1use crate::cmp::Ordering;
2use crate::fmt::{self, Write};
3use crate::iter;
4use crate::mem::transmute;
5use crate::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, Not};
6
7use super::display_buffer::DisplayBuffer;
8
9/// An IP address, either IPv4 or IPv6.
10///
11/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
12/// respective documentation for more details.
13///
14/// # Examples
15///
16/// ```
17/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
18///
19/// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
20/// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
21///
22/// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4));
23/// assert_eq!("::1".parse(), Ok(localhost_v6));
24///
25/// assert_eq!(localhost_v4.is_ipv6(), false);
26/// assert_eq!(localhost_v4.is_ipv4(), true);
27/// ```
28#[cfg_attr(not(test), rustc_diagnostic_item = "IpAddr")]
29#[stable(feature = "ip_addr", since = "1.7.0")]
30#[derive(Copy, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)]
31pub enum IpAddr {
32 /// An IPv4 address.
33 #[stable(feature = "ip_addr", since = "1.7.0")]
34 V4(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv4Addr),
35 /// An IPv6 address.
36 #[stable(feature = "ip_addr", since = "1.7.0")]
37 V6(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv6Addr),
38}
39
40/// An IPv4 address.
41///
42/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
43/// They are usually represented as four octets.
44///
45/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
46///
47/// [IETF RFC 791]: https://tools.ietf.org/html/rfc791
48///
49/// # Textual representation
50///
51/// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal
52/// notation, divided by `.` (this is called "dot-decimal notation").
53/// Notably, octal numbers (which are indicated with a leading `0`) and hexadecimal numbers (which
54/// are indicated with a leading `0x`) are not allowed per [IETF RFC 6943].
55///
56/// [IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1
57/// [`FromStr`]: crate::str::FromStr
58///
59/// # Examples
60///
61/// ```
62/// use std::net::Ipv4Addr;
63///
64/// let localhost = Ipv4Addr::new(127, 0, 0, 1);
65/// assert_eq!("127.0.0.1".parse(), Ok(localhost));
66/// assert_eq!(localhost.is_loopback(), true);
67/// assert!("012.004.002.000".parse::<Ipv4Addr>().is_err()); // all octets are in octal
68/// assert!("0000000.0.0.0".parse::<Ipv4Addr>().is_err()); // first octet is a zero in octal
69/// assert!("0xcb.0x0.0x71.0x00".parse::<Ipv4Addr>().is_err()); // all octets are in hex
70/// ```
71#[derive(Copy, Clone, PartialEq, Eq, Hash)]
72#[stable(feature = "rust1", since = "1.0.0")]
73pub struct Ipv4Addr {
74 octets: [u8; 4],
75}
76
77/// An IPv6 address.
78///
79/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
80/// They are usually represented as eight 16-bit segments.
81///
82/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
83///
84/// # Embedding IPv4 Addresses
85///
86/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
87///
88/// To assist in the transition from IPv4 to IPv6 two types of IPv6 addresses that embed an IPv4 address were defined:
89/// IPv4-compatible and IPv4-mapped addresses. Of these IPv4-compatible addresses have been officially deprecated.
90///
91/// Both types of addresses are not assigned any special meaning by this implementation,
92/// other than what the relevant standards prescribe. This means that an address like `::ffff:127.0.0.1`,
93/// while representing an IPv4 loopback address, is not itself an IPv6 loopback address; only `::1` is.
94/// To handle these so called "IPv4-in-IPv6" addresses, they have to first be converted to their canonical IPv4 address.
95///
96/// ### IPv4-Compatible IPv6 Addresses
97///
98/// IPv4-compatible IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.1], and have been officially deprecated.
99/// The RFC describes the format of an "IPv4-Compatible IPv6 address" as follows:
100///
101/// ```text
102/// | 80 bits | 16 | 32 bits |
103/// +--------------------------------------+--------------------------+
104/// |0000..............................0000|0000| IPv4 address |
105/// +--------------------------------------+----+---------------------+
106/// ```
107/// So `::a.b.c.d` would be an IPv4-compatible IPv6 address representing the IPv4 address `a.b.c.d`.
108///
109/// To convert from an IPv4 address to an IPv4-compatible IPv6 address, use [`Ipv4Addr::to_ipv6_compatible`].
110/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-compatible IPv6 address to the canonical IPv4 address.
111///
112/// [IETF RFC 4291 Section 2.5.5.1]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.1
113///
114/// ### IPv4-Mapped IPv6 Addresses
115///
116/// IPv4-mapped IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.2].
117/// The RFC describes the format of an "IPv4-Mapped IPv6 address" as follows:
118///
119/// ```text
120/// | 80 bits | 16 | 32 bits |
121/// +--------------------------------------+--------------------------+
122/// |0000..............................0000|FFFF| IPv4 address |
123/// +--------------------------------------+----+---------------------+
124/// ```
125/// So `::ffff:a.b.c.d` would be an IPv4-mapped IPv6 address representing the IPv4 address `a.b.c.d`.
126///
127/// To convert from an IPv4 address to an IPv4-mapped IPv6 address, use [`Ipv4Addr::to_ipv6_mapped`].
128/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-mapped IPv6 address to the canonical IPv4 address.
129/// Note that this will also convert the IPv6 loopback address `::1` to `0.0.0.1`. Use
130/// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
131///
132/// [IETF RFC 4291 Section 2.5.5.2]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2
133///
134/// # Textual representation
135///
136/// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent
137/// an IPv6 address in text, but in general, each segments is written in hexadecimal
138/// notation, and segments are separated by `:`. For more information, see
139/// [IETF RFC 5952].
140///
141/// [`FromStr`]: crate::str::FromStr
142/// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952
143///
144/// # Examples
145///
146/// ```
147/// use std::net::Ipv6Addr;
148///
149/// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
150/// assert_eq!("::1".parse(), Ok(localhost));
151/// assert_eq!(localhost.is_loopback(), true);
152/// ```
153#[derive(Copy, Clone, PartialEq, Eq, Hash)]
154#[stable(feature = "rust1", since = "1.0.0")]
155pub struct Ipv6Addr {
156 octets: [u8; 16],
157}
158
159/// Scope of an [IPv6 multicast address] as defined in [IETF RFC 7346 section 2].
160///
161/// # Stability Guarantees
162///
163/// Not all possible values for a multicast scope have been assigned.
164/// Future RFCs may introduce new scopes, which will be added as variants to this enum;
165/// because of this the enum is marked as `#[non_exhaustive]`.
166///
167/// # Examples
168/// ```
169/// #![feature(ip)]
170///
171/// use std::net::Ipv6Addr;
172/// use std::net::Ipv6MulticastScope::*;
173///
174/// // An IPv6 multicast address with global scope (`ff0e::`).
175/// let address = Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0);
176///
177/// // Will print "Global scope".
178/// match address.multicast_scope() {
179/// Some(InterfaceLocal) => println!("Interface-Local scope"),
180/// Some(LinkLocal) => println!("Link-Local scope"),
181/// Some(RealmLocal) => println!("Realm-Local scope"),
182/// Some(AdminLocal) => println!("Admin-Local scope"),
183/// Some(SiteLocal) => println!("Site-Local scope"),
184/// Some(OrganizationLocal) => println!("Organization-Local scope"),
185/// Some(Global) => println!("Global scope"),
186/// Some(_) => println!("Unknown scope"),
187/// None => println!("Not a multicast address!")
188/// }
189///
190/// ```
191///
192/// [IPv6 multicast address]: Ipv6Addr
193/// [IETF RFC 7346 section 2]: https://tools.ietf.org/html/rfc7346#section-2
194#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
195#[unstable(feature = "ip", issue = "27709")]
196#[non_exhaustive]
197pub enum Ipv6MulticastScope {
198 /// Interface-Local scope.
199 InterfaceLocal,
200 /// Link-Local scope.
201 LinkLocal,
202 /// Realm-Local scope.
203 RealmLocal,
204 /// Admin-Local scope.
205 AdminLocal,
206 /// Site-Local scope.
207 SiteLocal,
208 /// Organization-Local scope.
209 OrganizationLocal,
210 /// Global scope.
211 Global,
212}
213
214impl IpAddr {
215 /// Returns [`true`] for the special 'unspecified' address.
216 ///
217 /// See the documentation for [`Ipv4Addr::is_unspecified()`] and
218 /// [`Ipv6Addr::is_unspecified()`] for more details.
219 ///
220 /// # Examples
221 ///
222 /// ```
223 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
224 ///
225 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true);
226 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true);
227 /// ```
228 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
229 #[stable(feature = "ip_shared", since = "1.12.0")]
230 #[must_use]
231 #[inline]
232 pub const fn is_unspecified(&self) -> bool {
233 match self {
234 IpAddr::V4(ip) => ip.is_unspecified(),
235 IpAddr::V6(ip) => ip.is_unspecified(),
236 }
237 }
238
239 /// Returns [`true`] if this is a loopback address.
240 ///
241 /// See the documentation for [`Ipv4Addr::is_loopback()`] and
242 /// [`Ipv6Addr::is_loopback()`] for more details.
243 ///
244 /// # Examples
245 ///
246 /// ```
247 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
248 ///
249 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true);
250 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true);
251 /// ```
252 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
253 #[stable(feature = "ip_shared", since = "1.12.0")]
254 #[must_use]
255 #[inline]
256 pub const fn is_loopback(&self) -> bool {
257 match self {
258 IpAddr::V4(ip) => ip.is_loopback(),
259 IpAddr::V6(ip) => ip.is_loopback(),
260 }
261 }
262
263 /// Returns [`true`] if the address appears to be globally routable.
264 ///
265 /// See the documentation for [`Ipv4Addr::is_global()`] and
266 /// [`Ipv6Addr::is_global()`] for more details.
267 ///
268 /// # Examples
269 ///
270 /// ```
271 /// #![feature(ip)]
272 ///
273 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
274 ///
275 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true);
276 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true);
277 /// ```
278 #[rustc_const_unstable(feature = "const_ip", issue = "76205")]
279 #[unstable(feature = "ip", issue = "27709")]
280 #[must_use]
281 #[inline]
282 pub const fn is_global(&self) -> bool {
283 match self {
284 IpAddr::V4(ip) => ip.is_global(),
285 IpAddr::V6(ip) => ip.is_global(),
286 }
287 }
288
289 /// Returns [`true`] if this is a multicast address.
