1 | // Copyright 2018 Amanieu d'Antras |
2 | // |
3 | // Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or |
4 | // http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or |
5 | // http://opensource.org/licenses/MIT>, at your option. This file may not be |
6 | // copied, modified, or distributed except according to those terms. |
7 | |
8 | use crate::{ |
9 | mutex::{RawMutex, RawMutexFair, RawMutexTimed}, |
10 | GuardNoSend, |
11 | }; |
12 | use core::{ |
13 | cell::{Cell, UnsafeCell}, |
14 | fmt, |
15 | marker::PhantomData, |
16 | mem, |
17 | num::NonZeroUsize, |
18 | ops::Deref, |
19 | sync::atomic::{AtomicUsize, Ordering}, |
20 | }; |
21 | |
22 | #[cfg (feature = "arc_lock" )] |
23 | use alloc::sync::Arc; |
24 | #[cfg (feature = "arc_lock" )] |
25 | use core::mem::ManuallyDrop; |
26 | #[cfg (feature = "arc_lock" )] |
27 | use core::ptr; |
28 | |
29 | #[cfg (feature = "owning_ref" )] |
30 | use owning_ref::StableAddress; |
31 | |
32 | #[cfg (feature = "serde" )] |
33 | use serde::{Deserialize, Deserializer, Serialize, Serializer}; |
34 | |
35 | /// Helper trait which returns a non-zero thread ID. |
36 | /// |
37 | /// The simplest way to implement this trait is to return the address of a |
38 | /// thread-local variable. |
39 | /// |
40 | /// # Safety |
41 | /// |
42 | /// Implementations of this trait must ensure that no two active threads share |
43 | /// the same thread ID. However the ID of a thread that has exited can be |
44 | /// re-used since that thread is no longer active. |
45 | pub unsafe trait GetThreadId { |
46 | /// Initial value. |
47 | // A “non-constant” const item is a legacy way to supply an initialized value to downstream |
48 | // static items. Can hopefully be replaced with `const fn new() -> Self` at some point. |
49 | #[allow (clippy::declare_interior_mutable_const)] |
50 | const INIT: Self; |
51 | |
52 | /// Returns a non-zero thread ID which identifies the current thread of |
53 | /// execution. |
54 | fn nonzero_thread_id(&self) -> NonZeroUsize; |
55 | } |
56 | |
57 | /// A raw mutex type that wraps another raw mutex to provide reentrancy. |
58 | /// |
59 | /// Although this has the same methods as the [`RawMutex`] trait, it does |
60 | /// not implement it, and should not be used in the same way, since this |
61 | /// mutex can successfully acquire a lock multiple times in the same thread. |
62 | /// Only use this when you know you want a raw mutex that can be locked |
63 | /// reentrantly; you probably want [`ReentrantMutex`] instead. |
64 | /// |
65 | /// [`RawMutex`]: trait.RawMutex.html |
66 | /// [`ReentrantMutex`]: struct.ReentrantMutex.html |
67 | pub struct RawReentrantMutex<R, G> { |
68 | owner: AtomicUsize, |
69 | lock_count: Cell<usize>, |
70 | mutex: R, |
71 | get_thread_id: G, |
72 | } |
73 | |
74 | unsafe impl<R: RawMutex + Send, G: GetThreadId + Send> Send for RawReentrantMutex<R, G> {} |
75 | unsafe impl<R: RawMutex + Sync, G: GetThreadId + Sync> Sync for RawReentrantMutex<R, G> {} |
76 | |
77 | impl<R: RawMutex, G: GetThreadId> RawReentrantMutex<R, G> { |
78 | /// Initial value for an unlocked mutex. |
79 | #[allow (clippy::declare_interior_mutable_const)] |
80 | pub const INIT: Self = RawReentrantMutex { |
81 | owner: AtomicUsize::new(0), |
82 | lock_count: Cell::new(0), |
83 | mutex: R::INIT, |
84 | get_thread_id: G::INIT, |
85 | }; |
86 | |
87 | #[inline ] |
88 | fn lock_internal<F: FnOnce() -> bool>(&self, try_lock: F) -> bool { |
89 | let id = self.get_thread_id.nonzero_thread_id().get(); |
90 | if self.owner.load(Ordering::Relaxed) == id { |
91 | self.lock_count.set( |
92 | self.lock_count |
93 | .get() |
94 | .checked_add(1) |
95 | .expect("ReentrantMutex lock count overflow" ), |
96 | ); |
97 | } else { |
98 | if !try_lock() { |
99 | return false; |
100 | } |
101 | self.owner.store(id, Ordering::Relaxed); |
102 | debug_assert_eq!(self.lock_count.get(), 0); |
103 | self.lock_count.set(1); |
104 | } |
105 | true |
106 | } |
107 | |
108 | /// Acquires this mutex, blocking if it's held by another thread. |
109 | #[inline ] |
110 | pub fn lock(&self) { |
111 | self.lock_internal(|| { |
112 | self.mutex.lock(); |
113 | true |
114 | }); |
115 | } |
116 | |
117 | /// Attempts to acquire this mutex without blocking. Returns `true` |
118 | /// if the lock was successfully acquired and `false` otherwise. |
119 | #[inline ] |
120 | pub fn try_lock(&self) -> bool { |
121 | self.lock_internal(|| self.mutex.try_lock()) |
122 | } |
123 | |
124 | /// Unlocks this mutex. The inner mutex may not be unlocked if |
125 | /// this mutex was acquired previously in the current thread. |
126 | /// |
127 | /// # Safety |
128 | /// |
129 | /// This method may only be called if the mutex is held by the current thread. |
130 | #[inline ] |
131 | pub unsafe fn unlock(&self) { |
