| 1 | //! An unbounded set of futures. | 
| 2 | //! | 
|---|
| 3 | //! This module is only available when the `std` or `alloc` feature of this | 
|---|
| 4 | //! library is activated, and it is activated by default. | 
|---|
| 5 |  | 
|---|
| 6 | use crate::task::AtomicWaker; | 
|---|
| 7 | use alloc::sync::{Arc, Weak}; | 
|---|
| 8 | use core::cell::UnsafeCell; | 
|---|
| 9 | use core::fmt::{self, Debug}; | 
|---|
| 10 | use core::iter::FromIterator; | 
|---|
| 11 | use core::marker::PhantomData; | 
|---|
| 12 | use core::mem; | 
|---|
| 13 | use core::pin::Pin; | 
|---|
| 14 | use core::ptr; | 
|---|
| 15 | use core::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release, SeqCst}; | 
|---|
| 16 | use core::sync::atomic::{AtomicBool, AtomicPtr}; | 
|---|
| 17 | use futures_core::future::Future; | 
|---|
| 18 | use futures_core::stream::{FusedStream, Stream}; | 
|---|
| 19 | use futures_core::task::{Context, Poll}; | 
|---|
| 20 | use futures_task::{FutureObj, LocalFutureObj, LocalSpawn, Spawn, SpawnError}; | 
|---|
| 21 |  | 
|---|
| 22 | mod abort; | 
|---|
| 23 |  | 
|---|
| 24 | mod iter; | 
|---|
| 25 | #[ allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/102352 | 
|---|
| 26 | pub use self::iter::{IntoIter, Iter, IterMut, IterPinMut, IterPinRef}; | 
|---|
| 27 |  | 
|---|
| 28 | mod task; | 
|---|
| 29 | use self::task::Task; | 
|---|
| 30 |  | 
|---|
| 31 | mod ready_to_run_queue; | 
|---|
| 32 | use self::ready_to_run_queue::{Dequeue, ReadyToRunQueue}; | 
|---|
| 33 |  | 
|---|
| 34 | /// A set of futures which may complete in any order. | 
|---|
| 35 | /// | 
|---|
| 36 | /// See [`FuturesOrdered`](crate::stream::FuturesOrdered) for a version of this | 
|---|
| 37 | /// type that preserves a FIFO order. | 
|---|
| 38 | /// | 
|---|
| 39 | /// This structure is optimized to manage a large number of futures. | 
|---|
| 40 | /// Futures managed by [`FuturesUnordered`] will only be polled when they | 
|---|
| 41 | /// generate wake-up notifications. This reduces the required amount of work | 
|---|
| 42 | /// needed to poll large numbers of futures. | 
|---|
| 43 | /// | 
|---|
| 44 | /// [`FuturesUnordered`] can be filled by [`collect`](Iterator::collect)ing an | 
|---|
| 45 | /// iterator of futures into a [`FuturesUnordered`], or by | 
|---|
| 46 | /// [`push`](FuturesUnordered::push)ing futures onto an existing | 
|---|
| 47 | /// [`FuturesUnordered`]. When new futures are added, | 
|---|
| 48 | /// [`poll_next`](Stream::poll_next) must be called in order to begin receiving | 
|---|
| 49 | /// wake-ups for new futures. | 
|---|
| 50 | /// | 
|---|
| 51 | /// Note that you can create a ready-made [`FuturesUnordered`] via the | 
|---|
| 52 | /// [`collect`](Iterator::collect) method, or you can start with an empty set | 
|---|
| 53 | /// with the [`FuturesUnordered::new`] constructor. | 
|---|
| 54 | /// | 
|---|
| 55 | /// This type is only available when the `std` or `alloc` feature of this | 
|---|
| 56 | /// library is activated, and it is activated by default. | 
|---|
| 57 | #[ must_use= "streams do nothing unless polled"] | 
|---|
| 58 | pub struct FuturesUnordered<Fut> { | 
|---|
| 59 | ready_to_run_queue: Arc<ReadyToRunQueue<Fut>>, | 
|---|
| 60 | head_all: AtomicPtr<Task<Fut>>, | 
|---|
| 61 | is_terminated: AtomicBool, | 
|---|
| 62 | } | 
|---|
| 63 |  | 
|---|
| 64 | unsafe impl<Fut: Send> Send for FuturesUnordered<Fut> {} | 
|---|
| 65 | unsafe impl<Fut: Send + Sync> Sync for FuturesUnordered<Fut> {} | 
|---|
| 66 | impl<Fut> Unpin for FuturesUnordered<Fut> {} | 
|---|
| 67 |  | 
|---|
| 68 | impl Spawn for FuturesUnordered<FutureObj<'_, ()>> { | 
|---|
| 69 | fn spawn_obj(&self, future_obj: FutureObj<'static, ()>) -> Result<(), SpawnError> { | 
|---|
| 70 | self.push(future_obj); | 
|---|
| 71 | Ok(()) | 
|---|
| 72 | } | 
|---|
| 73 | } | 
|---|
| 74 |  | 
|---|
| 75 | impl LocalSpawn for FuturesUnordered<LocalFutureObj<'_, ()>> { | 
|---|
| 76 | fn spawn_local_obj(&self, future_obj: LocalFutureObj<'static, ()>) -> Result<(), SpawnError> { | 
|---|
| 77 | self.push(future_obj); | 
|---|
| 78 | Ok(()) | 
|---|
| 79 | } | 
|---|
| 80 | } | 
|---|
| 81 |  | 
|---|
| 82 | // FuturesUnordered is implemented using two linked lists. One which links all | 
|---|