290 ///
291 /// See the documentation for [`Ipv4Addr::is_multicast()`] and
292 /// [`Ipv6Addr::is_multicast()`] for more details.
293 ///
294 /// # Examples
295 ///
296 /// ```
297 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
298 ///
299 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true);
300 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true);
301 /// ```
302 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
303 #[stable(feature = "ip_shared", since = "1.12.0")]
304 #[must_use]
305 #[inline]
306 pub const fn is_multicast(&self) -> bool {
307 match self {
308 IpAddr::V4(ip) => ip.is_multicast(),
309 IpAddr::V6(ip) => ip.is_multicast(),
310 }
311 }
312
313 /// Returns [`true`] if this address is in a range designated for documentation.
314 ///
315 /// See the documentation for [`Ipv4Addr::is_documentation()`] and
316 /// [`Ipv6Addr::is_documentation()`] for more details.
317 ///
318 /// # Examples
319 ///
320 /// ```
321 /// #![feature(ip)]
322 ///
323 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
324 ///
325 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true);
326 /// assert_eq!(
327 /// IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(),
328 /// true
329 /// );
330 /// ```
331 #[rustc_const_unstable(feature = "const_ip", issue = "76205")]
332 #[unstable(feature = "ip", issue = "27709")]
333 #[must_use]
334 #[inline]
335 pub const fn is_documentation(&self) -> bool {
336 match self {
337 IpAddr::V4(ip) => ip.is_documentation(),
338 IpAddr::V6(ip) => ip.is_documentation(),
339 }
340 }
341
342 /// Returns [`true`] if this address is in a range designated for benchmarking.
343 ///
344 /// See the documentation for [`Ipv4Addr::is_benchmarking()`] and
345 /// [`Ipv6Addr::is_benchmarking()`] for more details.
346 ///
347 /// # Examples
348 ///
349 /// ```
350 /// #![feature(ip)]
351 ///
352 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
353 ///
354 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(198, 19, 255, 255)).is_benchmarking(), true);
355 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0)).is_benchmarking(), true);
356 /// ```
357 #[unstable(feature = "ip", issue = "27709")]
358 #[must_use]
359 #[inline]
360 pub const fn is_benchmarking(&self) -> bool {
361 match self {
362 IpAddr::V4(ip) => ip.is_benchmarking(),
363 IpAddr::V6(ip) => ip.is_benchmarking(),
364 }
365 }
366
367 /// Returns [`true`] if this address is an [`IPv4` address], and [`false`]
368 /// otherwise.
369 ///
370 /// [`IPv4` address]: IpAddr::V4
371 ///
372 /// # Examples
373 ///
374 /// ```
375 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
376 ///
377 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true);
378 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false);
379 /// ```
380 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
381 #[stable(feature = "ipaddr_checker", since = "1.16.0")]
382 #[must_use]
383 #[inline]
384 pub const fn is_ipv4(&self) -> bool {
385 matches!(self, IpAddr::V4(_))
386 }
387
388 /// Returns [`true`] if this address is an [`IPv6` address], and [`false`]
389 /// otherwise.
390 ///
391 /// [`IPv6` address]: IpAddr::V6
392 ///
393 /// # Examples
394 ///
395 /// ```
396 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
397 ///
398 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false);
399 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true);
400 /// ```
401 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
402 #[stable(feature = "ipaddr_checker", since = "1.16.0")]
403 #[must_use]
404 #[inline]
405 pub const fn is_ipv6(&self) -> bool {
406 matches!(self, IpAddr::V6(_))
407 }
408
409 /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped IPv6 addresses, otherwise it
410 /// returns `self` as-is.
411 ///
412 /// # Examples
413 ///
414 /// ```
415 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
416 ///
417 /// let localhost_v4 = Ipv4Addr::new(127, 0, 0, 1);
418 ///
419 /// assert_eq!(IpAddr::V4(localhost_v4).to_canonical(), localhost_v4);
420 /// assert_eq!(IpAddr::V6(localhost_v4.to_ipv6_mapped()).to_canonical(), localhost_v4);
421 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).to_canonical().is_loopback(), true);
422 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).is_loopback(), false);
423 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).to_canonical().is_loopback(), true);
424 /// ```
425 #[inline]
426 #[must_use = "this returns the result of the operation, \
427 without modifying the original"]
428 #[stable(feature = "ip_to_canonical", since = "1.75.0")]
429 #[rustc_const_stable(feature = "ip_to_canonical", since = "1.75.0")]
430 pub const fn to_canonical(&self) -> IpAddr {
431 match self {
432 IpAddr::V4(_) => *self,
433 IpAddr::V6(v6) => v6.to_canonical(),
434 }
435 }
436}
437
438impl Ipv4Addr {
439 /// Creates a new IPv4 address from four eight-bit octets.
440 ///
441 /// The result will represent the IP address `a`.`b`.`c`.`d`.
442 ///
443 /// # Examples
444 ///
445 /// ```
446 /// use std::net::Ipv4Addr;
447 ///
448 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
449 /// ```
450 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
451 #[stable(feature = "rust1", since = "1.0.0")]
452 #[must_use]
453 #[inline]
454 pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
455 Ipv4Addr { octets: [a, b, c, d] }
456 }
457
458 /// The size of an IPv4 address in bits.
459 ///
460 /// # Examples
461 ///
462 /// ```
463 /// #![feature(ip_bits)]
464 /// use std::net::Ipv4Addr;
465 ///
466 /// assert_eq!(Ipv4Addr::BITS, 32);
467 /// ```
468 #[unstable(feature = "ip_bits", issue = "113744")]
469 pub const BITS: u32 = 32;
470
471 /// Converts an IPv4 address into a `u32` representation using native byte order.
472 ///
473 /// Although IPv4 addresses are big-endian, the `u32` value will use the target platform's
474 /// native byte order. That is, the `u32` value is an integer representation of the IPv4
475 /// address and not an integer interpretation of the IPv4 address's big-endian bitstring. This
476 /// means that the `u32` value masked with `0xffffff00` will set the last octet in the address
477 /// to 0, regardless of the target platform's endianness.
478 ///
479 /// # Examples
480 ///
481 /// ```
482 /// #![feature(ip_bits)]
483 /// use std::net::Ipv4Addr;
484 ///
485 /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
486 /// assert_eq!(0x12345678, addr.to_bits());
487 /// ```
488 ///
489 /// ```
490 /// #![feature(ip_bits)]
491 /// use std::net::Ipv4Addr;
492 ///
493 /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
494 /// let addr_bits = addr.to_bits() & 0xffffff00;
495 /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x00), Ipv4Addr::from_bits(addr_bits));
496 ///
497 /// ```
498 #[rustc_const_unstable(feature = "ip_bits", issue = "113744")]
499 #[unstable(feature = "ip_bits", issue = "113744")]
500 #[must_use]
501 #[inline]
502 pub const fn to_bits(self) -> u32 {
503 u32::from_be_bytes(self.octets)
504 }
505
506 /// Converts a native byte order `u32` into an IPv4 address.
507 ///
508 /// See [`Ipv4Addr::to_bits`] for an explanation on endianness.
509 ///
510 /// # Examples
511 ///
512 /// ```
513 /// #![feature(ip_bits)]
514 /// use std::net::Ipv4Addr;
515 ///
516 /// let addr = Ipv4Addr::from(0x12345678);
517 /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78), addr);
518 /// ```
519 #[rustc_const_unstable(feature = "ip_bits", issue = "113744")]
520 #[unstable(feature = "ip_bits", issue = "113744")]
521 #[must_use]
522 #[inline]
523 pub const fn from_bits(bits: u32) -> Ipv4Addr {
524 Ipv4Addr { octets: bits.to_be_bytes() }
525 }
526
527 /// An IPv4 address with the address pointing to localhost: `127.0.0.1`
528 ///
529 /// # Examples
530 ///
531 /// ```
532 /// use std::net::Ipv4Addr;
533 ///
534 /// let addr = Ipv4Addr::LOCALHOST;
535 /// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
536 /// ```
537 #[stable(feature = "ip_constructors", since = "1.30.0")]
538 pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1);
539
540 /// An IPv4 address representing an unspecified address: `0.0.0.0`
541 ///
542 /// This corresponds to the constant `INADDR_ANY` in other languages.
543 ///
544 /// # Examples
545 ///
546 /// ```
547 /// use std::net::Ipv4Addr;
548 ///
549 /// let addr = Ipv4Addr::UNSPECIFIED;
550 /// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
551 /// ```
552 #[doc(alias = "INADDR_ANY")]
553 #[stable(feature = "ip_constructors", since = "1.30.0")]
554 pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0);
555
556 /// An IPv4 address representing the broadcast address: `255.255.255.255`
557 ///
558 /// # Examples
559 ///
560 /// ```
561 /// use std::net::Ipv4Addr;
562 ///
563 /// let addr = Ipv4Addr::BROADCAST;
564 /// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
565 /// ```
566 #[stable(feature = "ip_constructors", since = "1.30.0")]
567 pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255);
568
569 /// Returns the four eight-bit integers that make up this address.
570 ///
571 /// # Examples
572 ///
573 /// ```
574 /// use std::net::Ipv4Addr;
575 ///
576 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
577 /// assert_eq!(addr.octets(), [127, 0, 0, 1]);
578 /// ```
579 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
580 #[stable(feature = "rust1", since = "1.0.0")]
581 #[must_use]
582 #[inline]
583 pub const fn octets(&self) -> [u8; 4] {
584 self.octets
585 }
586
587 /// Returns [`true`] for the special 'unspecified' address (`0.0.0.0`).
588 ///
589 /// This property is defined in _UNIX Network Programming, Second Edition_,
590 /// W. Richard Stevens, p. 891; see also [ip7].
591 ///
592 /// [ip7]: https://man7.org/linux/man-pages/man7/ip.7.html
593 ///
594 /// # Examples
595 ///
596 /// ```
597 /// use std::net::Ipv4Addr;
598 ///
599 /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
600 /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
601 /// ```
602 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
603 #[stable(feature = "ip_shared", since = "1.12.0")]
604 #[must_use]
605 #[inline]
606 pub const fn is_unspecified(&self) -> bool {
607 u32::from_be_bytes(self.octets) == 0
608 }
609
610 /// Returns [`true`] if this is a loopback address (`127.0.0.0/8`).
