| 1 | // Copyright 2018 Amanieu d'Antras |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or |
| 4 | // http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or |
| 5 | // http://opensource.org/licenses/MIT>, at your option. This file may not be |
| 6 | // copied, modified, or distributed except according to those terms. |
| 7 | |
| 8 | use crate::{ |
| 9 | mutex::{RawMutex, RawMutexFair, RawMutexTimed}, |
| 10 | GuardNoSend, |
| 11 | }; |
| 12 | use core::{ |
| 13 | cell::{Cell, UnsafeCell}, |
| 14 | fmt, |
| 15 | marker::PhantomData, |
| 16 | mem, |
| 17 | num::NonZeroUsize, |
| 18 | ops::Deref, |
| 19 | sync::atomic::{AtomicUsize, Ordering}, |
| 20 | }; |
| 21 | |
| 22 | #[cfg (feature = "arc_lock" )] |
| 23 | use alloc::sync::Arc; |
| 24 | #[cfg (feature = "arc_lock" )] |
| 25 | use core::mem::ManuallyDrop; |
| 26 | #[cfg (feature = "arc_lock" )] |
| 27 | use core::ptr; |
| 28 | |
| 29 | #[cfg (feature = "owning_ref" )] |
| 30 | use owning_ref::StableAddress; |
| 31 | |
| 32 | #[cfg (feature = "serde" )] |
| 33 | use serde::{Deserialize, Deserializer, Serialize, Serializer}; |
| 34 | |
| 35 | /// Helper trait which returns a non-zero thread ID. |
| 36 | /// |
| 37 | /// The simplest way to implement this trait is to return the address of a |
| 38 | /// thread-local variable. |
| 39 | /// |
| 40 | /// # Safety |
| 41 | /// |
| 42 | /// Implementations of this trait must ensure that no two active threads share |
| 43 | /// the same thread ID. However the ID of a thread that has exited can be |
| 44 | /// re-used since that thread is no longer active. |
| 45 | pub unsafe trait GetThreadId { |
| 46 | /// Initial value. |
| 47 | // A “non-constant” const item is a legacy way to supply an initialized value to downstream |
| 48 | // static items. Can hopefully be replaced with `const fn new() -> Self` at some point. |
| 49 | #[allow (clippy::declare_interior_mutable_const)] |
| 50 | const INIT: Self; |
| 51 | |
| 52 | /// Returns a non-zero thread ID which identifies the current thread of |
| 53 | /// execution. |
| 54 | fn nonzero_thread_id(&self) -> NonZeroUsize; |
| 55 | } |
| 56 | |
| 57 | /// A raw mutex type that wraps another raw mutex to provide reentrancy. |
| 58 | /// |
| 59 | /// Although this has the same methods as the [`RawMutex`] trait, it does |
| 60 | /// not implement it, and should not be used in the same way, since this |
| 61 | /// mutex can successfully acquire a lock multiple times in the same thread. |
| 62 | /// Only use this when you know you want a raw mutex that can be locked |
| 63 | /// reentrantly; you probably want [`ReentrantMutex`] instead. |
| 64 | pub struct RawReentrantMutex<R, G> { |
| 65 | owner: AtomicUsize, |
| 66 | lock_count: Cell<usize>, |
| 67 | mutex: R, |
| 68 | get_thread_id: G, |
| 69 | } |
| 70 | |
| 71 | unsafe impl<R: RawMutex + Send, G: GetThreadId + Send> Send for RawReentrantMutex<R, G> {} |
| 72 | unsafe impl<R: RawMutex + Sync, G: GetThreadId + Sync> Sync for RawReentrantMutex<R, G> {} |
| 73 | |
| 74 | impl<R: RawMutex, G: GetThreadId> RawReentrantMutex<R, G> { |
| 75 | /// Initial value for an unlocked mutex. |
| 76 | #[allow (clippy::declare_interior_mutable_const)] |
| 77 | pub const INIT: Self = RawReentrantMutex { |
| 78 | owner: AtomicUsize::new(0), |
| 79 | lock_count: Cell::new(0), |
| 80 | mutex: R::INIT, |
| 81 | get_thread_id: G::INIT, |
| 82 | }; |
| 83 | |
| 84 | #[inline ] |
| 85 | fn lock_internal<F: FnOnce() -> bool>(&self, try_lock: F) -> bool { |
| 86 | let id = self.get_thread_id.nonzero_thread_id().get(); |
| 87 | if self.owner.load(Ordering::Relaxed) == id { |
| 88 | self.lock_count.set( |
| 89 | self.lock_count |
| 90 | .get() |
| 91 | .checked_add(1) |
| 92 | .expect("ReentrantMutex lock count overflow" ), |
| 93 | ); |
| 94 | } else { |
| 95 | if !try_lock() { |
| 96 | return false; |
| 97 | } |
| 98 | self.owner.store(id, Ordering::Relaxed); |
| 99 | debug_assert_eq!(self.lock_count.get(), 0); |
| 100 | self.lock_count.set(1); |
| 101 | } |
| 102 | true |
| 103 | } |
| 104 | |
| 105 | /// Acquires this mutex, blocking if it's held by another thread. |
| 106 | #[inline ] |
| 107 | pub fn lock(&self) { |
| 108 | self.lock_internal(|| { |
| 109 | self.mutex.lock(); |
| 110 | true |
| 111 | }); |
| 112 | } |
| 113 | |
| 114 | /// Attempts to acquire this mutex without blocking. Returns `true` |
| 115 | /// if the lock was successfully acquired and `false` otherwise. |
| 116 | #[inline ] |
| 117 | pub fn try_lock(&self) -> bool { |
| 118 | self.lock_internal(|| self.mutex.try_lock()) |
| 119 | } |
| 120 | |
| 121 | /// Unlocks this mutex. The inner mutex may not be unlocked if |
| 122 | /// this mutex was acquired previously in the current thread. |
| 123 | /// |
| 124 | /// # Safety |
| 125 | /// |
| 126 | /// This method may only be called if the mutex is held by the current thread. |
| 127 | #[inline ] |
| 128 | pub unsafe fn unlock(&self) { |
| 129 | let lock_count = self.lock_count.get() - 1; |
| 130 | self.lock_count.set(lock_count); |
| 131 | if lock_count == 0 { |
| 132 | self.owner.store(0, Ordering::Relaxed); |
| 133 | self.mutex.unlock(); |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | /// Checks whether the mutex is currently locked. |