132 | let lock_count = self.lock_count.get() - 1; |
133 | self.lock_count.set(lock_count); |
134 | if lock_count == 0 { |
135 | self.owner.store(0, Ordering::Relaxed); |
136 | self.mutex.unlock(); |
137 | } |
138 | } |
139 | |
140 | /// Checks whether the mutex is currently locked. |
141 | #[inline ] |
142 | pub fn is_locked(&self) -> bool { |
143 | self.mutex.is_locked() |
144 | } |
145 | |
146 | /// Checks whether the mutex is currently held by the current thread. |
147 | #[inline ] |
148 | pub fn is_owned_by_current_thread(&self) -> bool { |
149 | let id = self.get_thread_id.nonzero_thread_id().get(); |
150 | self.owner.load(Ordering::Relaxed) == id |
151 | } |
152 | } |
153 | |
154 | impl<R: RawMutexFair, G: GetThreadId> RawReentrantMutex<R, G> { |
155 | /// Unlocks this mutex using a fair unlock protocol. The inner mutex |
156 | /// may not be unlocked if this mutex was acquired previously in the |
157 | /// current thread. |
158 | /// |
159 | /// # Safety |
160 | /// |
161 | /// This method may only be called if the mutex is held by the current thread. |
162 | #[inline ] |
163 | pub unsafe fn unlock_fair(&self) { |
164 | let lock_count = self.lock_count.get() - 1; |
165 | self.lock_count.set(lock_count); |
166 | if lock_count == 0 { |
167 | self.owner.store(0, Ordering::Relaxed); |
168 | self.mutex.unlock_fair(); |
169 | } |
170 | } |
171 | |
172 | /// Temporarily yields the mutex to a waiting thread if there is one. |
173 | /// |
174 | /// This method is functionally equivalent to calling `unlock_fair` followed |
175 | /// by `lock`, however it can be much more efficient in the case where there |
176 | /// are no waiting threads. |
177 | /// |
178 | /// # Safety |
179 | /// |
180 | /// This method may only be called if the mutex is held by the current thread. |
181 | #[inline ] |
182 | pub unsafe fn bump(&self) { |
183 | if self.lock_count.get() == 1 { |
184 | let id = self.owner.load(Ordering::Relaxed); |
185 | self.owner.store(0, Ordering::Relaxed); |
186 | self.mutex.bump(); |
187 | self.owner.store(id, Ordering::Relaxed); |
188 | } |
189 | } |
190 | } |
191 | |
192 | impl<R: RawMutexTimed, G: GetThreadId> RawReentrantMutex<R, G> { |
193 | /// Attempts to acquire this lock until a timeout is reached. |
194 | #[inline ] |
195 | pub fn try_lock_until(&self, timeout: R::Instant) -> bool { |
196 | self.lock_internal(|| self.mutex.try_lock_until(timeout)) |
197 | } |
198 | |
199 | /// Attempts to acquire this lock until a timeout is reached. |
200 | #[inline ] |
201 | pub fn try_lock_for(&self, timeout: R::Duration) -> bool { |
202 | self.lock_internal(|| self.mutex.try_lock_for(timeout)) |
203 | } |
204 | } |
205 | |
206 | /// A mutex which can be recursively locked by a single thread. |
207 | /// |
208 | /// This type is identical to `Mutex` except for the following points: |
209 | /// |
210 | /// - Locking multiple times from the same thread will work correctly instead of |
211 | /// deadlocking. |
212 | /// - `ReentrantMutexGuard` does not give mutable references to the locked data. |
213 | /// Use a `RefCell` if you need this. |
214 | /// |
215 | /// See [`Mutex`](struct.Mutex.html) for more details about the underlying mutex |
216 | /// primitive. |
217 | pub struct ReentrantMutex<R, G, T: ?Sized> { |
218 | raw: RawReentrantMutex<R, G>, |
219 | data: UnsafeCell<T>, |
220 | } |
221 | |
222 | unsafe impl<R: RawMutex + Send, G: GetThreadId + Send, T: ?Sized + Send> Send |
223 | for ReentrantMutex<R, G, T> |
224 | { |
225 | } |
226 | unsafe impl<R: RawMutex + Sync, G: GetThreadId + Sync, T: ?Sized + Send> Sync |
227 | for ReentrantMutex<R, G, T> |
228 | { |
229 | } |
230 | |
231 | impl<R: RawMutex, G: GetThreadId, T> ReentrantMutex<R, G, T> { |
232 | /// Creates a new reentrant mutex in an unlocked state ready for use. |
233 | #[cfg (has_const_fn_trait_bound)] |
234 | #[inline ] |
235 | pub const fn new(val: T) -> ReentrantMutex<R, G, T> { |
236 | ReentrantMutex { |
237 | data: UnsafeCell::new(val), |
238 | raw: RawReentrantMutex { |
239 | owner: AtomicUsize::new(0), |
240 | lock_count: Cell::new(0), |
241 | mutex: R::INIT, |
242 | get_thread_id: G::INIT, |
243 | }, |
244 | } |
245 | } |
246 | |
247 | /// Creates a new reentrant mutex in an unlocked state ready for use. |
248 | #[cfg (not(has_const_fn_trait_bound))] |
249 | #[inline ] |
250 | pub fn new(val: T) -> ReentrantMutex<R, G, T> { |
251 | ReentrantMutex { |
252 | data: UnsafeCell::new(val), |
253 | raw: RawReentrantMutex { |
254 | owner: AtomicUsize::new(0), |
255 | lock_count: Cell::new(0), |
256 | mutex: R::INIT, |
257 | get_thread_id: G::INIT, |
258 | }, |
259 | } |
260 | } |
261 | |
262 | /// Consumes this mutex, returning the underlying data. |
263 | #[inline ] |
264 | pub fn into_inner(self) -> T { |