| 83 | // futures managed by a `FuturesUnordered` and one that tracks futures that have | 
|---|
| 84 | // been scheduled for polling. The first linked list allows for thread safe | 
|---|
| 85 | // insertion of nodes at the head as well as forward iteration, but is otherwise | 
|---|
| 86 | // not thread safe and is only accessed by the thread that owns the | 
|---|
| 87 | // `FuturesUnordered` value for any other operations. The second linked list is | 
|---|
| 88 | // an implementation of the intrusive MPSC queue algorithm described by | 
|---|
| 89 | // 1024cores.net. | 
|---|
| 90 | // | 
|---|
| 91 | // When a future is submitted to the set, a task is allocated and inserted in | 
|---|
| 92 | // both linked lists. The next call to `poll_next` will (eventually) see this | 
|---|
| 93 | // task and call `poll` on the future. | 
|---|
| 94 | // | 
|---|
| 95 | // Before a managed future is polled, the current context's waker is replaced | 
|---|
| 96 | // with one that is aware of the specific future being run. This ensures that | 
|---|
| 97 | // wake-up notifications generated by that specific future are visible to | 
|---|
| 98 | // `FuturesUnordered`. When a wake-up notification is received, the task is | 
|---|
| 99 | // inserted into the ready to run queue, so that its future can be polled later. | 
|---|
| 100 | // | 
|---|
| 101 | // Each task is wrapped in an `Arc` and thereby atomically reference counted. | 
|---|
| 102 | // Also, each task contains an `AtomicBool` which acts as a flag that indicates | 
|---|
| 103 | // whether the task is currently inserted in the atomic queue. When a wake-up | 
|---|
| 104 | // notification is received, the task will only be inserted into the ready to | 
|---|
| 105 | // run queue if it isn't inserted already. | 
|---|
| 106 |  | 
|---|
| 107 | impl<Fut> Default for FuturesUnordered<Fut> { | 
|---|
| 108 | fn default() -> Self { | 
|---|
| 109 | Self::new() | 
|---|
| 110 | } | 
|---|
| 111 | } | 
|---|
| 112 |  | 
|---|
| 113 | impl<Fut> FuturesUnordered<Fut> { | 
|---|
| 114 | /// Constructs a new, empty [`FuturesUnordered`]. | 
|---|
| 115 | /// | 
|---|
| 116 | /// The returned [`FuturesUnordered`] does not contain any futures. | 
|---|
| 117 | /// In this state, [`FuturesUnordered::poll_next`](Stream::poll_next) will | 
|---|
| 118 | /// return [`Poll::Ready(None)`](Poll::Ready). | 
|---|
| 119 | pub fn new() -> Self { | 
|---|
| 120 | let stub = Arc::new(Task { | 
|---|
| 121 | future: UnsafeCell::new(None), | 
|---|
| 122 | next_all: AtomicPtr::new(ptr::null_mut()), | 
|---|
| 123 | prev_all: UnsafeCell::new(ptr::null()), | 
|---|
| 124 | len_all: UnsafeCell::new(0), | 
|---|
| 125 | next_ready_to_run: AtomicPtr::new(ptr::null_mut()), | 
|---|
| 126 | queued: AtomicBool::new(true), | 
|---|
| 127 | ready_to_run_queue: Weak::new(), | 
|---|
| 128 | woken: AtomicBool::new(false), | 
|---|
| 129 | }); | 
|---|
| 130 | let stub_ptr = Arc::as_ptr(&stub); | 
|---|
| 131 | let ready_to_run_queue = Arc::new(ReadyToRunQueue { | 
|---|
| 132 | waker: AtomicWaker::new(), | 
|---|
| 133 | head: AtomicPtr::new(stub_ptr as *mut _), | 
|---|
| 134 | tail: UnsafeCell::new(stub_ptr), | 
|---|
| 135 | stub, | 
|---|
| 136 | }); | 
|---|
| 137 |  | 
|---|
| 138 | Self { | 
|---|
| 139 | head_all: AtomicPtr::new(ptr::null_mut()), | 
|---|
| 140 | ready_to_run_queue, | 
|---|
| 141 | is_terminated: AtomicBool::new(false), | 
|---|
| 142 | } | 
|---|
| 143 | } | 
|---|
| 144 |  | 
|---|
| 145 | /// Returns the number of futures contained in the set. | 
|---|
| 146 | /// | 
|---|
| 147 | /// This represents the total number of in-flight futures. | 
|---|
| 148 | pub fn len(&self) -> usize { | 
|---|
| 149 | let (_, len) = self.atomic_load_head_and_len_all(); | 
|---|
| 150 | len | 
|---|
| 151 | } | 
|---|
| 152 |  | 
|---|
| 153 | /// Returns `true` if the set contains no futures. | 
|---|
| 154 | pub fn is_empty(&self) -> bool { | 
|---|
| 155 | // Relaxed ordering can be used here since we don't need to read from | 
|---|
| 156 | // the head pointer, only check whether it is null. | 
|---|
| 157 | self.head_all.load(Relaxed).is_null() | 
|---|
| 158 | } | 
|---|
| 159 |  | 
|---|
| 160 | /// Push a future into the set. | 
|---|
| 161 | /// | 
|---|
| 162 | /// This method adds the given future to the set. This method will not | 