| 138 | #[inline ] |
| 139 | pub fn is_locked(&self) -> bool { |
| 140 | self.mutex.is_locked() |
| 141 | } |
| 142 | |
| 143 | /// Checks whether the mutex is currently held by the current thread. |
| 144 | #[inline ] |
| 145 | pub fn is_owned_by_current_thread(&self) -> bool { |
| 146 | let id = self.get_thread_id.nonzero_thread_id().get(); |
| 147 | self.owner.load(Ordering::Relaxed) == id |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | impl<R: RawMutexFair, G: GetThreadId> RawReentrantMutex<R, G> { |
| 152 | /// Unlocks this mutex using a fair unlock protocol. The inner mutex |
| 153 | /// may not be unlocked if this mutex was acquired previously in the |
| 154 | /// current thread. |
| 155 | /// |
| 156 | /// # Safety |
| 157 | /// |
| 158 | /// This method may only be called if the mutex is held by the current thread. |
| 159 | #[inline ] |
| 160 | pub unsafe fn unlock_fair(&self) { |
| 161 | let lock_count = self.lock_count.get() - 1; |
| 162 | self.lock_count.set(lock_count); |
| 163 | if lock_count == 0 { |
| 164 | self.owner.store(0, Ordering::Relaxed); |
| 165 | self.mutex.unlock_fair(); |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | /// Temporarily yields the mutex to a waiting thread if there is one. |
| 170 | /// |
| 171 | /// This method is functionally equivalent to calling `unlock_fair` followed |
| 172 | /// by `lock`, however it can be much more efficient in the case where there |
| 173 | /// are no waiting threads. |
| 174 | /// |
| 175 | /// # Safety |
| 176 | /// |
| 177 | /// This method may only be called if the mutex is held by the current thread. |
| 178 | #[inline ] |
| 179 | pub unsafe fn bump(&self) { |
| 180 | if self.lock_count.get() == 1 { |
| 181 | let id = self.owner.load(Ordering::Relaxed); |
| 182 | self.owner.store(0, Ordering::Relaxed); |
| 183 | self.lock_count.set(0); |
| 184 | self.mutex.bump(); |
| 185 | self.owner.store(id, Ordering::Relaxed); |
| 186 | self.lock_count.set(1); |
| 187 | } |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | impl<R: RawMutexTimed, G: GetThreadId> RawReentrantMutex<R, G> { |
| 192 | /// Attempts to acquire this lock until a timeout is reached. |
| 193 | #[inline ] |
| 194 | pub fn try_lock_until(&self, timeout: R::Instant) -> bool { |
| 195 | self.lock_internal(|| self.mutex.try_lock_until(timeout)) |
| 196 | } |
| 197 | |
| 198 | /// Attempts to acquire this lock until a timeout is reached. |
| 199 | #[inline ] |
| 200 | pub fn try_lock_for(&self, timeout: R::Duration) -> bool { |
| 201 | self.lock_internal(|| self.mutex.try_lock_for(timeout)) |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | /// A mutex which can be recursively locked by a single thread. |
| 206 | /// |
| 207 | /// This type is identical to `Mutex` except for the following points: |
| 208 | /// |
| 209 | /// - Locking multiple times from the same thread will work correctly instead of |
| 210 | /// deadlocking. |
| 211 | /// - `ReentrantMutexGuard` does not give mutable references to the locked data. |
| 212 | /// Use a `RefCell` if you need this. |
| 213 | /// |
| 214 | /// See [`Mutex`](crate::Mutex) for more details about the underlying mutex |
| 215 | /// primitive. |
| 216 | pub struct ReentrantMutex<R, G, T: ?Sized> { |
| 217 | raw: RawReentrantMutex<R, G>, |
| 218 | data: UnsafeCell<T>, |
| 219 | } |
| 220 | |
| 221 | unsafe impl<R: RawMutex + Send, G: GetThreadId + Send, T: ?Sized + Send> Send |
| 222 | for ReentrantMutex<R, G, T> |
| 223 | { |
| 224 | } |
| 225 | unsafe impl<R: RawMutex + Sync, G: GetThreadId + Sync, T: ?Sized + Send> Sync |
| 226 | for ReentrantMutex<R, G, T> |
| 227 | { |
| 228 | } |
| 229 | |
| 230 | impl<R: RawMutex, G: GetThreadId, T> ReentrantMutex<R, G, T> { |
| 231 | /// Creates a new reentrant mutex in an unlocked state ready for use. |
| 232 | #[cfg (has_const_fn_trait_bound)] |
| 233 | #[inline ] |
| 234 | pub const fn new(val: T) -> ReentrantMutex<R, G, T> { |
| 235 | ReentrantMutex { |
| 236 | data: UnsafeCell::new(val), |
| 237 | raw: RawReentrantMutex { |
| 238 | owner: AtomicUsize::new(0), |
| 239 | lock_count: Cell::new(0), |
| 240 | mutex: R::INIT, |
| 241 | get_thread_id: G::INIT, |
| 242 | }, |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | /// Creates a new reentrant mutex in an unlocked state ready for use. |
| 247 | #[cfg (not(has_const_fn_trait_bound))] |
| 248 | #[inline ] |
| 249 | pub fn new(val: T) -> ReentrantMutex<R, G, T> { |
| 250 | ReentrantMutex { |
| 251 | data: UnsafeCell::new(val), |
| 252 | raw: RawReentrantMutex { |
| 253 | owner: AtomicUsize::new(0), |
| 254 | lock_count: Cell::new(0), |
| 255 | mutex: R::INIT, |
| 256 | get_thread_id: G::INIT, |
| 257 | }, |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | /// Consumes this mutex, returning the underlying data. |
| 262 | #[inline ] |
| 263 | pub fn into_inner(self) -> T { |
| 264 | self.data.into_inner() |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | impl<R, G, T> ReentrantMutex<R, G, T> { |
| 269 | /// Creates a new reentrant mutex based on a pre-existing raw mutex and a |
| 270 | /// helper to get the thread ID. |
| 271 | #[inline ] |
