| 1 | //! A simple big-integer type for slow path algorithms. |
| 2 | //! |
| 3 | //! This includes minimal stackvector for use in big-integer arithmetic. |
| 4 | |
| 5 | #![doc (hidden)] |
| 6 | |
| 7 | #[cfg (feature = "alloc" )] |
| 8 | use crate::heapvec::HeapVec; |
| 9 | use crate::num::Float; |
| 10 | #[cfg (not(feature = "alloc" ))] |
| 11 | use crate::stackvec::StackVec; |
| 12 | #[cfg (not(feature = "compact" ))] |
| 13 | use crate::table::{LARGE_POW5, LARGE_POW5_STEP}; |
| 14 | use core::{cmp, ops, ptr}; |
| 15 | |
| 16 | /// Number of bits in a Bigint. |
| 17 | /// |
| 18 | /// This needs to be at least the number of bits required to store |
| 19 | /// a Bigint, which is `log2(radix**digits)`. |
| 20 | /// ≅ 3600 for base-10, rounded-up. |
| 21 | pub const BIGINT_BITS: usize = 4000; |
| 22 | |
| 23 | /// The number of limbs for the bigint. |
| 24 | pub const BIGINT_LIMBS: usize = BIGINT_BITS / LIMB_BITS; |
| 25 | |
| 26 | #[cfg (feature = "alloc" )] |
| 27 | pub type VecType = HeapVec; |
| 28 | |
| 29 | #[cfg (not(feature = "alloc" ))] |
| 30 | pub type VecType = StackVec; |
| 31 | |
| 32 | /// Storage for a big integer type. |
| 33 | /// |
| 34 | /// This is used for algorithms when we have a finite number of digits. |
| 35 | /// Specifically, it stores all the significant digits scaled to the |
| 36 | /// proper exponent, as an integral type, and then directly compares |
| 37 | /// these digits. |
| 38 | /// |
| 39 | /// This requires us to store the number of significant bits, plus the |
| 40 | /// number of exponent bits (required) since we scale everything |
| 41 | /// to the same exponent. |
| 42 | #[derive (Clone, PartialEq, Eq)] |
| 43 | pub struct Bigint { |
| 44 | /// Significant digits for the float, stored in a big integer in LE order. |
| 45 | /// |
| 46 | /// This is pretty much the same number of digits for any radix, since the |
| 47 | /// significant digits balances out the zeros from the exponent: |
| 48 | /// 1. Decimal is 1091 digits, 767 mantissa digits + 324 exponent zeros. |
| 49 | /// 2. Base 6 is 1097 digits, or 680 mantissa digits + 417 exponent zeros. |
| 50 | /// 3. Base 36 is 1086 digits, or 877 mantissa digits + 209 exponent zeros. |
| 51 | /// |
| 52 | /// However, the number of bytes required is larger for large radixes: |
| 53 | /// for decimal, we need `log2(10**1091) ≅ 3600`, while for base 36 |
| 54 | /// we need `log2(36**1086) ≅ 5600`. Since we use uninitialized data, |
| 55 | /// we avoid a major performance hit from the large buffer size. |
| 56 | pub data: VecType, |
| 57 | } |
| 58 | |
| 59 | #[allow (clippy::new_without_default)] |
| 60 | impl Bigint { |
| 61 | /// Construct a bigint representing 0. |
| 62 | #[inline (always)] |
| 63 | pub fn new() -> Self { |
| 64 | Self { |
| 65 | data: VecType::new(), |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | /// Construct a bigint from an integer. |
| 70 | #[inline (always)] |
| 71 | pub fn from_u64(value: u64) -> Self { |
| 72 | Self { |
| 73 | data: VecType::from_u64(value), |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | #[inline (always)] |
| 78 | pub fn hi64(&self) -> (u64, bool) { |
| 79 | self.data.hi64() |
| 80 | } |
| 81 | |
| 82 | /// Multiply and assign as if by exponentiation by a power. |
| 83 | #[inline ] |
| 84 | pub fn pow(&mut self, base: u32, exp: u32) -> Option<()> { |
| 85 | debug_assert!(base == 2 || base == 5 || base == 10); |
| 86 | if base % 5 == 0 { |
| 87 | pow(&mut self.data, exp)?; |
| 88 | } |
| 89 | if base % 2 == 0 { |
| 90 | shl(&mut self.data, exp as usize)?; |
| 91 | } |
| 92 | Some(()) |
| 93 | } |
| 94 | |
| 95 | /// Calculate the bit-length of the big-integer. |
| 96 | #[inline ] |
| 97 | pub fn bit_length(&self) -> u32 { |
| 98 | bit_length(&self.data) |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | impl ops::MulAssign<&Bigint> for Bigint { |