611 ///
612 /// This property is defined by [IETF RFC 1122].
613 ///
614 /// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
615 ///
616 /// # Examples
617 ///
618 /// ```
619 /// use std::net::Ipv4Addr;
620 ///
621 /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
622 /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
623 /// ```
624 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
625 #[stable(since = "1.7.0", feature = "ip_17")]
626 #[must_use]
627 #[inline]
628 pub const fn is_loopback(&self) -> bool {
629 self.octets()[0] == 127
630 }
631
632 /// Returns [`true`] if this is a private address.
633 ///
634 /// The private address ranges are defined in [IETF RFC 1918] and include:
635 ///
636 /// - `10.0.0.0/8`
637 /// - `172.16.0.0/12`
638 /// - `192.168.0.0/16`
639 ///
640 /// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
641 ///
642 /// # Examples
643 ///
644 /// ```
645 /// use std::net::Ipv4Addr;
646 ///
647 /// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
648 /// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
649 /// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
650 /// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
651 /// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
652 /// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
653 /// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
654 /// ```
655 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
656 #[stable(since = "1.7.0", feature = "ip_17")]
657 #[must_use]
658 #[inline]
659 pub const fn is_private(&self) -> bool {
660 match self.octets() {
661 [10, ..] => true,
662 [172, b, ..] if b >= 16 && b <= 31 => true,
663 [192, 168, ..] => true,
664 _ => false,
665 }
666 }
667
668 /// Returns [`true`] if the address is link-local (`169.254.0.0/16`).
669 ///
670 /// This property is defined by [IETF RFC 3927].
671 ///
672 /// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
673 ///
674 /// # Examples
675 ///
676 /// ```
677 /// use std::net::Ipv4Addr;
678 ///
679 /// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
680 /// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
681 /// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
682 /// ```
683 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
684 #[stable(since = "1.7.0", feature = "ip_17")]
685 #[must_use]
686 #[inline]
687 pub const fn is_link_local(&self) -> bool {
688 matches!(self.octets(), [169, 254, ..])
689 }
690
691 /// Returns [`true`] if the address appears to be globally reachable
692 /// as specified by the [IANA IPv4 Special-Purpose Address Registry].
693 /// Whether or not an address is practically reachable will depend on your network configuration.
694 ///
695 /// Most IPv4 addresses are globally reachable;
696 /// unless they are specifically defined as *not* globally reachable.
697 ///
698 /// Non-exhaustive list of notable addresses that are not globally reachable:
699 ///
700 /// - The [unspecified address] ([`is_unspecified`](Ipv4Addr::is_unspecified))
701 /// - Addresses reserved for private use ([`is_private`](Ipv4Addr::is_private))
702 /// - Addresses in the shared address space ([`is_shared`](Ipv4Addr::is_shared))
703 /// - Loopback addresses ([`is_loopback`](Ipv4Addr::is_loopback))
704 /// - Link-local addresses ([`is_link_local`](Ipv4Addr::is_link_local))
705 /// - Addresses reserved for documentation ([`is_documentation`](Ipv4Addr::is_documentation))
706 /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv4Addr::is_benchmarking))
707 /// - Reserved addresses ([`is_reserved`](Ipv4Addr::is_reserved))
708 /// - The [broadcast address] ([`is_broadcast`](Ipv4Addr::is_broadcast))
709 ///
710 /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv4 Special-Purpose Address Registry].
711 ///
712 /// [IANA IPv4 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
713 /// [unspecified address]: Ipv4Addr::UNSPECIFIED
714 /// [broadcast address]: Ipv4Addr::BROADCAST
715
716 ///
717 /// # Examples
718 ///
719 /// ```
720 /// #![feature(ip)]
721 ///
722 /// use std::net::Ipv4Addr;
723 ///
724 /// // Most IPv4 addresses are globally reachable:
725 /// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
726 ///
727 /// // However some addresses have been assigned a special meaning
728 /// // that makes them not globally reachable. Some examples are:
729 ///
730 /// // The unspecified address (`0.0.0.0`)
731 /// assert_eq!(Ipv4Addr::UNSPECIFIED.is_global(), false);
732 ///
733 /// // Addresses reserved for private use (`10.0.0.0/8`, `172.16.0.0/12`, 192.168.0.0/16)
734 /// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
735 /// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
736 /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
737 ///
738 /// // Addresses in the shared address space (`100.64.0.0/10`)
739 /// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false);
740 ///
741 /// // The loopback addresses (`127.0.0.0/8`)
742 /// assert_eq!(Ipv4Addr::LOCALHOST.is_global(), false);
743 ///
744 /// // Link-local addresses (`169.254.0.0/16`)
745 /// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false);
746 ///
747 /// // Addresses reserved for documentation (`192.0.2.0/24`, `198.51.100.0/24`, `203.0.113.0/24`)
748 /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false);
749 /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false);
750 /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false);
751 ///
752 /// // Addresses reserved for benchmarking (`198.18.0.0/15`)
753 /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false);
754 ///
755 /// // Reserved addresses (`240.0.0.0/4`)
756 /// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false);
757 ///
758 /// // The broadcast address (`255.255.255.255`)
759 /// assert_eq!(Ipv4Addr::BROADCAST.is_global(), false);
760 ///
761 /// // For a complete overview see the IANA IPv4 Special-Purpose Address Registry.
762 /// ```
763 #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")]
764 #[unstable(feature = "ip", issue = "27709")]
765 #[must_use]
766 #[inline]
767 pub const fn is_global(&self) -> bool {
768 !(self.octets()[0] == 0 // "This network"
769 || self.is_private()
770 || self.is_shared()
771 || self.is_loopback()
772 || self.is_link_local()
773 // addresses reserved for future protocols (`192.0.0.0/24`)
774 // .9 and .10 are documented as globally reachable so they're excluded
775 || (
776 self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0
777 && self.octets()[3] != 9 && self.octets()[3] != 10
778 )
779 || self.is_documentation()
780 || self.is_benchmarking()
781 || self.is_reserved()
782 || self.is_broadcast())
783 }
784
785 /// Returns [`true`] if this address is part of the Shared Address Space defined in
786 /// [IETF RFC 6598] (`100.64.0.0/10`).
787 ///
788 /// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598
789 ///
790 /// # Examples
791 ///
792 /// ```
793 /// #![feature(ip)]
794 /// use std::net::Ipv4Addr;
795 ///
796 /// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true);
797 /// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true);
798 /// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
799 /// ```
800 #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")]
801 #[unstable(feature = "ip", issue = "27709")]
802 #[must_use]
803 #[inline]
804 pub const fn is_shared(&self) -> bool {
805 self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000)
806 }
807
808 /// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for
809 /// network devices benchmarking. This range is defined in [IETF RFC 2544] as `192.18.0.0`
810 /// through `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`.
811 ///
812 /// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544
813 /// [errata 423]: https://www.rfc-editor.org/errata/eid423
814 ///
815 /// # Examples
816 ///
817 /// ```
818 /// #![feature(ip)]
819 /// use std::net::Ipv4Addr;
820 ///
821 /// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false);
822 /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true);
823 /// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true);
824 /// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
825 /// ```
826 #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")]
827 #[unstable(feature = "ip", issue = "27709")]
828 #[must_use]
829 #[inline]
830 pub const fn is_benchmarking(&self) -> bool {
831 self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18
832 }
833
834 /// Returns [`true`] if this address is reserved by IANA for future use. [IETF RFC 1112]
835 /// defines the block of reserved addresses as `240.0.0.0/4`. This range normally includes the
836 /// broadcast address `255.255.255.255`, but this implementation explicitly excludes it, since
837 /// it is obviously not reserved for future use.
838 ///
839 /// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112
840 ///
841 /// # Warning
842 ///
843 /// As IANA assigns new addresses, this method will be
844 /// updated. This may result in non-reserved addresses being
845 /// treated as reserved in code that relies on an outdated version
846 /// of this method.
847 ///
848 /// # Examples
849 ///
850 /// ```
851 /// #![feature(ip)]
852 /// use std::net::Ipv4Addr;
853 ///
854 /// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true);
855 /// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true);
856 ///
857 /// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false);
858 /// // The broadcast address is not considered as reserved for future use by this implementation
859 /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
860 /// ```
861 #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")]
862 #[unstable(feature = "ip", issue = "27709")]
863 #[must_use]
864 #[inline]
865 pub const fn is_reserved(&self) -> bool {
866 self.octets()[0] & 240 == 240 && !self.is_broadcast()
867 }
868
869 /// Returns [`true`] if this is a multicast address (`224.0.0.0/4`).
870 ///
871 /// Multicast addresses have a most significant octet between `224` and `239`,
872 /// and is defined by [IETF RFC 5771].
873 ///
874 /// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
875 ///
876 /// # Examples
877 ///
878 /// ```
879 /// use std::net::Ipv4Addr;
880 ///
881 /// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
882 /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
883 /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
884 /// ```
885 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
886 #[stable(since = "1.7.0", feature = "ip_17")]
887 #[must_use]
888 #[inline]
889 pub const fn is_multicast(&self) -> bool {
890 self.octets()[0] >= 224 && self.octets()[0] <= 239
891 }
892
893 /// Returns [`true`] if this is a broadcast address (`255.255.255.255`).
894 ///
895 /// A broadcast address has all octets set to `255` as defined in [IETF RFC 919].
896 ///
897 /// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
898 ///
899 /// # Examples
900 ///
901 /// ```
902 /// use std::net::Ipv4Addr;
903 ///
904 /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
905 /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
906 /// ```
907 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
908 #[stable(since = "1.7.0", feature = "ip_17")]
909 #[must_use]
910 #[inline]
911 pub const fn is_broadcast(&self) -> bool {
912 u32::from_be_bytes(self.octets()) == u32::from_be_bytes(Self::BROADCAST.octets())
913 }
914
915 /// Returns [`true`] if this address is in a range designated for documentation.
916 ///
917 /// This is defined in [IETF RFC 5737]:
918 ///
919 /// - `192.0.2.0/24` (TEST-NET-1)
920 /// - `198.51.100.0/24` (TEST-NET-2)
921 /// - `203.0.113.0/24` (TEST-NET-3)
922 ///
923 /// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
924 ///
925 /// # Examples
926 ///
927 /// ```
928 /// use std::net::Ipv4Addr;
929 ///
930 /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
931 /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
932 /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
933 /// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
934 /// ```
935 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
936 #[stable(since = "1.7.0", feature = "ip_17")]
937 #[must_use]
938 #[inline]
939 pub const fn is_documentation(&self) -> bool {
940 matches!(self.octets(), [192, 0, 2, _] | [198, 51, 100, _] | [203, 0, 113, _])
941 }
942
943 /// Converts this address to an [IPv4-compatible] [`IPv6` address].