|---|
| 163 | /// call [`poll`](core::future::Future::poll) on the submitted future. The caller must | 
|---|
| 164 | /// ensure that [`FuturesUnordered::poll_next`](Stream::poll_next) is called | 
|---|
| 165 | /// in order to receive wake-up notifications for the given future. | 
|---|
| 166 | pub fn push(&self, future: Fut) { | 
|---|
| 167 | let task = Arc::new(Task { | 
|---|
| 168 | future: UnsafeCell::new(Some(future)), | 
|---|
| 169 | next_all: AtomicPtr::new(self.pending_next_all()), | 
|---|
| 170 | prev_all: UnsafeCell::new(ptr::null_mut()), | 
|---|
| 171 | len_all: UnsafeCell::new(0), | 
|---|
| 172 | next_ready_to_run: AtomicPtr::new(ptr::null_mut()), | 
|---|
| 173 | queued: AtomicBool::new(true), | 
|---|
| 174 | ready_to_run_queue: Arc::downgrade(&self.ready_to_run_queue), | 
|---|
| 175 | woken: AtomicBool::new(false), | 
|---|
| 176 | }); | 
|---|
| 177 |  | 
|---|
| 178 | // Reset the `is_terminated` flag if we've previously marked ourselves | 
|---|
| 179 | // as terminated. | 
|---|
| 180 | self.is_terminated.store(false, Relaxed); | 
|---|
| 181 |  | 
|---|
| 182 | // Right now our task has a strong reference count of 1. We transfer | 
|---|
| 183 | // ownership of this reference count to our internal linked list | 
|---|
| 184 | // and we'll reclaim ownership through the `unlink` method below. | 
|---|
| 185 | let ptr = self.link(task); | 
|---|
| 186 |  | 
|---|
| 187 | // We'll need to get the future "into the system" to start tracking it, | 
|---|
| 188 | // e.g. getting its wake-up notifications going to us tracking which | 
|---|
| 189 | // futures are ready. To do that we unconditionally enqueue it for | 
|---|
| 190 | // polling here. | 
|---|
| 191 | self.ready_to_run_queue.enqueue(ptr); | 
|---|
| 192 | } | 
|---|
| 193 |  | 
|---|
| 194 | /// Returns an iterator that allows inspecting each future in the set. | 
|---|
| 195 | pub fn iter(&self) -> Iter<'_, Fut> | 
|---|
| 196 | where | 
|---|
| 197 | Fut: Unpin, | 
|---|
| 198 | { | 
|---|
| 199 | Iter(Pin::new(self).iter_pin_ref()) | 
|---|
| 200 | } | 
|---|
| 201 |  | 
|---|
| 202 | /// Returns an iterator that allows inspecting each future in the set. | 
|---|
| 203 | pub fn iter_pin_ref(self: Pin<&Self>) -> IterPinRef<'_, Fut> { | 
|---|
| 204 | let (task, len) = self.atomic_load_head_and_len_all(); | 
|---|
| 205 | let pending_next_all = self.pending_next_all(); | 
|---|
| 206 |  | 
|---|
| 207 | IterPinRef { task, len, pending_next_all, _marker: PhantomData } | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | /// Returns an iterator that allows modifying each future in the set. | 
|---|
| 211 | pub fn iter_mut(&mut self) -> IterMut<'_, Fut> | 
|---|
| 212 | where | 
|---|
| 213 | Fut: Unpin, | 
|---|
| 214 | { | 
|---|
| 215 | IterMut(Pin::new(self).iter_pin_mut()) | 
|---|
| 216 | } | 
|---|
| 217 |  | 
|---|
| 218 | /// Returns an iterator that allows modifying each future in the set. | 
|---|
| 219 | pub fn iter_pin_mut(mut self: Pin<&mut Self>) -> IterPinMut<'_, Fut> { | 
|---|
| 220 | // `head_all` can be accessed directly and we don't need to spin on | 
|---|
| 221 | // `Task::next_all` since we have exclusive access to the set. | 
|---|
| 222 | let task = *self.head_all.get_mut(); | 
|---|
| 223 | let len = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } }; | 
|---|
| 224 |  | 
|---|
| 225 | IterPinMut { task, len, _marker: PhantomData } | 
|---|
| 226 | } | 
|---|
| 227 |  | 
|---|
| 228 | /// Returns the current head node and number of futures in the list of all | 
|---|
| 229 | /// futures within a context where access is shared with other threads | 
|---|
| 230 | /// (mostly for use with the `len` and `iter_pin_ref` methods). | 
|---|
| 231 | fn atomic_load_head_and_len_all(&self) -> (*const Task<Fut>, usize) { | 
|---|
| 232 | let task = self.head_all.load(Acquire); | 
|---|
| 233 | let len = if task.is_null() { | 
|---|
| 234 | 0 | 
|---|
| 235 | } else { | 
|---|
| 236 | unsafe { | 
|---|
| 237 | (*task).spin_next_all(self.pending_next_all(), Acquire); | 
|---|
| 238 | *(*task).len_all.get() | 
|---|
| 239 | } | 
|---|
| 240 | }; | 
|---|
| 241 |  | 
|---|
| 242 | (task, len) | 
|---|
| 243 | } | 
|---|
| 244 |  | 
|---|