| 103 | fn mul_assign(&mut self, rhs: &Bigint) { |
| 104 | self.data *= &rhs.data; |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | /// REVERSE VIEW |
| 109 | |
| 110 | /// Reverse, immutable view of a sequence. |
| 111 | pub struct ReverseView<'a, T: 'a> { |
| 112 | inner: &'a [T], |
| 113 | } |
| 114 | |
| 115 | impl<'a, T> ops::Index<usize> for ReverseView<'a, T> { |
| 116 | type Output = T; |
| 117 | |
| 118 | #[inline ] |
| 119 | fn index(&self, index: usize) -> &T { |
| 120 | let len: usize = self.inner.len(); |
| 121 | &(*self.inner)[len - index - 1] |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | /// Create a reverse view of the vector for indexing. |
| 126 | #[inline ] |
| 127 | pub fn rview(x: &[Limb]) -> ReverseView<Limb> { |
| 128 | ReverseView { |
| 129 | inner: x, |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | // COMPARE |
| 134 | // ------- |
| 135 | |
| 136 | /// Compare `x` to `y`, in little-endian order. |
| 137 | #[inline ] |
| 138 | pub fn compare(x: &[Limb], y: &[Limb]) -> cmp::Ordering { |
| 139 | match x.len().cmp(&y.len()) { |
| 140 | cmp::Ordering::Equal => { |
| 141 | let iter: impl Iterator = x.iter().rev().zip(y.iter().rev()); |
| 142 | for (&xi: u64, yi: &u64) in iter { |
| 143 | match xi.cmp(yi) { |
| 144 | cmp::Ordering::Equal => (), |
| 145 | ord: Ordering => return ord, |
| 146 | } |
| 147 | } |
| 148 | // Equal case. |
| 149 | cmp::Ordering::Equal |
| 150 | }, |
| 151 | ord: Ordering => ord, |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | // NORMALIZE |
| 156 | // --------- |
| 157 | |
| 158 | /// Normalize the integer, so any leading zero values are removed. |
| 159 | #[inline ] |
| 160 | pub fn normalize(x: &mut VecType) { |
| 161 | // We don't care if this wraps: the index is bounds-checked. |
| 162 | while let Some(&value: u64) = x.get(index:x.len().wrapping_sub(1)) { |
| 163 | if value == 0 { |
| 164 | unsafe { x.set_len(x.len() - 1) }; |
| 165 | } else { |
| 166 | break; |
| 167 | } |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | /// Get if the big integer is normalized. |
| 172 | #[inline ] |
| 173 | #[allow (clippy::match_like_matches_macro)] |
| 174 | pub fn is_normalized(x: &[Limb]) -> bool { |
| 175 | // We don't care if this wraps: the index is bounds-checked. |
| 176 | match x.get(index:x.len().wrapping_sub(1)) { |
| 177 | Some(&0) => false, |
| 178 | _ => true, |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | // FROM |
| 183 | // ---- |
| 184 | |
| 185 | /// Create StackVec from u64 value. |
| 186 | #[inline (always)] |
| 187 | #[allow (clippy::branches_sharing_code)] |
| 188 | pub fn from_u64(x: u64) -> VecType { |
| 189 | let mut vec: StackVec = VecType::new(); |
| 190 | debug_assert!(vec.capacity() >= 2); |
| 191 | if LIMB_BITS == 32 { |
| 192 | vec.try_push(x as Limb).unwrap(); |
| 193 | vec.try_push((x >> 32) as Limb).unwrap(); |
| 194 | } else { |
| 195 | vec.try_push(x as Limb).unwrap(); |
| 196 | } |
| 197 | vec.normalize(); |
| 198 | vec |
| 199 | } |
| 200 | |
| 201 | // HI |
| 202 | // -- |
| 203 | |
| 204 | /// Check if any of the remaining bits are non-zero. |
| 205 | /// |
| 206 | /// # Safety |
| 207 | /// |
| 208 | /// Safe as long as `rindex <= x.len()`. |
| 209 | #[inline ] |
| 210 | pub fn nonzero(x: &[Limb], rindex: usize) -> bool { |
| 211 | debug_assert!(rindex <= x.len()); |
| 212 | |
| 213 | let len: usize = x.len(); |
| 214 | let slc: &[u64] = &x[..len - rindex]; |
| 215 | slc.iter().rev().any(|&x: u64| x != 0) |
| 216 | } |
| 217 | |
| 218 | // These return the high X bits and if the bits were truncated. |
| 219 | |
| 220 | /// Shift 32-bit integer to high 64-bits. |
| 221 | #[inline ] |
| 222 | pub fn u32_to_hi64_1(r0: u32) -> (u64, bool) { |
| 223 | u64_to_hi64_1(r0 as u64) |
