1 | //! BigNum implementation |
2 | //! |
3 | //! Large numbers are important for a cryptographic library. OpenSSL implementation |
4 | //! of BigNum uses dynamically assigned memory to store an array of bit chunks. This |
5 | //! allows numbers of any size to be compared and mathematical functions performed. |
6 | //! |
7 | //! OpenSSL wiki describes the [`BIGNUM`] data structure. |
8 | //! |
9 | //! # Examples |
10 | //! |
11 | //! ``` |
12 | //! use openssl::bn::BigNum; |
13 | //! use openssl::error::ErrorStack; |
14 | //! |
15 | //! fn main() -> Result<(), ErrorStack> { |
16 | //! let a = BigNum::new()?; // a = 0 |
17 | //! let b = BigNum::from_dec_str("1234567890123456789012345" )?; |
18 | //! let c = &a * &b; |
19 | //! assert_eq!(a, c); |
20 | //! Ok(()) |
21 | //! } |
22 | //! ``` |
23 | //! |
24 | //! [`BIGNUM`]: https://wiki.openssl.org/index.php/Manual:Bn_internal(3) |
25 | use cfg_if::cfg_if; |
26 | use foreign_types::{ForeignType, ForeignTypeRef}; |
27 | use libc::c_int; |
28 | use std::cmp::Ordering; |
29 | use std::ffi::CString; |
30 | use std::ops::{Add, Deref, Div, Mul, Neg, Rem, Shl, Shr, Sub}; |
31 | use std::{fmt, ptr}; |
32 | |
33 | use crate::asn1::Asn1Integer; |
34 | use crate::error::ErrorStack; |
35 | use crate::string::OpensslString; |
36 | use crate::{cvt, cvt_n, cvt_p, LenType}; |
37 | use openssl_macros::corresponds; |
38 | |
39 | cfg_if! { |
40 | if #[cfg(any(ossl110, libressl350))] { |
41 | use ffi::{ |
42 | BN_get_rfc2409_prime_1024, BN_get_rfc2409_prime_768, BN_get_rfc3526_prime_1536, |
43 | BN_get_rfc3526_prime_2048, BN_get_rfc3526_prime_3072, BN_get_rfc3526_prime_4096, |
44 | BN_get_rfc3526_prime_6144, BN_get_rfc3526_prime_8192, BN_is_negative, |
45 | }; |
46 | } else if #[cfg(boringssl)] { |
47 | use ffi::BN_is_negative; |
48 | } else { |
49 | use ffi::{ |
50 | get_rfc2409_prime_1024 as BN_get_rfc2409_prime_1024, |
51 | get_rfc2409_prime_768 as BN_get_rfc2409_prime_768, |
52 | get_rfc3526_prime_1536 as BN_get_rfc3526_prime_1536, |
53 | get_rfc3526_prime_2048 as BN_get_rfc3526_prime_2048, |
54 | get_rfc3526_prime_3072 as BN_get_rfc3526_prime_3072, |
55 | get_rfc3526_prime_4096 as BN_get_rfc3526_prime_4096, |
56 | get_rfc3526_prime_6144 as BN_get_rfc3526_prime_6144, |
57 | get_rfc3526_prime_8192 as BN_get_rfc3526_prime_8192, |
58 | }; |
59 | |
60 | #[allow (bad_style)] |
61 | unsafe fn BN_is_negative(bn: *const ffi::BIGNUM) -> c_int { |
62 | (*bn).neg |
63 | } |
64 | } |
65 | } |
66 | |
67 | /// Options for the most significant bits of a randomly generated `BigNum`. |
68 | pub struct MsbOption(c_int); |
69 | |
70 | impl MsbOption { |
71 | /// The most significant bit of the number may be 0. |
72 | pub const MAYBE_ZERO: MsbOption = MsbOption(-1); |
73 | |
74 | /// The most significant bit of the number must be 1. |
75 | pub const ONE: MsbOption = MsbOption(0); |
76 | |
77 | /// The most significant two bits of the number must be 1. |
78 | /// |
79 | /// The number of bits in the product of two such numbers will always be exactly twice the |
80 | /// number of bits in the original numbers. |
81 | pub const TWO_ONES: MsbOption = MsbOption(1); |
82 | } |
83 | |
84 | foreign_type_and_impl_send_sync! { |
85 | type CType = ffi::BN_CTX; |
86 | fn drop = ffi::BN_CTX_free; |
87 | |
88 | /// Temporary storage for BigNums on the secure heap |
89 | /// |
90 | /// BigNum values are stored dynamically and therefore can be expensive |
91 | /// to allocate. BigNumContext and the OpenSSL [`BN_CTX`] structure are used |
92 | /// internally when passing BigNum values between subroutines. |
93 | /// |
94 | /// [`BN_CTX`]: https://www.openssl.org/docs/manmaster/crypto/BN_CTX_new.html |
95 | pub struct BigNumContext; |
96 | /// Reference to [`BigNumContext`] |
97 | /// |
98 | /// [`BigNumContext`]: struct.BigNumContext.html |
99 | pub struct BigNumContextRef; |
100 | } |
101 | |
102 | impl BigNumContext { |
103 | /// Returns a new `BigNumContext`. |
104 | #[corresponds (BN_CTX_new)] |
105 | pub fn new() -> Result<BigNumContext, ErrorStack> { |
106 | unsafe { |
107 | ffi::init(); |
108 | cvt_p(ffi::BN_CTX_new()).map(op:BigNumContext) |
109 | } |
110 | } |
111 | |
112 | /// Returns a new secure `BigNumContext`. |
113 | #[corresponds (BN_CTX_secure_new)] |
114 | #[cfg (ossl110)] |
115 | pub fn new_secure() -> Result<BigNumContext, ErrorStack> { |
116 | unsafe { |
117 | ffi::init(); |
118 | cvt_p(ffi::BN_CTX_secure_new()).map(op:BigNumContext) |
119 | } |
120 | } |
121 | } |
122 | |
123 | foreign_type_and_impl_send_sync! { |
124 | type CType = ffi::BIGNUM; |
125 | fn drop = ffi::BN_free; |
126 | |
127 | /// Dynamically sized large number implementation |
128 | /// |
129 | /// Perform large number mathematics. Create a new BigNum |
130 | /// with [`new`]. Perform standard mathematics on large numbers using |
131 | /// methods from [`Dref<Target = BigNumRef>`] |
132 | /// |
133 | /// OpenSSL documentation at [`BN_new`]. |
134 | /// |
135 | /// [`new`]: struct.BigNum.html#method.new |
136 | /// [`Dref<Target = BigNumRef>`]: struct.BigNum.html#deref-methods |
137 | /// [`BN_new`]: https://www.openssl.org/docs/manmaster/crypto/BN_new.html |
138 | /// |
139 | /// # Examples |
140 | /// ``` |
141 | /// use openssl::bn::BigNum; |
142 | /// # use openssl::error::ErrorStack; |
143 | /// # fn bignums() -> Result< (), ErrorStack > { |
144 | /// let little_big = BigNum::from_u32(std::u32::MAX)?; |
145 | /// assert_eq!(*&little_big.num_bytes(), 4); |
146 | /// # Ok(()) |
147 | /// # } |
148 | /// # fn main () { bignums(); } |
149 | /// ``` |
150 | pub struct BigNum; |
151 | /// Reference to a [`BigNum`] |
152 | /// |
153 | /// [`BigNum`]: struct.BigNum.html |
154 | pub struct BigNumRef; |
155 | } |
156 | |
157 | impl BigNumRef { |
158 | /// Erases the memory used by this `BigNum`, resetting its value to 0. |
159 | /// |
160 | /// This can be used to destroy sensitive data such as keys when they are no longer needed. |
161 | #[corresponds (BN_clear)] |
162 | pub fn clear(&mut self) { |
163 | unsafe { ffi::BN_clear(self.as_ptr()) } |
164 | } |
165 | |
166 | /// Adds a `u32` to `self`. |
167 | #[corresponds (BN_add_word)] |
168 | pub fn add_word(&mut self, w: u32) -> Result<(), ErrorStack> { |
169 | unsafe { cvt(ffi::BN_add_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) } |
