| 1 | // Copyright 2016 Amanieu d'Antras |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or |
| 4 | // http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or |
| 5 | // http://opensource.org/licenses/MIT>, at your option. This file may not be |
| 6 | // copied, modified, or distributed except according to those terms. |
| 7 | |
| 8 | use crate::mutex::MutexGuard; |
| 9 | use crate::raw_mutex::{RawMutex, TOKEN_HANDOFF, TOKEN_NORMAL}; |
| 10 | use crate::{deadlock, util}; |
| 11 | use core::{ |
| 12 | fmt, ptr, |
| 13 | sync::atomic::{AtomicPtr, Ordering}, |
| 14 | }; |
| 15 | use lock_api::RawMutex as RawMutex_; |
| 16 | use parking_lot_core::{self, ParkResult, RequeueOp, UnparkResult, DEFAULT_PARK_TOKEN}; |
| 17 | use std::ops::DerefMut; |
| 18 | use std::time::{Duration, Instant}; |
| 19 | |
| 20 | /// A type indicating whether a timed wait on a condition variable returned |
| 21 | /// due to a time out or not. |
| 22 | #[derive (Debug, PartialEq, Eq, Copy, Clone)] |
| 23 | pub struct WaitTimeoutResult(bool); |
| 24 | |
| 25 | impl WaitTimeoutResult { |
| 26 | /// Returns whether the wait was known to have timed out. |
| 27 | #[inline ] |
| 28 | pub fn timed_out(self) -> bool { |
| 29 | self.0 |
| 30 | } |
| 31 | } |
| 32 | |
| 33 | /// A Condition Variable |
| 34 | /// |
| 35 | /// Condition variables represent the ability to block a thread such that it |
| 36 | /// consumes no CPU time while waiting for an event to occur. Condition |
| 37 | /// variables are typically associated with a boolean predicate (a condition) |
| 38 | /// and a mutex. The predicate is always verified inside of the mutex before |
| 39 | /// determining that thread must block. |
| 40 | /// |
| 41 | /// Note that this module places one additional restriction over the system |
| 42 | /// condition variables: each condvar can be used with only one mutex at a |
| 43 | /// time. Any attempt to use multiple mutexes on the same condition variable |
| 44 | /// simultaneously will result in a runtime panic. However it is possible to |
| 45 | /// switch to a different mutex if there are no threads currently waiting on |
| 46 | /// the condition variable. |
| 47 | /// |
| 48 | /// # Differences from the standard library `Condvar` |
| 49 | /// |
| 50 | /// - No spurious wakeups: A wait will only return a non-timeout result if it |
| 51 | /// was woken up by `notify_one` or `notify_all`. |
| 52 | /// - `Condvar::notify_all` will only wake up a single thread, the rest are |
| 53 | /// requeued to wait for the `Mutex` to be unlocked by the thread that was |
| 54 | /// woken up. |
| 55 | /// - Only requires 1 word of space, whereas the standard library boxes the |
| 56 | /// `Condvar` due to platform limitations. |
| 57 | /// - Can be statically constructed. |
| 58 | /// - Does not require any drop glue when dropped. |
| 59 | /// - Inline fast path for the uncontended case. |
| 60 | /// |
| 61 | /// # Examples |
| 62 | /// |
| 63 | /// ``` |
| 64 | /// use parking_lot::{Mutex, Condvar}; |
| 65 | /// use std::sync::Arc; |
| 66 | /// use std::thread; |
| 67 | /// |
| 68 | /// let pair = Arc::new((Mutex::new(false), Condvar::new())); |
| 69 | /// let pair2 = pair.clone(); |
| 70 | /// |
| 71 | /// // Inside of our lock, spawn a new thread, and then wait for it to start |
| 72 | /// thread::spawn(move|| { |
| 73 | /// let &(ref lock, ref cvar) = &*pair2; |
| 74 | /// let mut started = lock.lock(); |
| 75 | /// *started = true; |
| 76 | /// cvar.notify_one(); |
| 77 | /// }); |
| 78 | /// |
| 79 | /// // wait for the thread to start up |
| 80 | /// let &(ref lock, ref cvar) = &*pair; |
| 81 | /// let mut started = lock.lock(); |
| 82 | /// if !*started { |
| 83 | /// cvar.wait(&mut started); |
| 84 | /// } |
| 85 | /// // Note that we used an if instead of a while loop above. This is only |
| 86 | /// // possible because parking_lot's Condvar will never spuriously wake up. |
| 87 | /// // This means that wait() will only return after notify_one or notify_all is |
| 88 | /// // called. |
| 89 | /// ``` |
| 90 | pub struct Condvar { |
| 91 | state: AtomicPtr<RawMutex>, |
| 92 | } |
| 93 | |
| 94 | impl Condvar { |
| 95 | /// Creates a new condition variable which is ready to be waited on and |
| 96 | /// notified. |
| 97 | #[inline ] |
| 98 | pub const fn new() -> Condvar { |
| 99 | Condvar { |
| 100 | state: AtomicPtr::new(ptr::null_mut()), |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | /// Wakes up one blocked thread on this condvar. |
| 105 | /// |
| 106 | /// Returns whether a thread was woken up. |
| 107 | /// |
| 108 | /// If there is a blocked thread on this condition variable, then it will |
| 109 | /// be woken up from its call to `wait` or `wait_timeout`. Calls to |
| 110 | /// `notify_one` are not buffered in any way. |
| 111 | /// |
| 112 | /// To wake up all threads, see `notify_all()`. |
| 113 | /// |
| 114 | /// # Examples |
| 115 | /// |
| 116 | /// ``` |
| 117 | /// use parking_lot::Condvar; |
| 118 | /// |
| 119 | /// let condvar = Condvar::new(); |
| 120 | /// |
| 121 | /// // do something with condvar, share it with other threads |
| 122 | /// |
| 123 | /// if !condvar.notify_one() { |
| 124 | /// println!("Nobody was listening for this." ); |
| 125 | /// } |
| 126 | /// ``` |
| 127 | #[inline ] |
| 128 | pub fn notify_one(&self) -> bool { |
| 129 | // Nothing to do if there are no waiting threads |
| 130 | let state = self.state.load(Ordering::Relaxed); |
| 131 | if state.is_null() { |
| 132 | return false; |
| 133 | } |
| 134 | |
| 135 | self.notify_one_slow(state) |
| 136 | } |
| 137 | |
| 138 | #[cold ] |
| 139 | fn notify_one_slow(&self, mutex: *mut RawMutex) -> bool { |
| 140 | // Unpark one thread and requeue the rest onto the mutex |
