1 | //! Almost direct (but slightly optimized) Rust translation of Figure 3 of "Printing |
2 | //! Floating-Point Numbers Quickly and Accurately"[^1]. |
3 | //! |
4 | //! [^1]: Burger, R. G. and Dybvig, R. K. 1996. Printing floating-point numbers |
5 | //! quickly and accurately. SIGPLAN Not. 31, 5 (May. 1996), 108-116. |
6 | |
7 | use crate::cmp::Ordering; |
8 | use crate::mem::MaybeUninit; |
9 | use crate::num::bignum::{Big32x40 as Big, Digit32 as Digit}; |
10 | use crate::num::flt2dec::estimator::estimate_scaling_factor; |
11 | use crate::num::flt2dec::{Decoded, MAX_SIG_DIGITS, round_up}; |
12 | |
13 | static POW10: [Digit; 10] = |
14 | [1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000]; |
15 | // precalculated arrays of `Digit`s for 5^(2^n). |
16 | static POW5TO16: [Digit; 2] = [0x86f26fc1, 0x23]; |
17 | static POW5TO32: [Digit; 3] = [0x85acef81, 0x2d6d415b, 0x4ee]; |
18 | static POW5TO64: [Digit; 5] = [0xbf6a1f01, 0x6e38ed64, 0xdaa797ed, 0xe93ff9f4, 0x184f03]; |
19 | static POW5TO128: [Digit; 10] = [ |
20 | 0x2e953e01, 0x3df9909, 0xf1538fd, 0x2374e42f, 0xd3cff5ec, 0xc404dc08, 0xbccdb0da, 0xa6337f19, |
21 | 0xe91f2603, 0x24e, |
22 | ]; |
23 | static POW5TO256: [Digit; 19] = [ |
24 | 0x982e7c01, 0xbed3875b, 0xd8d99f72, 0x12152f87, 0x6bde50c6, 0xcf4a6e70, 0xd595d80f, 0x26b2716e, |
25 | 0xadc666b0, 0x1d153624, 0x3c42d35a, 0x63ff540e, 0xcc5573c0, 0x65f9ef17, 0x55bc28f2, 0x80dcc7f7, |
26 | 0xf46eeddc, 0x5fdcefce, 0x553f7, |
27 | ]; |
28 | |
29 | #[doc (hidden)] |
30 | pub fn mul_pow10(x: &mut Big, n: usize) -> &mut Big { |
31 | debug_assert!(n < 512); |
32 | // Save ourself the left shift for the smallest cases. |
33 | if n < 8 { |
34 | return x.mul_small(POW10[n & 7]); |
35 | } |
36 | // Multiply by the powers of 5 and shift the 2s in at the end. |
37 | // This keeps the intermediate products smaller and faster. |
38 | if n & 7 != 0 { |
39 | x.mul_small(POW10[n & 7] >> (n & 7)); |
40 | } |
41 | if n & 8 != 0 { |
42 | x.mul_small(POW10[8] >> 8); |
43 | } |
44 | if n & 16 != 0 { |
45 | x.mul_digits(&POW5TO16); |
46 | } |
47 | if n & 32 != 0 { |
48 | x.mul_digits(&POW5TO32); |
49 | } |
50 | if n & 64 != 0 { |
51 | x.mul_digits(&POW5TO64); |
52 | } |
53 | if n & 128 != 0 { |
54 | x.mul_digits(&POW5TO128); |
55 | } |
56 | if n & 256 != 0 { |
57 | x.mul_digits(&POW5TO256); |
58 | } |
59 | x.mul_pow2(n) |
60 | } |
61 | |
62 | fn div_2pow10(x: &mut Big, mut n: usize) -> &mut Big { |
63 | let largest: usize = POW10.len() - 1; |
64 | while n > largest { |
65 | x.div_rem_small(POW10[largest]); |
66 | n -= largest; |
67 | } |
68 | x.div_rem_small(POW10[n] << 1); |
69 | x |
70 | } |
71 | |
72 | // only usable when `x < 16 * scale`; `scaleN` should be `scale.mul_small(N)` |
73 | fn div_rem_upto_16<'a>( |
74 | x: &'a mut Big, |
75 | scale: &Big, |
76 | scale2: &Big, |
77 | scale4: &Big, |
78 | scale8: &Big, |
79 | ) -> (u8, &'a mut Big) { |
80 | let mut d: u8 = 0; |
81 | if *x >= *scale8 { |
82 | x.sub(scale8); |
83 | d += 8; |
84 | } |
85 | if *x >= *scale4 { |
86 | x.sub(scale4); |
87 | d += 4; |
88 | } |
89 | if *x >= *scale2 { |
90 | x.sub(scale2); |
91 | d += 2; |
92 | } |
93 | if *x >= *scale { |
94 | x.sub(scale); |