944 ///
945 /// `a.b.c.d` becomes `::a.b.c.d`
946 ///
947 /// Note that IPv4-compatible addresses have been officially deprecated.
948 /// If you don't explicitly need an IPv4-compatible address for legacy reasons, consider using `to_ipv6_mapped` instead.
949 ///
950 /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
951 /// [`IPv6` address]: Ipv6Addr
952 ///
953 /// # Examples
954 ///
955 /// ```
956 /// use std::net::{Ipv4Addr, Ipv6Addr};
957 ///
958 /// assert_eq!(
959 /// Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
960 /// Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff)
961 /// );
962 /// ```
963 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
964 #[stable(feature = "rust1", since = "1.0.0")]
965 #[must_use = "this returns the result of the operation, \
966 without modifying the original"]
967 #[inline]
968 pub const fn to_ipv6_compatible(&self) -> Ipv6Addr {
969 let [a, b, c, d] = self.octets();
970 Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d] }
971 }
972
973 /// Converts this address to an [IPv4-mapped] [`IPv6` address].
974 ///
975 /// `a.b.c.d` becomes `::ffff:a.b.c.d`
976 ///
977 /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
978 /// [`IPv6` address]: Ipv6Addr
979 ///
980 /// # Examples
981 ///
982 /// ```
983 /// use std::net::{Ipv4Addr, Ipv6Addr};
984 ///
985 /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
986 /// Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff));
987 /// ```
988 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
989 #[stable(feature = "rust1", since = "1.0.0")]
990 #[must_use = "this returns the result of the operation, \
991 without modifying the original"]
992 #[inline]
993 pub const fn to_ipv6_mapped(&self) -> Ipv6Addr {
994 let [a, b, c, d] = self.octets();
995 Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d] }
996 }
997}
998
999#[stable(feature = "ip_addr", since = "1.7.0")]
1000impl fmt::Display for IpAddr {
1001 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1002 match self {
1003 IpAddr::V4(ip: &Ipv4Addr) => ip.fmt(fmt),
1004 IpAddr::V6(ip: &Ipv6Addr) => ip.fmt(fmt),
1005 }
1006 }
1007}
1008
1009#[stable(feature = "ip_addr", since = "1.7.0")]
1010impl fmt::Debug for IpAddr {
1011 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1012 fmt::Display::fmt(self, f:fmt)
1013 }
1014}
1015
1016#[stable(feature = "ip_from_ip", since = "1.16.0")]
1017impl From<Ipv4Addr> for IpAddr {
1018 /// Copies this address to a new `IpAddr::V4`.
1019 ///
1020 /// # Examples
1021 ///
1022 /// ```
1023 /// use std::net::{IpAddr, Ipv4Addr};
1024 ///
1025 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
1026 ///
1027 /// assert_eq!(
1028 /// IpAddr::V4(addr),
1029 /// IpAddr::from(addr)
1030 /// )
1031 /// ```
1032 #[inline]
1033 fn from(ipv4: Ipv4Addr) -> IpAddr {
1034 IpAddr::V4(ipv4)
1035 }
1036}
1037
1038#[stable(feature = "ip_from_ip", since = "1.16.0")]
1039impl From<Ipv6Addr> for IpAddr {
1040 /// Copies this address to a new `IpAddr::V6`.
1041 ///
1042 /// # Examples
1043 ///
1044 /// ```
1045 /// use std::net::{IpAddr, Ipv6Addr};
1046 ///
1047 /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
1048 ///
1049 /// assert_eq!(
1050 /// IpAddr::V6(addr),
1051 /// IpAddr::from(addr)
1052 /// );
1053 /// ```
1054 #[inline]
1055 fn from(ipv6: Ipv6Addr) -> IpAddr {
1056 IpAddr::V6(ipv6)
1057 }
1058}
1059
1060#[stable(feature = "rust1", since = "1.0.0")]
1061impl fmt::Display for Ipv4Addr {
1062 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1063 let octets: [u8; 4] = self.octets();
1064
1065 // If there are no alignment requirements, write the IP address directly to `f`.
1066 // Otherwise, write it to a local buffer and then use `f.pad`.
1067 if fmt.precision().is_none() && fmt.width().is_none() {
1068 write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3])
1069 } else {
1070 const LONGEST_IPV4_ADDR: &str = "255.255.255.255";
1071
1072 let mut buf: DisplayBuffer<_> = DisplayBuffer::<{ LONGEST_IPV4_ADDR.len() }>::new();
1073 // Buffer is long enough for the longest possible IPv4 address, so this should never fail.
1074 write!(buf, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]).unwrap();
1075
1076 fmt.pad(buf.as_str())
1077 }
1078 }
1079}
1080
1081#[stable(feature = "rust1", since = "1.0.0")]
1082impl fmt::Debug for Ipv4Addr {
1083 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1084 fmt::Display::fmt(self, f:fmt)
1085 }
1086}
1087
1088#[stable(feature = "ip_cmp", since = "1.16.0")]
1089impl PartialEq<Ipv4Addr> for IpAddr {
1090 #[inline]
1091 fn eq(&self, other: &Ipv4Addr) -> bool {
1092 match self {
1093 IpAddr::V4(v4: &Ipv4Addr) => v4 == other,
1094 IpAddr::V6(_) => false,
1095 }
1096 }
1097}
1098
1099#[stable(feature = "ip_cmp", since = "1.16.0")]
1100impl PartialEq<IpAddr> for Ipv4Addr {
1101 #[inline]
1102 fn eq(&self, other: &IpAddr) -> bool {
1103 match other {
1104 IpAddr::V4(v4: &Ipv4Addr) => self == v4,
1105 IpAddr::V6(_) => false,
1106 }
1107 }
1108}
1109
1110#[stable(feature = "rust1", since = "1.0.0")]
1111impl PartialOrd for Ipv4Addr {
1112 #[inline]
1113 fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
1114 Some(self.cmp(other))
1115 }
1116}
1117
1118#[stable(feature = "ip_cmp", since = "1.16.0")]
1119impl PartialOrd<Ipv4Addr> for IpAddr {
1120 #[inline]
1121 fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
1122 match self {
1123 IpAddr::V4(v4: &Ipv4Addr) => v4.partial_cmp(other),
1124 IpAddr::V6(_) => Some(Ordering::Greater),
1125 }
1126 }
1127}
1128
1129#[stable(feature = "ip_cmp", since = "1.16.0")]
1130impl PartialOrd<IpAddr> for Ipv4Addr {
1131 #[inline]
1132 fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
1133 match other {
1134 IpAddr::V4(v4: &Ipv4Addr) => self.partial_cmp(v4),
1135 IpAddr::V6(_) => Some(Ordering::Less),
1136 }
1137 }
1138}
1139
1140#[stable(feature = "rust1", since = "1.0.0")]
1141impl Ord for Ipv4Addr {
1142 #[inline]
1143 fn cmp(&self, other: &Ipv4Addr) -> Ordering {
1144 self.octets.cmp(&other.octets)
1145 }
1146}
1147
1148#[stable(feature = "ip_u32", since = "1.1.0")]
1149impl From<Ipv4Addr> for u32 {
1150 /// Uses [`Ipv4Addr::to_bits`] to convert an IPv4 address to a host byte order `u32`.
1151 #[inline]
1152 fn from(ip: Ipv4Addr) -> u32 {
1153 ip.to_bits()
1154 }
1155}
1156
1157#[stable(feature = "ip_u32", since = "1.1.0")]
1158impl From<u32> for Ipv4Addr {
1159 /// Uses [`Ipv4Addr::from_bits`] to convert a host byte order `u32` into an IPv4 address.
1160 #[inline]
1161 fn from(ip: u32) -> Ipv4Addr {
1162 Ipv4Addr::from_bits(ip)
1163 }
1164}
1165
1166#[stable(feature = "from_slice_v4", since = "1.9.0")]
1167impl From<[u8; 4]> for Ipv4Addr {
1168 /// Creates an `Ipv4Addr` from a four element byte array.
1169 ///
1170 /// # Examples
1171 ///
1172 /// ```
1173 /// use std::net::Ipv4Addr;
1174 ///
1175 /// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
1176 /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
1177 /// ```
1178 #[inline]
1179 fn from(octets: [u8; 4]) -> Ipv4Addr {
1180 Ipv4Addr { octets }
1181 }
1182}
1183
1184#[stable(feature = "ip_from_slice", since = "1.17.0")]
1185impl From<[u8; 4]> for IpAddr {
1186 /// Creates an `IpAddr::V4` from a four element byte array.
1187 ///
1188 /// # Examples
1189 ///
1190 /// ```
1191 /// use std::net::{IpAddr, Ipv4Addr};
1192 ///
1193 /// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]);
1194 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr);
1195 /// ```
1196 #[inline]
1197 fn from(octets: [u8; 4]) -> IpAddr {
1198 IpAddr::V4(Ipv4Addr::from(octets))
1199 }
1200}
1201
1202impl Ipv6Addr {
1203 /// Creates a new IPv6 address from eight 16-bit segments.
1204 ///
1205 /// The result will represent the IP address `a:b:c:d:e:f:g:h`.
1206 ///
1207 /// # Examples
1208 ///
1209 /// ```
1210 /// use std::net::Ipv6Addr;
1211 ///
1212 /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
1213 /// ```
1214 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
1215 #[stable(feature = "rust1", since = "1.0.0")]
1216 #[must_use]
1217 #[inline]
1218 pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr {
1219 let addr16 = [
1220 a.to_be(),
1221 b.to_be(),
1222 c.to_be(),
1223 d.to_be(),
1224 e.to_be(),
1225 f.to_be(),
1226 g.to_be(),
1227 h.to_be(),
1228 ];
1229 Ipv6Addr {
1230 // All elements in `addr16` are big endian.
1231 // SAFETY: `[u16; 8]` is always safe to transmute to `[u8; 16]`.
1232 octets: unsafe { transmute::<_, [u8; 16]>(addr16) },
1233 }
1234 }
1235
1236 /// The size of an IPv6 address in bits.