265 | self.data.into_inner() |
266 | } |
267 | } |
268 | |
269 | impl<R, G, T> ReentrantMutex<R, G, T> { |
270 | /// Creates a new reentrant mutex based on a pre-existing raw mutex and a |
271 | /// helper to get the thread ID. |
272 | /// |
273 | /// This allows creating a reentrant mutex in a constant context on stable |
274 | /// Rust. |
275 | #[inline ] |
276 | pub const fn const_new(raw_mutex: R, get_thread_id: G, val: T) -> ReentrantMutex<R, G, T> { |
277 | ReentrantMutex { |
278 | data: UnsafeCell::new(val), |
279 | raw: RawReentrantMutex { |
280 | owner: AtomicUsize::new(0), |
281 | lock_count: Cell::new(0), |
282 | mutex: raw_mutex, |
283 | get_thread_id, |
284 | }, |
285 | } |
286 | } |
287 | } |
288 | |
289 | impl<R: RawMutex, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> { |
290 | /// # Safety |
291 | /// |
292 | /// The lock must be held when calling this method. |
293 | #[inline ] |
294 | unsafe fn guard(&self) -> ReentrantMutexGuard<'_, R, G, T> { |
295 | ReentrantMutexGuard { |
296 | remutex: &self, |
297 | marker: PhantomData, |
298 | } |
299 | } |
300 | |
301 | /// Acquires a reentrant mutex, blocking the current thread until it is able |
302 | /// to do so. |
303 | /// |
304 | /// If the mutex is held by another thread then this function will block the |
305 | /// local thread until it is available to acquire the mutex. If the mutex is |
306 | /// already held by the current thread then this function will increment the |
307 | /// lock reference count and return immediately. Upon returning, |
308 | /// the thread is the only thread with the mutex held. An RAII guard is |
309 | /// returned to allow scoped unlock of the lock. When the guard goes out of |
310 | /// scope, the mutex will be unlocked. |
311 | #[inline ] |
312 | pub fn lock(&self) -> ReentrantMutexGuard<'_, R, G, T> { |
313 | self.raw.lock(); |
314 | // SAFETY: The lock is held, as required. |
315 | unsafe { self.guard() } |
316 | } |
317 | |
318 | /// Attempts to acquire this lock. |
319 | /// |
320 | /// If the lock could not be acquired at this time, then `None` is returned. |
321 | /// Otherwise, an RAII guard is returned. The lock will be unlocked when the |
322 | /// guard is dropped. |
323 | /// |
324 | /// This function does not block. |
325 | #[inline ] |
326 | pub fn try_lock(&self) -> Option<ReentrantMutexGuard<'_, R, G, T>> { |
327 | if self.raw.try_lock() { |
328 | // SAFETY: The lock is held, as required. |
329 | Some(unsafe { self.guard() }) |
330 | } else { |
331 | None |
332 | } |
333 | } |
334 | |
335 | /// Returns a mutable reference to the underlying data. |
336 | /// |
337 | /// Since this call borrows the `ReentrantMutex` mutably, no actual locking needs to |
338 | /// take place---the mutable borrow statically guarantees no locks exist. |
339 | #[inline ] |
340 | pub fn get_mut(&mut self) -> &mut T { |
341 | unsafe { &mut *self.data.get() } |
342 | } |
343 | |
344 | /// Checks whether the mutex is currently locked. |
345 | #[inline ] |
346 | pub fn is_locked(&self) -> bool { |
347 | self.raw.is_locked() |
348 | } |
349 | |
350 | /// Checks whether the mutex is currently held by the current thread. |
351 | #[inline ] |
352 | pub fn is_owned_by_current_thread(&self) -> bool { |
353 | self.raw.is_owned_by_current_thread() |
354 | } |
355 | |
356 | /// Forcibly unlocks the mutex. |
357 | /// |
358 | /// This is useful when combined with `mem::forget` to hold a lock without |
359 | /// the need to maintain a `ReentrantMutexGuard` object alive, for example when |
360 | /// dealing with FFI. |
361 | /// |
362 | /// # Safety |
363 | /// |
364 | /// This method must only be called if the current thread logically owns a |
365 | /// `ReentrantMutexGuard` but that guard has be discarded using `mem::forget`. |
366 | /// Behavior is undefined if a mutex is unlocked when not locked. |
367 | #[inline ] |
368 | pub unsafe fn force_unlock(&self) { |
369 | self.raw.unlock(); |
370 | } |
371 | |
372 | /// Returns the underlying raw mutex object. |
373 | /// |
374 | /// Note that you will most likely need to import the `RawMutex` trait from |
375 | /// `lock_api` to be able to call functions on the raw mutex. |
376 | /// |
377 | /// # Safety |
378 | /// |
379 | /// This method is unsafe because it allows unlocking a mutex while |
380 | /// still holding a reference to a `ReentrantMutexGuard`. |
381 | #[inline ] |
382 | pub unsafe fn raw(&self) -> &R { |
383 | &self.raw.mutex |
384 | } |
385 | |
386 | /// Returns a raw pointer to the underlying data. |
387 | /// |
388 | /// This is useful when combined with `mem::forget` to hold a lock without |
389 | /// the need to maintain a `ReentrantMutexGuard` object alive, for example |
390 | /// when dealing with FFI. |
391 | /// |
392 | /// # Safety |
393 | /// |
