bool { |
| 1529 | u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::LOCALHOST.octets()) |
| 1530 | } |
| 1531 | |
| 1532 | /// Returns [`true`] if the address appears to be globally reachable |
| 1533 | /// as specified by the [IANA IPv6 Special-Purpose Address Registry]. |
| 1534 | /// |
| 1535 | /// Whether or not an address is practically reachable will depend on your |
| 1536 | /// network configuration. Most IPv6 addresses are globally reachable, unless |
| 1537 | /// they are specifically defined as *not* globally reachable. |
| 1538 | /// |
| 1539 | /// Non-exhaustive list of notable addresses that are not globally reachable: |
| 1540 | /// - The [unspecified address] ([`is_unspecified`](Ipv6Addr::is_unspecified)) |
| 1541 | /// - The [loopback address] ([`is_loopback`](Ipv6Addr::is_loopback)) |
| 1542 | /// - IPv4-mapped addresses |
| 1543 | /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv6Addr::is_benchmarking)) |
| 1544 | /// - Addresses reserved for documentation ([`is_documentation`](Ipv6Addr::is_documentation)) |
| 1545 | /// - Unique local addresses ([`is_unique_local`](Ipv6Addr::is_unique_local)) |
| 1546 | /// - Unicast addresses with link-local scope ([`is_unicast_link_local`](Ipv6Addr::is_unicast_link_local)) |
| 1547 | /// |
| 1548 | /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv6 Special-Purpose Address Registry]. |
| 1549 | /// |
| 1550 | /// Note that an address having global scope is not the same as being globally reachable, |
| 1551 | /// and there is no direct relation between the two concepts: There exist addresses with global scope |
| 1552 | /// that are not globally reachable (for example unique local addresses), |
| 1553 | /// and addresses that are globally reachable without having global scope |
| 1554 | /// (multicast addresses with non-global scope). |
| 1555 | /// |
| 1556 | /// [IANA IPv6 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml |
| 1557 | /// [unspecified address]: Ipv6Addr::UNSPECIFIED |
| 1558 | /// [loopback address]: Ipv6Addr::LOCALHOST |
| 1559 | /// |
| 1560 | /// # Examples |
| 1561 | /// |
| 1562 | /// ``` |
| 1563 | /// #![feature(ip)] |
| 1564 | /// |
| 1565 | /// use std::net::Ipv6Addr; |
| 1566 | /// |
| 1567 | /// // Most IPv6 addresses are globally reachable: |
| 1568 | /// assert_eq!(Ipv6Addr::new(0x26, 0, 0x1c9, 0, 0, 0xafc8, 0x10, 0x1).is_global(), true); |
| 1569 | /// |
| 1570 | /// // However some addresses have been assigned a special meaning |
| 1571 | /// // that makes them not globally reachable. Some examples are: |
| 1572 | /// |
| 1573 | /// // The unspecified address (`::`) |
| 1574 | /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_global(), false); |
| 1575 | /// |
| 1576 | /// // The loopback address (`::1`) |
| 1577 | /// assert_eq!(Ipv6Addr::LOCALHOST.is_global(), false); |
| 1578 | /// |
| 1579 | /// // IPv4-mapped addresses (`::ffff:0:0/96`) |
| 1580 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), false); |
| 1581 | /// |
| 1582 | /// // Addresses reserved for benchmarking (`2001:2::/48`) |
| 1583 | /// assert_eq!(Ipv6Addr::new(0x2001, 2, 0, 0, 0, 0, 0, 1,).is_global(), false); |
| 1584 | /// |
| 1585 | /// // Addresses reserved for documentation (`2001:db8::/32` and `3fff::/20`) |
| 1586 | /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 1).is_global(), false); |
| 1587 | /// assert_eq!(Ipv6Addr::new(0x3fff, 0, 0, 0, 0, 0, 0, 0).is_global(), false); |
| 1588 | /// |
| 1589 | /// // Unique local addresses (`fc00::/7`) |
| 1590 | /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 1).is_global(), false); |
| 1591 | /// |
| 1592 | /// // Unicast addresses with link-local scope (`fe80::/10`) |
| 1593 | /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 1).is_global(), false); |
| 1594 | /// |
| 1595 | /// // For a complete overview see the IANA IPv6 Special-Purpose Address Registry. |
| 1596 | /// ``` |
| 1597 | #[unstable (feature = "ip" , issue = "27709" )] |
| 1598 | #[must_use ] |
| 1599 | #[inline ] |
| 1600 | pub const fn is_global(&self) -> bool { |
| 1601 | !(self.is_unspecified() |
| 1602 | || self.is_loopback() |
| 1603 | // IPv4-mapped Address (`::ffff:0:0/96`) |
| 1604 | || matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _]) |
| 1605 | // IPv4-IPv6 Translat. (`64:ff9b:1::/48`) |
| 1606 | || matches!(self.segments(), [0x64, 0xff9b, 1, _, _, _, _, _]) |
| 1607 | // Discard-Only Address Block (`100::/64`) |
| 1608 | || matches!(self.segments(), [0x100, 0, 0, 0, _, _, _, _]) |
| 1609 | // IETF Protocol Assignments (`2001::/23`) |
| 1610 | || (matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b < 0x200) |
| 1611 | && !( |
| 1612 | // Port Control Protocol Anycast (`2001:1::1`) |