| 272 | pub const fn from_raw(raw_mutex: R, get_thread_id: G, val: T) -> ReentrantMutex<R, G, T> { |
| 273 | ReentrantMutex { |
| 274 | data: UnsafeCell::new(val), |
| 275 | raw: RawReentrantMutex { |
| 276 | owner: AtomicUsize::new(0), |
| 277 | lock_count: Cell::new(0), |
| 278 | mutex: raw_mutex, |
| 279 | get_thread_id, |
| 280 | }, |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | /// Creates a new reentrant mutex based on a pre-existing raw mutex and a |
| 285 | /// helper to get the thread ID. |
| 286 | /// |
| 287 | /// This allows creating a reentrant mutex in a constant context on stable |
| 288 | /// Rust. |
| 289 | /// |
| 290 | /// This method is a legacy alias for [`from_raw`](Self::from_raw). |
| 291 | #[inline ] |
| 292 | pub const fn const_new(raw_mutex: R, get_thread_id: G, val: T) -> ReentrantMutex<R, G, T> { |
| 293 | Self::from_raw(raw_mutex, get_thread_id, val) |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | impl<R: RawMutex, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> { |
| 298 | /// Creates a new `ReentrantMutexGuard` without checking if the lock is held. |
| 299 | /// |
| 300 | /// # Safety |
| 301 | /// |
| 302 | /// This method must only be called if the thread logically holds the lock. |
| 303 | /// |
| 304 | /// Calling this function when a guard has already been produced is undefined behaviour unless |
| 305 | /// the guard was forgotten with `mem::forget`. |
| 306 | #[inline ] |
| 307 | pub unsafe fn make_guard_unchecked(&self) -> ReentrantMutexGuard<'_, R, G, T> { |
| 308 | ReentrantMutexGuard { |
| 309 | remutex: &self, |
| 310 | marker: PhantomData, |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | /// Acquires a reentrant mutex, blocking the current thread until it is able |
| 315 | /// to do so. |
| 316 | /// |
| 317 | /// If the mutex is held by another thread then this function will block the |
| 318 | /// local thread until it is available to acquire the mutex. If the mutex is |
| 319 | /// already held by the current thread then this function will increment the |
| 320 | /// lock reference count and return immediately. Upon returning, |
| 321 | /// the thread is the only thread with the mutex held. An RAII guard is |
| 322 | /// returned to allow scoped unlock of the lock. When the guard goes out of |
| 323 | /// scope, the mutex will be unlocked. |
| 324 | #[inline ] |
| 325 | pub fn lock(&self) -> ReentrantMutexGuard<'_, R, G, T> { |
| 326 | self.raw.lock(); |
| 327 | // SAFETY: The lock is held, as required. |
| 328 | unsafe { self.make_guard_unchecked() } |
| 329 | } |
| 330 | |
| 331 | /// Attempts to acquire this lock. |
| 332 | /// |
| 333 | /// If the lock could not be acquired at this time, then `None` is returned. |
| 334 | /// Otherwise, an RAII guard is returned. The lock will be unlocked when the |
| 335 | /// guard is dropped. |
| 336 | /// |
| 337 | /// This function does not block. |
| 338 | #[inline ] |
| 339 | pub fn try_lock(&self) -> Option<ReentrantMutexGuard<'_, R, G, T>> { |
| 340 | if self.raw.try_lock() { |
| 341 | // SAFETY: The lock is held, as required. |
| 342 | Some(unsafe { self.make_guard_unchecked() }) |
| 343 | } else { |
| 344 | None |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | /// Returns a mutable reference to the underlying data. |
| 349 | /// |
| 350 | /// Since this call borrows the `ReentrantMutex` mutably, no actual locking needs to |
| 351 | /// take place---the mutable borrow statically guarantees no locks exist. |
| 352 | #[inline ] |
| 353 | pub fn get_mut(&mut self) -> &mut T { |
| 354 | unsafe { &mut *self.data.get() } |
| 355 | } |
| 356 | |
| 357 | /// Checks whether the mutex is currently locked. |
| 358 | #[inline ] |
| 359 | pub fn is_locked(&self) -> bool { |
| 360 | self.raw.is_locked() |
| 361 | } |
| 362 | |
| 363 | /// Checks whether the mutex is currently held by the current thread. |
| 364 | #[inline ] |
| 365 | pub fn is_owned_by_current_thread(&self) -> bool { |
| 366 | self.raw.is_owned_by_current_thread() |
| 367 | } |
| 368 | |
| 369 | /// Forcibly unlocks the mutex. |
| 370 | /// |
| 371 | /// This is useful when combined with `mem::forget` to hold a lock without |
| 372 | /// the need to maintain a `ReentrantMutexGuard` object alive, for example when |
| 373 | /// dealing with FFI. |
| 374 | /// |
| 375 | /// # Safety |
| 376 | /// |
| 377 | /// This method must only be called if the current thread logically owns a |
| 378 | /// `ReentrantMutexGuard` but that guard has be discarded using `mem::forget`. |
| 379 | /// Behavior is undefined if a mutex is unlocked when not locked. |
| 380 | #[inline ] |
| 381 | pub unsafe fn force_unlock(&self) { |
| 382 | self.raw.unlock(); |
| 383 | } |
| 384 | |
| 385 | /// Returns the underlying raw mutex object. |
| 386 | /// |
| 387 | /// Note that you will most likely need to import the `RawMutex` trait from |
| 388 | /// `lock_api` to be able to call functions on the raw mutex. |
| 389 | /// |
| 390 | /// # Safety |
| 391 | /// |
| 392 | /// This method is unsafe because it allows unlocking a mutex while |
| 393 | /// still holding a reference to a `ReentrantMutexGuard`. |
| 394 | #[inline ] |
| 395 | pub unsafe fn raw(&self) -> &R { |