| 245 | /// Releases the task. It destroys the future inside and either drops | 
|---|
| 246 | /// the `Arc<Task>` or transfers ownership to the ready to run queue. | 
|---|
| 247 | /// The task this method is called on must have been unlinked before. | 
|---|
| 248 | fn release_task(&mut self, task: Arc<Task<Fut>>) { | 
|---|
| 249 | // `release_task` must only be called on unlinked tasks | 
|---|
| 250 | debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all()); | 
|---|
| 251 | unsafe { | 
|---|
| 252 | debug_assert!((*task.prev_all.get()).is_null()); | 
|---|
| 253 | } | 
|---|
| 254 |  | 
|---|
| 255 | // The future is done, try to reset the queued flag. This will prevent | 
|---|
| 256 | // `wake` from doing any work in the future | 
|---|
| 257 | let prev = task.queued.swap(true, SeqCst); | 
|---|
| 258 |  | 
|---|
| 259 | // If the queued flag was previously set, then it means that this task | 
|---|
| 260 | // is still in our internal ready to run queue. We then transfer | 
|---|
| 261 | // ownership of our reference count to the ready to run queue, and it'll | 
|---|
| 262 | // come along and free it later, noticing that the future is `None`. | 
|---|
| 263 | // | 
|---|
| 264 | // If, however, the queued flag was *not* set then we're safe to | 
|---|
| 265 | // release our reference count on the task. The queued flag was set | 
|---|
| 266 | // above so all future `enqueue` operations will not actually | 
|---|
| 267 | // enqueue the task, so our task will never see the ready to run queue | 
|---|
| 268 | // again. The task itself will be deallocated once all reference counts | 
|---|
| 269 | // have been dropped elsewhere by the various wakers that contain it. | 
|---|
| 270 | // | 
|---|
| 271 | // Use ManuallyDrop to transfer the reference count ownership before | 
|---|
| 272 | // dropping the future so unwinding won't release the reference count. | 
|---|
| 273 | let md_slot; | 
|---|
| 274 | let task = if prev { | 
|---|
| 275 | md_slot = mem::ManuallyDrop::new(task); | 
|---|
| 276 | &*md_slot | 
|---|
| 277 | } else { | 
|---|
| 278 | &task | 
|---|
| 279 | }; | 
|---|
| 280 |  | 
|---|
| 281 | // Drop the future, even if it hasn't finished yet. This is safe | 
|---|
| 282 | // because we're dropping the future on the thread that owns | 
|---|
| 283 | // `FuturesUnordered`, which correctly tracks `Fut`'s lifetimes and | 
|---|
| 284 | // such. | 
|---|
| 285 | unsafe { | 
|---|
| 286 | // Set to `None` rather than `take()`ing to prevent moving the | 
|---|
| 287 | // future. | 
|---|
| 288 | *task.future.get() = None; | 
|---|
| 289 | } | 
|---|
| 290 | } | 
|---|
| 291 |  | 
|---|
| 292 | /// Insert a new task into the internal linked list. | 
|---|
| 293 | fn link(&self, task: Arc<Task<Fut>>) -> *const Task<Fut> { | 
|---|
| 294 | // `next_all` should already be reset to the pending state before this | 
|---|
| 295 | // function is called. | 
|---|
| 296 | debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all()); | 
|---|
| 297 | let ptr = Arc::into_raw(task); | 
|---|
| 298 |  | 
|---|
| 299 | // Atomically swap out the old head node to get the node that should be | 
|---|
| 300 | // assigned to `next_all`. | 
|---|
| 301 | let next = self.head_all.swap(ptr as *mut _, AcqRel); | 
|---|
| 302 |  | 
|---|
| 303 | unsafe { | 
|---|
| 304 | // Store the new list length in the new node. | 
|---|
| 305 | let new_len = if next.is_null() { | 
|---|
| 306 | 1 | 
|---|
| 307 | } else { | 
|---|
| 308 | // Make sure `next_all` has been written to signal that it is | 
|---|
| 309 | // safe to read `len_all`. | 
|---|
| 310 | (*next).spin_next_all(self.pending_next_all(), Acquire); | 
|---|
| 311 | *(*next).len_all.get() + 1 | 
|---|
| 312 | }; | 
|---|
| 313 | *(*ptr).len_all.get() = new_len; | 
|---|
| 314 |  | 
|---|
| 315 | // Write the old head as the next node pointer, signaling to other | 
|---|
| 316 | // threads that `len_all` and `next_all` are ready to read. | 
|---|
| 317 | (*ptr).next_all.store(next, Release); | 
|---|
| 318 |  | 
|---|
| 319 | // `prev_all` updates don't need to be synchronized, as the field is | 
|---|
| 320 | // only ever used after exclusive access has been acquired. | 
|---|
| 321 | if !next.is_null() { | 
|---|
| 322 | *(*next).prev_all.get() = ptr; | 
|---|
| 323 | } | 
|---|
| 324 | } | 