| 1613 | u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0001 |
| 1614 | // Traversal Using Relays around NAT Anycast (`2001:1::2`) |
| 1615 | || u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0002 |
| 1616 | // AMT (`2001:3::/32`) |
| 1617 | || matches!(self.segments(), [0x2001, 3, _, _, _, _, _, _]) |
| 1618 | // AS112-v6 (`2001:4:112::/48`) |
| 1619 | || matches!(self.segments(), [0x2001, 4, 0x112, _, _, _, _, _]) |
| 1620 | // ORCHIDv2 (`2001:20::/28`) |
| 1621 | // Drone Remote ID Protocol Entity Tags (DETs) Prefix (`2001:30::/28`)` |
| 1622 | || matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b >= 0x20 && b <= 0x3F) |
| 1623 | )) |
| 1624 | // 6to4 (`2002::/16`) – it's not explicitly documented as globally reachable, |
| 1625 | // IANA says N/A. |
| 1626 | || matches!(self.segments(), [0x2002, _, _, _, _, _, _, _]) |
| 1627 | || self.is_documentation() |
| 1628 | // Segment Routing (SRv6) SIDs (`5f00::/16`) |
| 1629 | || matches!(self.segments(), [0x5f00, ..]) |
| 1630 | || self.is_unique_local() |
| 1631 | || self.is_unicast_link_local()) |
| 1632 | } |
| 1633 | |
| 1634 | /// Returns [`true`] if this is a unique local address (`fc00::/7`). |
| 1635 | /// |
| 1636 | /// This property is defined in [IETF RFC 4193]. |
| 1637 | /// |
| 1638 | /// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193 |
| 1639 | /// |
| 1640 | /// # Examples |
| 1641 | /// |
| 1642 | /// ``` |
| 1643 | /// use std::net::Ipv6Addr; |
| 1644 | /// |
| 1645 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false); |
| 1646 | /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true); |
| 1647 | /// ``` |
| 1648 | #[must_use ] |
| 1649 | #[inline ] |
| 1650 | #[stable (feature = "ipv6_is_unique_local" , since = "1.84.0" )] |
| 1651 | #[rustc_const_stable (feature = "ipv6_is_unique_local" , since = "1.84.0" )] |
| 1652 | pub const fn is_unique_local(&self) -> bool { |
| 1653 | (self.segments()[0] & 0xfe00) == 0xfc00 |
| 1654 | } |
| 1655 | |
| 1656 | /// Returns [`true`] if this is a unicast address, as defined by [IETF RFC 4291]. |
| 1657 | /// Any address that is not a [multicast address] (`ff00::/8`) is unicast. |
| 1658 | /// |
| 1659 | /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 |
| 1660 | /// [multicast address]: Ipv6Addr::is_multicast |
| 1661 | /// |
| 1662 | /// # Examples |
| 1663 | /// |
| 1664 | /// ``` |
| 1665 | /// #![feature(ip)] |
| 1666 | /// |
| 1667 | /// use std::net::Ipv6Addr; |
| 1668 | /// |
| 1669 | /// // The unspecified and loopback addresses are unicast. |
| 1670 | /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_unicast(), true); |
| 1671 | /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast(), true); |
| 1672 | /// |
| 1673 | /// // Any address that is not a multicast address (`ff00::/8`) is unicast. |
| 1674 | /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast(), true); |
| 1675 | /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_unicast(), false); |
| 1676 | /// ``` |
| 1677 | #[unstable (feature = "ip" , issue = "27709" )] |
| 1678 | #[must_use ] |
| 1679 | #[inline ] |
| 1680 | pub const fn is_unicast(&self) -> bool { |
| 1681 | !self.is_multicast() |
| 1682 | } |
| 1683 | |
| 1684 | /// Returns `true` if the address is a unicast address with link-local scope, |
| 1685 | /// as defined in [RFC 4291]. |
| 1686 | /// |
| 1687 | /// A unicast address has link-local scope if it has the prefix `fe80::/10`, as per [RFC 4291 section 2.4]. |
| 1688 | /// Note that this encompasses more addresses than those defined in [RFC 4291 section 2.5.6], |
| 1689 | /// which describes "Link-Local IPv6 Unicast Addresses" as having the following stricter format: |
| 1690 | /// |
| 1691 | /// ```text |
| 1692 | /// | 10 bits | 54 bits | 64 bits | |
| 1693 | /// +----------+-------------------------+----------------------------+ |
| 1694 | /// |1111111010| 0 | interface ID | |
| 1695 | /// +----------+-------------------------+----------------------------+ |
| 1696 | /// ``` |
| 1697 | /// So while currently the only addresses with link-local scope an application will encounter are all in `fe80::/64`, |
| 1698 | /// this might change in the future with the publication of new standards. More addresses in `fe80::/10` could be allocated, |
| 1699 | /// and those addresses will have link-local scope. |
| 1700 | /// |
| 1701 | /// Also note that while [RFC 4291 section 2.5.3] mentions about the [loopback address] (`::1`) that "it is treated as having Link-Local scope", |
| 1702 | /// this does not mean that the loopback address actually has link-local scope and this method will return `false` on it. |
| 1703 | /// |