| 224 | } |
| 225 | |
| 226 | /// Shift 2 32-bit integers to high 64-bits. |
| 227 | #[inline ] |
| 228 | pub fn u32_to_hi64_2(r0: u32, r1: u32) -> (u64, bool) { |
| 229 | let r0: u64 = (r0 as u64) << 32; |
| 230 | let r1: u64 = r1 as u64; |
| 231 | u64_to_hi64_1(r0:r0 | r1) |
| 232 | } |
| 233 | |
| 234 | /// Shift 3 32-bit integers to high 64-bits. |
| 235 | #[inline ] |
| 236 | pub fn u32_to_hi64_3(r0: u32, r1: u32, r2: u32) -> (u64, bool) { |
| 237 | let r0: u64 = r0 as u64; |
| 238 | let r1: u64 = (r1 as u64) << 32; |
| 239 | let r2: u64 = r2 as u64; |
| 240 | u64_to_hi64_2(r0, r1:r1 | r2) |
| 241 | } |
| 242 | |
| 243 | /// Shift 64-bit integer to high 64-bits. |
| 244 | #[inline ] |
| 245 | pub fn u64_to_hi64_1(r0: u64) -> (u64, bool) { |
| 246 | let ls: u32 = r0.leading_zeros(); |
| 247 | (r0 << ls, false) |
| 248 | } |
| 249 | |
| 250 | /// Shift 2 64-bit integers to high 64-bits. |
| 251 | #[inline ] |
| 252 | pub fn u64_to_hi64_2(r0: u64, r1: u64) -> (u64, bool) { |
| 253 | let ls: u32 = r0.leading_zeros(); |
| 254 | let rs: u32 = 64 - ls; |
| 255 | let v: u64 = match ls { |
| 256 | 0 => r0, |
| 257 | _ => (r0 << ls) | (r1 >> rs), |
| 258 | }; |
| 259 | let n: bool = r1 << ls != 0; |
| 260 | (v, n) |
| 261 | } |
| 262 | |
| 263 | /// Extract the hi bits from the buffer. |
| 264 | macro_rules! hi { |
| 265 | // # Safety |
| 266 | // |
| 267 | // Safe as long as the `stackvec.len() >= 1`. |
| 268 | (@1 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{ |
| 269 | $fn($rview[0] as $t) |
| 270 | }}; |
| 271 | |
| 272 | // # Safety |
| 273 | // |
| 274 | // Safe as long as the `stackvec.len() >= 2`. |
| 275 | (@2 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{ |
| 276 | let r0 = $rview[0] as $t; |
| 277 | let r1 = $rview[1] as $t; |
| 278 | $fn(r0, r1) |
| 279 | }}; |
| 280 | |
| 281 | // # Safety |
| 282 | // |
| 283 | // Safe as long as the `stackvec.len() >= 2`. |
| 284 | (@nonzero2 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{ |
| 285 | let (v, n) = hi!(@2 $self, $rview, $t, $fn); |
| 286 | (v, n || nonzero($self, 2 )) |
| 287 | }}; |
| 288 | |
| 289 | // # Safety |
| 290 | // |
| 291 | // Safe as long as the `stackvec.len() >= 3`. |
| 292 | (@3 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{ |
| 293 | let r0 = $rview[0] as $t; |
| 294 | let r1 = $rview[1] as $t; |
| 295 | let r2 = $rview[2] as $t; |
| 296 | $fn(r0, r1, r2) |
| 297 | }}; |
| 298 | |
| 299 | // # Safety |
| 300 | // |
| 301 | // Safe as long as the `stackvec.len() >= 3`. |
| 302 | (@nonzero3 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{ |
| 303 | let (v, n) = hi!(@3 $self, $rview, $t, $fn); |
| 304 | (v, n || nonzero($self, 3)) |
| 305 | }}; |
| 306 | } |
| 307 | |
| 308 | /// Get the high 64 bits from the vector. |
| 309 | #[inline (always)] |
| 310 | pub fn hi64(x: &[Limb]) -> (u64, bool) { |
| 311 | let rslc: ReverseView<'_, u64> = rview(x); |
| 312 | // SAFETY: the buffer must be at least length bytes long. |
| 313 | match x.len() { |
| 314 | 0 => (0, false), |
| 315 | 1 if LIMB_BITS == 32 => hi!(@1 x, rslc, u32, u32_to_hi64_1), |
| 316 | 1 => hi!(@1 x, rslc, u64, u64_to_hi64_1), |
| 317 | 2 if LIMB_BITS == 32 => hi!(@2 x, rslc, u32, u32_to_hi64_2), |
| 318 | 2 => hi!(@2 x, rslc, u64, u64_to_hi64_2), |
| 319 | _ if LIMB_BITS == 32 => hi!(@nonzero3 x, rslc, u32, u32_to_hi64_3), |
| 320 | _ => hi!(@nonzero2 x, rslc, u64, u64_to_hi64_2), |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | // POWERS |
| 325 | // ------ |
| 326 | |
| 327 | /// MulAssign by a power of 5. |
| 328 | /// |
| 329 | /// Theoretically... |
| 330 | /// |
| 331 | /// Use an exponentiation by squaring method, since it reduces the time |
| 332 | /// complexity of the multiplication to ~`O(log(n))` for the squaring, |
| 333 | /// and `O(n*m)` for the result. Since `m` is typically a lower-order |