| 396 | &self.raw.mutex |
| 397 | } |
| 398 | |
| 399 | /// Returns a raw pointer to the underlying data. |
| 400 | /// |
| 401 | /// This is useful when combined with `mem::forget` to hold a lock without |
| 402 | /// the need to maintain a `ReentrantMutexGuard` object alive, for example |
| 403 | /// when dealing with FFI. |
| 404 | /// |
| 405 | /// # Safety |
| 406 | /// |
| 407 | /// You must ensure that there are no data races when dereferencing the |
| 408 | /// returned pointer, for example if the current thread logically owns a |
| 409 | /// `ReentrantMutexGuard` but that guard has been discarded using |
| 410 | /// `mem::forget`. |
| 411 | #[inline ] |
| 412 | pub fn data_ptr(&self) -> *mut T { |
| 413 | self.data.get() |
| 414 | } |
| 415 | |
| 416 | /// Creates a new `ArcReentrantMutexGuard` without checking if the lock is held. |
| 417 | /// |
| 418 | /// # Safety |
| 419 | /// |
| 420 | /// This method must only be called if the thread logically holds the lock. |
| 421 | /// |
| 422 | /// Calling this function when a guard has already been produced is undefined behaviour unless |
| 423 | /// the guard was forgotten with `mem::forget`. |
| 424 | #[cfg (feature = "arc_lock" )] |
| 425 | #[inline ] |
| 426 | pub unsafe fn make_arc_guard_unchecked(self: &Arc<Self>) -> ArcReentrantMutexGuard<R, G, T> { |
| 427 | ArcReentrantMutexGuard { |
| 428 | remutex: self.clone(), |
| 429 | marker: PhantomData, |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | /// Acquires a reentrant mutex through an `Arc`. |
| 434 | /// |
| 435 | /// This method is similar to the `lock` method; however, it requires the `ReentrantMutex` to be inside of an |
| 436 | /// `Arc` and the resulting mutex guard has no lifetime requirements. |
| 437 | #[cfg (feature = "arc_lock" )] |
| 438 | #[inline ] |
| 439 | pub fn lock_arc(self: &Arc<Self>) -> ArcReentrantMutexGuard<R, G, T> { |
| 440 | self.raw.lock(); |
| 441 | // SAFETY: locking guarantee is upheld |
| 442 | unsafe { self.make_arc_guard_unchecked() } |
| 443 | } |
| 444 | |
| 445 | /// Attempts to acquire a reentrant mutex through an `Arc`. |
| 446 | /// |
| 447 | /// This method is similar to the `try_lock` method; however, it requires the `ReentrantMutex` to be inside |
| 448 | /// of an `Arc` and the resulting mutex guard has no lifetime requirements. |
| 449 | #[cfg (feature = "arc_lock" )] |
| 450 | #[inline ] |
| 451 | pub fn try_lock_arc(self: &Arc<Self>) -> Option<ArcReentrantMutexGuard<R, G, T>> { |
| 452 | if self.raw.try_lock() { |
| 453 | // SAFETY: locking guarantee is upheld |
| 454 | Some(unsafe { self.make_arc_guard_unchecked() }) |
| 455 | } else { |
| 456 | None |
| 457 | } |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | impl<R: RawMutexFair, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> { |
| 462 | /// Forcibly unlocks the mutex using a fair unlock protocol. |
| 463 | /// |
| 464 | /// This is useful when combined with `mem::forget` to hold a lock without |
| 465 | /// the need to maintain a `ReentrantMutexGuard` object alive, for example when |
| 466 | /// dealing with FFI. |
| 467 | /// |
| 468 | /// # Safety |
| 469 | /// |
| 470 | /// This method must only be called if the current thread logically owns a |
| 471 | /// `ReentrantMutexGuard` but that guard has be discarded using `mem::forget`. |
| 472 | /// Behavior is undefined if a mutex is unlocked when not locked. |
| 473 | #[inline ] |
| 474 | pub unsafe fn force_unlock_fair(&self) { |
| 475 | self.raw.unlock_fair(); |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | impl<R: RawMutexTimed, G: GetThreadId, T: ?Sized> ReentrantMutex<R, G, T> { |
| 480 | /// Attempts to acquire this lock until a timeout is reached. |
| 481 | /// |
| 482 | /// If the lock could not be acquired before the timeout expired, then |
| 483 | /// `None` is returned. Otherwise, an RAII guard is returned. The lock will |
| 484 | /// be unlocked when the guard is dropped. |
| 485 | #[inline ] |
| 486 | pub fn try_lock_for(&self, timeout: R::Duration) -> Option<ReentrantMutexGuard<'_, R, G, T>> { |
| 487 | if self.raw.try_lock_for(timeout) { |
| 488 | // SAFETY: The lock is held, as required. |
| 489 | Some(unsafe { self.make_guard_unchecked() }) |
| 490 | } else { |
| 491 | None |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | /// Attempts to acquire this lock until a timeout is reached. |
| 496 | /// |
| 497 | /// If the lock could not be acquired before the timeout expired, then |
| 498 | /// `None` is returned. Otherwise, an RAII guard is returned. The lock will |
| 499 | /// be unlocked when the guard is dropped. |
| 500 | #[inline ] |
| 501 | pub fn try_lock_until(&self, timeout: R::Instant) -> Option<ReentrantMutexGuard<'_, R, G, T>> { |
| 502 | if self.raw.try_lock_until(timeout) { |
| 503 | // SAFETY: The lock is held, as required. |
| 504 | Some(unsafe { self.make_guard_unchecked() }) |
| 505 | } else { |
| 506 | None |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | /// Attempts to acquire this lock until a timeout is reached, through an `Arc`. |
| 511 | /// |
| 512 | /// This method is similar to the `try_lock_for` method; however, it requires the `ReentrantMutex` to be |