|---|
| 325 |  | 
|---|
| 326 | ptr | 
|---|
| 327 | } | 
|---|
| 328 |  | 
|---|
| 329 | /// Remove the task from the linked list tracking all tasks currently | 
|---|
| 330 | /// managed by `FuturesUnordered`. | 
|---|
| 331 | /// This method is unsafe because it has be guaranteed that `task` is a | 
|---|
| 332 | /// valid pointer. | 
|---|
| 333 | unsafe fn unlink(&mut self, task: *const Task<Fut>) -> Arc<Task<Fut>> { | 
|---|
| 334 | unsafe { | 
|---|
| 335 | // Compute the new list length now in case we're removing the head node | 
|---|
| 336 | // and won't be able to retrieve the correct length later. | 
|---|
| 337 | let head = *self.head_all.get_mut(); | 
|---|
| 338 | debug_assert!(!head.is_null()); | 
|---|
| 339 | let new_len = *(*head).len_all.get() - 1; | 
|---|
| 340 |  | 
|---|
| 341 | let task = Arc::from_raw(task); | 
|---|
| 342 | let next = task.next_all.load(Relaxed); | 
|---|
| 343 | let prev = *task.prev_all.get(); | 
|---|
| 344 | task.next_all.store(self.pending_next_all(), Relaxed); | 
|---|
| 345 | *task.prev_all.get() = ptr::null_mut(); | 
|---|
| 346 |  | 
|---|
| 347 | if !next.is_null() { | 
|---|
| 348 | *(*next).prev_all.get() = prev; | 
|---|
| 349 | } | 
|---|
| 350 |  | 
|---|
| 351 | if !prev.is_null() { | 
|---|
| 352 | (*prev).next_all.store(next, Relaxed); | 
|---|
| 353 | } else { | 
|---|
| 354 | *self.head_all.get_mut() = next; | 
|---|
| 355 | } | 
|---|
| 356 |  | 
|---|
| 357 | // Store the new list length in the head node. | 
|---|
| 358 | let head = *self.head_all.get_mut(); | 
|---|
| 359 | if !head.is_null() { | 
|---|
| 360 | *(*head).len_all.get() = new_len; | 
|---|
| 361 | } | 
|---|
| 362 |  | 
|---|
| 363 | task | 
|---|
| 364 | } | 
|---|
| 365 | } | 
|---|
| 366 |  | 
|---|
| 367 | /// Returns the reserved value for `Task::next_all` to indicate a pending | 
|---|
| 368 | /// assignment from the thread that inserted the task. | 
|---|
| 369 | /// | 
|---|
| 370 | /// `FuturesUnordered::link` needs to update `Task` pointers in an order | 
|---|
| 371 | /// that ensures any iterators created on other threads can correctly | 
|---|
| 372 | /// traverse the entire `Task` list using the chain of `next_all` pointers. | 
|---|
| 373 | /// This could be solved with a compare-exchange loop that stores the | 
|---|
| 374 | /// current `head_all` in `next_all` and swaps out `head_all` with the new | 
|---|
| 375 | /// `Task` pointer if the head hasn't already changed. Under heavy thread | 
|---|
| 376 | /// contention, this compare-exchange loop could become costly. | 
|---|
| 377 | /// | 
|---|
| 378 | /// An alternative is to initialize `next_all` to a reserved pending state | 
|---|
| 379 | /// first, perform an atomic swap on `head_all`, and finally update | 
|---|
| 380 | /// `next_all` with the old head node. Iterators will then either see the | 
|---|
| 381 | /// pending state value or the correct next node pointer, and can reload | 
|---|
| 382 | /// `next_all` as needed until the correct value is loaded. The number of | 
|---|
| 383 | /// retries needed (if any) would be small and will always be finite, so | 
|---|
| 384 | /// this should generally perform better than the compare-exchange loop. | 
|---|
| 385 | /// | 
|---|
| 386 | /// A valid `Task` pointer in the `head_all` list is guaranteed to never be | 
|---|
| 387 | /// this value, so it is safe to use as a reserved value until the correct | 
|---|
| 388 | /// value can be written. | 
|---|
| 389 | fn pending_next_all(&self) -> *mut Task<Fut> { | 
|---|
| 390 | // The `ReadyToRunQueue` stub is never inserted into the `head_all` | 
|---|
| 391 | // list, and its pointer value will remain valid for the lifetime of | 
|---|
| 392 | // this `FuturesUnordered`, so we can make use of its value here. | 
|---|
| 393 | Arc::as_ptr(&self.ready_to_run_queue.stub) as *mut _ | 
|---|
| 394 | } | 
|---|
| 395 | } | 
|---|
| 396 |  | 
|---|
| 397 | impl<Fut: Future> Stream for FuturesUnordered<Fut> { | 
|---|
| 398 | type Item = Fut::Output; | 
|---|
| 399 |  | 
|---|
| 400 | fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { | 
|---|
| 401 | let len = self.len(); | 
|---|
| 402 |  | 
|---|
| 403 | // Keep track of how many child futures we have polled, | 
|---|
| 404 | // in case we want to forcibly yield. | 