| 1704 | /// [RFC 4291]: https://tools.ietf.org/html/rfc4291 |
| 1705 | /// [RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4 |
| 1706 | /// [RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3 |
| 1707 | /// [RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6 |
| 1708 | /// [loopback address]: Ipv6Addr::LOCALHOST |
| 1709 | /// |
| 1710 | /// # Examples |
| 1711 | /// |
| 1712 | /// ``` |
| 1713 | /// use std::net::Ipv6Addr; |
| 1714 | /// |
| 1715 | /// // The loopback address (`::1`) does not actually have link-local scope. |
| 1716 | /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast_link_local(), false); |
| 1717 | /// |
| 1718 | /// // Only addresses in `fe80::/10` have link-local scope. |
| 1719 | /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), false); |
| 1720 | /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true); |
| 1721 | /// |
| 1722 | /// // Addresses outside the stricter `fe80::/64` also have link-local scope. |
| 1723 | /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0).is_unicast_link_local(), true); |
| 1724 | /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true); |
| 1725 | /// ``` |
| 1726 | #[must_use ] |
| 1727 | #[inline ] |
| 1728 | #[stable (feature = "ipv6_is_unique_local" , since = "1.84.0" )] |
| 1729 | #[rustc_const_stable (feature = "ipv6_is_unique_local" , since = "1.84.0" )] |
| 1730 | pub const fn is_unicast_link_local(&self) -> bool { |
| 1731 | (self.segments()[0] & 0xffc0) == 0xfe80 |
| 1732 | } |
| 1733 | |
| 1734 | /// Returns [`true`] if this is an address reserved for documentation |
| 1735 | /// (`2001:db8::/32` and `3fff::/20`). |
| 1736 | /// |
| 1737 | /// This property is defined by [IETF RFC 3849] and [IETF RFC 9637]. |
| 1738 | /// |
| 1739 | /// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849 |
| 1740 | /// [IETF RFC 9637]: https://tools.ietf.org/html/rfc9637 |
| 1741 | /// |
| 1742 | /// # Examples |
| 1743 | /// |
| 1744 | /// ``` |
| 1745 | /// #![feature(ip)] |
| 1746 | /// |
| 1747 | /// use std::net::Ipv6Addr; |
| 1748 | /// |
| 1749 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false); |
| 1750 | /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true); |
| 1751 | /// assert_eq!(Ipv6Addr::new(0x3fff, 0, 0, 0, 0, 0, 0, 0).is_documentation(), true); |
| 1752 | /// ``` |
| 1753 | #[unstable (feature = "ip" , issue = "27709" )] |
| 1754 | #[must_use ] |
| 1755 | #[inline ] |
| 1756 | pub const fn is_documentation(&self) -> bool { |
| 1757 | matches!(self.segments(), [0x2001, 0xdb8, ..] | [0x3fff, 0..=0x0fff, ..]) |
| 1758 | } |
| 1759 | |
| 1760 | /// Returns [`true`] if this is an address reserved for benchmarking (`2001:2::/48`). |
| 1761 | /// |
| 1762 | /// This property is defined in [IETF RFC 5180], where it is mistakenly specified as covering the range `2001:0200::/48`. |
| 1763 | /// This is corrected in [IETF RFC Errata 1752] to `2001:0002::/48`. |
| 1764 | /// |
| 1765 | /// [IETF RFC 5180]: https://tools.ietf.org/html/rfc5180 |
| 1766 | /// [IETF RFC Errata 1752]: https://www.rfc-editor.org/errata_search.php?eid=1752 |
| 1767 | /// |
| 1768 | /// ``` |
| 1769 | /// #![feature(ip)] |
| 1770 | /// |
| 1771 | /// use std::net::Ipv6Addr; |
| 1772 | /// |
| 1773 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc613, 0x0).is_benchmarking(), false); |
| 1774 | /// assert_eq!(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0).is_benchmarking(), true); |
| 1775 | /// ``` |
| 1776 | #[unstable (feature = "ip" , issue = "27709" )] |
| 1777 | #[must_use ] |
| 1778 | #[inline ] |
| 1779 | pub const fn is_benchmarking(&self) -> bool { |
| 1780 | (self.segments()[0] == 0x2001) && (self.segments()[1] == 0x2) && (self.segments()[2] == 0) |
| 1781 | } |
| 1782 | |
| 1783 | /// Returns [`true`] if the address is a globally routable unicast address. |
| 1784 | /// |
| 1785 | /// The following return false: |
| 1786 | /// |
| 1787 | /// - the loopback address |
| 1788 | /// - the link-local addresses |
| 1789 | /// - unique local addresses |
| 1790 | /// - the unspecified address |
| 1791 | /// - the address range reserved for documentation |
| 1792 | /// |
| 1793 | /// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7] |
| 1794 | /// |
| 1795 | /// ```no_rust |
| 1796 | /// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer |
| 1797 | /// be supported in new implementations (i.e., new implementations must treat this prefix as |
| 1798 | /// Global Unicast). |
| 1799 | /// ``` |
| 1800 | /// |
| 1801 | /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7 |
| 1802 | /// |
| 1803 | /// # Examples |
| 1804 | /// |
| 1805 | /// ``` |
| 1806 | /// #![feature(ip)] |
| 1807 | /// |
| 1808 | /// use std::net::Ipv6Addr; |