| 513 | /// inside of an `Arc` and the resulting mutex guard has no lifetime requirements. |
| 514 | #[cfg (feature = "arc_lock" )] |
| 515 | #[inline ] |
| 516 | pub fn try_lock_arc_for( |
| 517 | self: &Arc<Self>, |
| 518 | timeout: R::Duration, |
| 519 | ) -> Option<ArcReentrantMutexGuard<R, G, T>> { |
| 520 | if self.raw.try_lock_for(timeout) { |
| 521 | // SAFETY: locking guarantee is upheld |
| 522 | Some(unsafe { self.make_arc_guard_unchecked() }) |
| 523 | } else { |
| 524 | None |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | /// Attempts to acquire this lock until a timeout is reached, through an `Arc`. |
| 529 | /// |
| 530 | /// This method is similar to the `try_lock_until` method; however, it requires the `ReentrantMutex` to be |
| 531 | /// inside of an `Arc` and the resulting mutex guard has no lifetime requirements. |
| 532 | #[cfg (feature = "arc_lock" )] |
| 533 | #[inline ] |
| 534 | pub fn try_lock_arc_until( |
| 535 | self: &Arc<Self>, |
| 536 | timeout: R::Instant, |
| 537 | ) -> Option<ArcReentrantMutexGuard<R, G, T>> { |
| 538 | if self.raw.try_lock_until(timeout) { |
| 539 | // SAFETY: locking guarantee is upheld |
| 540 | Some(unsafe { self.make_arc_guard_unchecked() }) |
| 541 | } else { |
| 542 | None |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | impl<R: RawMutex, G: GetThreadId, T: ?Sized + Default> Default for ReentrantMutex<R, G, T> { |
| 548 | #[inline ] |
| 549 | fn default() -> ReentrantMutex<R, G, T> { |
| 550 | ReentrantMutex::new(val:Default::default()) |
| 551 | } |
| 552 | } |
| 553 | |
| 554 | impl<R: RawMutex, G: GetThreadId, T> From<T> for ReentrantMutex<R, G, T> { |
| 555 | #[inline ] |
| 556 | fn from(t: T) -> ReentrantMutex<R, G, T> { |
| 557 | ReentrantMutex::new(val:t) |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | impl<R: RawMutex, G: GetThreadId, T: ?Sized + fmt::Debug> fmt::Debug for ReentrantMutex<R, G, T> { |
| 562 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 563 | match self.try_lock() { |
| 564 | Some(guard: ReentrantMutexGuard<'_, R, …, …>) => f&mut DebugStruct<'_, '_> |
| 565 | .debug_struct("ReentrantMutex" ) |
| 566 | .field(name:"data" , &&*guard) |
| 567 | .finish(), |
| 568 | None => { |
| 569 | struct LockedPlaceholder; |
| 570 | impl fmt::Debug for LockedPlaceholder { |
| 571 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 572 | f.write_str(data:"<locked>" ) |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | f&mut DebugStruct<'_, '_>.debug_struct("ReentrantMutex" ) |
| 577 | .field(name:"data" , &LockedPlaceholder) |
| 578 | .finish() |
| 579 | } |
| 580 | } |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | // Copied and modified from serde |
| 585 | #[cfg (feature = "serde" )] |
| 586 | impl<R, G, T> Serialize for ReentrantMutex<R, G, T> |
| 587 | where |
| 588 | R: RawMutex, |
| 589 | G: GetThreadId, |
| 590 | T: Serialize + ?Sized, |
| 591 | { |
| 592 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
| 593 | where |
| 594 | S: Serializer, |
| 595 | { |
| 596 | self.lock().serialize(serializer) |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | #[cfg (feature = "serde" )] |
| 601 | impl<'de, R, G, T> Deserialize<'de> for ReentrantMutex<R, G, T> |
| 602 | where |
| 603 | R: RawMutex, |
| 604 | G: GetThreadId, |
| 605 | T: Deserialize<'de> + ?Sized, |
| 606 | { |
| 607 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
| 608 | where |
| 609 | D: Deserializer<'de>, |
| 610 | { |
| 611 | Deserialize::deserialize(deserializer).map(ReentrantMutex::new) |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | /// An RAII implementation of a "scoped lock" of a reentrant mutex. When this structure |
| 616 | /// is dropped (falls out of scope), the lock will be unlocked. |
| 617 | /// |
| 618 | /// The data protected by the mutex can be accessed through this guard via its |
| 619 | /// `Deref` implementation. |
| 620 | #[clippy::has_significant_drop] |
| 621 | #[must_use = "if unused the ReentrantMutex will immediately unlock" ] |
| 622 | pub struct ReentrantMutexGuard<'a, R: RawMutex, G: GetThreadId, T: ?Sized> { |
| 623 | remutex: &'a ReentrantMutex<R, G, T>, |
| 624 | marker: PhantomData<(&'a T, GuardNoSend)>, |
| 625 | } |
| 626 | |
| 627 | unsafe impl<'a, R: RawMutex + Sync + 'a, G: GetThreadId + Sync + 'a, T: ?Sized + Sync + 'a> Sync |
| 628 | for ReentrantMutexGuard<'a, R, G, T> |
| 629 | { |
| 630 | } |
| 631 | |
| 632 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> ReentrantMutexGuard<'a, R, G, T> { |
| 633 | /// Returns a reference to the original `ReentrantMutex` object. |
| 634 | pub fn remutex(s: &Self) -> &'a ReentrantMutex<R, G, T> { |
| 635 | s.remutex |
| 636 | } |
| 637 | |
| 638 | /// Makes a new `MappedReentrantMutexGuard` for a component of the locked data. |
| 639 | /// |
| 640 | /// This operation cannot fail as the `ReentrantMutexGuard` passed |
| 641 | /// in already locked the mutex. |
| 642 | /// |
| 643 | /// This is an associated function that needs to be |
| 644 | /// used as `ReentrantMutexGuard::map(...)`. A method would interfere with methods of |
| 645 | /// the same name on the contents of the locked data. |
| 646 | #[inline ] |