170 | } |
171 | |
172 | /// Subtracts a `u32` from `self`. |
173 | #[corresponds (BN_sub_word)] |
174 | pub fn sub_word(&mut self, w: u32) -> Result<(), ErrorStack> { |
175 | unsafe { cvt(ffi::BN_sub_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) } |
176 | } |
177 | |
178 | /// Multiplies a `u32` by `self`. |
179 | #[corresponds (BN_mul_word)] |
180 | pub fn mul_word(&mut self, w: u32) -> Result<(), ErrorStack> { |
181 | unsafe { cvt(ffi::BN_mul_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) } |
182 | } |
183 | |
184 | /// Divides `self` by a `u32`, returning the remainder. |
185 | #[corresponds (BN_div_word)] |
186 | #[allow (clippy::useless_conversion)] |
187 | pub fn div_word(&mut self, w: u32) -> Result<u64, ErrorStack> { |
188 | unsafe { |
189 | let r = ffi::BN_div_word(self.as_ptr(), w.into()); |
190 | if r == ffi::BN_ULONG::max_value() { |
191 | Err(ErrorStack::get()) |
192 | } else { |
193 | Ok(r.into()) |
194 | } |
195 | } |
196 | } |
197 | |
198 | /// Returns the result of `self` modulo `w`. |
199 | #[corresponds (BN_mod_word)] |
200 | #[allow (clippy::useless_conversion)] |
201 | pub fn mod_word(&self, w: u32) -> Result<u64, ErrorStack> { |
202 | unsafe { |
203 | let r = ffi::BN_mod_word(self.as_ptr(), w.into()); |
204 | if r == ffi::BN_ULONG::max_value() { |
205 | Err(ErrorStack::get()) |
206 | } else { |
207 | Ok(r.into()) |
208 | } |
209 | } |
210 | } |
211 | |
212 | /// Places a cryptographically-secure pseudo-random nonnegative |
213 | /// number less than `self` in `rnd`. |
214 | #[corresponds (BN_rand_range)] |
215 | pub fn rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> { |
216 | unsafe { cvt(ffi::BN_rand_range(rnd.as_ptr(), self.as_ptr())).map(|_| ()) } |
217 | } |
218 | |
219 | /// The cryptographically weak counterpart to `rand_in_range`. |
220 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
221 | #[corresponds (BN_pseudo_rand_range)] |
222 | pub fn pseudo_rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> { |
223 | unsafe { cvt(ffi::BN_pseudo_rand_range(rnd.as_ptr(), self.as_ptr())).map(|_| ()) } |
224 | } |
225 | |
226 | /// Sets bit `n`. Equivalent to `self |= (1 << n)`. |
227 | /// |
228 | /// When setting a bit outside of `self`, it is expanded. |
229 | #[corresponds (BN_set_bit)] |
230 | #[allow (clippy::useless_conversion)] |
231 | pub fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack> { |
232 | unsafe { cvt(ffi::BN_set_bit(self.as_ptr(), n.into())).map(|_| ()) } |
233 | } |
234 | |
235 | /// Clears bit `n`, setting it to 0. Equivalent to `self &= ~(1 << n)`. |
236 | /// |
237 | /// When clearing a bit outside of `self`, an error is returned. |
238 | #[corresponds (BN_clear_bit)] |
239 | #[allow (clippy::useless_conversion)] |
240 | pub fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack> { |
241 | unsafe { cvt(ffi::BN_clear_bit(self.as_ptr(), n.into())).map(|_| ()) } |
242 | } |
243 | |
244 | /// Returns `true` if the `n`th bit of `self` is set to 1, `false` otherwise. |
245 | #[corresponds (BN_is_bit_set)] |
246 | #[allow (clippy::useless_conversion)] |
247 | pub fn is_bit_set(&self, n: i32) -> bool { |
248 | unsafe { ffi::BN_is_bit_set(self.as_ptr(), n.into()) == 1 } |
249 | } |
250 | |
251 | /// Truncates `self` to the lowest `n` bits. |
252 | /// |
253 | /// An error occurs if `self` is already shorter than `n` bits. |
254 | #[corresponds (BN_mask_bits)] |
255 | #[allow (clippy::useless_conversion)] |
256 | pub fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack> { |
257 | unsafe { cvt(ffi::BN_mask_bits(self.as_ptr(), n.into())).map(|_| ()) } |
258 | } |
259 | |
260 | /// Places `a << 1` in `self`. Equivalent to `self * 2`. |
261 | #[corresponds (BN_lshift1)] |
262 | pub fn lshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack> { |
263 | unsafe { cvt(ffi::BN_lshift1(self.as_ptr(), a.as_ptr())).map(|_| ()) } |
264 | } |
265 | |
266 | /// Places `a >> 1` in `self`. Equivalent to `self / 2`. |
267 | #[corresponds (BN_rshift1)] |
268 | pub fn rshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack> { |
269 | unsafe { cvt(ffi::BN_rshift1(self.as_ptr(), a.as_ptr())).map(|_| ()) } |
270 | } |
271 | |
272 | /// Places `a + b` in `self`. [`core::ops::Add`] is also implemented for `BigNumRef`. |
273 | /// |
274 | /// [`core::ops::Add`]: struct.BigNumRef.html#method.add |
275 | #[corresponds (BN_add)] |
276 | pub fn checked_add(&mut self, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> { |
277 | unsafe { cvt(ffi::BN_add(self.as_ptr(), a.as_ptr(), b.as_ptr())).map(|_| ()) } |
278 | } |
279 | |
280 | /// Places `a - b` in `self`. [`core::ops::Sub`] is also implemented for `BigNumRef`. |
281 | /// |
282 | /// [`core::ops::Sub`]: struct.BigNumRef.html#method.sub |
283 | #[corresponds (BN_sub)] |
284 | pub fn checked_sub(&mut self, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> { |
285 | unsafe { cvt(ffi::BN_sub(self.as_ptr(), a.as_ptr(), b.as_ptr())).map(|_| ()) } |
286 | } |
287 | |
288 | /// Places `a << n` in `self`. Equivalent to `a * 2 ^ n`. |
289 | #[corresponds (BN_lshift)] |
290 | #[allow (clippy::useless_conversion)] |
291 | pub fn lshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack> { |
292 | unsafe { cvt(ffi::BN_lshift(self.as_ptr(), a.as_ptr(), n.into())).map(|_| ()) } |
293 | } |
294 | |
295 | /// Places `a >> n` in `self`. Equivalent to `a / 2 ^ n`. |
296 | #[corresponds (BN_rshift)] |
297 | #[allow (clippy::useless_conversion)] |
298 | pub fn rshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack> { |
299 | unsafe { cvt(ffi::BN_rshift(self.as_ptr(), a.as_ptr(), n.into())).map(|_| ()) } |
300 | } |
301 | |
302 | /// Creates a new BigNum with the same value. |
303 | #[corresponds (BN_dup)] |
304 | pub fn to_owned(&self) -> Result<BigNum, ErrorStack> { |
305 | unsafe { cvt_p(ffi::BN_dup(self.as_ptr())).map(|b| BigNum::from_ptr(b)) } |
306 | } |
307 | |
308 | /// Sets the sign of `self`. Pass true to set `self` to a negative. False sets |
309 | /// `self` positive. |
310 | #[corresponds (BN_set_negative)] |
311 | pub fn set_negative(&mut self, negative: bool) { |
312 | unsafe { ffi::BN_set_negative(self.as_ptr(), negative as c_int) } |
313 | } |
314 | |
315 | /// Compare the absolute values of `self` and `oth`. |
316 | /// |
317 | /// # Examples |
318 | /// |