95 | d += 1; |
96 | } |
97 | debug_assert!(*x < *scale); |
98 | (d, x) |
99 | } |
100 | |
101 | /// The shortest mode implementation for Dragon. |
102 | pub fn format_shortest<'a>( |
103 | d: &Decoded, |
104 | buf: &'a mut [MaybeUninit<u8>], |
105 | ) -> (/*digits*/ &'a [u8], /*exp*/ i16) { |
106 | // the number `v` to format is known to be: |
107 | // - equal to `mant * 2^exp`; |
108 | // - preceded by `(mant - 2 * minus) * 2^exp` in the original type; and |
109 | // - followed by `(mant + 2 * plus) * 2^exp` in the original type. |
110 | // |
111 | // obviously, `minus` and `plus` cannot be zero. (for infinities, we use out-of-range values.) |
112 | // also we assume that at least one digit is generated, i.e., `mant` cannot be zero too. |
113 | // |
114 | // this also means that any number between `low = (mant - minus) * 2^exp` and |
115 | // `high = (mant + plus) * 2^exp` will map to this exact floating point number, |
116 | // with bounds included when the original mantissa was even (i.e., `!mant_was_odd`). |
117 | |
118 | assert!(d.mant > 0); |
119 | assert!(d.minus > 0); |
120 | assert!(d.plus > 0); |
121 | assert!(d.mant.checked_add(d.plus).is_some()); |
122 | assert!(d.mant.checked_sub(d.minus).is_some()); |
123 | assert!(buf.len() >= MAX_SIG_DIGITS); |
124 | |
125 | // `a.cmp(&b) < rounding` is `if d.inclusive {a <= b} else {a < b}` |
126 | let rounding = if d.inclusive { Ordering::Greater } else { Ordering::Equal }; |
127 | |
128 | // estimate `k_0` from original inputs satisfying `10^(k_0-1) < high <= 10^(k_0+1)`. |
129 | // the tight bound `k` satisfying `10^(k-1) < high <= 10^k` is calculated later. |
130 | let mut k = estimate_scaling_factor(d.mant + d.plus, d.exp); |
131 | |
132 | // convert `{mant, plus, minus} * 2^exp` into the fractional form so that: |
133 | // - `v = mant / scale` |
134 | // - `low = (mant - minus) / scale` |
135 | // - `high = (mant + plus) / scale` |
136 | let mut mant = Big::from_u64(d.mant); |
137 | let mut minus = Big::from_u64(d.minus); |
138 | let mut plus = Big::from_u64(d.plus); |
139 | let mut scale = Big::from_small(1); |
140 | if d.exp < 0 { |
141 | scale.mul_pow2(-d.exp as usize); |
142 | } else { |
143 | mant.mul_pow2(d.exp as usize); |
144 | minus.mul_pow2(d.exp as usize); |
145 | plus.mul_pow2(d.exp as usize); |
146 | } |
147 | |
148 | // divide `mant` by `10^k`. now `scale / 10 < mant + plus <= scale * 10`. |
149 | if k >= 0 { |
150 | mul_pow10(&mut scale, k as usize); |
151 | } else { |
152 | mul_pow10(&mut mant, -k as usize); |
153 | mul_pow10(&mut minus, -k as usize); |
154 | mul_pow10(&mut plus, -k as usize); |
155 | } |
156 | |
157 | // fixup when `mant + plus > scale` (or `>=`). |
158 | // we are not actually modifying `scale`, since we can skip the initial multiplication instead. |
159 | // now `scale < mant + plus <= scale * 10` and we are ready to generate digits. |
160 | // |
161 | // note that `d[0]` *can* be zero, when `scale - plus < mant < scale`. |
162 | // in this case rounding-up condition (`up` below) will be triggered immediately. |
163 | if scale.cmp(mant.clone().add(&plus)) < rounding { |
164 | // equivalent to scaling `scale` by 10 |