| 1809 | /// |
| 1810 | /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false); |
| 1811 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true); |
| 1812 | /// ``` |
| 1813 | #[unstable (feature = "ip" , issue = "27709" )] |
| 1814 | #[must_use ] |
| 1815 | #[inline ] |
| 1816 | pub const fn is_unicast_global(&self) -> bool { |
| 1817 | self.is_unicast() |
| 1818 | && !self.is_loopback() |
| 1819 | && !self.is_unicast_link_local() |
| 1820 | && !self.is_unique_local() |
| 1821 | && !self.is_unspecified() |
| 1822 | && !self.is_documentation() |
| 1823 | && !self.is_benchmarking() |
| 1824 | } |
| 1825 | |
| 1826 | /// Returns the address's multicast scope if the address is multicast. |
| 1827 | /// |
| 1828 | /// # Examples |
| 1829 | /// |
| 1830 | /// ``` |
| 1831 | /// #![feature(ip)] |
| 1832 | /// |
| 1833 | /// use std::net::{Ipv6Addr, Ipv6MulticastScope}; |
| 1834 | /// |
| 1835 | /// assert_eq!( |
| 1836 | /// Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(), |
| 1837 | /// Some(Ipv6MulticastScope::Global) |
| 1838 | /// ); |
| 1839 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None); |
| 1840 | /// ``` |
| 1841 | #[unstable (feature = "ip" , issue = "27709" )] |
| 1842 | #[must_use ] |
| 1843 | #[inline ] |
| 1844 | pub const fn multicast_scope(&self) -> Option<Ipv6MulticastScope> { |
| 1845 | if self.is_multicast() { |
| 1846 | match self.segments()[0] & 0x000f { |
| 1847 | 1 => Some(Ipv6MulticastScope::InterfaceLocal), |
| 1848 | 2 => Some(Ipv6MulticastScope::LinkLocal), |
| 1849 | 3 => Some(Ipv6MulticastScope::RealmLocal), |
| 1850 | 4 => Some(Ipv6MulticastScope::AdminLocal), |
| 1851 | 5 => Some(Ipv6MulticastScope::SiteLocal), |
| 1852 | 8 => Some(Ipv6MulticastScope::OrganizationLocal), |
| 1853 | 14 => Some(Ipv6MulticastScope::Global), |
| 1854 | _ => None, |
| 1855 | } |
| 1856 | } else { |
| 1857 | None |
| 1858 | } |
| 1859 | } |
| 1860 | |
| 1861 | /// Returns [`true`] if this is a multicast address (`ff00::/8`). |
| 1862 | /// |
| 1863 | /// This property is defined by [IETF RFC 4291]. |
| 1864 | /// |
| 1865 | /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 |
| 1866 | /// |
| 1867 | /// # Examples |
| 1868 | /// |
| 1869 | /// ``` |
| 1870 | /// use std::net::Ipv6Addr; |
| 1871 | /// |
| 1872 | /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true); |
| 1873 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false); |
| 1874 | /// ``` |
| 1875 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 1876 | #[stable (since = "1.7.0" , feature = "ip_17" )] |
| 1877 | #[must_use ] |
| 1878 | #[inline ] |
| 1879 | pub const fn is_multicast(&self) -> bool { |
| 1880 | (self.segments()[0] & 0xff00) == 0xff00 |
| 1881 | } |
| 1882 | |
| 1883 | /// Returns [`true`] if the address is an IPv4-mapped address (`::ffff:0:0/96`). |
| 1884 | /// |
| 1885 | /// IPv4-mapped addresses can be converted to their canonical IPv4 address with |
| 1886 | /// [`to_ipv4_mapped`](Ipv6Addr::to_ipv4_mapped). |
| 1887 | /// |
| 1888 | /// # Examples |
| 1889 | /// ``` |
| 1890 | /// #![feature(ip)] |
| 1891 | /// |
| 1892 | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
| 1893 | /// |
| 1894 | /// let ipv4_mapped = Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(); |
| 1895 | /// assert_eq!(ipv4_mapped.is_ipv4_mapped(), true); |
| 1896 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff).is_ipv4_mapped(), true); |
| 1897 | /// |
| 1898 | /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_ipv4_mapped(), false); |
| 1899 | /// ``` |
| 1900 | #[unstable (feature = "ip" , issue = "27709" )] |
| 1901 | #[must_use ] |
| 1902 | #[inline ] |
| 1903 | pub const fn is_ipv4_mapped(&self) -> bool { |
| 1904 | matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _]) |
| 1905 | } |
| 1906 | |
| 1907 | /// Converts this address to an [`IPv4` address] if it's an [IPv4-mapped] address, |
| 1908 | /// as defined in [IETF RFC 4291 section 2.5.5.2], otherwise returns [`None`]. |
| 1909 | /// |
| 1910 | /// `::ffff:a.b.c.d` becomes `a.b.c.d`. |
| 1911 | /// All addresses *not* starting with `::ffff` will return `None`. |
| 1912 | /// |
| 1913 | /// [`IPv4` address]: Ipv4Addr |
| 1914 | /// [IPv4-mapped]: Ipv6Addr |
| 1915 | /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2 |
| 1916 | /// |
| 1917 | /// # Examples |
| 1918 | /// |
| 1919 | /// ``` |
| 1920 | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
| 1921 | /// |
| 1922 | /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None); |
| 1923 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(), |
| 1924 | /// Some(Ipv4Addr::new(192, 10, 2, 255))); |
| 1925 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None); |