319 | /// ``` |
320 | /// # use openssl::bn::BigNum; |
321 | /// # use std::cmp::Ordering; |
322 | /// let s = -BigNum::from_u32(8).unwrap(); |
323 | /// let o = BigNum::from_u32(8).unwrap(); |
324 | /// |
325 | /// assert_eq!(s.ucmp(&o), Ordering::Equal); |
326 | /// ``` |
327 | #[corresponds (BN_ucmp)] |
328 | pub fn ucmp(&self, oth: &BigNumRef) -> Ordering { |
329 | unsafe { ffi::BN_ucmp(self.as_ptr(), oth.as_ptr()).cmp(&0) } |
330 | } |
331 | |
332 | /// Returns `true` if `self` is negative. |
333 | #[corresponds (BN_is_negative)] |
334 | pub fn is_negative(&self) -> bool { |
335 | unsafe { BN_is_negative(self.as_ptr()) == 1 } |
336 | } |
337 | |
338 | /// Returns `true` is `self` is even. |
339 | #[corresponds (BN_is_even)] |
340 | #[cfg (any(ossl110, boringssl, libressl350))] |
341 | pub fn is_even(&self) -> bool { |
342 | !self.is_odd() |
343 | } |
344 | |
345 | /// Returns `true` is `self` is odd. |
346 | #[corresponds (BN_is_odd)] |
347 | #[cfg (any(ossl110, boringssl, libressl350))] |
348 | pub fn is_odd(&self) -> bool { |
349 | unsafe { ffi::BN_is_odd(self.as_ptr()) == 1 } |
350 | } |
351 | |
352 | /// Returns the number of significant bits in `self`. |
353 | #[corresponds (BN_num_bits)] |
354 | #[allow (clippy::unnecessary_cast)] |
355 | pub fn num_bits(&self) -> i32 { |
356 | unsafe { ffi::BN_num_bits(self.as_ptr()) as i32 } |
357 | } |
358 | |
359 | /// Returns the size of `self` in bytes. Implemented natively. |
360 | pub fn num_bytes(&self) -> i32 { |
361 | (self.num_bits() + 7) / 8 |
362 | } |
363 | |
364 | /// Generates a cryptographically strong pseudo-random `BigNum`, placing it in `self`. |
365 | /// |
366 | /// # Parameters |
367 | /// |
368 | /// * `bits`: Length of the number in bits. |
369 | /// * `msb`: The desired properties of the most significant bit. See [`constants`]. |
370 | /// * `odd`: If `true`, the generated number will be odd. |
371 | /// |
372 | /// # Examples |
373 | /// |
374 | /// ``` |
375 | /// use openssl::bn::{BigNum, MsbOption}; |
376 | /// use openssl::error::ErrorStack; |
377 | /// |
378 | /// fn generate_random() -> Result< BigNum, ErrorStack > { |
379 | /// let mut big = BigNum::new()?; |
380 | /// |
381 | /// // Generates a 128-bit odd random number |
382 | /// big.rand(128, MsbOption::MAYBE_ZERO, true); |
383 | /// Ok((big)) |
384 | /// } |
385 | /// ``` |
386 | /// |
387 | /// [`constants`]: index.html#constants |
388 | #[corresponds (BN_rand)] |
389 | #[allow (clippy::useless_conversion)] |
390 | pub fn rand(&mut self, bits: i32, msb: MsbOption, odd: bool) -> Result<(), ErrorStack> { |
391 | unsafe { |
392 | cvt(ffi::BN_rand( |
393 | self.as_ptr(), |
394 | bits.into(), |
395 | msb.0, |
396 | odd as c_int, |
397 | )) |
398 | .map(|_| ()) |
399 | } |
400 | } |
401 | |
402 | /// The cryptographically weak counterpart to `rand`. Not suitable for key generation. |
403 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
404 | #[corresponds (BN_pseudo_rand)] |
405 | #[allow (clippy::useless_conversion)] |
406 | pub fn pseudo_rand(&mut self, bits: i32, msb: MsbOption, odd: bool) -> Result<(), ErrorStack> { |
407 | unsafe { |
408 | cvt(ffi::BN_pseudo_rand( |
409 | self.as_ptr(), |
410 | bits.into(), |
411 | msb.0, |
412 | odd as c_int, |
413 | )) |
414 | .map(|_| ()) |
415 | } |
416 | } |
417 | |
418 | /// Generates a prime number, placing it in `self`. |
419 | /// |
420 | /// # Parameters |
421 | /// |
422 | /// * `bits`: The length of the prime in bits (lower bound). |
423 | /// * `safe`: If true, returns a "safe" prime `p` so that `(p-1)/2` is also prime. |
424 | /// * `add`/`rem`: If `add` is set to `Some(add)`, `p % add == rem` will hold, where `p` is the |
425 | /// generated prime and `rem` is `1` if not specified (`None`). |
426 | /// |
427 | /// # Examples |
428 | /// |
429 | /// ``` |
430 | /// use openssl::bn::BigNum; |
431 | /// use openssl::error::ErrorStack; |
432 | /// |
433 | /// fn generate_weak_prime() -> Result< BigNum, ErrorStack > { |
434 | /// let mut big = BigNum::new()?; |
435 | /// |
436 | /// // Generates a 128-bit simple prime number |
437 | /// big.generate_prime(128, false, None, None); |
438 | /// Ok((big)) |
439 | /// } |
440 | /// ``` |
441 | #[corresponds (BN_generate_prime_ex)] |
442 | pub fn generate_prime( |
443 | &mut self, |
444 | bits: i32, |
445 | safe: bool, |
446 | add: Option<&BigNumRef>, |
447 | rem: Option<&BigNumRef>, |
448 | ) -> Result<(), ErrorStack> { |
449 | unsafe { |
450 | cvt(ffi::BN_generate_prime_ex( |
451 | self.as_ptr(), |
452 | bits as c_int, |
453 | safe as c_int, |
454 | add.map(|n| n.as_ptr()).unwrap_or(ptr::null_mut()), |
455 | rem.map(|n| n.as_ptr()).unwrap_or(ptr::null_mut()), |
456 | ptr::null_mut(), |
457 | )) |
458 | .map(|_| ()) |
459 | } |
460 | } |
461 | |
462 | /// Places the result of `a * b` in `self`. |
463 | /// [`core::ops::Mul`] is also implemented for `BigNumRef`. |
464 | /// |
465 | /// [`core::ops::Mul`]: struct.BigNumRef.html#method.mul |
466 | #[corresponds (BN_mul)] |
467 | pub fn checked_mul( |
468 | &mut self, |
469 | a: &BigNumRef, |
470 | b: &BigNumRef, |
471 | ctx: &mut BigNumContextRef, |
472 | ) -> Result<(), ErrorStack> { |
473 | unsafe { |
474 | cvt(ffi::BN_mul( |
475 | self.as_ptr(), |
476 | a.as_ptr(), |
477 | b.as_ptr(), |
478 | ctx.as_ptr(), |
479 | )) |
480 | .map(|_| ()) |
481 | } |
482 | } |
483 | |
484 | /// Places the result of `a / b` in `self`. The remainder is discarded. |
485 | /// [`core::ops::Div`] is also implemented for `BigNumRef`. |
486 | /// |
487 | /// [`core::ops::Div`]: struct.BigNumRef.html#method.div |
488 | #[corresponds (BN_div)] |
489 | pub fn checked_div( |
490 | &mut self, |
491 | a: &BigNumRef, |
492 | b: &BigNumRef, |
493 | ctx: &mut BigNumContextRef, |
494 | ) -> Result<(), ErrorStack> { |
495 | unsafe { |
496 | cvt(ffi::BN_div( |
497 | self.as_ptr(), |
498 | ptr::null_mut(), |
499 | a.as_ptr(), |
500 | b.as_ptr(), |
501 | ctx.as_ptr(), |
502 | )) |
503 | .map(|_| ()) |
504 | } |
505 | } |
506 | |
507 | /// Places the result of `a % b` in `self`. |
508 | #[corresponds (BN_div)] |
509 | pub fn checked_rem( |
510 | &mut self, |
511 | a: &BigNumRef, |
512 | b: &BigNumRef, |
513 | ctx: &mut BigNumContextRef, |
514 | ) -> Result<(), ErrorStack> { |
515 | unsafe { |
516 | cvt(ffi::BN_div( |
517 | ptr::null_mut(), |