1237 ///
1238 /// # Examples
1239 ///
1240 /// ```
1241 /// #![feature(ip_bits)]
1242 /// use std::net::Ipv6Addr;
1243 ///
1244 /// assert_eq!(Ipv6Addr::BITS, 128);
1245 /// ```
1246 #[unstable(feature = "ip_bits", issue = "113744")]
1247 pub const BITS: u32 = 128;
1248
1249 /// Converts an IPv6 address into a `u128` representation using native byte order.
1250 ///
1251 /// Although IPv6 addresses are big-endian, the `u128` value will use the target platform's
1252 /// native byte order. That is, the `u128` value is an integer representation of the IPv6
1253 /// address and not an integer interpretation of the IPv6 address's big-endian bitstring. This
1254 /// means that the `u128` value masked with `0xffffffffffffffffffffffffffff0000_u128` will set
1255 /// the last segment in the address to 0, regardless of the target platform's endianness.
1256 ///
1257 /// # Examples
1258 ///
1259 /// ```
1260 /// #![feature(ip_bits)]
1261 /// use std::net::Ipv6Addr;
1262 ///
1263 /// let addr = Ipv6Addr::new(
1264 /// 0x1020, 0x3040, 0x5060, 0x7080,
1265 /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1266 /// );
1267 /// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, u128::from(addr));
1268 /// ```
1269 ///
1270 /// ```
1271 /// #![feature(ip_bits)]
1272 /// use std::net::Ipv6Addr;
1273 ///
1274 /// let addr = Ipv6Addr::new(
1275 /// 0x1020, 0x3040, 0x5060, 0x7080,
1276 /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1277 /// );
1278 /// let addr_bits = addr.to_bits() & 0xffffffffffffffffffffffffffff0000_u128;
1279 /// assert_eq!(
1280 /// Ipv6Addr::new(
1281 /// 0x1020, 0x3040, 0x5060, 0x7080,
1282 /// 0x90A0, 0xB0C0, 0xD0E0, 0x0000,
1283 /// ),
1284 /// Ipv6Addr::from_bits(addr_bits));
1285 ///
1286 /// ```
1287 #[rustc_const_unstable(feature = "ip_bits", issue = "113744")]
1288 #[unstable(feature = "ip_bits", issue = "113744")]
1289 #[must_use]
1290 #[inline]
1291 pub const fn to_bits(self) -> u128 {
1292 u128::from_be_bytes(self.octets)
1293 }
1294
1295 /// Converts a native byte order `u128` into an IPv6 address.
1296 ///
1297 /// See [`Ipv6Addr::to_bits`] for an explanation on endianness.
1298 ///
1299 /// # Examples
1300 ///
1301 /// ```
1302 /// #![feature(ip_bits)]
1303 /// use std::net::Ipv6Addr;
1304 ///
1305 /// let addr = Ipv6Addr::from(0x102030405060708090A0B0C0D0E0F00D_u128);
1306 /// assert_eq!(
1307 /// Ipv6Addr::new(
1308 /// 0x1020, 0x3040, 0x5060, 0x7080,
1309 /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1310 /// ),
1311 /// addr);
1312 /// ```
1313 #[rustc_const_unstable(feature = "ip_bits", issue = "113744")]
1314 #[unstable(feature = "ip_bits", issue = "113744")]
1315 #[must_use]
1316 #[inline]
1317 pub const fn from_bits(bits: u128) -> Ipv6Addr {
1318 Ipv6Addr { octets: bits.to_be_bytes() }
1319 }
1320
1321 /// An IPv6 address representing localhost: `::1`.
1322 ///
1323 /// This corresponds to constant `IN6ADDR_LOOPBACK_INIT` or `in6addr_loopback` in other
1324 /// languages.
1325 ///
1326 /// # Examples
1327 ///
1328 /// ```
1329 /// use std::net::Ipv6Addr;
1330 ///
1331 /// let addr = Ipv6Addr::LOCALHOST;
1332 /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
1333 /// ```
1334 #[doc(alias = "IN6ADDR_LOOPBACK_INIT")]
1335 #[doc(alias = "in6addr_loopback")]
1336 #[stable(feature = "ip_constructors", since = "1.30.0")]
1337 pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
1338
1339 /// An IPv6 address representing the unspecified address: `::`
1340 ///
1341 /// This corresponds to constant `IN6ADDR_ANY_INIT` or `in6addr_any` in other languages.
1342 ///
1343 /// # Examples
1344 ///
1345 /// ```
1346 /// use std::net::Ipv6Addr;
1347 ///
1348 /// let addr = Ipv6Addr::UNSPECIFIED;
1349 /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
1350 /// ```
1351 #[doc(alias = "IN6ADDR_ANY_INIT")]
1352 #[doc(alias = "in6addr_any")]
1353 #[stable(feature = "ip_constructors", since = "1.30.0")]
1354 pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0);
1355
1356 /// Returns the eight 16-bit segments that make up this address.
1357 ///
1358 /// # Examples
1359 ///
1360 /// ```
1361 /// use std::net::Ipv6Addr;
1362 ///
1363 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
1364 /// [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
1365 /// ```
1366 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1367 #[stable(feature = "rust1", since = "1.0.0")]
1368 #[must_use]
1369 #[inline]
1370 pub const fn segments(&self) -> [u16; 8] {
1371 // All elements in `self.octets` must be big endian.
1372 // SAFETY: `[u8; 16]` is always safe to transmute to `[u16; 8]`.
1373 let [a, b, c, d, e, f, g, h] = unsafe { transmute::<_, [u16; 8]>(self.octets) };
1374 // We want native endian u16
1375 [
1376 u16::from_be(a),
1377 u16::from_be(b),
1378 u16::from_be(c),
1379 u16::from_be(d),
1380 u16::from_be(e),
1381 u16::from_be(f),
1382 u16::from_be(g),
1383 u16::from_be(h),
1384 ]
1385 }
1386
1387 /// Returns [`true`] for the special 'unspecified' address (`::`).
1388 ///
1389 /// This property is defined in [IETF RFC 4291].
1390 ///
1391 /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1392 ///
1393 /// # Examples
1394 ///
1395 /// ```
1396 /// use std::net::Ipv6Addr;
1397 ///
1398 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false);
1399 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
1400 /// ```
1401 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1402 #[stable(since = "1.7.0", feature = "ip_17")]
1403 #[must_use]
1404 #[inline]
1405 pub const fn is_unspecified(&self) -> bool {
1406 u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::UNSPECIFIED.octets())
1407 }
1408
1409 /// Returns [`true`] if this is the [loopback address] (`::1`),
1410 /// as defined in [IETF RFC 4291 section 2.5.3].
1411 ///
1412 /// Contrary to IPv4, in IPv6 there is only one loopback address.
1413 ///
1414 /// [loopback address]: Ipv6Addr::LOCALHOST
1415 /// [IETF RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1416 ///
1417 /// # Examples
1418 ///
1419 /// ```
1420 /// use std::net::Ipv6Addr;
1421 ///
1422 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false);
1423 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
1424 /// ```
1425 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1426 #[stable(since = "1.7.0", feature = "ip_17")]
1427 #[must_use]
1428 #[inline]
1429 pub const fn is_loopback(&self) -> bool {
1430 u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::LOCALHOST.octets())
1431 }
1432
1433 /// Returns [`true`] if the address appears to be globally reachable
1434 /// as specified by the [IANA IPv6 Special-Purpose Address Registry].
1435 /// Whether or not an address is practically reachable will depend on your network configuration.
1436 ///
1437 /// Most IPv6 addresses are globally reachable;
1438 /// unless they are specifically defined as *not* globally reachable.
1439 ///
1440 /// Non-exhaustive list of notable addresses that are not globally reachable:
1441 /// - The [unspecified address] ([`is_unspecified`](Ipv6Addr::is_unspecified))
1442 /// - The [loopback address] ([`is_loopback`](Ipv6Addr::is_loopback))
1443 /// - IPv4-mapped addresses
1444 /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv6Addr::is_benchmarking))
1445 /// - Addresses reserved for documentation ([`is_documentation`](Ipv6Addr::is_documentation))
1446 /// - Unique local addresses ([`is_unique_local`](Ipv6Addr::is_unique_local))
1447 /// - Unicast addresses with link-local scope ([`is_unicast_link_local`](Ipv6Addr::is_unicast_link_local))
1448 ///
1449 /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv6 Special-Purpose Address Registry].
1450 ///
1451 /// Note that an address having global scope is not the same as being globally reachable,
1452 /// and there is no direct relation between the two concepts: There exist addresses with global scope
1453 /// that are not globally reachable (for example unique local addresses),
1454 /// and addresses that are globally reachable without having global scope
1455 /// (multicast addresses with non-global scope).
1456 ///
1457 /// [IANA IPv6 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
1458 /// [unspecified address]: Ipv6Addr::UNSPECIFIED
1459 /// [loopback address]: Ipv6Addr::LOCALHOST
1460 ///
1461 /// # Examples
1462 ///
1463 /// ```
1464 /// #![feature(ip)]
1465 ///
1466 /// use std::net::Ipv6Addr;
1467 ///
1468 /// // Most IPv6 addresses are globally reachable:
1469 /// assert_eq!(Ipv6Addr::new(0x26, 0, 0x1c9, 0, 0, 0xafc8, 0x10, 0x1).is_global(), true);
1470 ///
1471 /// // However some addresses have been assigned a special meaning
1472 /// // that makes them not globally reachable. Some examples are:
1473 ///
1474 /// // The unspecified address (`::`)
1475 /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_global(), false);
1476 ///
1477 /// // The loopback address (`::1`)
1478 /// assert_eq!(Ipv6Addr::LOCALHOST.is_global(), false);
1479 ///
1480 /// // IPv4-mapped addresses (`::ffff:0:0/96`)
1481 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), false);
1482 ///
1483 /// // Addresses reserved for benchmarking (`2001:2::/48`)
1484 /// assert_eq!(Ipv6Addr::new(0x2001, 2, 0, 0, 0, 0, 0, 1,).is_global(), false);
1485 ///
1486 /// // Addresses reserved for documentation (`2001:db8::/32`)
1487 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 1).is_global(), false);
1488 ///
1489 /// // Unique local addresses (`fc00::/7`)
1490 /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1491 ///
1492 /// // Unicast addresses with link-local scope (`fe80::/10`)
1493 /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1494 ///
1495 /// // For a complete overview see the IANA IPv6 Special-Purpose Address Registry.