| 141 | let from = self as *const _ as usize; |
| 142 | let to = mutex as usize; |
| 143 | let validate = || { |
| 144 | // Make sure that our atomic state still points to the same |
| 145 | // mutex. If not then it means that all threads on the current |
| 146 | // mutex were woken up and a new waiting thread switched to a |
| 147 | // different mutex. In that case we can get away with doing |
| 148 | // nothing. |
| 149 | if self.state.load(Ordering::Relaxed) != mutex { |
| 150 | return RequeueOp::Abort; |
| 151 | } |
| 152 | |
| 153 | // Unpark one thread if the mutex is unlocked, otherwise just |
| 154 | // requeue everything to the mutex. This is safe to do here |
| 155 | // since unlocking the mutex when the parked bit is set requires |
| 156 | // locking the queue. There is the possibility of a race if the |
| 157 | // mutex gets locked after we check, but that doesn't matter in |
| 158 | // this case. |
| 159 | if unsafe { (*mutex).mark_parked_if_locked() } { |
| 160 | RequeueOp::RequeueOne |
| 161 | } else { |
| 162 | RequeueOp::UnparkOne |
| 163 | } |
| 164 | }; |
| 165 | let callback = |_op, result: UnparkResult| { |
| 166 | // Clear our state if there are no more waiting threads |
| 167 | if !result.have_more_threads { |
| 168 | self.state.store(ptr::null_mut(), Ordering::Relaxed); |
| 169 | } |
| 170 | TOKEN_NORMAL |
| 171 | }; |
| 172 | let res = unsafe { parking_lot_core::unpark_requeue(from, to, validate, callback) }; |
| 173 | |
| 174 | res.unparked_threads + res.requeued_threads != 0 |
| 175 | } |
| 176 | |
| 177 | /// Wakes up all blocked threads on this condvar. |
| 178 | /// |
| 179 | /// Returns the number of threads woken up. |
| 180 | /// |
| 181 | /// This method will ensure that any current waiters on the condition |
| 182 | /// variable are awoken. Calls to `notify_all()` are not buffered in any |
| 183 | /// way. |
| 184 | /// |
| 185 | /// To wake up only one thread, see `notify_one()`. |
| 186 | #[inline ] |
| 187 | pub fn notify_all(&self) -> usize { |
| 188 | // Nothing to do if there are no waiting threads |
| 189 | let state = self.state.load(Ordering::Relaxed); |
| 190 | if state.is_null() { |
| 191 | return 0; |
| 192 | } |
| 193 | |
| 194 | self.notify_all_slow(state) |
| 195 | } |
| 196 | |
| 197 | #[cold ] |
| 198 | fn notify_all_slow(&self, mutex: *mut RawMutex) -> usize { |
| 199 | // Unpark one thread and requeue the rest onto the mutex |
| 200 | let from = self as *const _ as usize; |
| 201 | let to = mutex as usize; |
| 202 | let validate = || { |
| 203 | // Make sure that our atomic state still points to the same |
| 204 | // mutex. If not then it means that all threads on the current |
| 205 | // mutex were woken up and a new waiting thread switched to a |
| 206 | // different mutex. In that case we can get away with doing |
| 207 | // nothing. |
| 208 | if self.state.load(Ordering::Relaxed) != mutex { |
| 209 | return RequeueOp::Abort; |
| 210 | } |
| 211 | |
| 212 | // Clear our state since we are going to unpark or requeue all |
| 213 | // threads. |
| 214 | self.state.store(ptr::null_mut(), Ordering::Relaxed); |
| 215 | |
| 216 | // Unpark one thread if the mutex is unlocked, otherwise just |
| 217 | // requeue everything to the mutex. This is safe to do here |
| 218 | // since unlocking the mutex when the parked bit is set requires |
| 219 | // locking the queue. There is the possibility of a race if the |
| 220 | // mutex gets locked after we check, but that doesn't matter in |
| 221 | // this case. |
| 222 | if unsafe { (*mutex).mark_parked_if_locked() } { |
| 223 | RequeueOp::RequeueAll |
| 224 | } else { |
| 225 | RequeueOp::UnparkOneRequeueRest |
| 226 | } |
| 227 | }; |
| 228 | let callback = |op, result: UnparkResult| { |
| 229 | // If we requeued threads to the mutex, mark it as having |
| 230 | // parked threads. The RequeueAll case is already handled above. |
| 231 | if op == RequeueOp::UnparkOneRequeueRest && result.requeued_threads != 0 { |
| 232 | unsafe { (*mutex).mark_parked() }; |
| 233 | } |
| 234 | TOKEN_NORMAL |
| 235 | }; |
| 236 | let res = unsafe { parking_lot_core::unpark_requeue(from, to, validate, callback) }; |
| 237 | |
| 238 | res.unparked_threads + res.requeued_threads |
| 239 | } |
| 240 | |
| 241 | /// Blocks the current thread until this condition variable receives a |
| 242 | /// notification. |
| 243 | /// |
| 244 | /// This function will atomically unlock the mutex specified (represented by |
| 245 | /// `mutex_guard`) and block the current thread. This means that any calls |
| 246 | /// to `notify_*()` which happen logically after the mutex is unlocked are |
| 247 | /// candidates to wake this thread up. When this function call returns, the |
| 248 | /// lock specified will have been re-acquired. |
| 249 | /// |
| 250 | /// # Panics |
| 251 | /// |
| 252 | /// This function will panic if another thread is waiting on the `Condvar` |
| 253 | /// with a different `Mutex` object. |
| 254 | #[inline ] |
| 255 | pub fn wait<T: ?Sized>(&self, mutex_guard: &mut MutexGuard<'_, T>) { |
| 256 | self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, None); |
| 257 | } |
| 258 | |
| 259 | /// Waits on this condition variable for a notification, timing out after |
| 260 | /// the specified time instant. |
| 261 | /// |
| 262 | /// The semantics of this function are equivalent to `wait()` except that |
| 263 | /// the thread will be blocked roughly until `timeout` is reached. This |
| 264 | /// method should not be used for precise timing due to anomalies such as |
| 265 | /// preemption or platform differences that may not cause the maximum |
| 266 | /// amount of time waited to be precisely `timeout`. |