| 1926 | /// ``` |
| 1927 | #[inline ] |
| 1928 | #[must_use = "this returns the result of the operation, \ |
| 1929 | without modifying the original" ] |
| 1930 | #[stable (feature = "ipv6_to_ipv4_mapped" , since = "1.63.0" )] |
| 1931 | #[rustc_const_stable (feature = "const_ipv6_to_ipv4_mapped" , since = "1.75.0" )] |
| 1932 | pub const fn to_ipv4_mapped(&self) -> Option<Ipv4Addr> { |
| 1933 | match self.octets() { |
| 1934 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, a, b, c, d] => { |
| 1935 | Some(Ipv4Addr::new(a, b, c, d)) |
| 1936 | } |
| 1937 | _ => None, |
| 1938 | } |
| 1939 | } |
| 1940 | |
| 1941 | /// Converts this address to an [`IPv4` address] if it is either |
| 1942 | /// an [IPv4-compatible] address as defined in [IETF RFC 4291 section 2.5.5.1], |
| 1943 | /// or an [IPv4-mapped] address as defined in [IETF RFC 4291 section 2.5.5.2], |
| 1944 | /// otherwise returns [`None`]. |
| 1945 | /// |
| 1946 | /// Note that this will return an [`IPv4` address] for the IPv6 loopback address `::1`. Use |
| 1947 | /// [`Ipv6Addr::to_ipv4_mapped`] to avoid this. |
| 1948 | /// |
| 1949 | /// `::a.b.c.d` and `::ffff:a.b.c.d` become `a.b.c.d`. `::1` becomes `0.0.0.1`. |
| 1950 | /// All addresses *not* starting with either all zeroes or `::ffff` will return `None`. |
| 1951 | /// |
| 1952 | /// [`IPv4` address]: Ipv4Addr |
| 1953 | /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses |
| 1954 | /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses |
| 1955 | /// [IETF RFC 4291 section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1 |
| 1956 | /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2 |
| 1957 | /// |
| 1958 | /// # Examples |
| 1959 | /// |
| 1960 | /// ``` |
| 1961 | /// use std::net::{Ipv4Addr, Ipv6Addr}; |
| 1962 | /// |
| 1963 | /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None); |
| 1964 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(), |
| 1965 | /// Some(Ipv4Addr::new(192, 10, 2, 255))); |
| 1966 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(), |
| 1967 | /// Some(Ipv4Addr::new(0, 0, 0, 1))); |
| 1968 | /// ``` |
| 1969 | #[rustc_const_stable (feature = "const_ip_50" , since = "1.50.0" )] |
| 1970 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1971 | #[must_use = "this returns the result of the operation, \ |
| 1972 | without modifying the original" ] |
| 1973 | #[inline ] |
| 1974 | pub const fn to_ipv4(&self) -> Option<Ipv4Addr> { |
| 1975 | if let [0, 0, 0, 0, 0, 0 | 0xffff, ab, cd] = self.segments() { |
| 1976 | let [a, b] = ab.to_be_bytes(); |
| 1977 | let [c, d] = cd.to_be_bytes(); |
| 1978 | Some(Ipv4Addr::new(a, b, c, d)) |
| 1979 | } else { |
| 1980 | None |
| 1981 | } |
| 1982 | } |
| 1983 | |
| 1984 | /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped address, |
| 1985 | /// otherwise returns self wrapped in an `IpAddr::V6`. |
| 1986 | /// |
| 1987 | /// # Examples |
| 1988 | /// |
| 1989 | /// ``` |
| 1990 | /// use std::net::Ipv6Addr; |
| 1991 | /// |
| 1992 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).is_loopback(), false); |
| 1993 | /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).to_canonical().is_loopback(), true); |
| 1994 | /// ``` |
| 1995 | #[inline ] |
| 1996 | #[must_use = "this returns the result of the operation, \ |
| 1997 | without modifying the original" ] |
| 1998 | #[stable (feature = "ip_to_canonical" , since = "1.75.0" )] |
| 1999 | #[rustc_const_stable (feature = "ip_to_canonical" , since = "1.75.0" )] |
| 2000 | pub const fn to_canonical(&self) -> IpAddr { |
| 2001 | if let Some(mapped) = self.to_ipv4_mapped() { |
| 2002 | return IpAddr::V4(mapped); |
| 2003 | } |
| 2004 | IpAddr::V6(*self) |
| 2005 | } |
| 2006 | |
| 2007 | /// Returns the sixteen eight-bit integers the IPv6 address consists of. |
| 2008 | /// |
| 2009 | /// ``` |
| 2010 | /// use std::net::Ipv6Addr; |
| 2011 | /// |
| 2012 | /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(), |
| 2013 | /// [0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| 2014 | /// ``` |
| 2015 | #[rustc_const_stable (feature = "const_ip_32" , since = "1.32.0" )] |
| 2016 | #[stable (feature = "ipv6_to_octets" , since = "1.12.0" )] |
| 2017 | #[must_use ] |
| 2018 | #[inline ] |
| 2019 | pub const fn octets(&self) -> [u8; 16] { |
| 2020 | self.octets |
| 2021 | } |
| 2022 | |
| 2023 | /// Creates an `Ipv6Addr` from a sixteen element byte array. |
| 2024 | /// |
| 2025 | /// # Examples |
| 2026 | /// |
| 2027 | /// ``` |
| 2028 | /// #![feature(ip_from)] |
| 2029 | /// use std::net::Ipv6Addr; |
| 2030 | /// |
| 2031 | /// let addr = Ipv6Addr::from_octets([ |
| 2032 | /// 0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8, |