| 334 | /// factor, this significantly reduces the number of multiplications |
| 335 | /// we need to do. Iteratively multiplying by small powers follows |
| 336 | /// the nth triangular number series, which scales as `O(p^2)`, but |
| 337 | /// where `p` is `n+m`. In short, it scales very poorly. |
| 338 | /// |
| 339 | /// Practically.... |
| 340 | /// |
| 341 | /// Exponentiation by Squaring: |
| 342 | /// running 2 tests |
| 343 | /// test bigcomp_f32_lexical ... bench: 1,018 ns/iter (+/- 78) |
| 344 | /// test bigcomp_f64_lexical ... bench: 3,639 ns/iter (+/- 1,007) |
| 345 | /// |
| 346 | /// Exponentiation by Iterative Small Powers: |
| 347 | /// running 2 tests |
| 348 | /// test bigcomp_f32_lexical ... bench: 518 ns/iter (+/- 31) |
| 349 | /// test bigcomp_f64_lexical ... bench: 583 ns/iter (+/- 47) |
| 350 | /// |
| 351 | /// Exponentiation by Iterative Large Powers (of 2): |
| 352 | /// running 2 tests |
| 353 | /// test bigcomp_f32_lexical ... bench: 671 ns/iter (+/- 31) |
| 354 | /// test bigcomp_f64_lexical ... bench: 1,394 ns/iter (+/- 47) |
| 355 | /// |
| 356 | /// The following benchmarks were run on `1 * 5^300`, using native `pow`, |
| 357 | /// a version with only small powers, and one with pre-computed powers |
| 358 | /// of `5^(3 * max_exp)`, rather than `5^(5 * max_exp)`. |
| 359 | /// |
| 360 | /// However, using large powers is crucial for good performance for higher |
| 361 | /// powers. |
| 362 | /// pow/default time: [426.20 ns 427.96 ns 429.89 ns] |
| 363 | /// pow/small time: [2.9270 us 2.9411 us 2.9565 us] |
| 364 | /// pow/large:3 time: [838.51 ns 842.21 ns 846.27 ns] |
| 365 | /// |
| 366 | /// Even using worst-case scenarios, exponentiation by squaring is |
| 367 | /// significantly slower for our workloads. Just multiply by small powers, |
| 368 | /// in simple cases, and use precalculated large powers in other cases. |
| 369 | /// |
| 370 | /// Furthermore, using sufficiently big large powers is also crucial for |
| 371 | /// performance. This is a tradeoff of binary size and performance, and |
| 372 | /// using a single value at ~`5^(5 * max_exp)` seems optimal. |
| 373 | pub fn pow(x: &mut VecType, mut exp: u32) -> Option<()> { |
| 374 | // Minimize the number of iterations for large exponents: just |
| 375 | // do a few steps with a large powers. |
| 376 | #[cfg (not(feature = "compact" ))] |
| 377 | { |
| 378 | while exp >= LARGE_POW5_STEP { |
| 379 | large_mul(x, &LARGE_POW5)?; |
| 380 | exp -= LARGE_POW5_STEP; |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | // Now use our pre-computed small powers iteratively. |
| 385 | // This is calculated as `⌊log(2^BITS - 1, 5)⌋`. |
| 386 | let small_step = if LIMB_BITS == 32 { |
| 387 | 13 |
| 388 | } else { |
| 389 | 27 |
| 390 | }; |
| 391 | let max_native = (5 as Limb).pow(small_step); |
| 392 | while exp >= small_step { |
| 393 | small_mul(x, max_native)?; |
| 394 | exp -= small_step; |
| 395 | } |
| 396 | if exp != 0 { |
| 397 | // SAFETY: safe, since `exp < small_step`. |
| 398 | let small_power = unsafe { f64::int_pow_fast_path(exp as usize, 5) }; |
| 399 | small_mul(x, small_power as Limb)?; |
| 400 | } |
| 401 | Some(()) |
| 402 | } |
| 403 | |
| 404 | // SCALAR |
| 405 | // ------ |
| 406 | |
| 407 | /// Add two small integers and return the resulting value and if overflow happens. |
| 408 | #[inline (always)] |
| 409 | pub fn scalar_add(x: Limb, y: Limb) -> (Limb, bool) { |
| 410 | x.overflowing_add(y) |
| 411 | } |
| 412 | |
| 413 | /// Multiply two small integers (with carry) (and return the overflow contribution). |
| 414 | /// |
| 415 | /// Returns the (low, high) components. |
| 416 | #[inline (always)] |
| 417 | pub fn scalar_mul(x: Limb, y: Limb, carry: Limb) -> (Limb, Limb) { |