394 | /// You must ensure that there are no data races when dereferencing the |
395 | /// returned pointer, for example if the current thread logically owns a |
396 | /// `ReentrantMutexGuard` but that guard has been discarded using |
397 | /// `mem::forget`. |
398 | #[inline ] |
399 | pub fn data_ptr(&self) -> *mut T { |
400 | self.data.get() |
401 | } |
402 | |
403 | /// # Safety |
404 | /// |
405 | /// The lock must be held before calling this method. |
406 | #[cfg (feature = "arc_lock" )] |
407 | #[inline ] |
408 | unsafe fn guard_arc(self: &Arc<Self>) -> ArcReentrantMutexGuard<R, G, T> { |
409 | ArcReentrantMutexGuard { |
410 | remutex: self.clone(), |
411 | marker: PhantomData, |
412 | } |
413 | } |
414 | |
415 | /// Acquires a reentrant mutex through an `Arc`. |
416 | /// |
417 | /// This method is similar to the `lock` method; however, it requires the `ReentrantMutex` to be inside of an |
418 | /// `Arc` and the resulting mutex guard has no lifetime requirements. |
419 | #[cfg (feature = "arc_lock" )] |
420 | #[inline ] |
421 | pub fn lock_arc(self: &Arc<Self>) -> ArcReentrantMutexGuard<R, G, T> { |
422 | self.raw.lock(); |
423 | // SAFETY: locking guarantee is upheld |
424 | unsafe { self.guard_arc() } |
425 | } |
426 | |
427 | /// Attempts to acquire a reentrant mutex through an `Arc`. |
428 | /// |
429 | /// This method is similar to the `try_lock` method; however, it requires the `ReentrantMutex` to be inside |
430 | /// of an `Arc` and the resulting mutex guard has no lifetime requirements. |
431 | #[cfg (feature = "arc_lock" )] |
432 | #[inline ] |
433 | pub fn try_lock_arc(self: &Arc<Self>) -> Option<ArcReentrantMutexGuard<R, G, T>> { |
434 | if self.raw.try_lock() { |
435 | // SAFETY: locking guarantee is upheld |
436 | Some(unsafe { self.guard_arc() }) |
437 | } else { |
438 | None |
439 | } |
440 | } |
441 | } |
442 | |
443 | impl<R: RawMutexFair, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> { |
444 | /// Forcibly unlocks the mutex using a fair unlock protocol. |
445 | /// |
446 | /// This is useful when combined with `mem::forget` to hold a lock without |
447 | /// the need to maintain a `ReentrantMutexGuard` object alive, for example when |
448 | /// dealing with FFI. |
449 | /// |
450 | /// # Safety |
451 | /// |
452 | /// This method must only be called if the current thread logically owns a |
453 | /// `ReentrantMutexGuard` but that guard has be discarded using `mem::forget`. |
454 | /// Behavior is undefined if a mutex is unlocked when not locked. |
455 | #[inline ] |
456 | pub unsafe fn force_unlock_fair(&self) { |
457 | self.raw.unlock_fair(); |
458 | } |
459 | } |
460 | |
461 | impl<R: RawMutexTimed, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> { |
462 | /// Attempts to acquire this lock until a timeout is reached. |
463 | /// |
464 | /// If the lock could not be acquired before the timeout expired, then |
465 | /// `None` is returned. Otherwise, an RAII guard is returned. The lock will |
466 | /// be unlocked when the guard is dropped. |
467 | #[inline ] |
468 | pub fn try_lock_for(&self, timeout: R::Duration) -> Option<ReentrantMutexGuard<'_, R, G, T>> { |
469 | if self.raw.try_lock_for(timeout) { |
470 | // SAFETY: The lock is held, as required. |
471 | Some(unsafe { self.guard() }) |
472 | } else { |
473 | None |
474 | } |
475 | } |
476 | |
477 | /// Attempts to acquire this lock until a timeout is reached. |
478 | /// |
479 | /// If the lock could not be acquired before the timeout expired, then |
480 | /// `None` is returned. Otherwise, an RAII guard is returned. The lock will |
481 | /// be unlocked when the guard is dropped. |
482 | #[inline ] |
483 | pub fn try_lock_until(&self, timeout: R::Instant) -> Option<ReentrantMutexGuard<'_, R, G, T>> { |
484 | if self.raw.try_lock_until(timeout) { |
485 | // SAFETY: The lock is held, as required. |
486 | Some(unsafe { self.guard() }) |
487 | } else { |
488 | None |
489 | } |
490 | } |
491 | |
492 | /// Attempts to acquire this lock until a timeout is reached, through an `Arc`. |
493 | /// |
494 | /// This method is similar to the `try_lock_for` method; however, it requires the `ReentrantMutex` to be |
495 | /// inside of an `Arc` and the resulting mutex guard has no lifetime requirements. |
496 | #[cfg (feature = "arc_lock" )] |
497 | #[inline ] |
498 | pub fn try_lock_arc_for( |
499 | self: &Arc<Self>, |
500 | timeout: R::Duration, |
501 | ) -> Option<ArcReentrantMutexGuard<R, G, T>> { |
502 | if self.raw.try_lock_for(timeout) { |
503 | // SAFETY: locking guarantee is upheld |
504 | Some(unsafe { self.guard_arc() }) |
505 | } else { |
506 | None |
507 | } |
508 | } |
509 | |
510 | /// Attempts to acquire this lock until a timeout is reached, through an `Arc`. |
511 | /// |