1496 /// ```
1497 #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
1498 #[unstable(feature = "ip", issue = "27709")]
1499 #[must_use]
1500 #[inline]
1501 pub const fn is_global(&self) -> bool {
1502 !(self.is_unspecified()
1503 || self.is_loopback()
1504 // IPv4-mapped Address (`::ffff:0:0/96`)
1505 || matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
1506 // IPv4-IPv6 Translat. (`64:ff9b:1::/48`)
1507 || matches!(self.segments(), [0x64, 0xff9b, 1, _, _, _, _, _])
1508 // Discard-Only Address Block (`100::/64`)
1509 || matches!(self.segments(), [0x100, 0, 0, 0, _, _, _, _])
1510 // IETF Protocol Assignments (`2001::/23`)
1511 || (matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b < 0x200)
1512 && !(
1513 // Port Control Protocol Anycast (`2001:1::1`)
1514 u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0001
1515 // Traversal Using Relays around NAT Anycast (`2001:1::2`)
1516 || u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0002
1517 // AMT (`2001:3::/32`)
1518 || matches!(self.segments(), [0x2001, 3, _, _, _, _, _, _])
1519 // AS112-v6 (`2001:4:112::/48`)
1520 || matches!(self.segments(), [0x2001, 4, 0x112, _, _, _, _, _])
1521 // ORCHIDv2 (`2001:20::/28`)
1522 // Drone Remote ID Protocol Entity Tags (DETs) Prefix (`2001:30::/28`)`
1523 || matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b >= 0x20 && b <= 0x3F)
1524 ))
1525 // 6to4 (`2002::/16`) – it's not explicitly documented as globally reachable,
1526 // IANA says N/A.
1527 || matches!(self.segments(), [0x2002, _, _, _, _, _, _, _])
1528 || self.is_documentation()
1529 || self.is_unique_local()
1530 || self.is_unicast_link_local())
1531 }
1532
1533 /// Returns [`true`] if this is a unique local address (`fc00::/7`).
1534 ///
1535 /// This property is defined in [IETF RFC 4193].
1536 ///
1537 /// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193
1538 ///
1539 /// # Examples
1540 ///
1541 /// ```
1542 /// #![feature(ip)]
1543 ///
1544 /// use std::net::Ipv6Addr;
1545 ///
1546 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false);
1547 /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true);
1548 /// ```
1549 #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
1550 #[unstable(feature = "ip", issue = "27709")]
1551 #[must_use]
1552 #[inline]
1553 pub const fn is_unique_local(&self) -> bool {
1554 (self.segments()[0] & 0xfe00) == 0xfc00
1555 }
1556
1557 /// Returns [`true`] if this is a unicast address, as defined by [IETF RFC 4291].
1558 /// Any address that is not a [multicast address] (`ff00::/8`) is unicast.
1559 ///
1560 /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1561 /// [multicast address]: Ipv6Addr::is_multicast
1562 ///
1563 /// # Examples
1564 ///
1565 /// ```
1566 /// #![feature(ip)]
1567 ///
1568 /// use std::net::Ipv6Addr;
1569 ///
1570 /// // The unspecified and loopback addresses are unicast.
1571 /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_unicast(), true);
1572 /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast(), true);
1573 ///
1574 /// // Any address that is not a multicast address (`ff00::/8`) is unicast.
1575 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast(), true);
1576 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_unicast(), false);
1577 /// ```
1578 #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
1579 #[unstable(feature = "ip", issue = "27709")]
1580 #[must_use]
1581 #[inline]
1582 pub const fn is_unicast(&self) -> bool {
1583 !self.is_multicast()
1584 }
1585
1586 /// Returns `true` if the address is a unicast address with link-local scope,
1587 /// as defined in [RFC 4291].
1588 ///
1589 /// A unicast address has link-local scope if it has the prefix `fe80::/10`, as per [RFC 4291 section 2.4].
1590 /// Note that this encompasses more addresses than those defined in [RFC 4291 section 2.5.6],
1591 /// which describes "Link-Local IPv6 Unicast Addresses" as having the following stricter format:
1592 ///
1593 /// ```text
1594 /// | 10 bits | 54 bits | 64 bits |
1595 /// +----------+-------------------------+----------------------------+
1596 /// |1111111010| 0 | interface ID |
1597 /// +----------+-------------------------+----------------------------+
1598 /// ```
1599 /// So while currently the only addresses with link-local scope an application will encounter are all in `fe80::/64`,
1600 /// this might change in the future with the publication of new standards. More addresses in `fe80::/10` could be allocated,
1601 /// and those addresses will have link-local scope.
1602 ///
1603 /// Also note that while [RFC 4291 section 2.5.3] mentions about the [loopback address] (`::1`) that "it is treated as having Link-Local scope",
1604 /// this does not mean that the loopback address actually has link-local scope and this method will return `false` on it.
1605 ///
1606 /// [RFC 4291]: https://tools.ietf.org/html/rfc4291
1607 /// [RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4
1608 /// [RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1609 /// [RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6
1610 /// [loopback address]: Ipv6Addr::LOCALHOST
1611 ///
1612 /// # Examples
1613 ///
1614 /// ```
1615 /// #![feature(ip)]
1616 ///
1617 /// use std::net::Ipv6Addr;
1618 ///
1619 /// // The loopback address (`::1`) does not actually have link-local scope.
1620 /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast_link_local(), false);
1621 ///
1622 /// // Only addresses in `fe80::/10` have link-local scope.
1623 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), false);
1624 /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1625 ///
1626 /// // Addresses outside the stricter `fe80::/64` also have link-local scope.
1627 /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0).is_unicast_link_local(), true);
1628 /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1629 /// ```
1630 #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
1631 #[unstable(feature = "ip", issue = "27709")]
1632 #[must_use]
1633 #[inline]
1634 pub const fn is_unicast_link_local(&self) -> bool {
1635 (self.segments()[0] & 0xffc0) == 0xfe80
1636 }
1637
1638 /// Returns [`true`] if this is an address reserved for documentation
1639 /// (`2001:db8::/32`).
1640 ///
1641 /// This property is defined in [IETF RFC 3849].
1642 ///
1643 /// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849
1644 ///
1645 /// # Examples
1646 ///
1647 /// ```
1648 /// #![feature(ip)]
1649 ///
1650 /// use std::net::Ipv6Addr;
1651 ///
1652 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false);
1653 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true);
1654 /// ```
1655 #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
1656 #[unstable(feature = "ip", issue = "27709")]
1657 #[must_use]
1658 #[inline]
1659 pub const fn is_documentation(&self) -> bool {
1660 (self.segments()[0] == 0x2001) && (self.segments()[1] == 0xdb8)
1661 }
1662
1663 /// Returns [`true`] if this is an address reserved for benchmarking (`2001:2::/48`).
1664 ///
1665 /// This property is defined in [IETF RFC 5180], where it is mistakenly specified as covering the range `2001:0200::/48`.
1666 /// This is corrected in [IETF RFC Errata 1752] to `2001:0002::/48`.
1667 ///
1668 /// [IETF RFC 5180]: https://tools.ietf.org/html/rfc5180
1669 /// [IETF RFC Errata 1752]: https://www.rfc-editor.org/errata_search.php?eid=1752
1670 ///
1671 /// ```
1672 /// #![feature(ip)]
1673 ///
1674 /// use std::net::Ipv6Addr;
1675 ///
1676 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc613, 0x0).is_benchmarking(), false);
1677 /// assert_eq!(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0).is_benchmarking(), true);
1678 /// ```
1679 #[unstable(feature = "ip", issue = "27709")]
1680 #[must_use]
1681 #[inline]
1682 pub const fn is_benchmarking(&self) -> bool {
1683 (self.segments()[0] == 0x2001) && (self.segments()[1] == 0x2) && (self.segments()[2] == 0)
1684 }
1685
1686 /// Returns [`true`] if the address is a globally routable unicast address.
1687 ///
1688 /// The following return false:
1689 ///
1690 /// - the loopback address
1691 /// - the link-local addresses
1692 /// - unique local addresses
1693 /// - the unspecified address
1694 /// - the address range reserved for documentation
1695 ///
1696 /// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7]
1697 ///
1698 /// ```no_rust
1699 /// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer
1700 /// be supported in new implementations (i.e., new implementations must treat this prefix as
1701 /// Global Unicast).
1702 /// ```
1703 ///
1704 /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
1705 ///
1706 /// # Examples
1707 ///
1708 /// ```
1709 /// #![feature(ip)]
1710 ///
1711 /// use std::net::Ipv6Addr;
1712 ///
1713 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false);
1714 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true);
1715 /// ```
1716 #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
1717 #[unstable(feature = "ip", issue = "27709")]
1718 #[must_use]
1719 #[inline]
1720 pub const fn is_unicast_global(&self) -> bool {
1721 self.is_unicast()
1722 && !self.is_loopback()
1723 && !self.is_unicast_link_local()
1724 && !self.is_unique_local()
1725 && !self.is_unspecified()
1726 && !self.is_documentation()
1727 && !self.is_benchmarking()
1728 }
1729
1730 /// Returns the address's multicast scope if the address is multicast.
1731 ///
1732 /// # Examples
1733 ///
1734 /// ```
1735 /// #![feature(ip)]
1736 ///
1737 /// use std::net::{Ipv6Addr, Ipv6MulticastScope};
1738 ///
1739 /// assert_eq!(
1740 /// Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(),
1741 /// Some(Ipv6MulticastScope::Global)
1742 /// );
1743 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None);
1744 /// ```
1745 #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
1746 #[unstable(feature = "ip", issue = "27709")]
1747 #[must_use]
1748 #[inline]
1749 pub const fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
1750 if self.is_multicast() {
1751 match self.segments()[0] & 0x000f {
1752 1 => Some(Ipv6MulticastScope::InterfaceLocal),
1753 2 => Some(Ipv6MulticastScope::LinkLocal),
1754 3 => Some(Ipv6MulticastScope::RealmLocal),
1755 4 => Some(Ipv6MulticastScope::AdminLocal),
1756 5 => Some(Ipv6MulticastScope::SiteLocal),
1757 8 => Some(Ipv6MulticastScope::OrganizationLocal),
1758 14 => Some(Ipv6MulticastScope::Global),
1759 _ => None,
1760 }
1761 } else {
1762 None
1763 }
1764 }
1765
1766 /// Returns [`true`] if this is a multicast address (`ff00::/8`).