| 418 | // Cannot overflow, as long as wide is 2x as wide. This is because |
| 419 | // the following is always true: |
| 420 | // `Wide::MAX - (Narrow::MAX * Narrow::MAX) >= Narrow::MAX` |
| 421 | let z: Wide = (x as Wide) * (y as Wide) + (carry as Wide); |
| 422 | (z as Limb, (z >> LIMB_BITS) as Limb) |
| 423 | } |
| 424 | |
| 425 | // SMALL |
| 426 | // ----- |
| 427 | |
| 428 | /// Add small integer to bigint starting from offset. |
| 429 | #[inline ] |
| 430 | pub fn small_add_from(x: &mut VecType, y: Limb, start: usize) -> Option<()> { |
| 431 | let mut index: usize = start; |
| 432 | let mut carry: u64 = y; |
| 433 | while carry != 0 && index < x.len() { |
| 434 | let result: (u64, bool) = scalar_add(x[index], y:carry); |
| 435 | x[index] = result.0; |
| 436 | carry = result.1 as Limb; |
| 437 | index += 1; |
| 438 | } |
| 439 | // If we carried past all the elements, add to the end of the buffer. |
| 440 | if carry != 0 { |
| 441 | x.try_push(carry)?; |
| 442 | } |
| 443 | Some(()) |
| 444 | } |
| 445 | |
| 446 | /// Add small integer to bigint. |
| 447 | #[inline (always)] |
| 448 | pub fn small_add(x: &mut VecType, y: Limb) -> Option<()> { |
| 449 | small_add_from(x, y, start:0) |
| 450 | } |
| 451 | |
| 452 | /// Multiply bigint by small integer. |
| 453 | #[inline ] |
| 454 | pub fn small_mul(x: &mut VecType, y: Limb) -> Option<()> { |
| 455 | let mut carry: u64 = 0; |
| 456 | for xi: &mut u64 in x.iter_mut() { |
| 457 | let result: (u64, u64) = scalar_mul(*xi, y, carry); |
| 458 | *xi = result.0; |
| 459 | carry = result.1; |
| 460 | } |
| 461 | // If we carried past all the elements, add to the end of the buffer. |
| 462 | if carry != 0 { |
| 463 | x.try_push(carry)?; |
| 464 | } |
| 465 | Some(()) |
| 466 | } |
| 467 | |
| 468 | // LARGE |
| 469 | // ----- |
| 470 | |
| 471 | /// Add bigint to bigint starting from offset. |
| 472 | pub fn large_add_from(x: &mut VecType, y: &[Limb], start: usize) -> Option<()> { |
| 473 | // The effective x buffer is from `xstart..x.len()`, so we need to treat |
| 474 | // that as the current range. If the effective y buffer is longer, need |
| 475 | // to resize to that, + the start index. |
| 476 | if y.len() > x.len().saturating_sub(start) { |
| 477 | // Ensure we panic if we can't extend the buffer. |
| 478 | // This avoids any unsafe behavior afterwards. |
| 479 | x.try_resize(y.len() + start, 0)?; |
| 480 | } |
| 481 | |
| 482 | // Iteratively add elements from y to x. |
| 483 | let mut carry = false; |
| 484 | for (index, &yi) in y.iter().enumerate() { |
| 485 | // We panicked in `try_resize` if this wasn't true. |
| 486 | let xi = x.get_mut(start + index).unwrap(); |
| 487 | |
| 488 | // Only one op of the two ops can overflow, since we added at max |
| 489 | // Limb::max_value() + Limb::max_value(). Add the previous carry, |
| 490 | // and store the current carry for the next. |
| 491 | let result = scalar_add(*xi, yi); |
| 492 | *xi = result.0; |
| 493 | let mut tmp = result.1; |
| 494 | if carry { |
| 495 | let result = scalar_add(*xi, 1); |
| 496 | *xi = result.0; |
| 497 | tmp |= result.1; |
| 498 | } |
| 499 | carry = tmp; |
| 500 | } |
| 501 | |
| 502 | // Handle overflow. |
| 503 | if carry { |
| 504 | small_add_from(x, 1, y.len() + start)?; |
| 505 | } |
| 506 | Some(()) |
| 507 | } |
| 508 | |
| 509 | /// Add bigint to bigint. |
| 510 | #[inline (always)] |
| 511 | pub fn large_add(x: &mut VecType, y: &[Limb]) -> Option<()> { |
| 512 | large_add_from(x, y, start:0) |
| 513 | } |
| 514 | |
| 515 | /// Grade-school multiplication algorithm. |
| 516 | /// |
| 517 | /// Slow, naive algorithm, using limb-bit bases and just shifting left for |
| 518 | /// each iteration. This could be optimized with numerous other algorithms, |
| 519 | /// but it's extremely simple, and works in O(n*m) time, which is fine |