|---|
| 405 | let mut polled = 0; | 
|---|
| 406 | let mut yielded = 0; | 
|---|
| 407 |  | 
|---|
| 408 | // Ensure `parent` is correctly set. | 
|---|
| 409 | self.ready_to_run_queue.waker.register(cx.waker()); | 
|---|
| 410 |  | 
|---|
| 411 | loop { | 
|---|
| 412 | // Safety: &mut self guarantees the mutual exclusion `dequeue` | 
|---|
| 413 | // expects | 
|---|
| 414 | let task = match unsafe { self.ready_to_run_queue.dequeue() } { | 
|---|
| 415 | Dequeue::Empty => { | 
|---|
| 416 | if self.is_empty() { | 
|---|
| 417 | // We can only consider ourselves terminated once we | 
|---|
| 418 | // have yielded a `None` | 
|---|
| 419 | *self.is_terminated.get_mut() = true; | 
|---|
| 420 | return Poll::Ready(None); | 
|---|
| 421 | } else { | 
|---|
| 422 | return Poll::Pending; | 
|---|
| 423 | } | 
|---|
| 424 | } | 
|---|
| 425 | Dequeue::Inconsistent => { | 
|---|
| 426 | // At this point, it may be worth yielding the thread & | 
|---|
| 427 | // spinning a few times... but for now, just yield using the | 
|---|
| 428 | // task system. | 
|---|
| 429 | cx.waker().wake_by_ref(); | 
|---|
| 430 | return Poll::Pending; | 
|---|
| 431 | } | 
|---|
| 432 | Dequeue::Data(task) => task, | 
|---|
| 433 | }; | 
|---|
| 434 |  | 
|---|
| 435 | debug_assert!(task != self.ready_to_run_queue.stub()); | 
|---|
| 436 |  | 
|---|
| 437 | // Safety: | 
|---|
| 438 | // - `task` is a valid pointer. | 
|---|
| 439 | // - We are the only thread that accesses the `UnsafeCell` that | 
|---|
| 440 | //   contains the future | 
|---|
| 441 | let future = match unsafe { &mut *(*task).future.get() } { | 
|---|
| 442 | Some(future) => future, | 
|---|
| 443 |  | 
|---|
| 444 | // If the future has already gone away then we're just | 
|---|
| 445 | // cleaning out this task. See the comment in | 
|---|
| 446 | // `release_task` for more information, but we're basically | 
|---|
| 447 | // just taking ownership of our reference count here. | 
|---|
| 448 | None => { | 
|---|
| 449 | // This case only happens when `release_task` was called | 
|---|
| 450 | // for this task before and couldn't drop the task | 
|---|
| 451 | // because it was already enqueued in the ready to run | 
|---|
| 452 | // queue. | 
|---|
| 453 |  | 
|---|
| 454 | // Safety: `task` is a valid pointer | 
|---|
| 455 | let task = unsafe { Arc::from_raw(task) }; | 
|---|
| 456 |  | 
|---|
| 457 | // Double check that the call to `release_task` really | 
|---|
| 458 | // happened. Calling it required the task to be unlinked. | 
|---|
| 459 | debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all()); | 
|---|
| 460 | unsafe { | 
|---|
| 461 | debug_assert!((*task.prev_all.get()).is_null()); | 
|---|
| 462 | } | 
|---|
| 463 | continue; | 
|---|
| 464 | } | 
|---|
| 465 | }; | 
|---|
| 466 |  | 
|---|
| 467 | // Safety: `task` is a valid pointer | 
|---|
| 468 | let task = unsafe { self.unlink(task) }; | 
|---|
| 469 |  | 
|---|
| 470 | // Unset queued flag: This must be done before polling to ensure | 
|---|
| 471 | // that the future's task gets rescheduled if it sends a wake-up | 
|---|
| 472 | // notification **during** the call to `poll`. | 
|---|
| 473 | let prev = task.queued.swap(false, SeqCst); | 
|---|
| 474 | assert!(prev); | 
|---|
| 475 |  | 
|---|
| 476 | // We're going to need to be very careful if the `poll` | 
|---|
| 477 | // method below panics. We need to (a) not leak memory and | 
|---|
| 478 | // (b) ensure that we still don't have any use-after-frees. To | 
|---|
| 479 | // manage this we do a few things: | 
|---|
| 480 | // | 
|---|
| 481 | // * A "bomb" is created which if dropped abnormally will call | 
|---|
| 482 | //   `release_task`. That way we'll be sure the memory management | 
|---|
| 483 | //   of the `task` is managed correctly. In particular | 
|---|
| 484 | //   `release_task` will drop the future. This ensures that it is | 
|---|
| 485 | //   dropped on this thread and not accidentally on a different | 
|---|
| 486 | //   thread (bad). | 
|---|
| 487 | // * We unlink the task from our internal queue to preemptively | 
|---|
| 488 | //   assume it'll panic, in which case we'll want to discard it | 
|---|
| 489 | //   regardless. | 
|---|
| 490 | struct Bomb<'a, Fut> { | 
|---|
| 491 | queue: &'a mut FuturesUnordered<Fut>, | 