518 | self.as_ptr(), |
519 | a.as_ptr(), |
520 | b.as_ptr(), |
521 | ctx.as_ptr(), |
522 | )) |
523 | .map(|_| ()) |
524 | } |
525 | } |
526 | |
527 | /// Places the result of `a / b` in `self` and `a % b` in `rem`. |
528 | #[corresponds (BN_div)] |
529 | pub fn div_rem( |
530 | &mut self, |
531 | rem: &mut BigNumRef, |
532 | a: &BigNumRef, |
533 | b: &BigNumRef, |
534 | ctx: &mut BigNumContextRef, |
535 | ) -> Result<(), ErrorStack> { |
536 | unsafe { |
537 | cvt(ffi::BN_div( |
538 | self.as_ptr(), |
539 | rem.as_ptr(), |
540 | a.as_ptr(), |
541 | b.as_ptr(), |
542 | ctx.as_ptr(), |
543 | )) |
544 | .map(|_| ()) |
545 | } |
546 | } |
547 | |
548 | /// Places the result of `a²` in `self`. |
549 | #[corresponds (BN_sqr)] |
550 | pub fn sqr(&mut self, a: &BigNumRef, ctx: &mut BigNumContextRef) -> Result<(), ErrorStack> { |
551 | unsafe { cvt(ffi::BN_sqr(self.as_ptr(), a.as_ptr(), ctx.as_ptr())).map(|_| ()) } |
552 | } |
553 | |
554 | /// Places the result of `a mod m` in `self`. As opposed to `div_rem` |
555 | /// the result is non-negative. |
556 | #[corresponds (BN_nnmod)] |
557 | pub fn nnmod( |
558 | &mut self, |
559 | a: &BigNumRef, |
560 | m: &BigNumRef, |
561 | ctx: &mut BigNumContextRef, |
562 | ) -> Result<(), ErrorStack> { |
563 | unsafe { |
564 | cvt(ffi::BN_nnmod( |
565 | self.as_ptr(), |
566 | a.as_ptr(), |
567 | m.as_ptr(), |
568 | ctx.as_ptr(), |
569 | )) |
570 | .map(|_| ()) |
571 | } |
572 | } |
573 | |
574 | /// Places the result of `(a + b) mod m` in `self`. |
575 | #[corresponds (BN_mod_add)] |
576 | pub fn mod_add( |
577 | &mut self, |
578 | a: &BigNumRef, |
579 | b: &BigNumRef, |
580 | m: &BigNumRef, |
581 | ctx: &mut BigNumContextRef, |
582 | ) -> Result<(), ErrorStack> { |
583 | unsafe { |
584 | cvt(ffi::BN_mod_add( |
585 | self.as_ptr(), |
586 | a.as_ptr(), |
587 | b.as_ptr(), |
588 | m.as_ptr(), |
589 | ctx.as_ptr(), |
590 | )) |
591 | .map(|_| ()) |
592 | } |
593 | } |
594 | |
595 | /// Places the result of `(a - b) mod m` in `self`. |
596 | #[corresponds (BN_mod_sub)] |
597 | pub fn mod_sub( |
598 | &mut self, |
599 | a: &BigNumRef, |
600 | b: &BigNumRef, |
601 | m: &BigNumRef, |
602 | ctx: &mut BigNumContextRef, |
603 | ) -> Result<(), ErrorStack> { |
604 | unsafe { |
605 | cvt(ffi::BN_mod_sub( |
606 | self.as_ptr(), |
607 | a.as_ptr(), |
608 | b.as_ptr(), |
609 | m.as_ptr(), |
610 | ctx.as_ptr(), |
611 | )) |
612 | .map(|_| ()) |
613 | } |
614 | } |
615 | |
616 | /// Places the result of `(a * b) mod m` in `self`. |
617 | #[corresponds (BN_mod_mul)] |
618 | pub fn mod_mul( |
619 | &mut self, |
620 | a: &BigNumRef, |
621 | b: &BigNumRef, |
622 | m: &BigNumRef, |
623 | ctx: &mut BigNumContextRef, |
624 | ) -> Result<(), ErrorStack> { |
625 | unsafe { |
626 | cvt(ffi::BN_mod_mul( |
627 | self.as_ptr(), |
628 | a.as_ptr(), |
629 | b.as_ptr(), |
630 | m.as_ptr(), |
631 | ctx.as_ptr(), |
632 | )) |
633 | .map(|_| ()) |
634 | } |
635 | } |
636 | |
637 | /// Places the result of `a² mod m` in `self`. |
638 | #[corresponds (BN_mod_sqr)] |
639 | pub fn mod_sqr( |
640 | &mut self, |
641 | a: &BigNumRef, |
642 | m: &BigNumRef, |
643 | ctx: &mut BigNumContextRef, |
644 | ) -> Result<(), ErrorStack> { |
645 | unsafe { |
646 | cvt(ffi::BN_mod_sqr( |
647 | self.as_ptr(), |
648 | a.as_ptr(), |
649 | m.as_ptr(), |
650 | ctx.as_ptr(), |
651 | )) |
652 | .map(|_| ()) |
653 | } |
654 | } |
655 | |
656 | /// Places into `self` the modular square root of `a` such that `self^2 = a (mod p)` |
657 | #[corresponds (BN_mod_sqrt)] |
658 | pub fn mod_sqrt( |
659 | &mut self, |
660 | a: &BigNumRef, |
661 | p: &BigNumRef, |
662 | ctx: &mut BigNumContextRef, |
663 | ) -> Result<(), ErrorStack> { |
664 | unsafe { |
665 | cvt_p(ffi::BN_mod_sqrt( |
666 | self.as_ptr(), |
667 | a.as_ptr(), |
668 | p.as_ptr(), |
669 | ctx.as_ptr(), |
670 | )) |
671 | .map(|_| ()) |
672 | } |
673 | } |
674 | |
675 | /// Places the result of `a^p` in `self`. |
676 | #[corresponds (BN_exp)] |
677 | pub fn exp( |
678 | &mut self, |
679 | a: &BigNumRef, |
680 | p: &BigNumRef, |
681 | ctx: &mut BigNumContextRef, |
682 | ) -> Result<(), ErrorStack> { |
683 | unsafe { |
684 | cvt(ffi::BN_exp( |
685 | self.as_ptr(), |
686 | a.as_ptr(), |
687 | p.as_ptr(), |
688 | ctx.as_ptr(), |
689 | )) |
690 | .map(|_| ()) |
691 | } |
692 | } |
693 | |
694 | /// Places the result of `a^p mod m` in `self`. |
695 | #[corresponds (BN_mod_exp)] |
696 | pub fn mod_exp( |
697 | &mut self, |
698 | a: &BigNumRef, |
699 | p: &BigNumRef, |
700 | m: &BigNumRef, |
701 | ctx: &mut BigNumContextRef, |
702 | ) -> Result<(), ErrorStack> { |
703 | unsafe { |
704 | cvt(ffi::BN_mod_exp( |
705 | self.as_ptr(), |
706 | a.as_ptr(), |
707 | p.as_ptr(), |
708 | m.as_ptr(), |
709 | ctx.as_ptr(), |
710 | )) |
711 | .map(|_| ()) |
712 | } |
713 | } |
714 | |
715 | /// Places the inverse of `a` modulo `n` in `self`. |
716 | #[corresponds (BN_mod_inverse)] |
717 | pub fn mod_inverse( |
718 | &mut self, |
719 | a: &BigNumRef, |
720 | n: &BigNumRef, |
721 | ctx: &mut BigNumContextRef, |
722 | ) -> Result<(), ErrorStack> { |
723 | unsafe { |
724 | cvt_p(ffi::BN_mod_inverse( |
725 | self.as_ptr(), |
726 | a.as_ptr(), |
727 | n.as_ptr(), |
728 | ctx.as_ptr(), |
729 | )) |
730 | .map(|_| ()) |
731 | } |
732 | } |
733 | |
734 | /// Places the greatest common denominator of `a` and `b` in `self`. |
735 | #[corresponds (BN_gcd)] |
736 | pub fn gcd( |
737 | &mut self, |
738 | a: &BigNumRef, |
739 | b: &BigNumRef, |
740 | ctx: &mut BigNumContextRef, |
741 | ) -> Result<(), ErrorStack> { |
742 | unsafe { |
743 | cvt(ffi::BN_gcd( |
744 | self.as_ptr(), |
745 | a.as_ptr(), |
746 | b.as_ptr(), |
747 | ctx.as_ptr(), |
748 | )) |
749 | .map(|_| ()) |
750 | } |
751 | } |
752 | |
753 | /// Checks whether `self` is prime. |
754 | /// |
755 | /// Performs a Miller-Rabin probabilistic primality test with `checks` iterations. |
756 | /// |
757 | /// # Return Value |
758 | /// |
759 | /// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`. |
760 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
761 | #[corresponds (BN_is_prime_ex)] |
762 | #[allow (clippy::useless_conversion)] |
763 | pub fn is_prime(&self, checks: i32, ctx: &mut BigNumContextRef) -> Result<bool, ErrorStack> { |
764 | unsafe { |
765 | cvt_n(ffi::BN_is_prime_ex( |
766 | self.as_ptr(), |