| 520 | /// by me. Each iteration, of which there are `m` iterations, requires |
| 521 | /// `n` multiplications, and `n` additions, or grade-school multiplication. |
| 522 | /// |
| 523 | /// Don't use Karatsuba multiplication, since out implementation seems to |
| 524 | /// be slower asymptotically, which is likely just due to the small sizes |
| 525 | /// we deal with here. For example, running on the following data: |
| 526 | /// |
| 527 | /// ```text |
| 528 | /// const SMALL_X: &[u32] = &[ |
| 529 | /// 766857581, 3588187092, 1583923090, 2204542082, 1564708913, 2695310100, 3676050286, |
| 530 | /// 1022770393, 468044626, 446028186 |
| 531 | /// ]; |
| 532 | /// const SMALL_Y: &[u32] = &[ |
| 533 | /// 3945492125, 3250752032, 1282554898, 1708742809, 1131807209, 3171663979, 1353276095, |
| 534 | /// 1678845844, 2373924447, 3640713171 |
| 535 | /// ]; |
| 536 | /// const LARGE_X: &[u32] = &[ |
| 537 | /// 3647536243, 2836434412, 2154401029, 1297917894, 137240595, 790694805, 2260404854, |
| 538 | /// 3872698172, 690585094, 99641546, 3510774932, 1672049983, 2313458559, 2017623719, |
| 539 | /// 638180197, 1140936565, 1787190494, 1797420655, 14113450, 2350476485, 3052941684, |
| 540 | /// 1993594787, 2901001571, 4156930025, 1248016552, 848099908, 2660577483, 4030871206, |
| 541 | /// 692169593, 2835966319, 1781364505, 4266390061, 1813581655, 4210899844, 2137005290, |
| 542 | /// 2346701569, 3715571980, 3386325356, 1251725092, 2267270902, 474686922, 2712200426, |
| 543 | /// 197581715, 3087636290, 1379224439, 1258285015, 3230794403, 2759309199, 1494932094, |
| 544 | /// 326310242 |
| 545 | /// ]; |
| 546 | /// const LARGE_Y: &[u32] = &[ |
| 547 | /// 1574249566, 868970575, 76716509, 3198027972, 1541766986, 1095120699, 3891610505, |
| 548 | /// 2322545818, 1677345138, 865101357, 2650232883, 2831881215, 3985005565, 2294283760, |
| 549 | /// 3468161605, 393539559, 3665153349, 1494067812, 106699483, 2596454134, 797235106, |
| 550 | /// 705031740, 1209732933, 2732145769, 4122429072, 141002534, 790195010, 4014829800, |
| 551 | /// 1303930792, 3649568494, 308065964, 1233648836, 2807326116, 79326486, 1262500691, |
| 552 | /// 621809229, 2258109428, 3819258501, 171115668, 1139491184, 2979680603, 1333372297, |
| 553 | /// 1657496603, 2790845317, 4090236532, 4220374789, 601876604, 1828177209, 2372228171, |
| 554 | /// 2247372529 |
| 555 | /// ]; |
| 556 | /// ``` |
| 557 | /// |
| 558 | /// We get the following results: |
| 559 | |
| 560 | /// ```text |
| 561 | /// mul/small:long time: [220.23 ns 221.47 ns 222.81 ns] |
| 562 | /// Found 4 outliers among 100 measurements (4.00%) |
| 563 | /// 2 (2.00%) high mild |
| 564 | /// 2 (2.00%) high severe |
| 565 | /// mul/small:karatsuba time: [233.88 ns 234.63 ns 235.44 ns] |
| 566 | /// Found 11 outliers among 100 measurements (11.00%) |
| 567 | /// 8 (8.00%) high mild |
| 568 | /// 3 (3.00%) high severe |
| 569 | /// mul/large:long time: [1.9365 us 1.9455 us 1.9558 us] |
| 570 | /// Found 12 outliers among 100 measurements (12.00%) |
| 571 | /// 7 (7.00%) high mild |
| 572 | /// 5 (5.00%) high severe |
| 573 | /// mul/large:karatsuba time: [4.4250 us 4.4515 us 4.4812 us] |
| 574 | /// ``` |
| 575 | /// |
| 576 | /// In short, Karatsuba multiplication is never worthwhile for out use-case. |
| 577 | pub fn long_mul(x: &[Limb], y: &[Limb]) -> Option<VecType> { |
| 578 | // Using the immutable value, multiply by all the scalars in y, using |
| 579 | // the algorithm defined above. Use a single buffer to avoid |
| 580 | // frequent reallocations. Handle the first case to avoid a redundant |
| 581 | // addition, since we know y.len() >= 1. |
| 582 | let mut z: StackVec = VecType::try_from(x)?; |
| 583 | if !y.is_empty() { |
| 584 | let y0: u64 = y[0]; |
| 585 | small_mul(&mut z, y:y0)?; |
| 586 | |