| 2033 | /// 0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8, |
| 2034 | /// ]); |
| 2035 | /// assert_eq!( |
| 2036 | /// Ipv6Addr::new( |
| 2037 | /// 0x1918, 0x1716, 0x1514, 0x1312, |
| 2038 | /// 0x1110, 0x0f0e, 0x0d0c, 0x0b0a, |
| 2039 | /// ), |
| 2040 | /// addr |
| 2041 | /// ); |
| 2042 | /// ``` |
| 2043 | #[unstable (feature = "ip_from" , issue = "131360" )] |
| 2044 | #[must_use ] |
| 2045 | #[inline ] |
| 2046 | pub const fn from_octets(octets: [u8; 16]) -> Ipv6Addr { |
| 2047 | Ipv6Addr { octets } |
| 2048 | } |
| 2049 | |
| 2050 | /// Returns the sixteen eight-bit integers the IPv6 address consists of |
| 2051 | /// as a slice. |
| 2052 | /// |
| 2053 | /// # Examples |
| 2054 | /// |
| 2055 | /// ``` |
| 2056 | /// #![feature(ip_as_octets)] |
| 2057 | /// |
| 2058 | /// use std::net::Ipv6Addr; |
| 2059 | /// |
| 2060 | /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).as_octets(), |
| 2061 | /// &[255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) |
| 2062 | /// ``` |
| 2063 | #[unstable (feature = "ip_as_octets" , issue = "137259" )] |
| 2064 | #[inline ] |
| 2065 | pub const fn as_octets(&self) -> &[u8; 16] { |
| 2066 | &self.octets |
| 2067 | } |
| 2068 | } |
| 2069 | |
| 2070 | /// Writes an Ipv6Addr, conforming to the canonical style described by |
| 2071 | /// [RFC 5952](https://tools.ietf.org/html/rfc5952). |
| 2072 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2073 | impl fmt::Display for Ipv6Addr { |
| 2074 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2075 | // If there are no alignment requirements, write the IP address directly to `f`. |
| 2076 | // Otherwise, write it to a local buffer and then use `f.pad`. |
| 2077 | if f.precision().is_none() && f.width().is_none() { |
| 2078 | let segments = self.segments(); |
| 2079 | |
| 2080 | if let Some(ipv4) = self.to_ipv4_mapped() { |
| 2081 | write!(f, "::ffff: {}" , ipv4) |
| 2082 | } else { |
| 2083 | #[derive (Copy, Clone, Default)] |
| 2084 | struct Span { |
| 2085 | start: usize, |
| 2086 | len: usize, |
| 2087 | } |
| 2088 | |
| 2089 | // Find the inner 0 span |
| 2090 | let zeroes = { |
| 2091 | let mut longest = Span::default(); |
| 2092 | let mut current = Span::default(); |
| 2093 | |
| 2094 | for (i, &segment) in segments.iter().enumerate() { |
| 2095 | if segment == 0 { |
| 2096 | if current.len == 0 { |
| 2097 | current.start = i; |
| 2098 | } |
| 2099 | |
| 2100 | current.len += 1; |
| 2101 | |
| 2102 | if current.len > longest.len { |
| 2103 | longest = current; |
| 2104 | } |
| 2105 | } else { |
| 2106 | current = Span::default(); |
| 2107 | } |
| 2108 | } |
| 2109 | |
| 2110 | longest |
| 2111 | }; |
| 2112 | |
| 2113 | /// Writes a colon-separated part of the address. |
| 2114 | #[inline ] |
| 2115 | fn fmt_subslice(f: &mut fmt::Formatter<'_>, chunk: &[u16]) -> fmt::Result { |
| 2116 | if let Some((first, tail)) = chunk.split_first() { |
| 2117 | write!(f, " {:x}" , first)?; |
| 2118 | for segment in tail { |
| 2119 | f.write_char(':' )?; |
| 2120 | write!(f, " {:x}" , segment)?; |
| 2121 | } |
| 2122 | } |
| 2123 | Ok(()) |
| 2124 | } |
| 2125 | |
| 2126 | if zeroes.len > 1 { |
| 2127 | fmt_subslice(f, &segments[..zeroes.start])?; |
| 2128 | f.write_str("::" )?; |
| 2129 | fmt_subslice(f, &segments[zeroes.start + zeroes.len..]) |
| 2130 | } else { |
| 2131 | fmt_subslice(f, &segments) |
| 2132 | } |
| 2133 | } |
| 2134 | } else { |
| 2135 | const LONGEST_IPV6_ADDR: &str = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" ; |
| 2136 | |
| 2137 | let mut buf = DisplayBuffer::<{ LONGEST_IPV6_ADDR.len() }>::new(); |
| 2138 | // Buffer is long enough for the longest possible IPv6 address, so this should never fail. |
| 2139 | write!(buf, " {}" , self).unwrap(); |
| 2140 | |
| 2141 | f.pad(buf.as_str()) |
| 2142 | } |
| 2143 | } |
| 2144 | } |
| 2145 | |
| 2146 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2147 | impl fmt::Debug for Ipv6Addr { |
| 2148 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2149 | fmt::Display::fmt(self, f:fmt) |
| 2150 | } |
| 2151 | } |
| 2152 | |
| 2153 | #[stable (feature = "ip_cmp" , since = "1.16.0" )] |
| 2154 | impl PartialEq<IpAddr> for Ipv6Addr { |
| 2155 | #[inline ] |
| 2156 | fn eq(&self, other: &IpAddr) -> bool { |
| 2157 | match other { |
| 2158 | IpAddr::V4(_) => false, |
| 2159 | IpAddr::V6(v6: &Ipv6Addr) => self == v6, |
| 2160 | } |
| 2161 | } |
| 2162 | } |
| 2163 | |
| 2164 | #[stable (feature = "ip_cmp" , since = "1.16.0" )] |
| 2165 | impl PartialEq<Ipv6Addr> for IpAddr { |
| 2166 | #[inline ] |
| 2167 | fn eq(&self, other: &Ipv6Addr) -> bool { |
| 2168 | match self { |
| 2169 | IpAddr::V4(_) => false, |