1767 ///
1768 /// This property is defined by [IETF RFC 4291].
1769 ///
1770 /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1771 ///
1772 /// # Examples
1773 ///
1774 /// ```
1775 /// use std::net::Ipv6Addr;
1776 ///
1777 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true);
1778 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
1779 /// ```
1780 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1781 #[stable(since = "1.7.0", feature = "ip_17")]
1782 #[must_use]
1783 #[inline]
1784 pub const fn is_multicast(&self) -> bool {
1785 (self.segments()[0] & 0xff00) == 0xff00
1786 }
1787
1788 /// Returns [`true`] if the address is an IPv4-mapped address (`::ffff:0:0/96`).
1789 ///
1790 /// IPv4-mapped addresses can be converted to their canonical IPv4 address with
1791 /// [`to_ipv4_mapped`](Ipv6Addr::to_ipv4_mapped).
1792 ///
1793 /// # Examples
1794 /// ```
1795 /// #![feature(ip)]
1796 ///
1797 /// use std::net::{Ipv4Addr, Ipv6Addr};
1798 ///
1799 /// let ipv4_mapped = Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped();
1800 /// assert_eq!(ipv4_mapped.is_ipv4_mapped(), true);
1801 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff).is_ipv4_mapped(), true);
1802 ///
1803 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_ipv4_mapped(), false);
1804 /// ```
1805 #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")]
1806 #[unstable(feature = "ip", issue = "27709")]
1807 #[must_use]
1808 #[inline]
1809 pub const fn is_ipv4_mapped(&self) -> bool {
1810 matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
1811 }
1812
1813 /// Converts this address to an [`IPv4` address] if it's an [IPv4-mapped] address,
1814 /// as defined in [IETF RFC 4291 section 2.5.5.2], otherwise returns [`None`].
1815 ///
1816 /// `::ffff:a.b.c.d` becomes `a.b.c.d`.
1817 /// All addresses *not* starting with `::ffff` will return `None`.
1818 ///
1819 /// [`IPv4` address]: Ipv4Addr
1820 /// [IPv4-mapped]: Ipv6Addr
1821 /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1822 ///
1823 /// # Examples
1824 ///
1825 /// ```
1826 /// use std::net::{Ipv4Addr, Ipv6Addr};
1827 ///
1828 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None);
1829 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(),
1830 /// Some(Ipv4Addr::new(192, 10, 2, 255)));
1831 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None);
1832 /// ```
1833 #[inline]
1834 #[must_use = "this returns the result of the operation, \
1835 without modifying the original"]
1836 #[stable(feature = "ipv6_to_ipv4_mapped", since = "1.63.0")]
1837 #[rustc_const_stable(feature = "const_ipv6_to_ipv4_mapped", since = "1.75.0")]
1838 pub const fn to_ipv4_mapped(&self) -> Option<Ipv4Addr> {
1839 match self.octets() {
1840 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, a, b, c, d] => {
1841 Some(Ipv4Addr::new(a, b, c, d))
1842 }
1843 _ => None,
1844 }
1845 }
1846
1847 /// Converts this address to an [`IPv4` address] if it is either
1848 /// an [IPv4-compatible] address as defined in [IETF RFC 4291 section 2.5.5.1],
1849 /// or an [IPv4-mapped] address as defined in [IETF RFC 4291 section 2.5.5.2],
1850 /// otherwise returns [`None`].
1851 ///
1852 /// Note that this will return an [`IPv4` address] for the IPv6 loopback address `::1`. Use
1853 /// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
1854 ///
1855 /// `::a.b.c.d` and `::ffff:a.b.c.d` become `a.b.c.d`. `::1` becomes `0.0.0.1`.
1856 /// All addresses *not* starting with either all zeroes or `::ffff` will return `None`.
1857 ///
1858 /// [`IPv4` address]: Ipv4Addr
1859 /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
1860 /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
1861 /// [IETF RFC 4291 section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1
1862 /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1863 ///
1864 /// # Examples
1865 ///
1866 /// ```
1867 /// use std::net::{Ipv4Addr, Ipv6Addr};
1868 ///
1869 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
1870 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
1871 /// Some(Ipv4Addr::new(192, 10, 2, 255)));
1872 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
1873 /// Some(Ipv4Addr::new(0, 0, 0, 1)));
1874 /// ```
1875 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1876 #[stable(feature = "rust1", since = "1.0.0")]
1877 #[must_use = "this returns the result of the operation, \
1878 without modifying the original"]
1879 #[inline]
1880 pub const fn to_ipv4(&self) -> Option<Ipv4Addr> {
1881 if let [0, 0, 0, 0, 0, 0 | 0xffff, ab, cd] = self.segments() {
1882 let [a, b] = ab.to_be_bytes();
1883 let [c, d] = cd.to_be_bytes();
1884 Some(Ipv4Addr::new(a, b, c, d))
1885 } else {
1886 None
1887 }
1888 }
1889
1890 /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped addresses, otherwise it
1891 /// returns self wrapped in an `IpAddr::V6`.
1892 ///
1893 /// # Examples
1894 ///
1895 /// ```
1896 /// use std::net::Ipv6Addr;
1897 ///
1898 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).is_loopback(), false);
1899 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).to_canonical().is_loopback(), true);
1900 /// ```
1901 #[inline]
1902 #[must_use = "this returns the result of the operation, \
1903 without modifying the original"]
1904 #[stable(feature = "ip_to_canonical", since = "1.75.0")]
1905 #[rustc_const_stable(feature = "ip_to_canonical", since = "1.75.0")]
1906 pub const fn to_canonical(&self) -> IpAddr {
1907 if let Some(mapped) = self.to_ipv4_mapped() {
1908 return IpAddr::V4(mapped);
1909 }
1910 IpAddr::V6(*self)
1911 }
1912
1913 /// Returns the sixteen eight-bit integers the IPv6 address consists of.
1914 ///
1915 /// ```
1916 /// use std::net::Ipv6Addr;
1917 ///
1918 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
1919 /// [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
1920 /// ```
1921 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
1922 #[stable(feature = "ipv6_to_octets", since = "1.12.0")]
1923 #[must_use]
1924 #[inline]
1925 pub const fn octets(&self) -> [u8; 16] {
1926 self.octets
1927 }
1928}
1929
1930/// Write an Ipv6Addr, conforming to the canonical style described by
1931/// [RFC 5952](https://tools.ietf.org/html/rfc5952).
1932#[stable(feature = "rust1", since = "1.0.0")]
1933impl fmt::Display for Ipv6Addr {
1934 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1935 // If there are no alignment requirements, write the IP address directly to `f`.
1936 // Otherwise, write it to a local buffer and then use `f.pad`.
1937 if f.precision().is_none() && f.width().is_none() {
1938 let segments = self.segments();
1939
1940 if let Some(ipv4) = self.to_ipv4_mapped() {
1941 write!(f, "::ffff:{}", ipv4)
1942 } else {
1943 #[derive(Copy, Clone, Default)]
1944 struct Span {
1945 start: usize,
1946 len: usize,
1947 }
1948
1949 // Find the inner 0 span
1950 let zeroes = {
1951 let mut longest = Span::default();
1952 let mut current = Span::default();
1953
1954 for (i, &segment) in segments.iter().enumerate() {
1955 if segment == 0 {
1956 if current.len == 0 {
1957 current.start = i;
1958 }
1959
1960 current.len += 1;
1961
1962 if current.len > longest.len {
1963 longest = current;
1964 }
1965 } else {
1966 current = Span::default();
1967 }
1968 }
1969
1970 longest
1971 };
1972
1973 /// Write a colon-separated part of the address
1974 #[inline]
1975 fn fmt_subslice(f: &mut fmt::Formatter<'_>, chunk: &[u16]) -> fmt::Result {
1976 if let Some((first, tail)) = chunk.split_first() {
1977 write!(f, "{:x}", first)?;
1978 for segment in tail {
1979 f.write_char(':')?;
1980 write!(f, "{:x}", segment)?;
1981 }
1982 }
1983 Ok(())
1984 }
1985
1986 if zeroes.len > 1 {
1987 fmt_subslice(f, &segments[..zeroes.start])?;
1988 f.write_str("::")?;
1989 fmt_subslice(f, &segments[zeroes.start + zeroes.len..])
1990 } else {
1991 fmt_subslice(f, &segments)
1992 }
1993 }
1994 } else {
1995 const LONGEST_IPV6_ADDR: &str = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff";
1996
1997 let mut buf = DisplayBuffer::<{ LONGEST_IPV6_ADDR.len() }>::new();
1998 // Buffer is long enough for the longest possible IPv6 address, so this should never fail.
1999 write!(buf, "{}", self).unwrap();
2000
2001 f.pad(buf.as_str())
2002 }
2003 }
2004}
2005
2006#[stable(feature = "rust1", since = "1.0.0")]
2007impl fmt::Debug for Ipv6Addr {
2008 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2009 fmt::Display::fmt(self, f:fmt)
2010 }
2011}
2012
2013#[stable(feature = "ip_cmp", since = "1.16.0")]
2014impl PartialEq<IpAddr> for Ipv6Addr {
2015 #[inline]
2016 fn eq(&self, other: &IpAddr) -> bool {
2017 match other {
2018 IpAddr::V4(_) => false,
2019 IpAddr::V6(v6: &Ipv6Addr) => self == v6,
2020 }
2021 }
2022}
2023
2024#[stable(feature = "ip_cmp", since = "1.16.0")]
2025impl PartialEq<Ipv6Addr> for IpAddr {
2026 #[inline]
2027 fn eq(&self, other: &Ipv6Addr) -> bool {
2028 match self {
2029 IpAddr::V4(_) => false,
2030 IpAddr::V6(v6: &Ipv6Addr) => v6 == other,
2031 }
2032 }
2033}
2034
2035#[stable(feature = "rust1", since = "1.0.0")]
2036impl PartialOrd for Ipv6Addr {
2037 #[inline]
2038 fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
2039 Some(self.cmp(other))
2040 }
2041}
2042
2043#[stable(feature = "ip_cmp", since = "1.16.0")]
2044impl PartialOrd<Ipv6Addr> for IpAddr {
2045 #[inline]
2046 fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
2047 match self {
2048 IpAddr::V4(_) => Some(Ordering::Less),
2049 IpAddr::V6(v6: &Ipv6Addr) => v6.partial_cmp(other),
2050 }
2051 }
2052}
2053
2054#[stable(feature = "ip_cmp", since = "1.16.0")]
2055impl PartialOrd<IpAddr> for Ipv6Addr {
2056 #[inline]
2057 fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
2058 match other {
2059 IpAddr::V4(_) => Some(Ordering::Greater),
2060 IpAddr::V6(v6: &Ipv6Addr) => self.partial_cmp(v6),
2061 }
2062 }
2063}
2064
2065#[stable(feature = "rust1", since = "1.0.0")]
2066impl Ord for Ipv6Addr {
2067 #[inline]
2068 fn cmp(&self, other: &Ipv6Addr) -> Ordering {
2069 self.segments().cmp(&other.segments())
2070 }
2071}
2072
2073#[stable(feature = "i128", since = "1.26.0")]
2074impl From<Ipv6Addr> for u128 {
2075 /// Uses [`Ipv6Addr::to_bits`] to convert an IPv6 address to a host byte order `u128`.