|---|
| 492 | task: Option<Arc<Task<Fut>>>, | 
|---|
| 493 | } | 
|---|
| 494 |  | 
|---|
| 495 | impl<Fut> Drop for Bomb<'_, Fut> { | 
|---|
| 496 | fn drop(&mut self) { | 
|---|
| 497 | if let Some(task) = self.task.take() { | 
|---|
| 498 | self.queue.release_task(task); | 
|---|
| 499 | } | 
|---|
| 500 | } | 
|---|
| 501 | } | 
|---|
| 502 |  | 
|---|
| 503 | let mut bomb = Bomb { task: Some(task), queue: &mut *self }; | 
|---|
| 504 |  | 
|---|
| 505 | // Poll the underlying future with the appropriate waker | 
|---|
| 506 | // implementation. This is where a large bit of the unsafety | 
|---|
| 507 | // starts to stem from internally. The waker is basically just | 
|---|
| 508 | // our `Arc<Task<Fut>>` and can schedule the future for polling by | 
|---|
| 509 | // enqueuing itself in the ready to run queue. | 
|---|
| 510 | // | 
|---|
| 511 | // Critically though `Task<Fut>` won't actually access `Fut`, the | 
|---|
| 512 | // future, while it's floating around inside of wakers. | 
|---|
| 513 | // These structs will basically just use `Fut` to size | 
|---|
| 514 | // the internal allocation, appropriately accessing fields and | 
|---|
| 515 | // deallocating the task if need be. | 
|---|
| 516 | let res = { | 
|---|
| 517 | let task = bomb.task.as_ref().unwrap(); | 
|---|
| 518 | // We are only interested in whether the future is awoken before it | 
|---|
| 519 | // finishes polling, so reset the flag here. | 
|---|
| 520 | task.woken.store(false, Relaxed); | 
|---|
| 521 | // SAFETY: see the comments of Bomb and this block. | 
|---|
| 522 | let waker = unsafe { Task::waker_ref(task) }; | 
|---|
| 523 | let mut cx = Context::from_waker(&waker); | 
|---|
| 524 |  | 
|---|
| 525 | // Safety: We won't move the future ever again | 
|---|
| 526 | let future = unsafe { Pin::new_unchecked(future) }; | 
|---|
| 527 |  | 
|---|
| 528 | future.poll(&mut cx) | 
|---|
| 529 | }; | 
|---|
| 530 | polled += 1; | 
|---|
| 531 |  | 
|---|
| 532 | match res { | 
|---|
| 533 | Poll::Pending => { | 
|---|
| 534 | let task = bomb.task.take().unwrap(); | 
|---|
| 535 | // If the future was awoken during polling, we assume | 
|---|
| 536 | // the future wanted to explicitly yield. | 
|---|
| 537 | yielded += task.woken.load(Relaxed) as usize; | 
|---|
| 538 | bomb.queue.link(task); | 
|---|
| 539 |  | 
|---|
| 540 | // If a future yields, we respect it and yield here. | 
|---|
| 541 | // If all futures have been polled, we also yield here to | 
|---|
| 542 | // avoid starving other tasks waiting on the executor. | 
|---|
| 543 | // (polling the same future twice per iteration may cause | 
|---|
| 544 | // the problem: https://github.com/rust-lang/futures-rs/pull/2333) | 
|---|
| 545 | if yielded >= 2 || polled == len { | 
|---|
| 546 | cx.waker().wake_by_ref(); | 
|---|
| 547 | return Poll::Pending; | 
|---|
| 548 | } | 
|---|
| 549 | continue; | 
|---|
| 550 | } | 
|---|
| 551 | Poll::Ready(output) => return Poll::Ready(Some(output)), | 
|---|
| 552 | } | 
|---|
| 553 | } | 
|---|
| 554 | } | 
|---|
| 555 |  | 
|---|
| 556 | fn size_hint(&self) -> (usize, Option<usize>) { | 
|---|
| 557 | let len = self.len(); | 
|---|
| 558 | (len, Some(len)) | 
|---|
| 559 | } | 
|---|
| 560 | } | 
|---|
| 561 |  | 
|---|
| 562 | impl<Fut> Debug for FuturesUnordered<Fut> { | 
|---|
| 563 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|---|
| 564 | write!(f, "FuturesUnordered {{  ... }} ") | 
|---|
| 565 | } | 
|---|
| 566 | } | 
|---|
| 567 |  | 
|---|
| 568 | impl<Fut> FuturesUnordered<Fut> { | 
|---|
| 569 | /// Clears the set, removing all futures. | 
|---|
| 570 | pub fn clear(&mut self) { | 
|---|
| 571 | *self = Self::new(); | 
|---|
| 572 | } | 
|---|
| 573 | } | 
|---|
| 574 |  | 
|---|
| 575 | impl<Fut> Drop for FuturesUnordered<Fut> { | 
|---|
| 576 | fn drop(&mut self) { | 
|---|
| 577 | // Before the strong reference to the queue is dropped we need all | 
|---|
| 578 | // futures to be dropped. See note at the bottom of this method. | 
|---|
| 579 | // | 
|---|
| 580 | // If there is a panic before this completes, we leak the queue. | 
|---|
| 581 | struct LeakQueueOnDrop<'a, Fut>(&'a mut FuturesUnordered<Fut>); | 
|---|
| 582 | impl<Fut> Drop for LeakQueueOnDrop<'_, Fut> { | 
|---|
| 583 | fn drop(&mut self) { | 