165 | k += 1; |
166 | } else { |
167 | mant.mul_small(10); |
168 | minus.mul_small(10); |
169 | plus.mul_small(10); |
170 | } |
171 | |
172 | // cache `(2, 4, 8) * scale` for digit generation. |
173 | let mut scale2 = scale.clone(); |
174 | scale2.mul_pow2(1); |
175 | let mut scale4 = scale.clone(); |
176 | scale4.mul_pow2(2); |
177 | let mut scale8 = scale.clone(); |
178 | scale8.mul_pow2(3); |
179 | |
180 | let mut down; |
181 | let mut up; |
182 | let mut i = 0; |
183 | loop { |
184 | // invariants, where `d[0..n-1]` are digits generated so far: |
185 | // - `v = mant / scale * 10^(k-n-1) + d[0..n-1] * 10^(k-n)` |
186 | // - `v - low = minus / scale * 10^(k-n-1)` |
187 | // - `high - v = plus / scale * 10^(k-n-1)` |
188 | // - `(mant + plus) / scale <= 10` (thus `mant / scale < 10`) |
189 | // where `d[i..j]` is a shorthand for `d[i] * 10^(j-i) + ... + d[j-1] * 10 + d[j]`. |
190 | |
191 | // generate one digit: `d[n] = floor(mant / scale) < 10`. |
192 | let (d, _) = div_rem_upto_16(&mut mant, &scale, &scale2, &scale4, &scale8); |
193 | debug_assert!(d < 10); |
194 | buf[i] = MaybeUninit::new(b'0' + d); |
195 | i += 1; |
196 | |
197 | // this is a simplified description of the modified Dragon algorithm. |
198 | // many intermediate derivations and completeness arguments are omitted for convenience. |
199 | // |
200 | // start with modified invariants, as we've updated `n`: |
201 | // - `v = mant / scale * 10^(k-n) + d[0..n-1] * 10^(k-n)` |
202 | // - `v - low = minus / scale * 10^(k-n)` |
203 | // - `high - v = plus / scale * 10^(k-n)` |
204 | // |
205 | // assume that `d[0..n-1]` is the shortest representation between `low` and `high`, |
206 | // i.e., `d[0..n-1]` satisfies both of the following but `d[0..n-2]` doesn't: |
207 | // - `low < d[0..n-1] * 10^(k-n) < high` (bijectivity: digits round to `v`); and |
208 | // - `abs(v / 10^(k-n) - d[0..n-1]) <= 1/2` (the last digit is correct). |
209 | // |
210 | // the second condition simplifies to `2 * mant <= scale`. |
211 | // solving invariants in terms of `mant`, `low` and `high` yields |
212 | // a simpler version of the first condition: `-plus < mant < minus`. |
213 | // since `-plus < 0 <= mant`, we have the correct shortest representation |
214 | // when `mant < minus` and `2 * mant <= scale`. |
215 | // (the former becomes `mant <= minus` when the original mantissa is even.) |
216 | // |
217 | // when the second doesn't hold (`2 * mant > scale`), we need to increase the last digit. |
218 | // this is enough for restoring that condition: we already know that |
219 | // the digit generation guarantees `0 <= v / 10^(k-n) - d[0..n-1] < 1`. |
220 | // in this case, the first condition becomes `-plus < mant - scale < minus`. |
221 | // since `mant < scale` after the generation, we have `scale < mant + plus`. |
222 | // (again, this becomes `scale <= mant + plus` when the original mantissa is even.) |
223 | // |
224 | // in short: |
225 | // - stop and round `down` (keep digits as is) when `mant < minus` (or `<=`). |
226 | // - stop and round `up` (increase the last digit) when `scale < mant + plus` (or `<=`). |
227 | // - keep generating otherwise. |