767 | checks.into(), |
768 | ctx.as_ptr(), |
769 | ptr::null_mut(), |
770 | )) |
771 | .map(|r| r != 0) |
772 | } |
773 | } |
774 | |
775 | /// Checks whether `self` is prime with optional trial division. |
776 | /// |
777 | /// If `do_trial_division` is `true`, first performs trial division by a number of small primes. |
778 | /// Then, like `is_prime`, performs a Miller-Rabin probabilistic primality test with `checks` |
779 | /// iterations. |
780 | /// |
781 | /// # Return Value |
782 | /// |
783 | /// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`. |
784 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
785 | #[corresponds (BN_is_prime_fasttest_ex)] |
786 | #[allow (clippy::useless_conversion)] |
787 | pub fn is_prime_fasttest( |
788 | &self, |
789 | checks: i32, |
790 | ctx: &mut BigNumContextRef, |
791 | do_trial_division: bool, |
792 | ) -> Result<bool, ErrorStack> { |
793 | unsafe { |
794 | cvt_n(ffi::BN_is_prime_fasttest_ex( |
795 | self.as_ptr(), |
796 | checks.into(), |
797 | ctx.as_ptr(), |
798 | do_trial_division as c_int, |
799 | ptr::null_mut(), |
800 | )) |
801 | .map(|r| r != 0) |
802 | } |
803 | } |
804 | |
805 | /// Returns a big-endian byte vector representation of the absolute value of `self`. |
806 | /// |
807 | /// `self` can be recreated by using `from_slice`. |
808 | /// |
809 | /// ``` |
810 | /// # use openssl::bn::BigNum; |
811 | /// let s = -BigNum::from_u32(4543).unwrap(); |
812 | /// let r = BigNum::from_u32(4543).unwrap(); |
813 | /// |
814 | /// let s_vec = s.to_vec(); |
815 | /// assert_eq!(BigNum::from_slice(&s_vec).unwrap(), r); |
816 | /// ``` |
817 | #[corresponds (BN_bn2bin)] |
818 | pub fn to_vec(&self) -> Vec<u8> { |
819 | let size = self.num_bytes() as usize; |
820 | let mut v = Vec::with_capacity(size); |
821 | unsafe { |
822 | ffi::BN_bn2bin(self.as_ptr(), v.as_mut_ptr()); |
823 | v.set_len(size); |
824 | } |
825 | v |
826 | } |
827 | |
828 | /// Returns a big-endian byte vector representation of the absolute value of `self` padded |
829 | /// to `pad_to` bytes. |
830 | /// |
831 | /// If `pad_to` is less than `self.num_bytes()` then an error is returned. |
832 | /// |
833 | /// `self` can be recreated by using `from_slice`. |
834 | /// |
835 | /// ``` |
836 | /// # use openssl::bn::BigNum; |
837 | /// let bn = BigNum::from_u32(0x4543).unwrap(); |
838 | /// |
839 | /// let bn_vec = bn.to_vec_padded(4).unwrap(); |
840 | /// assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]); |
841 | /// |
842 | /// let r = bn.to_vec_padded(1); |
843 | /// assert!(r.is_err()); |
844 | /// |
845 | /// let bn = -BigNum::from_u32(0x4543).unwrap(); |
846 | /// let bn_vec = bn.to_vec_padded(4).unwrap(); |
847 | /// assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]); |
848 | /// ``` |
849 | #[corresponds (BN_bn2binpad)] |
850 | #[cfg (any(ossl110, libressl340, boringssl))] |
851 | pub fn to_vec_padded(&self, pad_to: i32) -> Result<Vec<u8>, ErrorStack> { |
852 | let mut v = Vec::with_capacity(pad_to as usize); |
853 | unsafe { |
854 | cvt(ffi::BN_bn2binpad(self.as_ptr(), v.as_mut_ptr(), pad_to))?; |
855 | v.set_len(pad_to as usize); |
856 | } |
857 | Ok(v) |
858 | } |
859 | |
860 | /// Returns a decimal string representation of `self`. |
861 | /// |
862 | /// ``` |
863 | /// # use openssl::bn::BigNum; |
864 | /// let s = -BigNum::from_u32(12345).unwrap(); |
865 | /// |
866 | /// assert_eq!(&**s.to_dec_str().unwrap(), "-12345" ); |
867 | /// ``` |
868 | #[corresponds (BN_bn2dec)] |
869 | pub fn to_dec_str(&self) -> Result<OpensslString, ErrorStack> { |
870 | unsafe { |
871 | let buf = cvt_p(ffi::BN_bn2dec(self.as_ptr()))?; |
872 | Ok(OpensslString::from_ptr(buf)) |
873 | } |
874 | } |
875 | |
876 | /// Returns a hexadecimal string representation of `self`. |
877 | /// |
878 | /// ``` |
879 | /// # use openssl::bn::BigNum; |
880 | /// let s = -BigNum::from_u32(0x99ff).unwrap(); |
881 | /// |
882 | /// assert_eq!(s.to_hex_str().unwrap().to_uppercase(), "-99FF" ); |
883 | /// ``` |
884 | #[corresponds (BN_bn2hex)] |
885 | pub fn to_hex_str(&self) -> Result<OpensslString, ErrorStack> { |
886 | unsafe { |
887 | let buf = cvt_p(ffi::BN_bn2hex(self.as_ptr()))?; |
888 | Ok(OpensslString::from_ptr(buf)) |
889 | } |
890 | } |
891 | |
892 | /// Returns an `Asn1Integer` containing the value of `self`. |
893 | #[corresponds (BN_to_ASN1_INTEGER)] |
894 | pub fn to_asn1_integer(&self) -> Result<Asn1Integer, ErrorStack> { |
895 | unsafe { |
896 | cvt_p(ffi::BN_to_ASN1_INTEGER(self.as_ptr(), ptr::null_mut())) |
897 | .map(|p| Asn1Integer::from_ptr(p)) |
898 | } |
899 | } |
900 | |
901 | /// Force constant time computation on this value. |
902 | #[corresponds (BN_set_flags)] |
903 | #[cfg (ossl110)] |
904 | pub fn set_const_time(&mut self) { |
905 | unsafe { ffi::BN_set_flags(self.as_ptr(), ffi::BN_FLG_CONSTTIME) } |
906 | } |
907 | |
908 | /// Returns true if `self` is in const time mode. |
909 | #[corresponds (BN_get_flags)] |
910 | #[cfg (ossl110)] |
911 | pub fn is_const_time(&self) -> bool { |
912 | unsafe { |
913 | let ret = ffi::BN_get_flags(self.as_ptr(), ffi::BN_FLG_CONSTTIME); |
914 | ret == ffi::BN_FLG_CONSTTIME |
915 | } |
916 | } |
917 | |
918 | /// Returns true if `self` was created with [`BigNum::new_secure`]. |
919 | #[corresponds (BN_get_flags)] |
920 | #[cfg (ossl110)] |
921 | pub fn is_secure(&self) -> bool { |
922 | unsafe { |
923 | let ret = ffi::BN_get_flags(self.as_ptr(), ffi::BN_FLG_SECURE); |
924 | ret == ffi::BN_FLG_SECURE |
925 | } |
926 | } |
927 | } |
928 | |
929 | impl BigNum { |
930 | /// Creates a new `BigNum` with the value 0. |
931 | #[corresponds (BN_new)] |
932 | pub fn new() -> Result<BigNum, ErrorStack> { |
933 | unsafe { |
934 | ffi::init(); |
935 | let v = cvt_p(ffi::BN_new())?; |
936 | Ok(BigNum::from_ptr(v)) |
937 | } |
938 | } |
939 | |
940 | /// Returns a new secure `BigNum`. |
941 | #[corresponds (BN_secure_new)] |
942 | #[cfg (ossl110)] |
943 | pub fn new_secure() -> Result<BigNum, ErrorStack> { |
944 | unsafe { |
945 | ffi::init(); |
946 | let v = cvt_p(ffi::BN_secure_new())?; |
947 | Ok(BigNum::from_ptr(v)) |
948 | } |
949 | } |
950 | |
951 | /// Creates a new `BigNum` with the given value. |
952 | #[corresponds (BN_set_word)] |
953 | pub fn from_u32(n: u32) -> Result<BigNum, ErrorStack> { |