| 647 | pub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedReentrantMutexGuard<'a, R, G, U> |
| 648 | where |
| 649 | F: FnOnce(&T) -> &U, |
| 650 | { |
| 651 | let raw = &s.remutex.raw; |
| 652 | let data = f(unsafe { &*s.remutex.data.get() }); |
| 653 | mem::forget(s); |
| 654 | MappedReentrantMutexGuard { |
| 655 | raw, |
| 656 | data, |
| 657 | marker: PhantomData, |
| 658 | } |
| 659 | } |
| 660 | |
| 661 | /// Attempts to make a new `MappedReentrantMutexGuard` for a component of the |
| 662 | /// locked data. The original guard is return if the closure returns `None`. |
| 663 | /// |
| 664 | /// This operation cannot fail as the `ReentrantMutexGuard` passed |
| 665 | /// in already locked the mutex. |
| 666 | /// |
| 667 | /// This is an associated function that needs to be |
| 668 | /// used as `ReentrantMutexGuard::try_map(...)`. A method would interfere with methods of |
| 669 | /// the same name on the contents of the locked data. |
| 670 | #[inline ] |
| 671 | pub fn try_map<U: ?Sized, F>( |
| 672 | s: Self, |
| 673 | f: F, |
| 674 | ) -> Result<MappedReentrantMutexGuard<'a, R, G, U>, Self> |
| 675 | where |
| 676 | F: FnOnce(&T) -> Option<&U>, |
| 677 | { |
| 678 | let raw = &s.remutex.raw; |
| 679 | let data = match f(unsafe { &*s.remutex.data.get() }) { |
| 680 | Some(data) => data, |
| 681 | None => return Err(s), |
| 682 | }; |
| 683 | mem::forget(s); |
| 684 | Ok(MappedReentrantMutexGuard { |
| 685 | raw, |
| 686 | data, |
| 687 | marker: PhantomData, |
| 688 | }) |
| 689 | } |
| 690 | |
| 691 | /// Temporarily unlocks the mutex to execute the given function. |
| 692 | /// |
| 693 | /// This is safe because `&mut` guarantees that there exist no other |
| 694 | /// references to the data protected by the mutex. |
| 695 | #[inline ] |
| 696 | pub fn unlocked<F, U>(s: &mut Self, f: F) -> U |
| 697 | where |
| 698 | F: FnOnce() -> U, |
| 699 | { |
| 700 | // Safety: A ReentrantMutexGuard always holds the lock. |
| 701 | unsafe { |
| 702 | s.remutex.raw.unlock(); |
| 703 | } |
| 704 | defer!(s.remutex.raw.lock()); |
| 705 | f() |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | impl<'a, R: RawMutexFair + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> |
| 710 | ReentrantMutexGuard<'a, R, G, T> |
| 711 | { |
| 712 | /// Unlocks the mutex using a fair unlock protocol. |
| 713 | /// |
| 714 | /// By default, mutexes are unfair and allow the current thread to re-lock |
| 715 | /// the mutex before another has the chance to acquire the lock, even if |
| 716 | /// that thread has been blocked on the mutex for a long time. This is the |
| 717 | /// default because it allows much higher throughput as it avoids forcing a |
| 718 | /// context switch on every mutex unlock. This can result in one thread |
| 719 | /// acquiring a mutex many more times than other threads. |
| 720 | /// |
| 721 | /// However in some cases it can be beneficial to ensure fairness by forcing |
| 722 | /// the lock to pass on to a waiting thread if there is one. This is done by |
| 723 | /// using this method instead of dropping the `ReentrantMutexGuard` normally. |
| 724 | #[inline ] |
| 725 | pub fn unlock_fair(s: Self) { |
| 726 | // Safety: A ReentrantMutexGuard always holds the lock |
| 727 | unsafe { |
| 728 | s.remutex.raw.unlock_fair(); |
| 729 | } |
| 730 | mem::forget(s); |
| 731 | } |
| 732 | |
| 733 | /// Temporarily unlocks the mutex to execute the given function. |
| 734 | /// |
| 735 | /// The mutex is unlocked a fair unlock protocol. |
| 736 | /// |
| 737 | /// This is safe because `&mut` guarantees that there exist no other |
| 738 | /// references to the data protected by the mutex. |
| 739 | #[inline ] |
| 740 | pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U |
| 741 | where |
| 742 | F: FnOnce() -> U, |
| 743 | { |
| 744 | // Safety: A ReentrantMutexGuard always holds the lock |
| 745 | unsafe { |
| 746 | s.remutex.raw.unlock_fair(); |
| 747 | } |
| 748 | defer!(s.remutex.raw.lock()); |
| 749 | f() |
| 750 | } |
| 751 | |
| 752 | /// Temporarily yields the mutex to a waiting thread if there is one. |
| 753 | /// |
| 754 | /// This method is functionally equivalent to calling `unlock_fair` followed |
| 755 | /// by `lock`, however it can be much more efficient in the case where there |
| 756 | /// are no waiting threads. |
| 757 | #[inline ] |
| 758 | pub fn bump(s: &mut Self) { |
| 759 | // Safety: A ReentrantMutexGuard always holds the lock |
| 760 | unsafe { |
| 761 | s.remutex.raw.bump(); |
| 762 | } |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Deref |
| 767 | for ReentrantMutexGuard<'a, R, G, T> |
| 768 | { |
| 769 | type Target = T; |
| 770 | #[inline ] |
| 771 | fn deref(&self) -> &T { |
| 772 | unsafe { &*self.remutex.data.get() } |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Drop |
| 777 | for ReentrantMutexGuard<'a, R, G, T> |
| 778 | { |
| 779 | #[inline ] |
| 780 | fn drop(&mut self) { |
| 781 | // Safety: A ReentrantMutexGuard always holds the lock. |
| 782 | unsafe { |
| 783 | self.remutex.raw.unlock(); |
| 784 | } |
| 785 | } |
| 786 | } |
| 787 | |
| 788 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Debug + ?Sized + 'a> fmt::Debug |