|---|
| 584 | mem::forget(Arc::clone(&self.0.ready_to_run_queue)); | 
|---|
| 585 | } | 
|---|
| 586 | } | 
|---|
| 587 | let guard = LeakQueueOnDrop(self); | 
|---|
| 588 | // When a `FuturesUnordered` is dropped we want to drop all futures | 
|---|
| 589 | // associated with it. At the same time though there may be tons of | 
|---|
| 590 | // wakers flying around which contain `Task<Fut>` references | 
|---|
| 591 | // inside them. We'll let those naturally get deallocated. | 
|---|
| 592 | while !guard.0.head_all.get_mut().is_null() { | 
|---|
| 593 | let head = *guard.0.head_all.get_mut(); | 
|---|
| 594 | let task = unsafe { guard.0.unlink(head) }; | 
|---|
| 595 | guard.0.release_task(task); | 
|---|
| 596 | } | 
|---|
| 597 | mem::forget(guard); // safe to release strong reference to queue | 
|---|
| 598 |  | 
|---|
| 599 | // Note that at this point we could still have a bunch of tasks in the | 
|---|
| 600 | // ready to run queue. None of those tasks, however, have futures | 
|---|
| 601 | // associated with them so they're safe to destroy on any thread. At | 
|---|
| 602 | // this point the `FuturesUnordered` struct, the owner of the one strong | 
|---|
| 603 | // reference to the ready to run queue will drop the strong reference. | 
|---|
| 604 | // At that point whichever thread releases the strong refcount last (be | 
|---|
| 605 | // it this thread or some other thread as part of an `upgrade`) will | 
|---|
| 606 | // clear out the ready to run queue and free all remaining tasks. | 
|---|
| 607 | // | 
|---|
| 608 | // While that freeing operation isn't guaranteed to happen here, it's | 
|---|
| 609 | // guaranteed to happen "promptly" as no more "blocking work" will | 
|---|
| 610 | // happen while there's a strong refcount held. | 
|---|
| 611 | } | 
|---|
| 612 | } | 
|---|
| 613 |  | 
|---|
| 614 | impl<'a, Fut: Unpin> IntoIterator for &'a FuturesUnordered<Fut> { | 
|---|
| 615 | type Item = &'a Fut; | 
|---|
| 616 | type IntoIter = Iter<'a, Fut>; | 
|---|
| 617 |  | 
|---|
| 618 | fn into_iter(self) -> Self::IntoIter { | 
|---|
| 619 | self.iter() | 
|---|
| 620 | } | 
|---|
| 621 | } | 
|---|
| 622 |  | 
|---|
| 623 | impl<'a, Fut: Unpin> IntoIterator for &'a mut FuturesUnordered<Fut> { | 
|---|
| 624 | type Item = &'a mut Fut; | 
|---|
| 625 | type IntoIter = IterMut<'a, Fut>; | 
|---|
| 626 |  | 
|---|
| 627 | fn into_iter(self) -> Self::IntoIter { | 
|---|
| 628 | self.iter_mut() | 
|---|
| 629 | } | 
|---|
| 630 | } | 
|---|
| 631 |  | 
|---|
| 632 | impl<Fut: Unpin> IntoIterator for FuturesUnordered<Fut> { | 
|---|
| 633 | type Item = Fut; | 
|---|
| 634 | type IntoIter = IntoIter<Fut>; | 
|---|
| 635 |  | 
|---|
| 636 | fn into_iter(mut self) -> Self::IntoIter { | 
|---|
| 637 | // `head_all` can be accessed directly and we don't need to spin on | 
|---|
| 638 | // `Task::next_all` since we have exclusive access to the set. | 
|---|
| 639 | let task: *mut Task = *self.head_all.get_mut(); | 
|---|
| 640 | let len: usize = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } }; | 
|---|
| 641 |  | 
|---|
| 642 | IntoIter { len, inner: self } | 
|---|
| 643 | } | 
|---|
| 644 | } | 
|---|
| 645 |  | 
|---|
| 646 | impl<Fut> FromIterator<Fut> for FuturesUnordered<Fut> { | 
|---|
| 647 | fn from_iter<I>(iter: I) -> Self | 
|---|
| 648 | where | 
|---|
| 649 | I: IntoIterator<Item = Fut>, | 
|---|
| 650 | { | 
|---|
| 651 | let acc: FuturesUnordered = Self::new(); | 
|---|
| 652 | iter.into_iter().fold(init:acc, |acc: FuturesUnordered, item: Fut| { | 
|---|
| 653 | acc.push(future:item); | 
|---|
| 654 | acc | 
|---|
| 655 | }) | 
|---|
| 656 | } | 
|---|
| 657 | } | 
|---|
| 658 |  | 
|---|
| 659 | impl<Fut: Future> FusedStream for FuturesUnordered<Fut> { | 
|---|
| 660 | fn is_terminated(&self) -> bool { | 
|---|
| 661 | self.is_terminated.load(order:Relaxed) | 
|---|
| 662 | } | 
|---|
| 663 | } | 
|---|
| 664 |  | 
|---|
| 665 | impl<Fut> Extend<Fut> for FuturesUnordered<Fut> { | 
|---|
| 666 | fn extend<I>(&mut self, iter: I) | 
|---|
| 667 | where | 
|---|
| 668 | I: IntoIterator<Item = Fut>, | 
|---|
| 669 | { | 
|---|
| 670 | for item: Fut in iter { | 
|---|
| 671 | self.push(future:item); | 
|---|
| 672 | } | 
|---|
| 673 | } | 
|---|
| 674 | } | 
|---|
| 675 |  | 
|---|