954 | BigNum::new().and_then(|v| unsafe { |
955 | cvt(ffi::BN_set_word(v.as_ptr(), n as ffi::BN_ULONG)).map(|_| v) |
956 | }) |
957 | } |
958 | |
959 | /// Creates a `BigNum` from a decimal string. |
960 | #[corresponds (BN_dec2bn)] |
961 | pub fn from_dec_str(s: &str) -> Result<BigNum, ErrorStack> { |
962 | unsafe { |
963 | ffi::init(); |
964 | let c_str = CString::new(s.as_bytes()).unwrap(); |
965 | let mut bn = ptr::null_mut(); |
966 | cvt(ffi::BN_dec2bn(&mut bn, c_str.as_ptr() as *const _))?; |
967 | Ok(BigNum::from_ptr(bn)) |
968 | } |
969 | } |
970 | |
971 | /// Creates a `BigNum` from a hexadecimal string. |
972 | #[corresponds (BN_hex2bn)] |
973 | pub fn from_hex_str(s: &str) -> Result<BigNum, ErrorStack> { |
974 | unsafe { |
975 | ffi::init(); |
976 | let c_str = CString::new(s.as_bytes()).unwrap(); |
977 | let mut bn = ptr::null_mut(); |
978 | cvt(ffi::BN_hex2bn(&mut bn, c_str.as_ptr() as *const _))?; |
979 | Ok(BigNum::from_ptr(bn)) |
980 | } |
981 | } |
982 | |
983 | /// Returns a constant used in IKE as defined in [`RFC 2409`]. This prime number is in |
984 | /// the order of magnitude of `2 ^ 768`. This number is used during calculated key |
985 | /// exchanges such as Diffie-Hellman. This number is labeled Oakley group id 1. |
986 | /// |
987 | /// [`RFC 2409`]: https://tools.ietf.org/html/rfc2409#page-21 |
988 | #[corresponds (BN_get_rfc2409_prime_768)] |
989 | #[cfg (not(boringssl))] |
990 | pub fn get_rfc2409_prime_768() -> Result<BigNum, ErrorStack> { |
991 | unsafe { |
992 | ffi::init(); |
993 | cvt_p(BN_get_rfc2409_prime_768(ptr::null_mut())).map(BigNum) |
994 | } |
995 | } |
996 | |
997 | /// Returns a constant used in IKE as defined in [`RFC 2409`]. This prime number is in |
998 | /// the order of magnitude of `2 ^ 1024`. This number is used during calculated key |
999 | /// exchanges such as Diffie-Hellman. This number is labeled Oakly group 2. |
1000 | /// |
1001 | /// [`RFC 2409`]: https://tools.ietf.org/html/rfc2409#page-21 |
1002 | #[corresponds (BN_get_rfc2409_prime_1024)] |
1003 | #[cfg (not(boringssl))] |
1004 | pub fn get_rfc2409_prime_1024() -> Result<BigNum, ErrorStack> { |
1005 | unsafe { |
1006 | ffi::init(); |
1007 | cvt_p(BN_get_rfc2409_prime_1024(ptr::null_mut())).map(BigNum) |
1008 | } |
1009 | } |
1010 | |
1011 | /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order |
1012 | /// of magnitude of `2 ^ 1536`. This number is used during calculated key |
1013 | /// exchanges such as Diffie-Hellman. This number is labeled MODP group 5. |
1014 | /// |
1015 | /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-3 |
1016 | #[corresponds (BN_get_rfc3526_prime_1536)] |
1017 | #[cfg (not(boringssl))] |
1018 | pub fn get_rfc3526_prime_1536() -> Result<BigNum, ErrorStack> { |
1019 | unsafe { |
1020 | ffi::init(); |
1021 | cvt_p(BN_get_rfc3526_prime_1536(ptr::null_mut())).map(BigNum) |
1022 | } |
1023 | } |
1024 | |
1025 | /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order |
1026 | /// of magnitude of `2 ^ 2048`. This number is used during calculated key |
1027 | /// exchanges such as Diffie-Hellman. This number is labeled MODP group 14. |
1028 | /// |
1029 | /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-3 |
1030 | #[corresponds (BN_get_rfc3526_prime_2048)] |
1031 | #[cfg (not(boringssl))] |
1032 | pub fn get_rfc3526_prime_2048() -> Result<BigNum, ErrorStack> { |
1033 | unsafe { |
1034 | ffi::init(); |
1035 | cvt_p(BN_get_rfc3526_prime_2048(ptr::null_mut())).map(BigNum) |
1036 | } |
1037 | } |
1038 | |
1039 | /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order |
1040 | /// of magnitude of `2 ^ 3072`. This number is used during calculated key |
1041 | /// exchanges such as Diffie-Hellman. This number is labeled MODP group 15. |
1042 | /// |
1043 | /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-4 |
1044 | #[corresponds (BN_get_rfc3526_prime_3072)] |
1045 | #[cfg (not(boringssl))] |
1046 | pub fn get_rfc3526_prime_3072() -> Result<BigNum, ErrorStack> { |
1047 | unsafe { |
1048 | ffi::init(); |
1049 | cvt_p(BN_get_rfc3526_prime_3072(ptr::null_mut())).map(BigNum) |
1050 | } |
1051 | } |
1052 | |
1053 | /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order |
1054 | /// of magnitude of `2 ^ 4096`. This number is used during calculated key |
1055 | /// exchanges such as Diffie-Hellman. This number is labeled MODP group 16. |
1056 | /// |
1057 | /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-4 |
1058 | #[corresponds (BN_get_rfc3526_prime_4096)] |
1059 | #[cfg (not(boringssl))] |
1060 | pub fn get_rfc3526_prime_4096() -> Result<BigNum, ErrorStack> { |
1061 | unsafe { |
1062 | ffi::init(); |
1063 | cvt_p(BN_get_rfc3526_prime_4096(ptr::null_mut())).map(BigNum) |
1064 | } |
1065 | } |
1066 | |
1067 | /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order |
1068 | /// of magnitude of `2 ^ 6144`. This number is used during calculated key |
1069 | /// exchanges such as Diffie-Hellman. This number is labeled MODP group 17. |
1070 | /// |
1071 | /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-6 |
1072 | #[corresponds (BN_get_rfc3526_prime_6114)] |
1073 | #[cfg (not(boringssl))] |
1074 | pub fn get_rfc3526_prime_6144() -> Result<BigNum, ErrorStack> { |
1075 | unsafe { |
1076 | ffi::init(); |
1077 | cvt_p(BN_get_rfc3526_prime_6144(ptr::null_mut())).map(BigNum) |
1078 | } |
1079 | } |
1080 | |
1081 | /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order |
1082 | /// of magnitude of `2 ^ 8192`. This number is used during calculated key |
1083 | /// exchanges such as Diffie-Hellman. This number is labeled MODP group 18. |
1084 | /// |
1085 | /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-6 |
1086 | #[corresponds (BN_get_rfc3526_prime_8192)] |
1087 | #[cfg (not(boringssl))] |
1088 | pub fn get_rfc3526_prime_8192() -> Result<BigNum, ErrorStack> { |
1089 | unsafe { |
1090 | ffi::init(); |
1091 | cvt_p(BN_get_rfc3526_prime_8192(ptr::null_mut())).map(BigNum) |
1092 | } |
1093 | } |
1094 | |
1095 | /// Creates a new `BigNum` from an unsigned, big-endian encoded number of arbitrary length. |
1096 | /// |
1097 | /// OpenSSL documentation at [`BN_bin2bn`] |
1098 | /// |
1099 | /// [`BN_bin2bn`]: https://www.openssl.org/docs/manmaster/crypto/BN_bin2bn.html |
1100 | /// |
1101 | /// ``` |
1102 | /// # use openssl::bn::BigNum; |
