| 1 | // Copyright 2016 Amanieu d'Antras |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or |
| 4 | // http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or |
| 5 | // http://opensource.org/licenses/MIT>, at your option. This file may not be |
| 6 | // copied, modified, or distributed except according to those terms. |
| 7 | |
| 8 | use crate::raw_mutex::RawMutex; |
| 9 | |
| 10 | /// A mutual exclusion primitive useful for protecting shared data |
| 11 | /// |
| 12 | /// This mutex will block threads waiting for the lock to become available. The |
| 13 | /// mutex can be statically initialized or created by the `new` |
| 14 | /// constructor. Each mutex has a type parameter which represents the data that |
| 15 | /// it is protecting. The data can only be accessed through the RAII guards |
| 16 | /// returned from `lock` and `try_lock`, which guarantees that the data is only |
| 17 | /// ever accessed when the mutex is locked. |
| 18 | /// |
| 19 | /// # Fairness |
| 20 | /// |
| 21 | /// A typical unfair lock can often end up in a situation where a single thread |
| 22 | /// quickly acquires and releases the same mutex in succession, which can starve |
| 23 | /// other threads waiting to acquire the mutex. While this improves throughput |
| 24 | /// because it doesn't force a context switch when a thread tries to re-acquire |
| 25 | /// a mutex it has just released, this can starve other threads. |
| 26 | /// |
| 27 | /// This mutex uses [eventual fairness](https://trac.webkit.org/changeset/203350) |
| 28 | /// to ensure that the lock will be fair on average without sacrificing |
| 29 | /// throughput. This is done by forcing a fair unlock on average every 0.5ms, |
| 30 | /// which will force the lock to go to the next thread waiting for the mutex. |
| 31 | /// |
| 32 | /// Additionally, any critical section longer than 1ms will always use a fair |
| 33 | /// unlock, which has a negligible impact on throughput considering the length |
| 34 | /// of the critical section. |
| 35 | /// |
| 36 | /// You can also force a fair unlock by calling `MutexGuard::unlock_fair` when |
| 37 | /// unlocking a mutex instead of simply dropping the `MutexGuard`. |
| 38 | /// |
| 39 | /// # Differences from the standard library `Mutex` |
| 40 | /// |
| 41 | /// - No poisoning, the lock is released normally on panic. |
| 42 | /// - Only requires 1 byte of space, whereas the standard library boxes the |
| 43 | /// `Mutex` due to platform limitations. |
| 44 | /// - Can be statically constructed. |
| 45 | /// - Does not require any drop glue when dropped. |
| 46 | /// - Inline fast path for the uncontended case. |
| 47 | /// - Efficient handling of micro-contention using adaptive spinning. |
| 48 | /// - Allows raw locking & unlocking without a guard. |
| 49 | /// - Supports eventual fairness so that the mutex is fair on average. |
| 50 | /// - Optionally allows making the mutex fair by calling `MutexGuard::unlock_fair`. |
| 51 | /// |
| 52 | /// # Examples |
| 53 | /// |
| 54 | /// ``` |
| 55 | /// use parking_lot::Mutex; |
| 56 | /// use std::sync::{Arc, mpsc::channel}; |
| 57 | /// use std::thread; |
| 58 | /// |
| 59 | /// const N: usize = 10; |
| 60 | /// |
| 61 | /// // Spawn a few threads to increment a shared variable (non-atomically), and |
| 62 | /// // let the main thread know once all increments are done. |
| 63 | /// // |
| 64 | /// // Here we're using an Arc to share memory among threads, and the data inside |
| 65 | /// // the Arc is protected with a mutex. |
| 66 | /// let data = Arc::new(Mutex::new(0)); |
| 67 | /// |
| 68 | /// let (tx, rx) = channel(); |
| 69 | /// for _ in 0..10 { |
| 70 | /// let (data, tx) = (Arc::clone(&data), tx.clone()); |
| 71 | /// thread::spawn(move || { |
| 72 | /// // The shared state can only be accessed once the lock is held. |