| 2170 | IpAddr::V6(v6: &Ipv6Addr) => v6 == other, |
| 2171 | } |
| 2172 | } |
| 2173 | } |
| 2174 | |
| 2175 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2176 | impl PartialOrd for Ipv6Addr { |
| 2177 | #[inline ] |
| 2178 | fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> { |
| 2179 | Some(self.cmp(other)) |
| 2180 | } |
| 2181 | } |
| 2182 | |
| 2183 | #[stable (feature = "ip_cmp" , since = "1.16.0" )] |
| 2184 | impl PartialOrd<Ipv6Addr> for IpAddr { |
| 2185 | #[inline ] |
| 2186 | fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> { |
| 2187 | match self { |
| 2188 | IpAddr::V4(_) => Some(Ordering::Less), |
| 2189 | IpAddr::V6(v6: &Ipv6Addr) => v6.partial_cmp(other), |
| 2190 | } |
| 2191 | } |
| 2192 | } |
| 2193 | |
| 2194 | #[stable (feature = "ip_cmp" , since = "1.16.0" )] |
| 2195 | impl PartialOrd<IpAddr> for Ipv6Addr { |
| 2196 | #[inline ] |
| 2197 | fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> { |
| 2198 | match other { |
| 2199 | IpAddr::V4(_) => Some(Ordering::Greater), |
| 2200 | IpAddr::V6(v6: &Ipv6Addr) => self.partial_cmp(v6), |
| 2201 | } |
| 2202 | } |
| 2203 | } |
| 2204 | |
| 2205 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2206 | impl Ord for Ipv6Addr { |
| 2207 | #[inline ] |
| 2208 | fn cmp(&self, other: &Ipv6Addr) -> Ordering { |
| 2209 | self.segments().cmp(&other.segments()) |
| 2210 | } |
| 2211 | } |
| 2212 | |
| 2213 | #[stable (feature = "i128" , since = "1.26.0" )] |
| 2214 | impl From<Ipv6Addr> for u128 { |
| 2215 | /// Uses [`Ipv6Addr::to_bits`] to convert an IPv6 address to a host byte order `u128`. |
| 2216 | #[inline ] |
| 2217 | fn from(ip: Ipv6Addr) -> u128 { |
| 2218 | ip.to_bits() |
| 2219 | } |
| 2220 | } |
| 2221 | #[stable (feature = "i128" , since = "1.26.0" )] |
| 2222 | impl From<u128> for Ipv6Addr { |
| 2223 | /// Uses [`Ipv6Addr::from_bits`] to convert a host byte order `u128` to an IPv6 address. |
| 2224 | #[inline ] |
| 2225 | fn from(ip: u128) -> Ipv6Addr { |
| 2226 | Ipv6Addr::from_bits(ip) |
| 2227 | } |
| 2228 | } |
| 2229 | |
| 2230 | #[stable (feature = "ipv6_from_octets" , since = "1.9.0" )] |
| 2231 | impl From<[u8; 16]> for Ipv6Addr { |
| 2232 | /// Creates an `Ipv6Addr` from a sixteen element byte array. |
| 2233 | /// |
| 2234 | /// # Examples |
| 2235 | /// |
| 2236 | /// ``` |
| 2237 | /// use std::net::Ipv6Addr; |
| 2238 | /// |
| 2239 | /// let addr = Ipv6Addr::from([ |
| 2240 | /// 0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8, |
| 2241 | /// 0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8, |
| 2242 | /// ]); |
| 2243 | /// assert_eq!( |
| 2244 | /// Ipv6Addr::new( |
| 2245 | /// 0x1918, 0x1716, 0x1514, 0x1312, |
| 2246 | /// 0x1110, 0x0f0e, 0x0d0c, 0x0b0a, |
| 2247 | /// ), |
| 2248 | /// addr |
| 2249 | /// ); |
| 2250 | /// ``` |
| 2251 | #[inline ] |
| 2252 | fn from(octets: [u8; 16]) -> Ipv6Addr { |
| 2253 | Ipv6Addr { octets } |
| 2254 | } |
| 2255 | } |
| 2256 | |
| 2257 | #[stable (feature = "ipv6_from_segments" , since = "1.16.0" )] |
| 2258 | impl From<[u16; 8]> for Ipv6Addr { |
| 2259 | /// Creates an `Ipv6Addr` from an eight element 16-bit array. |
| 2260 | /// |
| 2261 | /// # Examples |
| 2262 | /// |
| 2263 | /// ``` |
| 2264 | /// use std::net::Ipv6Addr; |
| 2265 | /// |
| 2266 | /// let addr = Ipv6Addr::from([ |
| 2267 | /// 0x20du16, 0x20cu16, 0x20bu16, 0x20au16, |
| 2268 | /// 0x209u16, 0x208u16, 0x207u16, 0x206u16, |
| 2269 | /// ]); |
| 2270 | /// assert_eq!( |
| 2271 | /// Ipv6Addr::new( |
| 2272 | /// 0x20d, 0x20c, 0x20b, 0x20a, |
| 2273 | /// 0x209, 0x208, 0x207, 0x206, |
| 2274 | /// ), |
| 2275 | /// addr |
| 2276 | /// ); |
| 2277 | /// ``` |
| 2278 | #[inline ] |
| 2279 | fn from(segments: [u16; 8]) -> Ipv6Addr { |
| 2280 | let [a, b, c, d, e, f, g, h] = segments; |
| 2281 | Ipv6Addr::new(a, b, c, d, e, f, g, h) |
| 2282 | } |
| 2283 | } |
| 2284 | |
| 2285 | #[stable (feature = "ip_from_slice" , since = "1.17.0" )] |
| 2286 | impl From<[u8; 16]> for IpAddr { |
| 2287 | /// Creates an `IpAddr::V6` from a sixteen element byte array. |
| 2288 | /// |
| 2289 | /// # Examples |
| 2290 | /// |
| 2291 | /// ``` |
| 2292 | /// use std::net::{IpAddr, Ipv6Addr}; |
| 2293 | /// |
| 2294 | /// let addr = IpAddr::from([ |
| 2295 | /// 0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8, |
| 2296 | /// 0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8, |
| 2297 | /// ]); |
| 2298 | /// assert_eq!( |
| 2299 | /// IpAddr::V6(Ipv6Addr::new( |
| 2300 | /// 0x1918, 0x1716, 0x1514, 0x1312, |
| 2301 | /// 0x1110, 0x0f0e, 0x0d0c, 0x0b0a, |
| 2302 | /// )), |
| 2303 | /// addr |
| 2304 | /// ); |
| 2305 | /// ``` |
| 2306 | #[inline ] |
| 2307 | fn from(octets: [u8; 16]) -> IpAddr { |