512 | /// This method is similar to the `try_lock_until` method; however, it requires the `ReentrantMutex` to be |
513 | /// inside of an `Arc` and the resulting mutex guard has no lifetime requirements. |
514 | #[cfg (feature = "arc_lock" )] |
515 | #[inline ] |
516 | pub fn try_lock_arc_until( |
517 | self: &Arc<Self>, |
518 | timeout: R::Instant, |
519 | ) -> Option<ArcReentrantMutexGuard<R, G, T>> { |
520 | if self.raw.try_lock_until(timeout) { |
521 | // SAFETY: locking guarantee is upheld |
522 | Some(unsafe { self.guard_arc() }) |
523 | } else { |
524 | None |
525 | } |
526 | } |
527 | } |
528 | |
529 | impl<R: RawMutex, G: GetThreadId, T: ?Sized + Default> Default for ReentrantMutex<R, G, T> { |
530 | #[inline ] |
531 | fn default() -> ReentrantMutex<R, G, T> { |
532 | ReentrantMutex::new(val:Default::default()) |
533 | } |
534 | } |
535 | |
536 | impl<R: RawMutex, G: GetThreadId, T> From<T> for ReentrantMutex<R, G, T> { |
537 | #[inline ] |
538 | fn from(t: T) -> ReentrantMutex<R, G, T> { |
539 | ReentrantMutex::new(val:t) |
540 | } |
541 | } |
542 | |
543 | impl<R: RawMutex, G: GetThreadId, T: ?Sized + fmt::Debug> fmt::Debug for ReentrantMutex<R, G, T> { |
544 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
545 | match self.try_lock() { |
546 | Some(guard: ReentrantMutexGuard<'_, R, …, …>) => f&mut DebugStruct<'_, '_> |
547 | .debug_struct("ReentrantMutex" ) |
548 | .field(name:"data" , &&*guard) |
549 | .finish(), |
550 | None => { |
551 | struct LockedPlaceholder; |
552 | impl fmt::Debug for LockedPlaceholder { |
553 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
554 | f.write_str(data:"<locked>" ) |
555 | } |
556 | } |
557 | |
558 | f&mut DebugStruct<'_, '_>.debug_struct("ReentrantMutex" ) |
559 | .field(name:"data" , &LockedPlaceholder) |
560 | .finish() |
561 | } |
562 | } |
563 | } |
564 | } |
565 | |
566 | // Copied and modified from serde |
567 | #[cfg (feature = "serde" )] |
568 | impl<R, G, T> Serialize for ReentrantMutex<R, G, T> |
569 | where |
570 | R: RawMutex, |
571 | G: GetThreadId, |
572 | T: Serialize + ?Sized, |
573 | { |
574 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
575 | where |
576 | S: Serializer, |
577 | { |
578 | self.lock().serialize(serializer) |
579 | } |
580 | } |
581 | |
582 | #[cfg (feature = "serde" )] |
583 | impl<'de, R, G, T> Deserialize<'de> for ReentrantMutex<R, G, T> |
584 | where |
585 | R: RawMutex, |
586 | G: GetThreadId, |
587 | T: Deserialize<'de> + ?Sized, |
588 | { |
589 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
590 | where |
591 | D: Deserializer<'de>, |
592 | { |
593 | Deserialize::deserialize(deserializer).map(ReentrantMutex::new) |
594 | } |
595 | } |
596 | |
597 | /// An RAII implementation of a "scoped lock" of a reentrant mutex. When this structure |
598 | /// is dropped (falls out of scope), the lock will be unlocked. |
599 | /// |
600 | /// The data protected by the mutex can be accessed through this guard via its |
601 | /// `Deref` implementation. |
602 | #[clippy::has_significant_drop] |
603 | #[must_use = "if unused the ReentrantMutex will immediately unlock" ] |
604 | pub struct ReentrantMutexGuard<'a, R: RawMutex, G: GetThreadId, T: ?Sized> { |
605 | remutex: &'a ReentrantMutex<R, G, T>, |
606 | marker: PhantomData<(&'a T, GuardNoSend)>, |
607 | } |
608 | |
609 | unsafe impl<'a, R: RawMutex + Sync + 'a, G: GetThreadId + Sync + 'a, T: ?Sized + Sync + 'a> Sync |
610 | for ReentrantMutexGuard<'a, R, G, T> |
611 | { |
612 | } |
613 | |
614 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> ReentrantMutexGuard<'a, R, G, T> { |
615 | /// Returns a reference to the original `ReentrantMutex` object. |
616 | pub fn remutex(s: &Self) -> &'a ReentrantMutex<R, G, T> { |
617 | s.remutex |
618 | } |
619 | |
620 | /// Makes a new `MappedReentrantMutexGuard` for a component of the locked data. |
621 | /// |
622 | /// This operation cannot fail as the `ReentrantMutexGuard` passed |
623 | /// in already locked the mutex. |
624 | /// |
625 | /// This is an associated function that needs to be |
626 | /// used as `ReentrantMutexGuard::map(...)`. A method would interfere with methods of |
627 | /// the same name on the contents of the locked data. |
628 | #[inline ] |
629 | pub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedReentrantMutexGuard<'a, R, G, U> |
630 | where |
631 | F: FnOnce(&T) -> &U, |
632 | { |
633 | let raw = &s.remutex.raw; |
634 | let data = f(unsafe { &*s.remutex.data.get() }); |
635 | mem::forget(s); |
636 | MappedReentrantMutexGuard { |
637 | raw, |
638 | data, |
639 | marker: PhantomData, |
640 | } |
641 | } |
642 | |
643 | /// Attempts to make a new `MappedReentrantMutexGuard` for a component of the |
644 | /// locked data. The original guard is return if the closure returns `None`. |
645 | /// |