| 789 | for ReentrantMutexGuard<'a, R, G, T> |
| 790 | { |
| 791 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 792 | fmt::Debug::fmt(&**self, f) |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Display + ?Sized + 'a> fmt::Display |
| 797 | for ReentrantMutexGuard<'a, R, G, T> |
| 798 | { |
| 799 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 800 | (**self).fmt(f) |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | #[cfg (feature = "owning_ref" )] |
| 805 | unsafe impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> StableAddress |
| 806 | for ReentrantMutexGuard<'a, R, G, T> |
| 807 | { |
| 808 | } |
| 809 | |
| 810 | /// An RAII mutex guard returned by the `Arc` locking operations on `ReentrantMutex`. |
| 811 | /// |
| 812 | /// This is similar to the `ReentrantMutexGuard` struct, except instead of using a reference to unlock the |
| 813 | /// `Mutex` it uses an `Arc<ReentrantMutex>`. This has several advantages, most notably that it has an `'static` |
| 814 | /// lifetime. |
| 815 | #[cfg (feature = "arc_lock" )] |
| 816 | #[clippy::has_significant_drop] |
| 817 | #[must_use = "if unused the ReentrantMutex will immediately unlock" ] |
| 818 | pub struct ArcReentrantMutexGuard<R: RawMutex, G: GetThreadId, T: ?Sized> { |
| 819 | remutex: Arc<ReentrantMutex<R, G, T>>, |
| 820 | marker: PhantomData<GuardNoSend>, |
| 821 | } |
| 822 | |
| 823 | #[cfg (feature = "arc_lock" )] |
| 824 | impl<R: RawMutex, G: GetThreadId, T: ?Sized> ArcReentrantMutexGuard<R, G, T> { |
| 825 | /// Returns a reference to the `ReentrantMutex` this object is guarding, contained in its `Arc`. |
| 826 | pub fn remutex(s: &Self) -> &Arc<ReentrantMutex<R, G, T>> { |
| 827 | &s.remutex |
| 828 | } |
| 829 | |
| 830 | /// Temporarily unlocks the mutex to execute the given function. |
| 831 | /// |
| 832 | /// This is safe because `&mut` guarantees that there exist no other |
| 833 | /// references to the data protected by the mutex. |
| 834 | #[inline ] |
| 835 | pub fn unlocked<F, U>(s: &mut Self, f: F) -> U |
| 836 | where |
| 837 | F: FnOnce() -> U, |
| 838 | { |
| 839 | // Safety: A ReentrantMutexGuard always holds the lock. |
| 840 | unsafe { |
| 841 | s.remutex.raw.unlock(); |
| 842 | } |
| 843 | defer!(s.remutex.raw.lock()); |
| 844 | f() |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | #[cfg (feature = "arc_lock" )] |
| 849 | impl<R: RawMutexFair, G: GetThreadId, T: ?Sized> ArcReentrantMutexGuard<R, G, T> { |
| 850 | /// Unlocks the mutex using a fair unlock protocol. |
| 851 | /// |
| 852 | /// This is functionally identical to the `unlock_fair` method on [`ReentrantMutexGuard`]. |
| 853 | #[inline ] |
| 854 | pub fn unlock_fair(s: Self) { |
| 855 | // Safety: A ReentrantMutexGuard always holds the lock |
| 856 | unsafe { |
| 857 | s.remutex.raw.unlock_fair(); |
| 858 | } |
| 859 | |
| 860 | // SAFETY: ensure that the Arc's refcount is decremented |
| 861 | let mut s = ManuallyDrop::new(s); |
| 862 | unsafe { ptr::drop_in_place(&mut s.remutex) }; |
| 863 | } |
| 864 | |
| 865 | /// Temporarily unlocks the mutex to execute the given function. |
| 866 | /// |
| 867 | /// This is functionally identical to the `unlocked_fair` method on [`ReentrantMutexGuard`]. |
| 868 | #[inline ] |
| 869 | pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U |
| 870 | where |
| 871 | F: FnOnce() -> U, |
| 872 | { |
| 873 | // Safety: A ReentrantMutexGuard always holds the lock |
| 874 | unsafe { |
| 875 | s.remutex.raw.unlock_fair(); |
| 876 | } |
| 877 | defer!(s.remutex.raw.lock()); |
| 878 | f() |
| 879 | } |
| 880 | |
| 881 | /// Temporarily yields the mutex to a waiting thread if there is one. |
| 882 | /// |
| 883 | /// This is functionally equivalent to the `bump` method on [`ReentrantMutexGuard`]. |
| 884 | #[inline ] |
| 885 | pub fn bump(s: &mut Self) { |
| 886 | // Safety: A ReentrantMutexGuard always holds the lock |
| 887 | unsafe { |
| 888 | s.remutex.raw.bump(); |
| 889 | } |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | #[cfg (feature = "arc_lock" )] |
| 894 | impl<R: RawMutex, G: GetThreadId, T: ?Sized> Deref for ArcReentrantMutexGuard<R, G, T> { |
| 895 | type Target = T; |
| 896 | #[inline ] |
| 897 | fn deref(&self) -> &T { |
| 898 | unsafe { &*self.remutex.data.get() } |
| 899 | } |
| 900 | } |
| 901 | |
| 902 | #[cfg (feature = "arc_lock" )] |
| 903 | impl<R: RawMutex, G: GetThreadId, T: ?Sized> Drop for ArcReentrantMutexGuard<R, G, T> { |
| 904 | #[inline ] |
| 905 | fn drop(&mut self) { |
| 906 | // Safety: A ReentrantMutexGuard always holds the lock. |
| 907 | unsafe { |
| 908 | self.remutex.raw.unlock(); |
| 909 | } |
| 910 | } |
| 911 | } |
| 912 | |
| 913 | /// An RAII mutex guard returned by `ReentrantMutexGuard::map`, which can point to a |
| 914 | /// subfield of the protected data. |
| 915 | /// |
| 916 | /// The main difference between `MappedReentrantMutexGuard` and `ReentrantMutexGuard` is that the |
| 917 | /// former doesn't support temporarily unlocking and re-locking, since that |
| 918 | /// could introduce soundness issues if the locked object is modified by another |
| 919 | /// thread. |
| 920 | #[clippy::has_significant_drop] |
| 921 | #[must_use = "if unused the ReentrantMutex will immediately unlock" ] |
