| 1 | use super::group::{ |
| 2 | BitMaskWord, NonZeroBitMaskWord, BITMASK_ITER_MASK, BITMASK_MASK, BITMASK_STRIDE, |
| 3 | }; |
| 4 | |
| 5 | /// A bit mask which contains the result of a `Match` operation on a `Group` and |
| 6 | /// allows iterating through them. |
| 7 | /// |
| 8 | /// The bit mask is arranged so that low-order bits represent lower memory |
| 9 | /// addresses for group match results. |
| 10 | /// |
| 11 | /// For implementation reasons, the bits in the set may be sparsely packed with |
| 12 | /// groups of 8 bits representing one element. If any of these bits are non-zero |
| 13 | /// then this element is considered to true in the mask. If this is the |
| 14 | /// case, `BITMASK_STRIDE` will be 8 to indicate a divide-by-8 should be |
| 15 | /// performed on counts/indices to normalize this difference. `BITMASK_MASK` is |
| 16 | /// similarly a mask of all the actually-used bits. |
| 17 | /// |
| 18 | /// To iterate over a bit mask, it must be converted to a form where only 1 bit |
| 19 | /// is set per element. This is done by applying `BITMASK_ITER_MASK` on the |
| 20 | /// mask bits. |
| 21 | #[derive (Copy, Clone)] |
| 22 | pub(crate) struct BitMask(pub(crate) BitMaskWord); |
| 23 | |
| 24 | #[allow (clippy::use_self)] |
| 25 | impl BitMask { |
| 26 | /// Returns a new `BitMask` with all bits inverted. |
| 27 | #[inline ] |
| 28 | #[must_use ] |
| 29 | #[allow (dead_code)] |
| 30 | pub(crate) fn invert(self) -> Self { |
| 31 | BitMask(self.0 ^ BITMASK_MASK) |
| 32 | } |
| 33 | |
| 34 | /// Returns a new `BitMask` with the lowest bit removed. |
| 35 | #[inline ] |
| 36 | #[must_use ] |
| 37 | fn remove_lowest_bit(self) -> Self { |
| 38 | BitMask(self.0 & (self.0 - 1)) |
| 39 | } |
| 40 | |
| 41 | /// Returns whether the `BitMask` has at least one set bit. |
| 42 | #[inline ] |
| 43 | pub(crate) fn any_bit_set(self) -> bool { |
| 44 | self.0 != 0 |
| 45 | } |
| 46 | |
| 47 | /// Returns the first set bit in the `BitMask`, if there is one. |
| 48 | #[inline ] |
| 49 | pub(crate) fn lowest_set_bit(self) -> Option<usize> { |
| 50 | if let Some(nonzero) = NonZeroBitMaskWord::new(self.0) { |
| 51 | Some(Self::nonzero_trailing_zeros(nonzero)) |
| 52 | } else { |
| 53 | None |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | /// Returns the number of trailing zeroes in the `BitMask`. |
| 58 | #[inline ] |
| 59 | pub(crate) fn trailing_zeros(self) -> usize { |
| 60 | // ARM doesn't have a trailing_zeroes instruction, and instead uses |
| 61 | // reverse_bits (RBIT) + leading_zeroes (CLZ). However older ARM |
| 62 | // versions (pre-ARMv7) don't have RBIT and need to emulate it |
| 63 | // instead. Since we only have 1 bit set in each byte on ARM, we can |
| 64 | // use swap_bytes (REV) + leading_zeroes instead. |
| 65 | if cfg!(target_arch = "arm" ) && BITMASK_STRIDE % 8 == 0 { |
| 66 | self.0.swap_bytes().leading_zeros() as usize / BITMASK_STRIDE |
| 67 | } else { |
| 68 | self.0.trailing_zeros() as usize / BITMASK_STRIDE |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | /// Same as above but takes a `NonZeroBitMaskWord`. |
| 73 | #[inline ] |
| 74 | fn nonzero_trailing_zeros(nonzero: NonZeroBitMaskWord) -> usize { |
| 75 | if cfg!(target_arch = "arm" ) && BITMASK_STRIDE % 8 == 0 { |
| 76 | // SAFETY: A byte-swapped non-zero value is still non-zero. |
| 77 | let swapped = unsafe { NonZeroBitMaskWord::new_unchecked(nonzero.get().swap_bytes()) }; |
| 78 | swapped.leading_zeros() as usize / BITMASK_STRIDE |
| 79 | } else { |
| 80 | nonzero.trailing_zeros() as usize / BITMASK_STRIDE |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | /// Returns the number of leading zeroes in the `BitMask`. |
| 85 | #[inline ] |
| 86 | pub(crate) fn leading_zeros(self) -> usize { |
| 87 | self.0.leading_zeros() as usize / BITMASK_STRIDE |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | impl IntoIterator for BitMask { |
| 92 | type Item = usize; |
| 93 | type IntoIter = BitMaskIter; |
| 94 | |
| 95 | #[inline ] |
| 96 | fn into_iter(self) -> BitMaskIter { |
| 97 | // A BitMask only requires each element (group of bits) to be non-zero. |
| 98 | // However for iteration we need each element to only contain 1 bit. |
| 99 | BitMaskIter(BitMask(self.0 & BITMASK_ITER_MASK)) |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | /// Iterator over the contents of a `BitMask`, returning the indices of set |
| 104 | /// bits. |
| 105 | #[derive (Clone)] |
| 106 | pub(crate) struct BitMaskIter(pub(crate) BitMask); |
| 107 | |
| 108 | impl Iterator for BitMaskIter { |
| 109 | type Item = usize; |
| 110 | |
| 111 | #[inline ] |
| 112 | fn next(&mut self) -> Option<usize> { |
| 113 | let bit: usize = self.0.lowest_set_bit()?; |
| 114 | self.0 = self.0.remove_lowest_bit(); |
| 115 | Some(bit) |
| 116 | } |
| 117 | } |
| 118 | |