646 | /// This operation cannot fail as the `ReentrantMutexGuard` passed |
647 | /// in already locked the mutex. |
648 | /// |
649 | /// This is an associated function that needs to be |
650 | /// used as `ReentrantMutexGuard::try_map(...)`. A method would interfere with methods of |
651 | /// the same name on the contents of the locked data. |
652 | #[inline ] |
653 | pub fn try_map<U: ?Sized, F>( |
654 | s: Self, |
655 | f: F, |
656 | ) -> Result<MappedReentrantMutexGuard<'a, R, G, U>, Self> |
657 | where |
658 | F: FnOnce(&T) -> Option<&U>, |
659 | { |
660 | let raw = &s.remutex.raw; |
661 | let data = match f(unsafe { &*s.remutex.data.get() }) { |
662 | Some(data) => data, |
663 | None => return Err(s), |
664 | }; |
665 | mem::forget(s); |
666 | Ok(MappedReentrantMutexGuard { |
667 | raw, |
668 | data, |
669 | marker: PhantomData, |
670 | }) |
671 | } |
672 | |
673 | /// Temporarily unlocks the mutex to execute the given function. |
674 | /// |
675 | /// This is safe because `&mut` guarantees that there exist no other |
676 | /// references to the data protected by the mutex. |
677 | #[inline ] |
678 | pub fn unlocked<F, U>(s: &mut Self, f: F) -> U |
679 | where |
680 | F: FnOnce() -> U, |
681 | { |
682 | // Safety: A ReentrantMutexGuard always holds the lock. |
683 | unsafe { |
684 | s.remutex.raw.unlock(); |
685 | } |
686 | defer!(s.remutex.raw.lock()); |
687 | f() |
688 | } |
689 | } |
690 | |
691 | impl<'a, R: RawMutexFair + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> |
692 | ReentrantMutexGuard<'a, R, G, T> |
693 | { |
694 | /// Unlocks the mutex using a fair unlock protocol. |
695 | /// |
696 | /// By default, mutexes are unfair and allow the current thread to re-lock |
697 | /// the mutex before another has the chance to acquire the lock, even if |
698 | /// that thread has been blocked on the mutex for a long time. This is the |
699 | /// default because it allows much higher throughput as it avoids forcing a |
700 | /// context switch on every mutex unlock. This can result in one thread |
701 | /// acquiring a mutex many more times than other threads. |
702 | /// |
703 | /// However in some cases it can be beneficial to ensure fairness by forcing |
704 | /// the lock to pass on to a waiting thread if there is one. This is done by |
705 | /// using this method instead of dropping the `ReentrantMutexGuard` normally. |
706 | #[inline ] |
707 | pub fn unlock_fair(s: Self) { |
708 | // Safety: A ReentrantMutexGuard always holds the lock |
709 | unsafe { |
710 | s.remutex.raw.unlock_fair(); |
711 | } |
712 | mem::forget(s); |
713 | } |
714 | |
715 | /// Temporarily unlocks the mutex to execute the given function. |
716 | /// |
717 | /// The mutex is unlocked a fair unlock protocol. |
718 | /// |
719 | /// This is safe because `&mut` guarantees that there exist no other |
720 | /// references to the data protected by the mutex. |
721 | #[inline ] |
722 | pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U |
723 | where |
724 | F: FnOnce() -> U, |
725 | { |
726 | // Safety: A ReentrantMutexGuard always holds the lock |
727 | unsafe { |
728 | s.remutex.raw.unlock_fair(); |
729 | } |
730 | defer!(s.remutex.raw.lock()); |
731 | f() |
732 | } |
733 | |
734 | /// Temporarily yields the mutex to a waiting thread if there is one. |
735 | /// |
736 | /// This method is functionally equivalent to calling `unlock_fair` followed |
737 | /// by `lock`, however it can be much more efficient in the case where there |
738 | /// are no waiting threads. |
739 | #[inline ] |
740 | pub fn bump(s: &mut Self) { |
741 | // Safety: A ReentrantMutexGuard always holds the lock |
742 | unsafe { |
743 | s.remutex.raw.bump(); |
744 | } |
745 | } |
746 | } |
747 | |
748 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Deref |
749 | for ReentrantMutexGuard<'a, R, G, T> |
750 | { |
751 | type Target = T; |
752 | #[inline ] |
753 | fn deref(&self) -> &T { |
754 | unsafe { &*self.remutex.data.get() } |
755 | } |
756 | } |
757 | |
758 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Drop |
759 | for ReentrantMutexGuard<'a, R, G, T> |
760 | { |
761 | #[inline ] |
762 | fn drop(&mut self) { |
763 | // Safety: A ReentrantMutexGuard always holds the lock. |
764 | unsafe { |
765 | self.remutex.raw.unlock(); |
766 | } |
767 | } |
768 | } |
769 | |
770 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Debug + ?Sized + 'a> fmt::Debug |
771 | for ReentrantMutexGuard<'a, R, G, T> |
772 | { |
773 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
774 | fmt::Debug::fmt(&**self, f) |
775 | } |
776 | } |
777 | |
778 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Display + ?Sized + 'a> fmt::Display |
779 | for ReentrantMutexGuard<'a, R, G, T> |
780 | { |
781 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
782 | (**self).fmt(f) |