| 73 | /// // Our non-atomic increment is safe because we're the only thread |
| 74 | /// // which can access the shared state when the lock is held. |
| 75 | /// let mut data = data.lock(); |
| 76 | /// *data += 1; |
| 77 | /// if *data == N { |
| 78 | /// tx.send(()).unwrap(); |
| 79 | /// } |
| 80 | /// // the lock is unlocked here when `data` goes out of scope. |
| 81 | /// }); |
| 82 | /// } |
| 83 | /// |
| 84 | /// rx.recv().unwrap(); |
| 85 | /// ``` |
| 86 | pub type Mutex<T> = lock_api::Mutex<RawMutex, T>; |
| 87 | |
| 88 | /// Creates a new mutex in an unlocked state ready for use. |
| 89 | /// |
| 90 | /// This allows creating a mutex in a constant context on stable Rust. |
| 91 | pub const fn const_mutex<T>(val: T) -> Mutex<T> { |
| 92 | Mutex::const_new(<RawMutex as lock_api::RawMutex>::INIT, val) |
| 93 | } |
| 94 | |
| 95 | /// An RAII implementation of a "scoped lock" of a mutex. When this structure is |
| 96 | /// dropped (falls out of scope), the lock will be unlocked. |
| 97 | /// |
| 98 | /// The data protected by the mutex can be accessed through this guard via its |
| 99 | /// `Deref` and `DerefMut` implementations. |
| 100 | pub type MutexGuard<'a, T> = lock_api::MutexGuard<'a, RawMutex, T>; |
| 101 | |
| 102 | /// An RAII mutex guard returned by `MutexGuard::map`, which can point to a |
| 103 | /// subfield of the protected data. |
| 104 | /// |
| 105 | /// The main difference between `MappedMutexGuard` and `MutexGuard` is that the |
| 106 | /// former doesn't support temporarily unlocking and re-locking, since that |
| 107 | /// could introduce soundness issues if the locked object is modified by another |
| 108 | /// thread. |
| 109 | pub type MappedMutexGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawMutex, T>; |
| 110 | |
| 111 | #[cfg (test)] |
| 112 | mod tests { |
| 113 | use crate::{Condvar, Mutex}; |
| 114 | use std::sync::atomic::{AtomicUsize, Ordering}; |
| 115 | use std::sync::mpsc::channel; |
| 116 | use std::sync::Arc; |
| 117 | use std::thread; |
| 118 | |
| 119 | #[cfg (feature = "serde" )] |
| 120 | use bincode::{deserialize, serialize}; |
| 121 | |
| 122 | struct Packet<T>(Arc<(Mutex<T>, Condvar)>); |
| 123 | |
| 124 | #[derive (Eq, PartialEq, Debug)] |
| 125 | struct NonCopy(i32); |
| 126 | |
| 127 | unsafe impl<T: Send> Send for Packet<T> {} |
| 128 | unsafe impl<T> Sync for Packet<T> {} |
| 129 | |
| 130 | #[test ] |
| 131 | fn smoke() { |
| 132 | let m = Mutex::new(()); |
| 133 | drop(m.lock()); |
| 134 | drop(m.lock()); |
| 135 | } |
| 136 | |
| 137 | #[test ] |
| 138 | fn lots_and_lots() { |
| 139 | const J: u32 = 1000; |
| 140 | const K: u32 = 3; |
| 141 | |
| 142 | let m = Arc::new(Mutex::new(0)); |
| 143 | |
| 144 | fn inc(m: &Mutex<u32>) { |
| 145 | for _ in 0..J { |
| 146 | *m.lock() += 1; |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | let (tx, rx) = channel(); |
| 151 | for _ in 0..K { |
| 152 | let tx2 = tx.clone(); |
| 153 | let m2 = m.clone(); |
| 154 | thread::spawn(move || { |
| 155 | inc(&m2); |
| 156 | tx2.send(()).unwrap(); |
| 157 | }); |
| 158 | let tx2 = tx.clone(); |
| 159 | let m2 = m.clone(); |
| 160 | thread::spawn(move || { |
| 161 | inc(&m2); |
| 162 | tx2.send(()).unwrap(); |
| 163 | }); |
| 164 | } |
| 165 | |
| 166 | drop(tx); |
| 167 | for _ in 0..2 * K { |
| 168 | rx.recv().unwrap(); |
| 169 | } |
| 170 | assert_eq!(*m.lock(), J * K * 2); |
| 171 | } |
| 172 | |
| 173 | #[test ] |
| 174 | fn try_lock() { |
| 175 | let m = Mutex::new(()); |
| 176 | *m.try_lock().unwrap() = (); |
| 177 | } |
| 178 | |
| 179 | #[test ] |
| 180 | fn test_into_inner() { |
| 181 | let m = Mutex::new(NonCopy(10)); |
| 182 | assert_eq!(m.into_inner(), NonCopy(10)); |
| 183 | } |
| 184 | |
| 185 | #[test ] |
| 186 | fn test_into_inner_drop() { |
| 187 | struct Foo(Arc<AtomicUsize>); |
| 188 | impl Drop for Foo { |