1103 | /// let bignum = BigNum::from_slice(&[0x12, 0x00, 0x34]).unwrap(); |
1104 | /// |
1105 | /// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap()); |
1106 | /// ``` |
1107 | #[corresponds (BN_bin2bn)] |
1108 | pub fn from_slice(n: &[u8]) -> Result<BigNum, ErrorStack> { |
1109 | unsafe { |
1110 | ffi::init(); |
1111 | assert!(n.len() <= LenType::max_value() as usize); |
1112 | |
1113 | cvt_p(ffi::BN_bin2bn( |
1114 | n.as_ptr(), |
1115 | n.len() as LenType, |
1116 | ptr::null_mut(), |
1117 | )) |
1118 | .map(|p| BigNum::from_ptr(p)) |
1119 | } |
1120 | } |
1121 | |
1122 | /// Copies data from a slice overwriting what was in the BigNum. |
1123 | /// |
1124 | /// This function can be used to copy data from a slice to a |
1125 | /// [secure BigNum][`BigNum::new_secure`]. |
1126 | /// |
1127 | /// # Examples |
1128 | /// |
1129 | /// ``` |
1130 | /// # use openssl::bn::BigNum; |
1131 | /// let mut bignum = BigNum::new().unwrap(); |
1132 | /// bignum.copy_from_slice(&[0x12, 0x00, 0x34]).unwrap(); |
1133 | /// |
1134 | /// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap()); |
1135 | /// ``` |
1136 | #[corresponds (BN_bin2bn)] |
1137 | pub fn copy_from_slice(&mut self, n: &[u8]) -> Result<(), ErrorStack> { |
1138 | unsafe { |
1139 | assert!(n.len() <= LenType::max_value() as usize); |
1140 | |
1141 | cvt_p(ffi::BN_bin2bn(n.as_ptr(), n.len() as LenType, self.0))?; |
1142 | Ok(()) |
1143 | } |
1144 | } |
1145 | } |
1146 | |
1147 | impl fmt::Debug for BigNumRef { |
1148 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1149 | match self.to_dec_str() { |
1150 | Ok(s: OpensslString) => f.write_str(&s), |
1151 | Err(e: ErrorStack) => Err(e.into()), |
1152 | } |
1153 | } |
1154 | } |
1155 | |
1156 | impl fmt::Debug for BigNum { |
1157 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1158 | match self.to_dec_str() { |
1159 | Ok(s: OpensslString) => f.write_str(&s), |
1160 | Err(e: ErrorStack) => Err(e.into()), |
1161 | } |
1162 | } |
1163 | } |
1164 | |
1165 | impl fmt::Display for BigNumRef { |
1166 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1167 | match self.to_dec_str() { |
1168 | Ok(s: OpensslString) => f.write_str(&s), |
1169 | Err(e: ErrorStack) => Err(e.into()), |
1170 | } |
1171 | } |
1172 | } |
1173 | |
1174 | impl fmt::Display for BigNum { |
1175 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1176 | match self.to_dec_str() { |
1177 | Ok(s: OpensslString) => f.write_str(&s), |
1178 | Err(e: ErrorStack) => Err(e.into()), |
1179 | } |
1180 | } |
1181 | } |
1182 | |
1183 | impl PartialEq<BigNumRef> for BigNumRef { |
1184 | fn eq(&self, oth: &BigNumRef) -> bool { |
1185 | self.cmp(oth) == Ordering::Equal |
1186 | } |
1187 | } |
1188 | |
1189 | impl PartialEq<BigNum> for BigNumRef { |
1190 | fn eq(&self, oth: &BigNum) -> bool { |
1191 | self.eq(oth.deref()) |
1192 | } |
1193 | } |
1194 | |
1195 | impl Eq for BigNumRef {} |
1196 | |
1197 | impl PartialEq for BigNum { |
1198 | fn eq(&self, oth: &BigNum) -> bool { |
1199 | self.deref().eq(oth) |
1200 | } |
1201 | } |
1202 | |
1203 | impl PartialEq<BigNumRef> for BigNum { |
1204 | fn eq(&self, oth: &BigNumRef) -> bool { |
1205 | self.deref().eq(oth) |
1206 | } |
1207 | } |
1208 | |
1209 | impl Eq for BigNum {} |
1210 | |
1211 | impl PartialOrd<BigNumRef> for BigNumRef { |
1212 | fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> { |
1213 | Some(self.cmp(oth)) |
1214 | } |
1215 | } |
1216 | |
1217 | impl PartialOrd<BigNum> for BigNumRef { |
1218 | fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> { |
1219 | Some(self.cmp(oth.deref())) |
1220 | } |
1221 | } |
1222 | |
1223 | impl Ord for BigNumRef { |
1224 | fn cmp(&self, oth: &BigNumRef) -> Ordering { |
1225 | unsafe { ffi::BN_cmp(self.as_ptr(), b:oth.as_ptr()).cmp(&0) } |
1226 | } |
1227 | } |
1228 | |
1229 | impl PartialOrd for BigNum { |
1230 | fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> { |
1231 | Some(self.cmp(oth)) |
1232 | } |
1233 | } |
1234 | |
1235 | impl PartialOrd<BigNumRef> for BigNum { |
1236 | fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> { |
1237 | self.deref().partial_cmp(oth) |
1238 | } |
1239 | } |
1240 | |
1241 | impl Ord for BigNum { |
1242 | fn cmp(&self, oth: &BigNum) -> Ordering { |
1243 | self.deref().cmp(oth.deref()) |
1244 | } |
1245 | } |
1246 | |
1247 | macro_rules! delegate { |
1248 | ($t:ident, $m:ident) => { |
1249 | impl<'a, 'b> $t<&'b BigNum> for &'a BigNumRef { |
1250 | type Output = BigNum; |
1251 | |
1252 | fn $m(self, oth: &BigNum) -> BigNum { |
1253 | $t::$m(self, oth.deref()) |
1254 | } |
1255 | } |
1256 | |
1257 | impl<'a, 'b> $t<&'b BigNumRef> for &'a BigNum { |
1258 | type Output = BigNum; |
1259 | |
1260 | fn $m(self, oth: &BigNumRef) -> BigNum { |
1261 | $t::$m(self.deref(), oth) |
1262 | } |
1263 | } |
1264 | |
1265 | impl<'a, 'b> $t<&'b BigNum> for &'a BigNum { |
1266 | type Output = BigNum; |
1267 | |
1268 | fn $m(self, oth: &BigNum) -> BigNum { |
1269 | $t::$m(self.deref(), oth.deref()) |
1270 | } |
1271 | } |
1272 | }; |
1273 | } |
1274 | |
1275 | impl<'a, 'b> Add<&'b BigNumRef> for &'a BigNumRef { |
1276 | type Output = BigNum; |
1277 | |
1278 | fn add(self, oth: &BigNumRef) -> BigNum { |
1279 | let mut r: BigNum = BigNum::new().unwrap(); |
1280 | r.checked_add(self, b:oth).unwrap(); |
1281 | r |
1282 | } |
1283 | } |
1284 | |
1285 | delegate!(Add, add); |
1286 | |
1287 | impl<'a, 'b> Sub<&'b BigNumRef> for &'a BigNumRef { |
1288 | type Output = BigNum; |
1289 | |
1290 | fn sub(self, oth: &BigNumRef) -> BigNum { |
1291 | let mut r: BigNum = BigNum::new().unwrap(); |
1292 | r.checked_sub(self, b:oth).unwrap(); |
1293 | r |
1294 | } |
1295 | } |
1296 | |
1297 | delegate!(Sub, sub); |
1298 | |
1299 | impl<'a, 'b> Mul<&'b BigNumRef> for &'a BigNumRef { |
1300 | type Output = BigNum; |
1301 | |
1302 | fn mul(self, oth: &BigNumRef) -> BigNum { |
1303 | let mut ctx: BigNumContext = BigNumContext::new().unwrap(); |
1304 | let mut r: BigNum = BigNum::new().unwrap(); |
1305 | r.checked_mul(self, b:oth, &mut ctx).unwrap(); |
1306 | r |
1307 | } |
1308 | } |
1309 | |
1310 | delegate!(Mul, mul); |
1311 | |
1312 | impl<'a, 'b> Div<&'b BigNumRef> for &'a BigNumRef { |
1313 | type Output = BigNum; |
1314 | |
1315 | fn div(self, oth: &'b BigNumRef) -> BigNum { |