| 267 | /// |
| 268 | /// Note that the best effort is made to ensure that the time waited is |
| 269 | /// measured with a monotonic clock, and not affected by the changes made to |
| 270 | /// the system time. |
| 271 | /// |
| 272 | /// The returned `WaitTimeoutResult` value indicates if the timeout is |
| 273 | /// known to have elapsed. |
| 274 | /// |
| 275 | /// Like `wait`, the lock specified will be re-acquired when this function |
| 276 | /// returns, regardless of whether the timeout elapsed or not. |
| 277 | /// |
| 278 | /// # Panics |
| 279 | /// |
| 280 | /// This function will panic if another thread is waiting on the `Condvar` |
| 281 | /// with a different `Mutex` object. |
| 282 | #[inline ] |
| 283 | pub fn wait_until<T: ?Sized>( |
| 284 | &self, |
| 285 | mutex_guard: &mut MutexGuard<'_, T>, |
| 286 | timeout: Instant, |
| 287 | ) -> WaitTimeoutResult { |
| 288 | self.wait_until_internal( |
| 289 | unsafe { MutexGuard::mutex(mutex_guard).raw() }, |
| 290 | Some(timeout), |
| 291 | ) |
| 292 | } |
| 293 | |
| 294 | // This is a non-generic function to reduce the monomorphization cost of |
| 295 | // using `wait_until`. |
| 296 | fn wait_until_internal(&self, mutex: &RawMutex, timeout: Option<Instant>) -> WaitTimeoutResult { |
| 297 | let result; |
| 298 | let mut bad_mutex = false; |
| 299 | let mut requeued = false; |
| 300 | { |
| 301 | let addr = self as *const _ as usize; |
| 302 | let lock_addr = mutex as *const _ as *mut _; |
| 303 | let validate = || { |
| 304 | // Ensure we don't use two different mutexes with the same |
| 305 | // Condvar at the same time. This is done while locked to |
| 306 | // avoid races with notify_one |
| 307 | let state = self.state.load(Ordering::Relaxed); |
| 308 | if state.is_null() { |
| 309 | self.state.store(lock_addr, Ordering::Relaxed); |
| 310 | } else if state != lock_addr { |
| 311 | bad_mutex = true; |
| 312 | return false; |
| 313 | } |
| 314 | true |
| 315 | }; |
| 316 | let before_sleep = || { |
| 317 | // Unlock the mutex before sleeping... |
| 318 | unsafe { mutex.unlock() }; |
| 319 | }; |
| 320 | let timed_out = |k, was_last_thread| { |
| 321 | // If we were requeued to a mutex, then we did not time out. |
| 322 | // We'll just park ourselves on the mutex again when we try |
| 323 | // to lock it later. |
| 324 | requeued = k != addr; |
| 325 | |
| 326 | // If we were the last thread on the queue then we need to |
| 327 | // clear our state. This is normally done by the |
| 328 | // notify_{one,all} functions when not timing out. |
| 329 | if !requeued && was_last_thread { |
| 330 | self.state.store(ptr::null_mut(), Ordering::Relaxed); |
| 331 | } |
| 332 | }; |
| 333 | result = unsafe { |
| 334 | parking_lot_core::park( |
| 335 | addr, |
| 336 | validate, |
| 337 | before_sleep, |
| 338 | timed_out, |
| 339 | DEFAULT_PARK_TOKEN, |
| 340 | timeout, |
| 341 | ) |
| 342 | }; |
| 343 | } |
| 344 | |
| 345 | // Panic if we tried to use multiple mutexes with a Condvar. Note |
| 346 | // that at this point the MutexGuard is still locked. It will be |
| 347 | // unlocked by the unwinding logic. |
| 348 | if bad_mutex { |
| 349 | panic!("attempted to use a condition variable with more than one mutex" ); |
| 350 | } |
| 351 | |
| 352 | // ... and re-lock it once we are done sleeping |
| 353 | if result == ParkResult::Unparked(TOKEN_HANDOFF) { |
| 354 | unsafe { deadlock::acquire_resource(mutex as *const _ as usize) }; |
| 355 | } else { |
| 356 | mutex.lock(); |
| 357 | } |
| 358 | |
| 359 | WaitTimeoutResult(!(result.is_unparked() || requeued)) |
| 360 | } |
| 361 | |
| 362 | /// Waits on this condition variable for a notification, timing out after a |
| 363 | /// specified duration. |
| 364 | /// |
| 365 | /// The semantics of this function are equivalent to `wait()` except that |
| 366 | /// the thread will be blocked for roughly no longer than `timeout`. This |
| 367 | /// method should not be used for precise timing due to anomalies such as |
| 368 | /// preemption or platform differences that may not cause the maximum |
| 369 | /// amount of time waited to be precisely `timeout`. |
| 370 | /// |
| 371 | /// Note that the best effort is made to ensure that the time waited is |
| 372 | /// measured with a monotonic clock, and not affected by the changes made to |
| 373 | /// the system time. |
| 374 | /// |
| 375 | /// The returned `WaitTimeoutResult` value indicates if the timeout is |
| 376 | /// known to have elapsed. |
| 377 | /// |
| 378 | /// Like `wait`, the lock specified will be re-acquired when this function |
| 379 | /// returns, regardless of whether the timeout elapsed or not. |
| 380 | #[inline ] |
| 381 | pub fn wait_for<T: ?Sized>( |
| 382 | &self, |
| 383 | mutex_guard: &mut MutexGuard<'_, T>, |
| 384 | timeout: Duration, |
| 385 | ) -> WaitTimeoutResult { |
| 386 | let deadline = util::to_deadline(timeout); |
| 387 | self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, deadline) |
| 388 | } |
| 389 | |
| 390 | #[inline ] |
| 391 | fn wait_while_until_internal<T, F>( |
| 392 | &self, |
| 393 | mutex_guard: &mut MutexGuard<'_, T>, |
| 394 | mut condition: F, |
| 395 | timeout: Option<Instant>, |
| 396 | ) -> WaitTimeoutResult |
| 397 | where |
| 398 | T: ?Sized, |
| 399 | F: FnMut(&mut T) -> bool, |
| 400 | { |
| 401 | let mut result = WaitTimeoutResult(false); |
| 402 | |
| 403 | while !result.timed_out() && condition(mutex_guard.deref_mut()) { |
| 404 | result = |
| 405 | self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, timeout); |
| 406 | } |
| 407 | |
| 408 | result |
| 409 | } |
| 410 | /// Blocks the current thread until this condition variable receives a |