2076 #[inline]
2077 fn from(ip: Ipv6Addr) -> u128 {
2078 ip.to_bits()
2079 }
2080}
2081#[stable(feature = "i128", since = "1.26.0")]
2082impl From<u128> for Ipv6Addr {
2083 /// Uses [`Ipv6Addr::from_bits`] to convert a host byte order `u128` to an IPv6 address.
2084 #[inline]
2085 fn from(ip: u128) -> Ipv6Addr {
2086 Ipv6Addr::from_bits(ip)
2087 }
2088}
2089
2090#[stable(feature = "ipv6_from_octets", since = "1.9.0")]
2091impl From<[u8; 16]> for Ipv6Addr {
2092 /// Creates an `Ipv6Addr` from a sixteen element byte array.
2093 ///
2094 /// # Examples
2095 ///
2096 /// ```
2097 /// use std::net::Ipv6Addr;
2098 ///
2099 /// let addr = Ipv6Addr::from([
2100 /// 25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
2101 /// 17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
2102 /// ]);
2103 /// assert_eq!(
2104 /// Ipv6Addr::new(
2105 /// 0x1918, 0x1716,
2106 /// 0x1514, 0x1312,
2107 /// 0x1110, 0x0f0e,
2108 /// 0x0d0c, 0x0b0a
2109 /// ),
2110 /// addr
2111 /// );
2112 /// ```
2113 #[inline]
2114 fn from(octets: [u8; 16]) -> Ipv6Addr {
2115 Ipv6Addr { octets }
2116 }
2117}
2118
2119#[stable(feature = "ipv6_from_segments", since = "1.16.0")]
2120impl From<[u16; 8]> for Ipv6Addr {
2121 /// Creates an `Ipv6Addr` from an eight element 16-bit array.
2122 ///
2123 /// # Examples
2124 ///
2125 /// ```
2126 /// use std::net::Ipv6Addr;
2127 ///
2128 /// let addr = Ipv6Addr::from([
2129 /// 525u16, 524u16, 523u16, 522u16,
2130 /// 521u16, 520u16, 519u16, 518u16,
2131 /// ]);
2132 /// assert_eq!(
2133 /// Ipv6Addr::new(
2134 /// 0x20d, 0x20c,
2135 /// 0x20b, 0x20a,
2136 /// 0x209, 0x208,
2137 /// 0x207, 0x206
2138 /// ),
2139 /// addr
2140 /// );
2141 /// ```
2142 #[inline]
2143 fn from(segments: [u16; 8]) -> Ipv6Addr {
2144 let [a, b, c, d, e, f, g, h] = segments;
2145 Ipv6Addr::new(a, b, c, d, e, f, g, h)
2146 }
2147}
2148
2149#[stable(feature = "ip_from_slice", since = "1.17.0")]
2150impl From<[u8; 16]> for IpAddr {
2151 /// Creates an `IpAddr::V6` from a sixteen element byte array.
2152 ///
2153 /// # Examples
2154 ///
2155 /// ```
2156 /// use std::net::{IpAddr, Ipv6Addr};
2157 ///
2158 /// let addr = IpAddr::from([
2159 /// 25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
2160 /// 17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
2161 /// ]);
2162 /// assert_eq!(
2163 /// IpAddr::V6(Ipv6Addr::new(
2164 /// 0x1918, 0x1716,
2165 /// 0x1514, 0x1312,
2166 /// 0x1110, 0x0f0e,
2167 /// 0x0d0c, 0x0b0a
2168 /// )),
2169 /// addr
2170 /// );
2171 /// ```
2172 #[inline]
2173 fn from(octets: [u8; 16]) -> IpAddr {
2174 IpAddr::V6(Ipv6Addr::from(octets))
2175 }
2176}
2177
2178#[stable(feature = "ip_from_slice", since = "1.17.0")]
2179impl From<[u16; 8]> for IpAddr {
2180 /// Creates an `IpAddr::V6` from an eight element 16-bit array.
2181 ///
2182 /// # Examples
2183 ///
2184 /// ```
2185 /// use std::net::{IpAddr, Ipv6Addr};
2186 ///
2187 /// let addr = IpAddr::from([
2188 /// 525u16, 524u16, 523u16, 522u16,
2189 /// 521u16, 520u16, 519u16, 518u16,
2190 /// ]);
2191 /// assert_eq!(
2192 /// IpAddr::V6(Ipv6Addr::new(
2193 /// 0x20d, 0x20c,
2194 /// 0x20b, 0x20a,
2195 /// 0x209, 0x208,
2196 /// 0x207, 0x206
2197 /// )),
2198 /// addr
2199 /// );
2200 /// ```
2201 #[inline]
2202 fn from(segments: [u16; 8]) -> IpAddr {
2203 IpAddr::V6(Ipv6Addr::from(segments))
2204 }
2205}
2206
2207#[stable(feature = "ip_bitops", since = "1.75.0")]
2208impl Not for Ipv4Addr {
2209 type Output = Ipv4Addr;
2210
2211 #[inline]
2212 fn not(mut self) -> Ipv4Addr {
2213 for octet: &mut u8 in &mut self.octets {
2214 *octet = !*octet;
2215 }
2216 self
2217 }
2218}
2219
2220#[stable(feature = "ip_bitops", since = "1.75.0")]
2221impl Not for &'_ Ipv4Addr {
2222 type Output = Ipv4Addr;
2223
2224 #[inline]
2225 fn not(self) -> Ipv4Addr {
2226 !*self
2227 }
2228}
2229
2230#[stable(feature = "ip_bitops", since = "1.75.0")]
2231impl Not for Ipv6Addr {
2232 type Output = Ipv6Addr;
2233
2234 #[inline]
2235 fn not(mut self) -> Ipv6Addr {
2236 for octet: &mut u8 in &mut self.octets {
2237 *octet = !*octet;
2238 }
2239 self
2240 }
2241}
2242
2243#[stable(feature = "ip_bitops", since = "1.75.0")]
2244impl Not for &'_ Ipv6Addr {
2245 type Output = Ipv6Addr;
2246
2247 #[inline]
2248 fn not(self) -> Ipv6Addr {
2249 !*self
2250 }
2251}
2252
2253macro_rules! bitop_impls {
2254 ($(
2255 $(#[$attr:meta])*
2256 impl ($BitOp:ident, $BitOpAssign:ident) for $ty:ty = ($bitop:ident, $bitop_assign:ident);
2257 )*) => {
2258 $(
2259 $(#[$attr])*
2260 impl $BitOpAssign for $ty {
2261 fn $bitop_assign(&mut self, rhs: $ty) {
2262 for (lhs, rhs) in iter::zip(&mut self.octets, rhs.octets) {
2263 lhs.$bitop_assign(rhs);
2264 }
2265 }
2266 }
2267
2268 $(#[$attr])*
2269 impl $BitOpAssign<&'_ $ty> for $ty {
2270 fn $bitop_assign(&mut self, rhs: &'_ $ty) {
2271 self.$bitop_assign(*rhs);
2272 }
2273 }
2274
2275 $(#[$attr])*
2276 impl $BitOp for $ty {
2277 type Output = $ty;
2278
2279 #[inline]
2280 fn $bitop(mut self, rhs: $ty) -> $ty {
2281 self.$bitop_assign(rhs);
2282 self
2283 }
2284 }
2285
2286 $(#[$attr])*
2287 impl $BitOp<&'_ $ty> for $ty {
2288 type Output = $ty;
2289
2290 #[inline]
2291 fn $bitop(mut self, rhs: &'_ $ty) -> $ty {
2292 self.$bitop_assign(*rhs);
2293 self
2294 }
2295 }
2296
2297 $(#[$attr])*
2298 impl $BitOp<$ty> for &'_ $ty {
2299 type Output = $ty;
2300
2301 #[inline]
2302 fn $bitop(self, rhs: $ty) -> $ty {
2303 let mut lhs = *self;
2304 lhs.$bitop_assign(rhs);
2305 lhs
2306 }
2307 }
2308
2309 $(#[$attr])*
2310 impl $BitOp<&'_ $ty> for &'_ $ty {
2311 type Output = $ty;
2312
2313 #[inline]
2314 fn $bitop(self, rhs: &'_ $ty) -> $ty {
2315 let mut lhs = *self;
2316 lhs.$bitop_assign(*rhs);
2317 lhs
2318 }
2319 }
2320 )*
2321 };
2322}
2323
2324bitop_impls! {
2325 #[stable(feature = "ip_bitops", since = "1.75.0")]
2326 impl (BitAnd, BitAndAssign) for Ipv4Addr = (bitand, bitand_assign);
2327 #[stable(feature = "ip_bitops", since = "1.75.0")]
2328 impl (BitOr, BitOrAssign) for Ipv4Addr = (bitor, bitor_assign);
2329
2330 #[stable(feature = "ip_bitops", since = "1.75.0")]
2331 impl (BitAnd, BitAndAssign) for Ipv6Addr = (bitand, bitand_assign);
2332 #[stable(feature = "ip_bitops", since = "1.75.0")]
2333 impl (BitOr, BitOrAssign) for Ipv6Addr = (bitor, bitor_assign);
2334}
2335