| 2308 | IpAddr::V6(Ipv6Addr::from(octets)) |
| 2309 | } |
| 2310 | } |
| 2311 | |
| 2312 | #[stable (feature = "ip_from_slice" , since = "1.17.0" )] |
| 2313 | impl From<[u16; 8]> for IpAddr { |
| 2314 | /// Creates an `IpAddr::V6` from an eight element 16-bit array. |
| 2315 | /// |
| 2316 | /// # Examples |
| 2317 | /// |
| 2318 | /// ``` |
| 2319 | /// use std::net::{IpAddr, Ipv6Addr}; |
| 2320 | /// |
| 2321 | /// let addr = IpAddr::from([ |
| 2322 | /// 0x20du16, 0x20cu16, 0x20bu16, 0x20au16, |
| 2323 | /// 0x209u16, 0x208u16, 0x207u16, 0x206u16, |
| 2324 | /// ]); |
| 2325 | /// assert_eq!( |
| 2326 | /// IpAddr::V6(Ipv6Addr::new( |
| 2327 | /// 0x20d, 0x20c, 0x20b, 0x20a, |
| 2328 | /// 0x209, 0x208, 0x207, 0x206, |
| 2329 | /// )), |
| 2330 | /// addr |
| 2331 | /// ); |
| 2332 | /// ``` |
| 2333 | #[inline ] |
| 2334 | fn from(segments: [u16; 8]) -> IpAddr { |
| 2335 | IpAddr::V6(Ipv6Addr::from(segments)) |
| 2336 | } |
| 2337 | } |
| 2338 | |
| 2339 | #[stable (feature = "ip_bitops" , since = "1.75.0" )] |
| 2340 | impl Not for Ipv4Addr { |
| 2341 | type Output = Ipv4Addr; |
| 2342 | |
| 2343 | #[inline ] |
| 2344 | fn not(mut self) -> Ipv4Addr { |
| 2345 | for octet: &mut u8 in &mut self.octets { |
| 2346 | *octet = !*octet; |
| 2347 | } |
| 2348 | self |
| 2349 | } |
| 2350 | } |
| 2351 | |
| 2352 | #[stable (feature = "ip_bitops" , since = "1.75.0" )] |
| 2353 | impl Not for &'_ Ipv4Addr { |
| 2354 | type Output = Ipv4Addr; |
| 2355 | |
| 2356 | #[inline ] |
| 2357 | fn not(self) -> Ipv4Addr { |
| 2358 | !*self |
| 2359 | } |
| 2360 | } |
| 2361 | |
| 2362 | #[stable (feature = "ip_bitops" , since = "1.75.0" )] |
| 2363 | impl Not for Ipv6Addr { |
| 2364 | type Output = Ipv6Addr; |
| 2365 | |
| 2366 | #[inline ] |
| 2367 | fn not(mut self) -> Ipv6Addr { |
| 2368 | for octet: &mut u8 in &mut self.octets { |
| 2369 | *octet = !*octet; |
| 2370 | } |
| 2371 | self |
| 2372 | } |
| 2373 | } |
| 2374 | |
| 2375 | #[stable (feature = "ip_bitops" , since = "1.75.0" )] |
| 2376 | impl Not for &'_ Ipv6Addr { |
| 2377 | type Output = Ipv6Addr; |
| 2378 | |
| 2379 | #[inline ] |
| 2380 | fn not(self) -> Ipv6Addr { |
| 2381 | !*self |
| 2382 | } |
| 2383 | } |
| 2384 | |
| 2385 | macro_rules! bitop_impls { |
| 2386 | ($( |
| 2387 | $(#[$attr:meta])* |
| 2388 | impl ($BitOp:ident, $BitOpAssign:ident) for $ty:ty = ($bitop:ident, $bitop_assign:ident); |
| 2389 | )*) => { |
| 2390 | $( |
| 2391 | $(#[$attr])* |
| 2392 | impl $BitOpAssign for $ty { |
| 2393 | fn $bitop_assign(&mut self, rhs: $ty) { |
| 2394 | for (lhs, rhs) in iter::zip(&mut self.octets, rhs.octets) { |
| 2395 | lhs.$bitop_assign(rhs); |
| 2396 | } |
| 2397 | } |
| 2398 | } |
| 2399 | |
| 2400 | $(#[$attr])* |
| 2401 | impl $BitOpAssign<&'_ $ty> for $ty { |
| 2402 | fn $bitop_assign(&mut self, rhs: &'_ $ty) { |
| 2403 | self.$bitop_assign(*rhs); |
| 2404 | } |
| 2405 | } |
| 2406 | |
| 2407 | $(#[$attr])* |
| 2408 | impl $BitOp for $ty { |
| 2409 | type Output = $ty; |
| 2410 | |
| 2411 | #[inline] |
| 2412 | fn $bitop(mut self, rhs: $ty) -> $ty { |
| 2413 | self.$bitop_assign(rhs); |
| 2414 | self |
| 2415 | } |
| 2416 | } |
| 2417 | |
| 2418 | $(#[$attr])* |
| 2419 | impl $BitOp<&'_ $ty> for $ty { |
| 2420 | type Output = $ty; |
| 2421 | |
| 2422 | #[inline] |
| 2423 | fn $bitop(mut self, rhs: &'_ $ty) -> $ty { |
| 2424 | self.$bitop_assign(*rhs); |
| 2425 | self |
| 2426 | } |
| 2427 | } |
| 2428 | |
| 2429 | $(#[$attr])* |
| 2430 | impl $BitOp<$ty> for &'_ $ty { |
| 2431 | type Output = $ty; |
| 2432 | |
| 2433 | #[inline] |
| 2434 | fn $bitop(self, rhs: $ty) -> $ty { |
| 2435 | let mut lhs = *self; |
| 2436 | lhs.$bitop_assign(rhs); |
| 2437 | lhs |
| 2438 | } |
| 2439 | } |
| 2440 | |
| 2441 | $(#[$attr])* |
| 2442 | impl $BitOp<&'_ $ty> for &'_ $ty { |
| 2443 | type Output = $ty; |
| 2444 | |
| 2445 | #[inline] |
| 2446 | fn $bitop(self, rhs: &'_ $ty) -> $ty { |
| 2447 | let mut lhs = *self; |
| 2448 | lhs.$bitop_assign(*rhs); |
| 2449 | lhs |
| 2450 | } |
| 2451 | } |
| 2452 | )* |
| 2453 | }; |
| 2454 | } |
| 2455 | |
| 2456 | bitop_impls! { |
| 2457 | #[stable (feature = "ip_bitops" , since = "1.75.0" )] |
| 2458 | impl (BitAnd, BitAndAssign) for Ipv4Addr = (bitand, bitand_assign); |
| 2459 | #[stable (feature = "ip_bitops" , since = "1.75.0" )] |
| 2460 | impl (BitOr, BitOrAssign) for Ipv4Addr = (bitor, bitor_assign); |
| 2461 | |
| 2462 | #[stable (feature = "ip_bitops" , since = "1.75.0" )] |
| 2463 | impl (BitAnd, BitAndAssign) for Ipv6Addr = (bitand, bitand_assign); |
| 2464 | #[stable (feature = "ip_bitops" , since = "1.75.0" )] |
| 2465 | impl (BitOr, BitOrAssign) for Ipv6Addr = (bitor, bitor_assign); |
| 2466 | } |
| 2467 | |