| 411 | /// notification. If the provided condition evaluates to `false`, then the |
| 412 | /// thread is no longer blocked and the operation is completed. If the |
| 413 | /// condition evaluates to `true`, then the thread is blocked again and |
| 414 | /// waits for another notification before repeating this process. |
| 415 | /// |
| 416 | /// This function will atomically unlock the mutex specified (represented by |
| 417 | /// `mutex_guard`) and block the current thread. This means that any calls |
| 418 | /// to `notify_*()` which happen logically after the mutex is unlocked are |
| 419 | /// candidates to wake this thread up. When this function call returns, the |
| 420 | /// lock specified will have been re-acquired. |
| 421 | /// |
| 422 | /// # Panics |
| 423 | /// |
| 424 | /// This function will panic if another thread is waiting on the `Condvar` |
| 425 | /// with a different `Mutex` object. |
| 426 | #[inline ] |
| 427 | pub fn wait_while<T, F>(&self, mutex_guard: &mut MutexGuard<'_, T>, condition: F) |
| 428 | where |
| 429 | T: ?Sized, |
| 430 | F: FnMut(&mut T) -> bool, |
| 431 | { |
| 432 | self.wait_while_until_internal(mutex_guard, condition, None); |
| 433 | } |
| 434 | |
| 435 | /// Waits on this condition variable for a notification, timing out after |
| 436 | /// the specified time instant. If the provided condition evaluates to |
| 437 | /// `false`, then the thread is no longer blocked and the operation is |
| 438 | /// completed. If the condition evaluates to `true`, then the thread is |
| 439 | /// blocked again and waits for another notification before repeating |
| 440 | /// this process. |
| 441 | /// |
| 442 | /// The semantics of this function are equivalent to `wait()` except that |
| 443 | /// the thread will be blocked roughly until `timeout` is reached. This |
| 444 | /// method should not be used for precise timing due to anomalies such as |
| 445 | /// preemption or platform differences that may not cause the maximum |
| 446 | /// amount of time waited to be precisely `timeout`. |
| 447 | /// |
| 448 | /// Note that the best effort is made to ensure that the time waited is |
| 449 | /// measured with a monotonic clock, and not affected by the changes made to |
| 450 | /// the system time. |
| 451 | /// |
| 452 | /// The returned `WaitTimeoutResult` value indicates if the timeout is |
| 453 | /// known to have elapsed. |
| 454 | /// |
| 455 | /// Like `wait`, the lock specified will be re-acquired when this function |
| 456 | /// returns, regardless of whether the timeout elapsed or not. |
| 457 | /// |
| 458 | /// # Panics |
| 459 | /// |
| 460 | /// This function will panic if another thread is waiting on the `Condvar` |
| 461 | /// with a different `Mutex` object. |
| 462 | #[inline ] |
| 463 | pub fn wait_while_until<T, F>( |
| 464 | &self, |
| 465 | mutex_guard: &mut MutexGuard<'_, T>, |
| 466 | condition: F, |
| 467 | timeout: Instant, |
| 468 | ) -> WaitTimeoutResult |
| 469 | where |
| 470 | T: ?Sized, |
| 471 | F: FnMut(&mut T) -> bool, |
| 472 | { |
| 473 | self.wait_while_until_internal(mutex_guard, condition, Some(timeout)) |
| 474 | } |
| 475 | |
| 476 | /// Waits on this condition variable for a notification, timing out after a |
| 477 | /// specified duration. If the provided condition evaluates to `false`, |
| 478 | /// then the thread is no longer blocked and the operation is completed. |
| 479 | /// If the condition evaluates to `true`, then the thread is blocked again |
| 480 | /// and waits for another notification before repeating this process. |
| 481 | /// |
| 482 | /// The semantics of this function are equivalent to `wait()` except that |
| 483 | /// the thread will be blocked for roughly no longer than `timeout`. This |
| 484 | /// method should not be used for precise timing due to anomalies such as |
| 485 | /// preemption or platform differences that may not cause the maximum |
| 486 | /// amount of time waited to be precisely `timeout`. |
| 487 | /// |
| 488 | /// Note that the best effort is made to ensure that the time waited is |
| 489 | /// measured with a monotonic clock, and not affected by the changes made to |
| 490 | /// the system time. |
| 491 | /// |
| 492 | /// The returned `WaitTimeoutResult` value indicates if the timeout is |
| 493 | /// known to have elapsed. |
| 494 | /// |
| 495 | /// Like `wait`, the lock specified will be re-acquired when this function |
| 496 | /// returns, regardless of whether the timeout elapsed or not. |
| 497 | #[inline ] |
| 498 | pub fn wait_while_for<T: ?Sized, F>( |
| 499 | &self, |
| 500 | mutex_guard: &mut MutexGuard<'_, T>, |
| 501 | condition: F, |
| 502 | timeout: Duration, |
| 503 | ) -> WaitTimeoutResult |
| 504 | where |
| 505 | F: FnMut(&mut T) -> bool, |
| 506 | { |
| 507 | let deadline = util::to_deadline(timeout); |
| 508 | self.wait_while_until_internal(mutex_guard, condition, deadline) |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | impl Default for Condvar { |
| 513 | #[inline ] |
| 514 | fn default() -> Condvar { |
| 515 | Condvar::new() |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | impl fmt::Debug for Condvar { |
| 520 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 521 | f.pad("Condvar { .. }" ) |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | #[cfg (test)] |
| 526 | mod tests { |
| 527 | use crate::{Condvar, Mutex, MutexGuard}; |
| 528 | use std::sync::mpsc::channel; |
| 529 | use std::sync::Arc; |
| 530 | use std::thread; |
| 531 | use std::thread::sleep; |
| 532 | use std::thread::JoinHandle; |
| 533 | use std::time::Duration; |
| 534 | use std::time::Instant; |
| 535 | |
| 536 | #[test ] |
| 537 | fn smoke() { |
| 538 | let c = Condvar::new(); |
| 539 | c.notify_one(); |