| 587 | for (index: usize, &yi: u64) in y.iter().enumerate().skip(1) { |
| 588 | if yi != 0 { |
| 589 | let mut zi: StackVec = VecType::try_from(x)?; |
| 590 | small_mul(&mut zi, y:yi)?; |
| 591 | large_add_from(&mut z, &zi, start:index)?; |
| 592 | } |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | z.normalize(); |
| 597 | Some(z) |
| 598 | } |
| 599 | |
| 600 | /// Multiply bigint by bigint using grade-school multiplication algorithm. |
| 601 | #[inline (always)] |
| 602 | pub fn large_mul(x: &mut VecType, y: &[Limb]) -> Option<()> { |
| 603 | // Karatsuba multiplication never makes sense, so just use grade school |
| 604 | // multiplication. |
| 605 | if y.len() == 1 { |
| 606 | // SAFETY: safe since `y.len() == 1`. |
| 607 | small_mul(x, y[0])?; |
| 608 | } else { |
| 609 | *x = long_mul(x:y, y:x)?; |
| 610 | } |
| 611 | Some(()) |
| 612 | } |
| 613 | |
| 614 | // SHIFT |
| 615 | // ----- |
| 616 | |
| 617 | /// Shift-left `n` bits inside a buffer. |
| 618 | #[inline ] |
| 619 | pub fn shl_bits(x: &mut VecType, n: usize) -> Option<()> { |
| 620 | debug_assert!(n != 0); |
| 621 | |
| 622 | // Internally, for each item, we shift left by n, and add the previous |
| 623 | // right shifted limb-bits. |
| 624 | // For example, we transform (for u8) shifted left 2, to: |
| 625 | // b10100100 b01000010 |
| 626 | // b10 b10010001 b00001000 |
| 627 | debug_assert!(n < LIMB_BITS); |
| 628 | let rshift = LIMB_BITS - n; |
| 629 | let lshift = n; |
| 630 | let mut prev: Limb = 0; |
| 631 | for xi in x.iter_mut() { |
| 632 | let tmp = *xi; |
| 633 | *xi <<= lshift; |
| 634 | *xi |= prev >> rshift; |
| 635 | prev = tmp; |
| 636 | } |
| 637 | |
| 638 | // Always push the carry, even if it creates a non-normal result. |
| 639 | let carry = prev >> rshift; |
| 640 | if carry != 0 { |
| 641 | x.try_push(carry)?; |
| 642 | } |
| 643 | |
| 644 | Some(()) |
| 645 | } |
| 646 | |
| 647 | /// Shift-left `n` limbs inside a buffer. |
| 648 | #[inline ] |
| 649 | pub fn shl_limbs(x: &mut VecType, n: usize) -> Option<()> { |
| 650 | debug_assert!(n != 0); |
| 651 | if n + x.len() > x.capacity() { |
| 652 | None |
| 653 | } else if !x.is_empty() { |
| 654 | let len: usize = n + x.len(); |
| 655 | // SAFE: since x is not empty, and `x.len() + n <= x.capacity()`. |
| 656 | unsafe { |
| 657 | // Move the elements. |
| 658 | let src: *const u64 = x.as_ptr(); |
| 659 | let dst: *mut u64 = x.as_mut_ptr().add(count:n); |
| 660 | ptr::copy(src, dst, count:x.len()); |
| 661 | // Write our 0s. |
| 662 | ptr::write_bytes(dst:x.as_mut_ptr(), val:0, count:n); |
| 663 | x.set_len(len); |
| 664 | } |
| 665 | Some(()) |
| 666 | } else { |
| 667 | Some(()) |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | /// Shift-left buffer by n bits. |
| 672 | #[inline ] |
| 673 | pub fn shl(x: &mut VecType, n: usize) -> Option<()> { |
| 674 | let rem: usize = n % LIMB_BITS; |
| 675 | let div: usize = n / LIMB_BITS; |
| 676 | if rem != 0 { |
| 677 | shl_bits(x, n:rem)?; |
| 678 | } |
| 679 | if div != 0 { |
| 680 | shl_limbs(x, n:div)?; |
| 681 | } |
| 682 | Some(()) |
| 683 | } |
| 684 | |
| 685 | /// Get number of leading zero bits in the storage. |
| 686 | #[inline ] |
| 687 | pub fn leading_zeros(x: &[Limb]) -> u32 { |
| 688 | let length: usize = x.len(); |
| 689 | // wrapping_sub is fine, since it'll just return None. |
| 690 | if let Some(&value: u64) = x.get(index:length.wrapping_sub(1)) { |
| 691 | value.leading_zeros() |
| 692 | } else { |
| 693 | 0 |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | /// Calculate the bit-length of the big-integer. |
| 698 | #[inline ] |
| 699 | pub fn bit_length(x: &[Limb]) -> u32 { |
| 700 | let nlz: u32 = leading_zeros(x); |
| 701 | LIMB_BITS as u32 * x.len() as u32 - nlz |
| 702 | } |
| 703 | |
| 704 | // LIMB |
| 705 | // ---- |
| 706 | |