| 922 | pub struct MappedReentrantMutexGuard<'a, R: RawMutex, G: GetThreadId, T: ?Sized> { |
| 923 | raw: &'a RawReentrantMutex<R, G>, |
| 924 | data: *const T, |
| 925 | marker: PhantomData<&'a T>, |
| 926 | } |
| 927 | |
| 928 | unsafe impl<'a, R: RawMutex + Sync + 'a, G: GetThreadId + Sync + 'a, T: ?Sized + Sync + 'a> Sync |
| 929 | for MappedReentrantMutexGuard<'a, R, G, T> |
| 930 | { |
| 931 | } |
| 932 | |
| 933 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> |
| 934 | MappedReentrantMutexGuard<'a, R, G, T> |
| 935 | { |
| 936 | /// Makes a new `MappedReentrantMutexGuard` for a component of the locked data. |
| 937 | /// |
| 938 | /// This operation cannot fail as the `MappedReentrantMutexGuard` passed |
| 939 | /// in already locked the mutex. |
| 940 | /// |
| 941 | /// This is an associated function that needs to be |
| 942 | /// used as `MappedReentrantMutexGuard::map(...)`. A method would interfere with methods of |
| 943 | /// the same name on the contents of the locked data. |
| 944 | #[inline ] |
| 945 | pub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedReentrantMutexGuard<'a, R, G, U> |
| 946 | where |
| 947 | F: FnOnce(&T) -> &U, |
| 948 | { |
| 949 | let raw = s.raw; |
| 950 | let data = f(unsafe { &*s.data }); |
| 951 | mem::forget(s); |
| 952 | MappedReentrantMutexGuard { |
| 953 | raw, |
| 954 | data, |
| 955 | marker: PhantomData, |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | /// Attempts to make a new `MappedReentrantMutexGuard` for a component of the |
| 960 | /// locked data. The original guard is return if the closure returns `None`. |
| 961 | /// |
| 962 | /// This operation cannot fail as the `MappedReentrantMutexGuard` passed |
| 963 | /// in already locked the mutex. |
| 964 | /// |
| 965 | /// This is an associated function that needs to be |
| 966 | /// used as `MappedReentrantMutexGuard::try_map(...)`. A method would interfere with methods of |
| 967 | /// the same name on the contents of the locked data. |
| 968 | #[inline ] |
| 969 | pub fn try_map<U: ?Sized, F>( |
| 970 | s: Self, |
| 971 | f: F, |
| 972 | ) -> Result<MappedReentrantMutexGuard<'a, R, G, U>, Self> |
| 973 | where |
| 974 | F: FnOnce(&T) -> Option<&U>, |
| 975 | { |
| 976 | let raw = s.raw; |
| 977 | let data = match f(unsafe { &*s.data }) { |
| 978 | Some(data) => data, |
| 979 | None => return Err(s), |
| 980 | }; |
| 981 | mem::forget(s); |
| 982 | Ok(MappedReentrantMutexGuard { |
| 983 | raw, |
| 984 | data, |
| 985 | marker: PhantomData, |
| 986 | }) |
| 987 | } |
| 988 | } |
| 989 | |
| 990 | impl<'a, R: RawMutexFair + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> |
| 991 | MappedReentrantMutexGuard<'a, R, G, T> |
| 992 | { |
| 993 | /// Unlocks the mutex using a fair unlock protocol. |
| 994 | /// |
| 995 | /// By default, mutexes are unfair and allow the current thread to re-lock |
| 996 | /// the mutex before another has the chance to acquire the lock, even if |
| 997 | /// that thread has been blocked on the mutex for a long time. This is the |
| 998 | /// default because it allows much higher throughput as it avoids forcing a |
| 999 | /// context switch on every mutex unlock. This can result in one thread |
| 1000 | /// acquiring a mutex many more times than other threads. |
| 1001 | /// |
| 1002 | /// However in some cases it can be beneficial to ensure fairness by forcing |
| 1003 | /// the lock to pass on to a waiting thread if there is one. This is done by |
| 1004 | /// using this method instead of dropping the `ReentrantMutexGuard` normally. |
| 1005 | #[inline ] |
| 1006 | pub fn unlock_fair(s: Self) { |
| 1007 | // Safety: A MappedReentrantMutexGuard always holds the lock |
| 1008 | unsafe { |
| 1009 | s.raw.unlock_fair(); |
| 1010 | } |
| 1011 | mem::forget(s); |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Deref |
| 1016 | for MappedReentrantMutexGuard<'a, R, G, T> |
| 1017 | { |
| 1018 | type Target = T; |
| 1019 | #[inline ] |
| 1020 | fn deref(&self) -> &T { |
| 1021 | unsafe { &*self.data } |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> Drop |
| 1026 | for MappedReentrantMutexGuard<'a, R, G, T> |
| 1027 | { |
| 1028 | #[inline ] |
| 1029 | fn drop(&mut self) { |
| 1030 | // Safety: A MappedReentrantMutexGuard always holds the lock. |
| 1031 | unsafe { |
| 1032 | self.raw.unlock(); |
| 1033 | } |
| 1034 | } |
| 1035 | } |
| 1036 | |
| 1037 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Debug + ?Sized + 'a> fmt::Debug |
| 1038 | for MappedReentrantMutexGuard<'a, R, G, T> |
| 1039 | { |
| 1040 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1041 | fmt::Debug::fmt(&**self, f) |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: fmt::Display + ?Sized + 'a> fmt::Display |
| 1046 | for MappedReentrantMutexGuard<'a, R, G, T> |
| 1047 | { |
| 1048 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1049 | (**self).fmt(f) |
| 1050 | } |
| 1051 | } |
| 1052 | |
| 1053 | #[cfg (feature = "owning_ref" )] |
| 1054 | unsafe impl<'a, R: RawMutex + 'a, G: GetThreadId + 'a, T: ?Sized + 'a> StableAddress |
| 1055 | for MappedReentrantMutexGuard<'a, R, G, T> |
| 1056 | { |
| 1057 | } |
| 1058 | |