| 540 | c.notify_all(); |
| 541 | } |
| 542 | |
| 543 | #[test ] |
| 544 | fn notify_one() { |
| 545 | let m = Arc::new(Mutex::new(())); |
| 546 | let m2 = m.clone(); |
| 547 | let c = Arc::new(Condvar::new()); |
| 548 | let c2 = c.clone(); |
| 549 | |
| 550 | let mut g = m.lock(); |
| 551 | let _t = thread::spawn(move || { |
| 552 | let _g = m2.lock(); |
| 553 | c2.notify_one(); |
| 554 | }); |
| 555 | c.wait(&mut g); |
| 556 | } |
| 557 | |
| 558 | #[test ] |
| 559 | fn notify_all() { |
| 560 | const N: usize = 10; |
| 561 | |
| 562 | let data = Arc::new((Mutex::new(0), Condvar::new())); |
| 563 | let (tx, rx) = channel(); |
| 564 | for _ in 0..N { |
| 565 | let data = data.clone(); |
| 566 | let tx = tx.clone(); |
| 567 | thread::spawn(move || { |
| 568 | let (lock, cond) = &*data; |
| 569 | let mut cnt = lock.lock(); |
| 570 | *cnt += 1; |
| 571 | if *cnt == N { |
| 572 | tx.send(()).unwrap(); |
| 573 | } |
| 574 | while *cnt != 0 { |
| 575 | cond.wait(&mut cnt); |
| 576 | } |
| 577 | tx.send(()).unwrap(); |
| 578 | }); |
| 579 | } |
| 580 | drop(tx); |
| 581 | |
| 582 | let (lock, cond) = &*data; |
| 583 | rx.recv().unwrap(); |
| 584 | let mut cnt = lock.lock(); |
| 585 | *cnt = 0; |
| 586 | cond.notify_all(); |
| 587 | drop(cnt); |
| 588 | |
| 589 | for _ in 0..N { |
| 590 | rx.recv().unwrap(); |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | #[test ] |
| 595 | fn notify_one_return_true() { |
| 596 | let m = Arc::new(Mutex::new(())); |
| 597 | let m2 = m.clone(); |
| 598 | let c = Arc::new(Condvar::new()); |
| 599 | let c2 = c.clone(); |
| 600 | |
| 601 | let mut g = m.lock(); |
| 602 | let _t = thread::spawn(move || { |
| 603 | let _g = m2.lock(); |
| 604 | assert!(c2.notify_one()); |
| 605 | }); |
| 606 | c.wait(&mut g); |
| 607 | } |
| 608 | |
| 609 | #[test ] |
| 610 | fn notify_one_return_false() { |
| 611 | let m = Arc::new(Mutex::new(())); |
| 612 | let c = Arc::new(Condvar::new()); |
| 613 | |
| 614 | let _t = thread::spawn(move || { |
| 615 | let _g = m.lock(); |
| 616 | assert!(!c.notify_one()); |
| 617 | }); |
| 618 | } |
| 619 | |
| 620 | #[test ] |
| 621 | fn notify_all_return() { |
| 622 | const N: usize = 10; |
| 623 | |
| 624 | let data = Arc::new((Mutex::new(0), Condvar::new())); |
| 625 | let (tx, rx) = channel(); |
| 626 | for _ in 0..N { |
| 627 | let data = data.clone(); |
| 628 | let tx = tx.clone(); |
| 629 | thread::spawn(move || { |
| 630 | let (lock, cond) = &*data; |
| 631 | let mut cnt = lock.lock(); |
| 632 | *cnt += 1; |
| 633 | if *cnt == N { |
| 634 | tx.send(()).unwrap(); |
| 635 | } |
| 636 | while *cnt != 0 { |
| 637 | cond.wait(&mut cnt); |
| 638 | } |
| 639 | tx.send(()).unwrap(); |
| 640 | }); |
| 641 | } |
| 642 | drop(tx); |
| 643 | |
| 644 | let (lock, cond) = &*data; |
| 645 | rx.recv().unwrap(); |
| 646 | let mut cnt = lock.lock(); |
| 647 | *cnt = 0; |
| 648 | assert_eq!(cond.notify_all(), N); |
| 649 | drop(cnt); |
| 650 | |
| 651 | for _ in 0..N { |
| 652 | rx.recv().unwrap(); |
| 653 | } |
| 654 | |
| 655 | assert_eq!(cond.notify_all(), 0); |
| 656 | } |
| 657 | |
| 658 | #[test ] |
| 659 | fn wait_for() { |
| 660 | let m = Arc::new(Mutex::new(())); |
| 661 | let m2 = m.clone(); |
| 662 | let c = Arc::new(Condvar::new()); |
| 663 | let c2 = c.clone(); |
| 664 | |
| 665 | let mut g = m.lock(); |
| 666 | let no_timeout = c.wait_for(&mut g, Duration::from_millis(1)); |
| 667 | assert!(no_timeout.timed_out()); |
| 668 | |
| 669 | let _t = thread::spawn(move || { |
| 670 | let _g = m2.lock(); |
| 671 | c2.notify_one(); |
| 672 | }); |
| 673 | let timeout_res = c.wait_for(&mut g, Duration::from_secs(u64::max_value())); |
| 674 | assert!(!timeout_res.timed_out()); |
| 675 | |
| 676 | drop(g); |
| 677 | } |
| 678 | |
| 679 | #[test ] |
| 680 | fn wait_until() { |
| 681 | let m = Arc::new(Mutex::new(())); |
| 682 | let m2 = m.clone(); |
| 683 | let c = Arc::new(Condvar::new()); |
| 684 | let c2 = c.clone(); |
| 685 | |
| 686 | let mut g = m.lock(); |
| 687 | let no_timeout = c.wait_until(&mut g, Instant::now() + Duration::from_millis(1)); |
| 688 | assert!(no_timeout.timed_out()); |
| 689 | let _t = thread::spawn(move || { |
| 690 | let _g = m2.lock(); |
| 691 | c2.notify_one(); |
| 692 | }); |
| 693 | let timeout_res = c.wait_until( |
| 694 | &mut g, |
| 695 | Instant::now() + Duration::from_millis(u32::max_value() as u64), |
| 696 | ); |
| 697 | assert!(!timeout_res.timed_out()); |
| 698 | drop(g); |
| 699 | } |
| 700 | |
| 701 | fn spawn_wait_while_notifier( |
| 702 | mutex: Arc<Mutex<u32>>, |
| 703 | cv: Arc<Condvar>, |
| 704 | num_iters: u32, |
| 705 | timeout: Option<Instant>, |
| 706 | ) -> JoinHandle<()> { |
| 707 | thread::spawn(move || { |
| 708 | for epoch in 1..=num_iters { |
| 709 | // spin to wait for main test thread to block |
| 710 | // before notifying it to wake back up and check |
| 711 | // its condition. |
| 712 | let mut sleep_backoff = Duration::from_millis(1); |
| 713 | let _mutex_guard = loop { |
| 714 | let mutex_guard = mutex.lock(); |
| 715 | |
| 716 | if let Some(timeout) = timeout { |
| 717 | if Instant::now() >= timeout { |
| 718 | return; |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | if *mutex_guard == epoch { |
| 723 | break mutex_guard; |
| 724 | } |
| 725 | |
| 726 | drop(mutex_guard); |
| 727 | |
| 728 | // give main test thread a good chance to |
| 729 | // acquire the lock before this thread does. |
| 730 | sleep(sleep_backoff); |
| 731 | sleep_backoff *= 2; |
| 732 | }; |
| 733 | |
| 734 | cv.notify_one(); |
| 735 | } |
| 736 | }) |
| 737 | } |
| 738 | |
| 739 | #[test ] |
| 740 | fn wait_while_until_internal_does_not_wait_if_initially_false() { |
| 741 | let mutex = Arc::new(Mutex::new(0)); |