228 | down = mant.cmp(&minus) < rounding; |
229 | up = scale.cmp(mant.clone().add(&plus)) < rounding; |
230 | if down || up { |
231 | break; |
232 | } // we have the shortest representation, proceed to the rounding |
233 | |
234 | // restore the invariants. |
235 | // this makes the algorithm always terminating: `minus` and `plus` always increases, |
236 | // but `mant` is clipped modulo `scale` and `scale` is fixed. |
237 | mant.mul_small(10); |
238 | minus.mul_small(10); |
239 | plus.mul_small(10); |
240 | } |
241 | |
242 | // rounding up happens when |
243 | // i) only the rounding-up condition was triggered, or |
244 | // ii) both conditions were triggered and tie breaking prefers rounding up. |
245 | if up && (!down || *mant.mul_pow2(1) >= scale) { |
246 | // if rounding up changes the length, the exponent should also change. |
247 | // it seems that this condition is very hard to satisfy (possibly impossible), |
248 | // but we are just being safe and consistent here. |
249 | // SAFETY: we initialized that memory above. |
250 | if let Some(c) = round_up(unsafe { buf[..i].assume_init_mut() }) { |
251 | buf[i] = MaybeUninit::new(c); |
252 | i += 1; |
253 | k += 1; |
254 | } |
255 | } |
256 | |
257 | // SAFETY: we initialized that memory above. |
258 | (unsafe { buf[..i].assume_init_ref() }, k) |
259 | } |
260 | |
261 | /// The exact and fixed mode implementation for Dragon. |
262 | pub fn format_exact<'a>( |
263 | d: &Decoded, |
264 | buf: &'a mut [MaybeUninit<u8>], |
265 | limit: i16, |
266 | ) -> (/*digits*/ &'a [u8], /*exp*/ i16) { |
267 | assert!(d.mant > 0); |
268 | assert!(d.minus > 0); |
269 | assert!(d.plus > 0); |
270 | assert!(d.mant.checked_add(d.plus).is_some()); |
271 | assert!(d.mant.checked_sub(d.minus).is_some()); |
272 | |
273 | // estimate `k_0` from original inputs satisfying `10^(k_0-1) < v <= 10^(k_0+1)`. |
274 | let mut k = estimate_scaling_factor(d.mant, d.exp); |
275 | |
276 | // `v = mant / scale`. |
277 | let mut mant = Big::from_u64(d.mant); |
278 | let mut scale = Big::from_small(1); |
279 | if d.exp < 0 { |
280 | scale.mul_pow2(-d.exp as usize); |
281 | } else { |
282 | mant.mul_pow2(d.exp as usize); |
283 | } |
284 | |
285 | // divide `mant` by `10^k`. now `scale / 10 < mant <= scale * 10`. |
286 | if k >= 0 { |
287 | mul_pow10(&mut scale, k as usize); |
288 | } else { |
289 | mul_pow10(&mut mant, -k as usize); |
290 | } |
291 | |
292 | // fixup when `mant + plus >= scale`, where `plus / scale = 10^-buf.len() / 2`. |
293 | // in order to keep the fixed-size bignum, we actually use `mant + floor(plus) >= scale`. |
294 | // we are not actually modifying `scale`, since we can skip the initial multiplication instead. |
295 | // again with the shortest algorithm, `d[0]` can be zero but will be eventually rounded up. |
296 | if *div_2pow10(&mut scale.clone(), buf.len()).add(&mant) >= scale { |
297 | // equivalent to scaling `scale` by 10 |
298 | k += 1; |
299 | } else { |
300 | mant.mul_small(10); |
301 | } |
302 | |
303 | // if we are working with the last-digit limitation, we need to shorten the buffer |
304 | // before the actual rendering in order to avoid double rounding. |