1316 | let mut ctx: BigNumContext = BigNumContext::new().unwrap(); |
1317 | let mut r: BigNum = BigNum::new().unwrap(); |
1318 | r.checked_div(self, b:oth, &mut ctx).unwrap(); |
1319 | r |
1320 | } |
1321 | } |
1322 | |
1323 | delegate!(Div, div); |
1324 | |
1325 | impl<'a, 'b> Rem<&'b BigNumRef> for &'a BigNumRef { |
1326 | type Output = BigNum; |
1327 | |
1328 | fn rem(self, oth: &'b BigNumRef) -> BigNum { |
1329 | let mut ctx: BigNumContext = BigNumContext::new().unwrap(); |
1330 | let mut r: BigNum = BigNum::new().unwrap(); |
1331 | r.checked_rem(self, b:oth, &mut ctx).unwrap(); |
1332 | r |
1333 | } |
1334 | } |
1335 | |
1336 | delegate!(Rem, rem); |
1337 | |
1338 | impl<'a> Shl<i32> for &'a BigNumRef { |
1339 | type Output = BigNum; |
1340 | |
1341 | fn shl(self, n: i32) -> BigNum { |
1342 | let mut r: BigNum = BigNum::new().unwrap(); |
1343 | r.lshift(self, n).unwrap(); |
1344 | r |
1345 | } |
1346 | } |
1347 | |
1348 | impl<'a> Shl<i32> for &'a BigNum { |
1349 | type Output = BigNum; |
1350 | |
1351 | fn shl(self, n: i32) -> BigNum { |
1352 | self.deref().shl(n) |
1353 | } |
1354 | } |
1355 | |
1356 | impl<'a> Shr<i32> for &'a BigNumRef { |
1357 | type Output = BigNum; |
1358 | |
1359 | fn shr(self, n: i32) -> BigNum { |
1360 | let mut r: BigNum = BigNum::new().unwrap(); |
1361 | r.rshift(self, n).unwrap(); |
1362 | r |
1363 | } |
1364 | } |
1365 | |
1366 | impl<'a> Shr<i32> for &'a BigNum { |
1367 | type Output = BigNum; |
1368 | |
1369 | fn shr(self, n: i32) -> BigNum { |
1370 | self.deref().shr(n) |
1371 | } |
1372 | } |
1373 | |
1374 | impl<'a> Neg for &'a BigNumRef { |
1375 | type Output = BigNum; |
1376 | |
1377 | fn neg(self) -> BigNum { |
1378 | self.to_owned().unwrap().neg() |
1379 | } |
1380 | } |
1381 | |
1382 | impl<'a> Neg for &'a BigNum { |
1383 | type Output = BigNum; |
1384 | |
1385 | fn neg(self) -> BigNum { |
1386 | self.deref().neg() |
1387 | } |
1388 | } |
1389 | |
1390 | impl Neg for BigNum { |
1391 | type Output = BigNum; |
1392 | |
1393 | fn neg(mut self) -> BigNum { |
1394 | let negative: bool = self.is_negative(); |
1395 | self.set_negative(!negative); |
1396 | self |
1397 | } |
1398 | } |
1399 | |
1400 | #[cfg (test)] |
1401 | mod tests { |
1402 | use crate::bn::{BigNum, BigNumContext}; |
1403 | |
1404 | #[test ] |
1405 | fn test_to_from_slice() { |
1406 | let v0 = BigNum::from_u32(10_203_004).unwrap(); |
1407 | let vec = v0.to_vec(); |
1408 | let v1 = BigNum::from_slice(&vec).unwrap(); |
1409 | |
1410 | assert_eq!(v0, v1); |
1411 | } |
1412 | |
1413 | #[test ] |
1414 | fn test_negation() { |
1415 | let a = BigNum::from_u32(909_829_283).unwrap(); |
1416 | |
1417 | assert!(!a.is_negative()); |
1418 | assert!((-a).is_negative()); |
1419 | } |
1420 | |
1421 | #[test ] |
1422 | fn test_shift() { |
1423 | let a = BigNum::from_u32(909_829_283).unwrap(); |
1424 | |
1425 | assert_eq!(a, &(&a << 1) >> 1); |
1426 | } |
1427 | |
1428 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
1429 | #[test ] |
1430 | fn test_rand_range() { |
1431 | let range = BigNum::from_u32(909_829_283).unwrap(); |
1432 | let mut result = BigNum::from_dec_str(&range.to_dec_str().unwrap()).unwrap(); |
1433 | range.rand_range(&mut result).unwrap(); |
1434 | assert!(result >= BigNum::from_u32(0).unwrap() && result < range); |
1435 | } |
1436 | |
1437 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
1438 | #[test ] |
1439 | fn test_pseudo_rand_range() { |
1440 | let range = BigNum::from_u32(909_829_283).unwrap(); |
1441 | let mut result = BigNum::from_dec_str(&range.to_dec_str().unwrap()).unwrap(); |
1442 | range.pseudo_rand_range(&mut result).unwrap(); |
1443 | assert!(result >= BigNum::from_u32(0).unwrap() && result < range); |
1444 | } |
1445 | |
1446 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
1447 | #[test ] |
1448 | fn test_prime_numbers() { |
1449 | let a = BigNum::from_u32(19_029_017).unwrap(); |
1450 | let mut p = BigNum::new().unwrap(); |
1451 | p.generate_prime(128, true, None, Some(&a)).unwrap(); |
1452 | |
1453 | let mut ctx = BigNumContext::new().unwrap(); |
1454 | assert!(p.is_prime(100, &mut ctx).unwrap()); |
1455 | assert!(p.is_prime_fasttest(100, &mut ctx, true).unwrap()); |
1456 | } |
1457 | |
1458 | #[cfg (ossl110)] |
1459 | #[test ] |
1460 | fn test_secure_bn_ctx() { |
1461 | let mut cxt = BigNumContext::new_secure().unwrap(); |
1462 | let a = BigNum::from_u32(8).unwrap(); |
1463 | let b = BigNum::from_u32(3).unwrap(); |
1464 | |
1465 | let mut remainder = BigNum::new().unwrap(); |
1466 | remainder.nnmod(&a, &b, &mut cxt).unwrap(); |
1467 | |
1468 | assert!(remainder.eq(&BigNum::from_u32(2).unwrap())); |
1469 | } |
1470 | |
1471 | #[cfg (ossl110)] |
1472 | #[test ] |
1473 | fn test_secure_bn() { |
1474 | let a = BigNum::new().unwrap(); |
1475 | assert!(!a.is_secure()); |
1476 | |
1477 | let b = BigNum::new_secure().unwrap(); |
1478 | assert!(b.is_secure()) |
1479 | } |
1480 | |
1481 | #[cfg (ossl110)] |
1482 | #[test ] |
1483 | fn test_const_time_bn() { |
1484 | let a = BigNum::new().unwrap(); |
1485 | assert!(!a.is_const_time()); |
1486 | |
1487 | let mut b = BigNum::new().unwrap(); |
1488 | b.set_const_time(); |
1489 | assert!(b.is_const_time()) |
1490 | } |
1491 | |
1492 | #[test ] |
1493 | fn test_mod_sqrt() { |
1494 | let mut ctx = BigNumContext::new().unwrap(); |
1495 | |
1496 | let s = BigNum::from_hex_str("2" ).unwrap(); |
1497 | let p = BigNum::from_hex_str("7DEB1" ).unwrap(); |
1498 | let mut sqrt = BigNum::new().unwrap(); |
1499 | let mut out = BigNum::new().unwrap(); |
1500 | |
1501 | // Square the root because OpenSSL randomly returns one of 2E42C or 4FA85 |
1502 | sqrt.mod_sqrt(&s, &p, &mut ctx).unwrap(); |
1503 | out.mod_sqr(&sqrt, &p, &mut ctx).unwrap(); |
1504 | assert!(out == s); |
1505 | |
1506 | let s = BigNum::from_hex_str("3" ).unwrap(); |
1507 | let p = BigNum::from_hex_str("5" ).unwrap(); |
1508 | assert!(out.mod_sqrt(&s, &p, &mut ctx).is_err()); |
1509 | } |
1510 | |
1511 | #[test ] |
1512 | #[cfg (any(ossl110, boringssl, libressl350))] |
1513 | fn test_odd_even() { |
1514 | let a = BigNum::from_u32(17).unwrap(); |
1515 | let b = BigNum::from_u32(18).unwrap(); |
1516 | |
1517 | assert!(a.is_odd()); |
1518 | assert!(!b.is_odd()); |
1519 | |
1520 | assert!(!a.is_even()); |
1521 | assert!(b.is_even()); |
1522 | } |
1523 | } |
1524 | |