| 742 | let cv = Arc::new(Condvar::new()); |
| 743 | |
| 744 | let condition = |counter: &mut u32| { |
| 745 | *counter += 1; |
| 746 | false |
| 747 | }; |
| 748 | |
| 749 | let mut mutex_guard = mutex.lock(); |
| 750 | let timeout_result = cv.wait_while_until_internal(&mut mutex_guard, condition, None); |
| 751 | |
| 752 | assert!(!timeout_result.timed_out()); |
| 753 | assert!(*mutex_guard == 1); |
| 754 | } |
| 755 | |
| 756 | #[test ] |
| 757 | fn wait_while_until_internal_times_out_before_false() { |
| 758 | let mutex = Arc::new(Mutex::new(0)); |
| 759 | let cv = Arc::new(Condvar::new()); |
| 760 | |
| 761 | let num_iters = 3; |
| 762 | let condition = |counter: &mut u32| { |
| 763 | *counter += 1; |
| 764 | true |
| 765 | }; |
| 766 | |
| 767 | let mut mutex_guard = mutex.lock(); |
| 768 | let timeout = Some(Instant::now() + Duration::from_millis(500)); |
| 769 | let handle = spawn_wait_while_notifier(mutex.clone(), cv.clone(), num_iters, timeout); |
| 770 | |
| 771 | let timeout_result = cv.wait_while_until_internal(&mut mutex_guard, condition, timeout); |
| 772 | |
| 773 | assert!(timeout_result.timed_out()); |
| 774 | assert!(*mutex_guard == num_iters + 1); |
| 775 | |
| 776 | // prevent deadlock with notifier |
| 777 | drop(mutex_guard); |
| 778 | handle.join().unwrap(); |
| 779 | } |
| 780 | |
| 781 | #[test ] |
| 782 | fn wait_while_until_internal() { |
| 783 | let mutex = Arc::new(Mutex::new(0)); |
| 784 | let cv = Arc::new(Condvar::new()); |
| 785 | |
| 786 | let num_iters = 4; |
| 787 | |
| 788 | let condition = |counter: &mut u32| { |
| 789 | *counter += 1; |
| 790 | *counter <= num_iters |
| 791 | }; |
| 792 | |
| 793 | let mut mutex_guard = mutex.lock(); |
| 794 | let handle = spawn_wait_while_notifier(mutex.clone(), cv.clone(), num_iters, None); |
| 795 | |
| 796 | let timeout_result = cv.wait_while_until_internal(&mut mutex_guard, condition, None); |
| 797 | |
| 798 | assert!(!timeout_result.timed_out()); |
| 799 | assert!(*mutex_guard == num_iters + 1); |
| 800 | |
| 801 | let timeout_result = cv.wait_while_until_internal(&mut mutex_guard, condition, None); |
| 802 | handle.join().unwrap(); |
| 803 | |
| 804 | assert!(!timeout_result.timed_out()); |
| 805 | assert!(*mutex_guard == num_iters + 2); |
| 806 | } |
| 807 | |
| 808 | #[test ] |
| 809 | #[should_panic ] |
| 810 | fn two_mutexes() { |
| 811 | let m = Arc::new(Mutex::new(())); |
| 812 | let m2 = m.clone(); |
| 813 | let m3 = Arc::new(Mutex::new(())); |
| 814 | let c = Arc::new(Condvar::new()); |
| 815 | let c2 = c.clone(); |
| 816 | |
| 817 | // Make sure we don't leave the child thread dangling |
| 818 | struct PanicGuard<'a>(&'a Condvar); |
| 819 | impl<'a> Drop for PanicGuard<'a> { |
| 820 | fn drop(&mut self) { |
| 821 | self.0.notify_one(); |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | let (tx, rx) = channel(); |
| 826 | let g = m.lock(); |
| 827 | let _t = thread::spawn(move || { |
| 828 | let mut g = m2.lock(); |
| 829 | tx.send(()).unwrap(); |
| 830 | c2.wait(&mut g); |
| 831 | }); |
| 832 | drop(g); |
| 833 | rx.recv().unwrap(); |
| 834 | let _g = m.lock(); |
| 835 | let _guard = PanicGuard(&c); |
| 836 | c.wait(&mut m3.lock()); |
| 837 | } |
| 838 | |
| 839 | #[test ] |
| 840 | fn two_mutexes_disjoint() { |
| 841 | let m = Arc::new(Mutex::new(())); |
| 842 | let m2 = m.clone(); |
| 843 | let m3 = Arc::new(Mutex::new(())); |
| 844 | let c = Arc::new(Condvar::new()); |
| 845 | let c2 = c.clone(); |
| 846 | |
| 847 | let mut g = m.lock(); |
| 848 | let _t = thread::spawn(move || { |
| 849 | let _g = m2.lock(); |
| 850 | c2.notify_one(); |
| 851 | }); |
| 852 | c.wait(&mut g); |
| 853 | drop(g); |
| 854 | |
| 855 | let _ = c.wait_for(&mut m3.lock(), Duration::from_millis(1)); |
| 856 | } |
| 857 | |
| 858 | #[test ] |
| 859 | fn test_debug_condvar() { |
| 860 | let c = Condvar::new(); |
| 861 | assert_eq!(format!("{:?}" , c), "Condvar { .. }" ); |
| 862 | } |
| 863 | |
| 864 | #[test ] |
| 865 | fn test_condvar_requeue() { |
| 866 | let m = Arc::new(Mutex::new(())); |
| 867 | let m2 = m.clone(); |
| 868 | let c = Arc::new(Condvar::new()); |
| 869 | let c2 = c.clone(); |
| 870 | let t = thread::spawn(move || { |
| 871 | let mut g = m2.lock(); |
| 872 | c2.wait(&mut g); |
| 873 | }); |
| 874 | |
| 875 | let mut g = m.lock(); |
| 876 | while !c.notify_one() { |
| 877 | // Wait for the thread to get into wait() |
| 878 | MutexGuard::bump(&mut g); |
| 879 | // Yield, so the other thread gets a chance to do something. |
| 880 | // (At least Miri needs this, because it doesn't preempt threads.) |
| 881 | thread::yield_now(); |
| 882 | } |
| 883 | // The thread should have been requeued to the mutex, which we wake up now. |
| 884 | drop(g); |
| 885 | t.join().unwrap(); |
| 886 | } |
| 887 | |
| 888 | #[test ] |
| 889 | fn test_issue_129() { |
| 890 | let locks = Arc::new((Mutex::new(()), Condvar::new())); |
| 891 | |
| 892 | let (tx, rx) = channel(); |
| 893 | for _ in 0..4 { |
| 894 | let locks = locks.clone(); |
| 895 | let tx = tx.clone(); |
| 896 | thread::spawn(move || { |
| 897 | let mut guard = locks.0.lock(); |
| 898 | locks.1.wait(&mut guard); |
| 899 | locks.1.wait_for(&mut guard, Duration::from_millis(1)); |
| 900 | locks.1.notify_one(); |
| 901 | tx.send(()).unwrap(); |
| 902 | }); |
| 903 | } |
| 904 | |
| 905 | thread::sleep(Duration::from_millis(100)); |
| 906 | locks.1.notify_one(); |
| 907 | |
| 908 | for _ in 0..4 { |
| 909 | assert_eq!(rx.recv_timeout(Duration::from_millis(500)), Ok(())); |
| 910 | } |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | /// This module contains an integration test that is heavily inspired from WebKit's own integration |
| 915 | /// tests for it's own Condvar. |