783 | } |
784 | } |
785 | |
786 | #[cfg (feature = "owning_ref" )] |
787 | unsafe impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> StableAddress |
788 | for ReentrantMutexGuard<'a, R, G, T> |
789 | { |
790 | } |
791 | |
792 | /// An RAII mutex guard returned by the `Arc` locking operations on `ReentrantMutex`. |
793 | /// |
794 | /// This is similar to the `ReentrantMutexGuard` struct, except instead of using a reference to unlock the |
795 | /// `Mutex` it uses an `Arc<ReentrantMutex>`. This has several advantages, most notably that it has an `'static` |
796 | /// lifetime. |
797 | #[cfg (feature = "arc_lock" )] |
798 | #[clippy::has_significant_drop] |
799 | #[must_use = "if unused the ReentrantMutex will immediately unlock" ] |
800 | pub struct ArcReentrantMutexGuard<R: RawMutex, G: GetThreadId, T: ?Sized> { |
801 | remutex: Arc<ReentrantMutex<R, G, T>>, |
802 | marker: PhantomData<GuardNoSend>, |
803 | } |
804 | |
805 | #[cfg (feature = "arc_lock" )] |
806 | impl<R: RawMutex, G: GetThreadId, T: ?Sized> ArcReentrantMutexGuard<R, G, T> { |
807 | /// Returns a reference to the `ReentrantMutex` this object is guarding, contained in its `Arc`. |
808 | pub fn remutex(s: &Self) -> &Arc<ReentrantMutex<R, G, T>> { |
809 | &s.remutex |
810 | } |
811 | |
812 | /// Temporarily unlocks the mutex to execute the given function. |
813 | /// |
814 | /// This is safe because `&mut` guarantees that there exist no other |
815 | /// references to the data protected by the mutex. |
816 | #[inline ] |
817 | pub fn unlocked<F, U>(s: &mut Self, f: F) -> U |
818 | where |
819 | F: FnOnce() -> U, |
820 | { |
821 | // Safety: A ReentrantMutexGuard always holds the lock. |
822 | unsafe { |
823 | s.remutex.raw.unlock(); |
824 | } |
825 | defer!(s.remutex.raw.lock()); |
826 | f() |
827 | } |
828 | } |
829 | |
830 | #[cfg (feature = "arc_lock" )] |
831 | impl<R: RawMutexFair, G: GetThreadId, T: ?Sized> ArcReentrantMutexGuard<R, G, T> { |
832 | /// Unlocks the mutex using a fair unlock protocol. |
833 | /// |
834 | /// This is functionally identical to the `unlock_fair` method on [`ReentrantMutexGuard`]. |
835 | #[inline ] |
836 | pub fn unlock_fair(s: Self) { |
837 | // Safety: A ReentrantMutexGuard always holds the lock |
838 | unsafe { |
839 | s.remutex.raw.unlock_fair(); |
840 | } |
841 | |
842 | // SAFETY: ensure that the Arc's refcount is decremented |
843 | let mut s = ManuallyDrop::new(s); |
844 | unsafe { ptr::drop_in_place(&mut s.remutex) }; |
845 | } |
846 | |
847 | /// Temporarily unlocks the mutex to execute the given function. |
848 | /// |
849 | /// This is functionally identical to the `unlocked_fair` method on [`ReentrantMutexGuard`]. |
850 | #[inline ] |
851 | pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U |
852 | where |
853 | F: FnOnce() -> U, |
854 | { |
855 | // Safety: A ReentrantMutexGuard always holds the lock |
856 | unsafe { |
857 | s.remutex.raw.unlock_fair(); |
858 | } |
859 | defer!(s.remutex.raw.lock()); |
860 | f() |
861 | } |
862 | |
863 | /// Temporarily yields the mutex to a waiting thread if there is one. |
864 | /// |
865 | /// This is functionally equivalent to the `bump` method on [`ReentrantMutexGuard`]. |
866 | #[inline ] |
867 | pub fn bump(s: &mut Self) { |
868 | // Safety: A ReentrantMutexGuard always holds the lock |
869 | unsafe { |
870 | s.remutex.raw.bump(); |
871 | } |
872 | } |
873 | } |
874 | |
875 | #[cfg (feature = "arc_lock" )] |
876 | impl<R: RawMutex, G: GetThreadId, T: ?Sized> Deref for ArcReentrantMutexGuard<R, G, T> { |
877 | type Target = T; |
878 | #[inline ] |
879 | fn deref(&self) -> &T { |
880 | unsafe { &*self.remutex.data.get() } |
881 | } |
882 | } |
883 | |
884 | #[cfg (feature = "arc_lock" )] |
885 | impl<R: RawMutex, G: GetThreadId, T: ?Sized> Drop for ArcReentrantMutexGuard<R, G, T> { |
886 | #[inline ] |
887 | fn drop(&mut self) { |
888 | // Safety: A ReentrantMutexGuard always holds the lock. |
889 | unsafe { |
890 | self.remutex.raw.unlock(); |
891 | } |
892 | } |
893 | } |
894 | |
895 | /// An RAII mutex guard returned by `ReentrantMutexGuard::map`, which can point to a |
896 | /// subfield of the protected data. |
897 | /// |
898 | /// The main difference between `MappedReentrantMutexGuard` and `ReentrantMutexGuard` is that the |
899 | /// former doesn't support temporarily unlocking and re-locking, since that |
900 | /// could introduce soundness issues if the locked object is modified by another |
901 | /// thread. |
902 | #[clippy::has_significant_drop] |
903 | #[must_use = "if unused the ReentrantMutex will immediately unlock" ] |
904 | pub struct MappedReentrantMutexGuard<'a, R: RawMutex, G: GetThreadId, T: ?Sized> { |
905 | raw: &'a RawReentrantMutex<R, G>, |
906 | data: *const T, |
907 | marker: PhantomData<&'a T>, |