| 707 | // Type for a single limb of the big integer. |
| 708 | // |
| 709 | // A limb is analogous to a digit in base10, except, it stores 32-bit |
| 710 | // or 64-bit numbers instead. We want types where 64-bit multiplication |
| 711 | // is well-supported by the architecture, rather than emulated in 3 |
| 712 | // instructions. The quickest way to check this support is using a |
| 713 | // cross-compiler for numerous architectures, along with the following |
| 714 | // source file and command: |
| 715 | // |
| 716 | // Compile with `gcc main.c -c -S -O3 -masm=intel` |
| 717 | // |
| 718 | // And the source code is: |
| 719 | // ```text |
| 720 | // #include <stdint.h> |
| 721 | // |
| 722 | // struct i128 { |
| 723 | // uint64_t hi; |
| 724 | // uint64_t lo; |
| 725 | // }; |
| 726 | // |
| 727 | // // Type your code here, or load an example. |
| 728 | // struct i128 square(uint64_t x, uint64_t y) { |
| 729 | // __int128 prod = (__int128)x * (__int128)y; |
| 730 | // struct i128 z; |
| 731 | // z.hi = (uint64_t)(prod >> 64); |
| 732 | // z.lo = (uint64_t)prod; |
| 733 | // return z; |
| 734 | // } |
| 735 | // ``` |
| 736 | // |
| 737 | // If the result contains `call __multi3`, then the multiplication |
| 738 | // is emulated by the compiler. Otherwise, it's natively supported. |
| 739 | // |
| 740 | // This should be all-known 64-bit platforms supported by Rust. |
| 741 | // https://forge.rust-lang.org/platform-support.html |
| 742 | // |
| 743 | // # Supported |
| 744 | // |
| 745 | // Platforms where native 128-bit multiplication is explicitly supported: |
| 746 | // - x86_64 (Supported via `MUL`). |
| 747 | // - mips64 (Supported via `DMULTU`, which `HI` and `LO` can be read-from). |
| 748 | // - s390x (Supported via `MLGR`). |
| 749 | // |
| 750 | // # Efficient |
| 751 | // |
| 752 | // Platforms where native 64-bit multiplication is supported and |
| 753 | // you can extract hi-lo for 64-bit multiplications. |
| 754 | // - aarch64 (Requires `UMULH` and `MUL` to capture high and low bits). |
| 755 | // - powerpc64 (Requires `MULHDU` and `MULLD` to capture high and low bits). |
| 756 | // - riscv64 (Requires `MUL` and `MULH` to capture high and low bits). |
| 757 | // |
| 758 | // # Unsupported |
| 759 | // |
| 760 | // Platforms where native 128-bit multiplication is not supported, |
| 761 | // requiring software emulation. |
| 762 | // sparc64 (`UMUL` only supports double-word arguments). |
| 763 | // sparcv9 (Same as sparc64). |
| 764 | // |
| 765 | // These tests are run via `xcross`, my own library for C cross-compiling, |
| 766 | // which supports numerous targets (far in excess of Rust's tier 1 support, |
| 767 | // or rust-embedded/cross's list). xcross may be found here: |
| 768 | // https://github.com/Alexhuszagh/xcross |
| 769 | // |
| 770 | // To compile for the given target, run: |
| 771 | // `xcross gcc main.c -c -S -O3 --target $target` |
| 772 | // |
| 773 | // All 32-bit architectures inherently do not have support. That means |
| 774 | // we can essentially look for 64-bit architectures that are not SPARC. |
| 775 | |
| 776 | #[cfg (all(target_pointer_width = "64" , not(target_arch = "sparc" )))] |
| 777 | pub type Limb = u64; |
| 778 | #[cfg (all(target_pointer_width = "64" , not(target_arch = "sparc" )))] |
| 779 | pub type Wide = u128; |
| 780 | #[cfg (all(target_pointer_width = "64" , not(target_arch = "sparc" )))] |
| 781 | pub const LIMB_BITS: usize = 64; |
| 782 | |
| 783 | #[cfg (not(all(target_pointer_width = "64" , not(target_arch = "sparc" ))))] |
| 784 | pub type Limb = u32; |
| 785 | #[cfg (not(all(target_pointer_width = "64" , not(target_arch = "sparc" ))))] |
| 786 | pub type Wide = u64; |
| 787 | #[cfg (not(all(target_pointer_width = "64" , not(target_arch = "sparc" ))))] |
| 788 | pub const LIMB_BITS: usize = 32; |
| 789 | |