| 916 | #[cfg (test)] |
| 917 | mod webkit_queue_test { |
| 918 | use crate::{Condvar, Mutex, MutexGuard}; |
| 919 | use std::{collections::VecDeque, sync::Arc, thread, time::Duration}; |
| 920 | |
| 921 | #[derive (Clone, Copy)] |
| 922 | enum Timeout { |
| 923 | Bounded(Duration), |
| 924 | Forever, |
| 925 | } |
| 926 | |
| 927 | #[derive (Clone, Copy)] |
| 928 | enum NotifyStyle { |
| 929 | One, |
| 930 | All, |
| 931 | } |
| 932 | |
| 933 | struct Queue { |
| 934 | items: VecDeque<usize>, |
| 935 | should_continue: bool, |
| 936 | } |
| 937 | |
| 938 | impl Queue { |
| 939 | fn new() -> Self { |
| 940 | Self { |
| 941 | items: VecDeque::new(), |
| 942 | should_continue: true, |
| 943 | } |
| 944 | } |
| 945 | } |
| 946 | |
| 947 | fn wait<T: ?Sized>( |
| 948 | condition: &Condvar, |
| 949 | lock: &mut MutexGuard<'_, T>, |
| 950 | predicate: impl Fn(&mut MutexGuard<'_, T>) -> bool, |
| 951 | timeout: &Timeout, |
| 952 | ) { |
| 953 | while !predicate(lock) { |
| 954 | match timeout { |
| 955 | Timeout::Forever => condition.wait(lock), |
| 956 | Timeout::Bounded(bound) => { |
| 957 | condition.wait_for(lock, *bound); |
| 958 | } |
| 959 | } |
| 960 | } |
| 961 | } |
| 962 | |
| 963 | fn notify(style: NotifyStyle, condition: &Condvar, should_notify: bool) { |
| 964 | match style { |
| 965 | NotifyStyle::One => { |
| 966 | condition.notify_one(); |
| 967 | } |
| 968 | NotifyStyle::All => { |
| 969 | if should_notify { |
| 970 | condition.notify_all(); |
| 971 | } |
| 972 | } |
| 973 | } |
| 974 | } |
| 975 | |
| 976 | fn run_queue_test( |
| 977 | num_producers: usize, |
| 978 | num_consumers: usize, |
| 979 | max_queue_size: usize, |
| 980 | messages_per_producer: usize, |
| 981 | notify_style: NotifyStyle, |
| 982 | timeout: Timeout, |
| 983 | delay: Duration, |
| 984 | ) { |
| 985 | let input_queue = Arc::new(Mutex::new(Queue::new())); |
| 986 | let empty_condition = Arc::new(Condvar::new()); |
| 987 | let full_condition = Arc::new(Condvar::new()); |
| 988 | |
| 989 | let output_vec = Arc::new(Mutex::new(vec![])); |
| 990 | |
| 991 | let consumers = (0..num_consumers) |
| 992 | .map(|_| { |
| 993 | consumer_thread( |
| 994 | input_queue.clone(), |
| 995 | empty_condition.clone(), |
| 996 | full_condition.clone(), |
| 997 | timeout, |
| 998 | notify_style, |
| 999 | output_vec.clone(), |
| 1000 | max_queue_size, |
| 1001 | ) |
| 1002 | }) |
| 1003 | .collect::<Vec<_>>(); |
| 1004 | let producers = (0..num_producers) |
| 1005 | .map(|_| { |
| 1006 | producer_thread( |
| 1007 | messages_per_producer, |
| 1008 | input_queue.clone(), |
| 1009 | empty_condition.clone(), |
| 1010 | full_condition.clone(), |
| 1011 | timeout, |
| 1012 | notify_style, |
| 1013 | max_queue_size, |
| 1014 | ) |
| 1015 | }) |
| 1016 | .collect::<Vec<_>>(); |
| 1017 | |
| 1018 | thread::sleep(delay); |
| 1019 | |
| 1020 | for producer in producers.into_iter() { |
| 1021 | producer.join().expect("Producer thread panicked" ); |
| 1022 | } |
| 1023 | |
| 1024 | { |
| 1025 | let mut input_queue = input_queue.lock(); |
| 1026 | input_queue.should_continue = false; |
| 1027 | } |
| 1028 | empty_condition.notify_all(); |
| 1029 | |
| 1030 | for consumer in consumers.into_iter() { |
| 1031 | consumer.join().expect("Consumer thread panicked" ); |
| 1032 | } |
| 1033 | |
| 1034 | let mut output_vec = output_vec.lock(); |
| 1035 | assert_eq!(output_vec.len(), num_producers * messages_per_producer); |
| 1036 | output_vec.sort(); |
| 1037 | for msg_idx in 0..messages_per_producer { |
| 1038 | for producer_idx in 0..num_producers { |
| 1039 | assert_eq!(msg_idx, output_vec[msg_idx * num_producers + producer_idx]); |
| 1040 | } |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | fn consumer_thread( |
| 1045 | input_queue: Arc<Mutex<Queue>>, |
| 1046 | empty_condition: Arc<Condvar>, |
| 1047 | full_condition: Arc<Condvar>, |
| 1048 | timeout: Timeout, |
| 1049 | notify_style: NotifyStyle, |
| 1050 | output_queue: Arc<Mutex<Vec<usize>>>, |
| 1051 | max_queue_size: usize, |
| 1052 | ) -> thread::JoinHandle<()> { |
| 1053 | thread::spawn(move || loop { |
| 1054 | let (should_notify, result) = { |
| 1055 | let mut queue = input_queue.lock(); |
| 1056 | wait( |
| 1057 | &empty_condition, |
| 1058 | &mut queue, |
| 1059 | |state| -> bool { !state.items.is_empty() || !state.should_continue }, |
| 1060 | &timeout, |
| 1061 | ); |
| 1062 | if queue.items.is_empty() && !queue.should_continue { |
| 1063 | return; |
| 1064 | } |
| 1065 | let should_notify = queue.items.len() == max_queue_size; |
| 1066 | let result = queue.items.pop_front(); |
| 1067 | std::mem::drop(queue); |
| 1068 | (should_notify, result) |
| 1069 | }; |
| 1070 | notify(notify_style, &full_condition, should_notify); |
| 1071 | |
| 1072 | if let Some(result) = result { |
| 1073 | output_queue.lock().push(result); |
| 1074 | } |
| 1075 | }) |
| 1076 | } |
| 1077 | |
| 1078 | fn producer_thread( |
| 1079 | num_messages: usize, |
| 1080 | queue: Arc<Mutex<Queue>>, |
| 1081 | empty_condition: Arc<Condvar>, |
| 1082 | full_condition: Arc<Condvar>, |
| 1083 | timeout: Timeout, |
| 1084 | notify_style: NotifyStyle, |
| 1085 | max_queue_size: usize, |
| 1086 | ) -> thread::JoinHandle<()> { |
| 1087 | thread::spawn(move || { |
| 1088 | for message in 0..num_messages { |
| 1089 | let should_notify = { |
| 1090 | let mut queue = queue.lock(); |
| 1091 | wait( |
| 1092 | &full_condition, |
| 1093 | &mut queue, |
| 1094 | |state| state.items.len() < max_queue_size, |
| 1095 | &timeout, |
| 1096 | ); |
| 1097 | let should_notify = queue.items.is_empty(); |
| 1098 | queue.items.push_back(message); |
| 1099 | std::mem::drop(queue); |
| 1100 | should_notify |
| 1101 | }; |