305 | // note that we have to enlarge the buffer again when rounding up happens! |
306 | let mut len = if k < limit { |
307 | // oops, we cannot even produce *one* digit. |
308 | // this is possible when, say, we've got something like 9.5 and it's being rounded to 10. |
309 | // we return an empty buffer, with an exception of the later rounding-up case |
310 | // which occurs when `k == limit` and has to produce exactly one digit. |
311 | 0 |
312 | } else if ((k as i32 - limit as i32) as usize) < buf.len() { |
313 | (k - limit) as usize |
314 | } else { |
315 | buf.len() |
316 | }; |
317 | |
318 | if len > 0 { |
319 | // cache `(2, 4, 8) * scale` for digit generation. |
320 | // (this can be expensive, so do not calculate them when the buffer is empty.) |
321 | let mut scale2 = scale.clone(); |
322 | scale2.mul_pow2(1); |
323 | let mut scale4 = scale.clone(); |
324 | scale4.mul_pow2(2); |
325 | let mut scale8 = scale.clone(); |
326 | scale8.mul_pow2(3); |
327 | |
328 | for i in 0..len { |
329 | if mant.is_zero() { |
330 | // following digits are all zeroes, we stop here |
331 | // do *not* try to perform rounding! rather, fill remaining digits. |
332 | for c in &mut buf[i..len] { |
333 | *c = MaybeUninit::new(b'0' ); |
334 | } |
335 | // SAFETY: we initialized that memory above. |
336 | return (unsafe { buf[..len].assume_init_ref() }, k); |
337 | } |
338 | |
339 | let mut d = 0; |
340 | if mant >= scale8 { |
341 | mant.sub(&scale8); |
342 | d += 8; |
343 | } |
344 | if mant >= scale4 { |
345 | mant.sub(&scale4); |
346 | d += 4; |
347 | } |
348 | if mant >= scale2 { |
349 | mant.sub(&scale2); |
350 | d += 2; |
351 | } |
352 | if mant >= scale { |
353 | mant.sub(&scale); |
354 | d += 1; |
355 | } |
356 | debug_assert!(mant < scale); |
357 | debug_assert!(d < 10); |
358 | buf[i] = MaybeUninit::new(b'0' + d); |
359 | mant.mul_small(10); |
360 | } |
361 | } |
362 | |
363 | // rounding up if we stop in the middle of digits |
364 | // if the following digits are exactly 5000..., check the prior digit and try to |
365 | // round to even (i.e., avoid rounding up when the prior digit is even). |
366 | let order = mant.cmp(scale.mul_small(5)); |
367 | if order == Ordering::Greater |
368 | || (order == Ordering::Equal |
369 | // SAFETY: `buf[len-1]` is initialized. |
370 | && len > 0 && unsafe { buf[len - 1].assume_init() } & 1 == 1) |
371 | { |
372 | // if rounding up changes the length, the exponent should also change. |
373 | // but we've been requested a fixed number of digits, so do not alter the buffer... |
374 | // SAFETY: we initialized that memory above. |
375 | if let Some(c) = round_up(unsafe { buf[..len].assume_init_mut() }) { |
376 | // ...unless we've been requested the fixed precision instead. |
377 | // we also need to check that, if the original buffer was empty, |
378 | // the additional digit can only be added when `k == limit` (edge case). |
379 | k += 1; |
380 | if k > limit && len < buf.len() { |
381 | buf[len] = MaybeUninit::new(c); |
382 | len += 1; |
383 | } |
384 | } |
385 | } |
386 | |
387 | // SAFETY: we initialized that memory above. |
388 | (unsafe { buf[..len].assume_init_ref() }, k) |
389 | } |
390 | |