| 189 | fn drop(&mut self) { |
| 190 | self.0.fetch_add(1, Ordering::SeqCst); |
| 191 | } |
| 192 | } |
| 193 | let num_drops = Arc::new(AtomicUsize::new(0)); |
| 194 | let m = Mutex::new(Foo(num_drops.clone())); |
| 195 | assert_eq!(num_drops.load(Ordering::SeqCst), 0); |
| 196 | { |
| 197 | let _inner = m.into_inner(); |
| 198 | assert_eq!(num_drops.load(Ordering::SeqCst), 0); |
| 199 | } |
| 200 | assert_eq!(num_drops.load(Ordering::SeqCst), 1); |
| 201 | } |
| 202 | |
| 203 | #[test ] |
| 204 | fn test_get_mut() { |
| 205 | let mut m = Mutex::new(NonCopy(10)); |
| 206 | *m.get_mut() = NonCopy(20); |
| 207 | assert_eq!(m.into_inner(), NonCopy(20)); |
| 208 | } |
| 209 | |
| 210 | #[test ] |
| 211 | fn test_mutex_arc_condvar() { |
| 212 | let packet = Packet(Arc::new((Mutex::new(false), Condvar::new()))); |
| 213 | let packet2 = Packet(packet.0.clone()); |
| 214 | let (tx, rx) = channel(); |
| 215 | let _t = thread::spawn(move || { |
| 216 | // wait until parent gets in |
| 217 | rx.recv().unwrap(); |
| 218 | let (lock, cvar) = &*packet2.0; |
| 219 | let mut lock = lock.lock(); |
| 220 | *lock = true; |
| 221 | cvar.notify_one(); |
| 222 | }); |
| 223 | |
| 224 | let (lock, cvar) = &*packet.0; |
| 225 | let mut lock = lock.lock(); |
| 226 | tx.send(()).unwrap(); |
| 227 | assert!(!*lock); |
| 228 | while !*lock { |
| 229 | cvar.wait(&mut lock); |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | #[test ] |
| 234 | fn test_mutex_arc_nested() { |
| 235 | // Tests nested mutexes and access |
| 236 | // to underlying data. |
| 237 | let arc = Arc::new(Mutex::new(1)); |
| 238 | let arc2 = Arc::new(Mutex::new(arc)); |
| 239 | let (tx, rx) = channel(); |
| 240 | let _t = thread::spawn(move || { |
| 241 | let lock = arc2.lock(); |
| 242 | let lock2 = lock.lock(); |
| 243 | assert_eq!(*lock2, 1); |
| 244 | tx.send(()).unwrap(); |
| 245 | }); |
| 246 | rx.recv().unwrap(); |
| 247 | } |
| 248 | |
| 249 | #[test ] |
| 250 | fn test_mutex_arc_access_in_unwind() { |
| 251 | let arc = Arc::new(Mutex::new(1)); |
| 252 | let arc2 = arc.clone(); |
| 253 | let _ = thread::spawn(move || { |
| 254 | struct Unwinder { |
| 255 | i: Arc<Mutex<i32>>, |
| 256 | } |
| 257 | impl Drop for Unwinder { |
| 258 | fn drop(&mut self) { |
| 259 | *self.i.lock() += 1; |
| 260 | } |
| 261 | } |
| 262 | let _u = Unwinder { i: arc2 }; |
| 263 | panic!(); |
| 264 | }) |
| 265 | .join(); |
| 266 | let lock = arc.lock(); |
| 267 | assert_eq!(*lock, 2); |
| 268 | } |
| 269 | |
| 270 | #[test ] |
| 271 | fn test_mutex_unsized() { |
| 272 | let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]); |
| 273 | { |
| 274 | let b = &mut *mutex.lock(); |
| 275 | b[0] = 4; |
| 276 | b[2] = 5; |
| 277 | } |
| 278 | let comp: &[i32] = &[4, 2, 5]; |
| 279 | assert_eq!(&*mutex.lock(), comp); |
| 280 | } |
| 281 | |
| 282 | #[test ] |
| 283 | fn test_mutexguard_sync() { |
| 284 | fn sync<T: Sync>(_: T) {} |
| 285 | |
| 286 | let mutex = Mutex::new(()); |
| 287 | sync(mutex.lock()); |
| 288 | } |
| 289 | |
| 290 | #[test ] |
| 291 | fn test_mutex_debug() { |
| 292 | let mutex = Mutex::new(vec![0u8, 10]); |
| 293 | |
| 294 | assert_eq!(format!("{:?}" , mutex), "Mutex { data: [0, 10] }" ); |
| 295 | let _lock = mutex.lock(); |
| 296 | assert_eq!(format!("{:?}" , mutex), "Mutex { data: <locked> }" ); |
| 297 | } |
| 298 | |
| 299 | #[cfg (feature = "serde" )] |
| 300 | #[test ] |
| 301 | fn test_serde() { |
| 302 | let contents: Vec<u8> = vec![0, 1, 2]; |
| 303 | let mutex = Mutex::new(contents.clone()); |
| 304 | |
| 305 | let serialized = serialize(&mutex).unwrap(); |
| 306 | let deserialized: Mutex<Vec<u8>> = deserialize(&serialized).unwrap(); |
| 307 | |
| 308 | assert_eq!(*(mutex.lock()), *(deserialized.lock())); |
| 309 | assert_eq!(contents, *(deserialized.lock())); |
| 310 | } |
| 311 | } |
| 312 | |