| 1102 | notify(notify_style, &empty_condition, should_notify); |
| 1103 | } |
| 1104 | }) |
| 1105 | } |
| 1106 | |
| 1107 | macro_rules! run_queue_tests { |
| 1108 | ( $( $name:ident( |
| 1109 | num_producers: $num_producers:expr, |
| 1110 | num_consumers: $num_consumers:expr, |
| 1111 | max_queue_size: $max_queue_size:expr, |
| 1112 | messages_per_producer: $messages_per_producer:expr, |
| 1113 | notification_style: $notification_style:expr, |
| 1114 | timeout: $timeout:expr, |
| 1115 | delay_seconds: $delay_seconds:expr); |
| 1116 | )* ) => { |
| 1117 | $(#[test] |
| 1118 | fn $name() { |
| 1119 | let delay = Duration::from_secs($delay_seconds); |
| 1120 | run_queue_test( |
| 1121 | $num_producers, |
| 1122 | $num_consumers, |
| 1123 | $max_queue_size, |
| 1124 | $messages_per_producer, |
| 1125 | $notification_style, |
| 1126 | $timeout, |
| 1127 | delay, |
| 1128 | ); |
| 1129 | })* |
| 1130 | }; |
| 1131 | } |
| 1132 | |
| 1133 | run_queue_tests! { |
| 1134 | sanity_check_queue( |
| 1135 | num_producers: 1, |
| 1136 | num_consumers: 1, |
| 1137 | max_queue_size: 1, |
| 1138 | messages_per_producer: 100_000, |
| 1139 | notification_style: NotifyStyle::All, |
| 1140 | timeout: Timeout::Bounded(Duration::from_secs(1)), |
| 1141 | delay_seconds: 0 |
| 1142 | ); |
| 1143 | sanity_check_queue_timeout( |
| 1144 | num_producers: 1, |
| 1145 | num_consumers: 1, |
| 1146 | max_queue_size: 1, |
| 1147 | messages_per_producer: 100_000, |
| 1148 | notification_style: NotifyStyle::All, |
| 1149 | timeout: Timeout::Forever, |
| 1150 | delay_seconds: 0 |
| 1151 | ); |
| 1152 | new_test_without_timeout_5( |
| 1153 | num_producers: 1, |
| 1154 | num_consumers: 5, |
| 1155 | max_queue_size: 1, |
| 1156 | messages_per_producer: 100_000, |
| 1157 | notification_style: NotifyStyle::All, |
| 1158 | timeout: Timeout::Forever, |
| 1159 | delay_seconds: 0 |
| 1160 | ); |
| 1161 | one_producer_one_consumer_one_slot( |
| 1162 | num_producers: 1, |
| 1163 | num_consumers: 1, |
| 1164 | max_queue_size: 1, |
| 1165 | messages_per_producer: 100_000, |
| 1166 | notification_style: NotifyStyle::All, |
| 1167 | timeout: Timeout::Forever, |
| 1168 | delay_seconds: 0 |
| 1169 | ); |
| 1170 | one_producer_one_consumer_one_slot_timeout( |
| 1171 | num_producers: 1, |
| 1172 | num_consumers: 1, |
| 1173 | max_queue_size: 1, |
| 1174 | messages_per_producer: 100_000, |
| 1175 | notification_style: NotifyStyle::All, |
| 1176 | timeout: Timeout::Forever, |
| 1177 | delay_seconds: 1 |
| 1178 | ); |
| 1179 | one_producer_one_consumer_hundred_slots( |
| 1180 | num_producers: 1, |
| 1181 | num_consumers: 1, |
| 1182 | max_queue_size: 100, |
| 1183 | messages_per_producer: 1_000_000, |
| 1184 | notification_style: NotifyStyle::All, |
| 1185 | timeout: Timeout::Forever, |
| 1186 | delay_seconds: 0 |
| 1187 | ); |
| 1188 | ten_producers_one_consumer_one_slot( |
| 1189 | num_producers: 10, |
| 1190 | num_consumers: 1, |
| 1191 | max_queue_size: 1, |
| 1192 | messages_per_producer: 10000, |
| 1193 | notification_style: NotifyStyle::All, |
| 1194 | timeout: Timeout::Forever, |
| 1195 | delay_seconds: 0 |
| 1196 | ); |
| 1197 | ten_producers_one_consumer_hundred_slots_notify_all( |
| 1198 | num_producers: 10, |
| 1199 | num_consumers: 1, |
| 1200 | max_queue_size: 100, |
| 1201 | messages_per_producer: 10000, |
| 1202 | notification_style: NotifyStyle::All, |
| 1203 | timeout: Timeout::Forever, |
| 1204 | delay_seconds: 0 |
| 1205 | ); |
| 1206 | ten_producers_one_consumer_hundred_slots_notify_one( |
| 1207 | num_producers: 10, |
| 1208 | num_consumers: 1, |
| 1209 | max_queue_size: 100, |
| 1210 | messages_per_producer: 10000, |
| 1211 | notification_style: NotifyStyle::One, |
| 1212 | timeout: Timeout::Forever, |
| 1213 | delay_seconds: 0 |
| 1214 | ); |
| 1215 | one_producer_ten_consumers_one_slot( |
| 1216 | num_producers: 1, |
| 1217 | num_consumers: 10, |
| 1218 | max_queue_size: 1, |
| 1219 | messages_per_producer: 10000, |
| 1220 | notification_style: NotifyStyle::All, |
| 1221 | timeout: Timeout::Forever, |
| 1222 | delay_seconds: 0 |
| 1223 | ); |
| 1224 | one_producer_ten_consumers_hundred_slots_notify_all( |
| 1225 | num_producers: 1, |
| 1226 | num_consumers: 10, |
| 1227 | max_queue_size: 100, |
| 1228 | messages_per_producer: 100_000, |
| 1229 | notification_style: NotifyStyle::All, |
| 1230 | timeout: Timeout::Forever, |
| 1231 | delay_seconds: 0 |
| 1232 | ); |
| 1233 | one_producer_ten_consumers_hundred_slots_notify_one( |
| 1234 | num_producers: 1, |
| 1235 | num_consumers: 10, |
| 1236 | max_queue_size: 100, |
| 1237 | messages_per_producer: 100_000, |
| 1238 | notification_style: NotifyStyle::One, |
| 1239 | timeout: Timeout::Forever, |
| 1240 | delay_seconds: 0 |
| 1241 | ); |
| 1242 | ten_producers_ten_consumers_one_slot( |
| 1243 | num_producers: 10, |
| 1244 | num_consumers: 10, |
| 1245 | max_queue_size: 1, |
| 1246 | messages_per_producer: 50000, |
| 1247 | notification_style: NotifyStyle::All, |
| 1248 | timeout: Timeout::Forever, |
| 1249 | delay_seconds: 0 |
| 1250 | ); |
| 1251 | ten_producers_ten_consumers_hundred_slots_notify_all( |
| 1252 | num_producers: 10, |
| 1253 | num_consumers: 10, |
| 1254 | max_queue_size: 100, |
| 1255 | messages_per_producer: 50000, |
| 1256 | notification_style: NotifyStyle::All, |
| 1257 | timeout: Timeout::Forever, |
| 1258 | delay_seconds: 0 |
| 1259 | ); |
| 1260 | ten_producers_ten_consumers_hundred_slots_notify_one( |
| 1261 | num_producers: 10, |
| 1262 | num_consumers: 10, |
| 1263 | max_queue_size: 100, |
| 1264 | messages_per_producer: 50000, |
| 1265 | notification_style: NotifyStyle::One, |
| 1266 | timeout: Timeout::Forever, |
| 1267 | delay_seconds: 0 |
| 1268 | ); |
| 1269 | } |
| 1270 | } |
| 1271 | |