908 | } |
909 | |
910 | unsafe impl<'a, R: RawMutex + Sync + 'a, G: GetThreadId + Sync + 'a, T: ?Sized + Sync + 'a> Sync |
911 | for MappedReentrantMutexGuard<'a, R, G, T> |
912 | { |
913 | } |
914 | |
915 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> |
916 | MappedReentrantMutexGuard<'a, R, G, T> |
917 | { |
918 | /// Makes a new `MappedReentrantMutexGuard` for a component of the locked data. |
919 | /// |
920 | /// This operation cannot fail as the `MappedReentrantMutexGuard` passed |
921 | /// in already locked the mutex. |
922 | /// |
923 | /// This is an associated function that needs to be |
924 | /// used as `MappedReentrantMutexGuard::map(...)`. A method would interfere with methods of |
925 | /// the same name on the contents of the locked data. |
926 | #[inline ] |
927 | pub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedReentrantMutexGuard<'a, R, G, U> |
928 | where |
929 | F: FnOnce(&T) -> &U, |
930 | { |
931 | let raw = s.raw; |
932 | let data = f(unsafe { &*s.data }); |
933 | mem::forget(s); |
934 | MappedReentrantMutexGuard { |
935 | raw, |
936 | data, |
937 | marker: PhantomData, |
938 | } |
939 | } |
940 | |
941 | /// Attempts to make a new `MappedReentrantMutexGuard` for a component of the |
942 | /// locked data. The original guard is return if the closure returns `None`. |
943 | /// |
944 | /// This operation cannot fail as the `MappedReentrantMutexGuard` passed |
945 | /// in already locked the mutex. |
946 | /// |
947 | /// This is an associated function that needs to be |
948 | /// used as `MappedReentrantMutexGuard::try_map(...)`. A method would interfere with methods of |
949 | /// the same name on the contents of the locked data. |
950 | #[inline ] |
951 | pub fn try_map<U: ?Sized, F>( |
952 | s: Self, |
953 | f: F, |
954 | ) -> Result<MappedReentrantMutexGuard<'a, R, G, U>, Self> |
955 | where |
956 | F: FnOnce(&T) -> Option<&U>, |
957 | { |
958 | let raw = s.raw; |
959 | let data = match f(unsafe { &*s.data }) { |
960 | Some(data) => data, |
961 | None => return Err(s), |
962 | }; |
963 | mem::forget(s); |
964 | Ok(MappedReentrantMutexGuard { |
965 | raw, |
966 | data, |
967 | marker: PhantomData, |
968 | }) |
969 | } |
970 | } |
971 | |
972 | impl<'a, R: RawMutexFair + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> |
973 | MappedReentrantMutexGuard<'a, R, G, T> |
974 | { |
975 | /// Unlocks the mutex using a fair unlock protocol. |
976 | /// |
977 | /// By default, mutexes are unfair and allow the current thread to re-lock |
978 | /// the mutex before another has the chance to acquire the lock, even if |
979 | /// that thread has been blocked on the mutex for a long time. This is the |
980 | /// default because it allows much higher throughput as it avoids forcing a |
981 | /// context switch on every mutex unlock. This can result in one thread |
982 | /// acquiring a mutex many more times than other threads. |
983 | /// |
984 | /// However in some cases it can be beneficial to ensure fairness by forcing |
985 | /// the lock to pass on to a waiting thread if there is one. This is done by |
986 | /// using this method instead of dropping the `ReentrantMutexGuard` normally. |
987 | #[inline ] |
988 | pub fn unlock_fair(s: Self) { |
989 | // Safety: A MappedReentrantMutexGuard always holds the lock |
990 | unsafe { |
991 | s.raw.unlock_fair(); |
992 | } |
993 | mem::forget(s); |
994 | } |
995 | } |
996 | |
997 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Deref |
998 | for MappedReentrantMutexGuard<'a, R, G, T> |
999 | { |
1000 | type Target = T; |
1001 | #[inline ] |
1002 | fn deref(&self) -> &T { |
1003 | unsafe { &*self.data } |
1004 | } |
1005 | } |
1006 | |
1007 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Drop |
1008 | for MappedReentrantMutexGuard<'a, R, G, T> |
1009 | { |
1010 | #[inline ] |
1011 | fn drop(&mut self) { |
1012 | // Safety: A MappedReentrantMutexGuard always holds the lock. |
1013 | unsafe { |
1014 | self.raw.unlock(); |
1015 | } |
1016 | } |
1017 | } |
1018 | |
1019 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Debug + ?Sized + 'a> fmt::Debug |
1020 | for MappedReentrantMutexGuard<'a, R, G, T> |
1021 | { |
1022 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1023 | fmt::Debug::fmt(&**self, f) |
1024 | } |
1025 | } |
1026 | |
1027 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Display + ?Sized + 'a> fmt::Display |
1028 | for MappedReentrantMutexGuard<'a, R, G, T> |
1029 | { |
1030 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1031 | (**self).fmt(f) |
1032 | } |
1033 | } |
1034 | |
1035 | #[cfg (feature = "owning_ref" )] |
1036 | unsafe impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> StableAddress |
1037 | for MappedReentrantMutexGuard<'a, R, G, T> |
1038 | { |
1039 | } |
1040 | |