| 1 | //! A double-ended queue (deque) implemented with a growable ring buffer. |
| 2 | //! |
| 3 | //! This queue has *O*(1) amortized inserts and removals from both ends of the |
| 4 | //! container. It also has *O*(1) indexing like a vector. The contained elements |
| 5 | //! are not required to be copyable, and the queue will be sendable if the |
| 6 | //! contained type is sendable. |
| 7 | |
| 8 | #![stable (feature = "rust1" , since = "1.0.0" )] |
| 9 | |
| 10 | #[cfg (not(no_global_oom_handling))] |
| 11 | use core::clone::TrivialClone; |
| 12 | use core::cmp::{self, Ordering}; |
| 13 | use core::hash::{Hash, Hasher}; |
| 14 | use core::iter::{ByRefSized, repeat_n, repeat_with}; |
| 15 | // This is used in a bunch of intra-doc links. |
| 16 | // FIXME: For some reason, `#[cfg(doc)]` wasn't sufficient, resulting in |
| 17 | // failures in linkchecker even though rustdoc built the docs just fine. |
| 18 | #[allow (unused_imports)] |
| 19 | use core::mem; |
| 20 | use core::mem::{ManuallyDrop, SizedTypeProperties}; |
| 21 | use core::ops::{Index, IndexMut, Range, RangeBounds}; |
| 22 | use core::{fmt, ptr, slice}; |
| 23 | |
| 24 | use crate::alloc::{Allocator, Global}; |
| 25 | use crate::collections::{TryReserveError, TryReserveErrorKind}; |
| 26 | use crate::raw_vec::RawVec; |
| 27 | use crate::vec::Vec; |
| 28 | |
| 29 | #[macro_use ] |
| 30 | mod macros; |
| 31 | |
| 32 | #[stable (feature = "drain" , since = "1.6.0" )] |
| 33 | pub use self::drain::Drain; |
| 34 | |
| 35 | mod drain; |
| 36 | |
| 37 | #[unstable (feature = "vec_deque_extract_if" , issue = "147750" )] |
| 38 | pub use self::extract_if::ExtractIf; |
| 39 | |
| 40 | mod extract_if; |
| 41 | |
| 42 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 43 | pub use self::iter_mut::IterMut; |
| 44 | |
| 45 | mod iter_mut; |
| 46 | |
| 47 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 48 | pub use self::into_iter::IntoIter; |
| 49 | |
| 50 | mod into_iter; |
| 51 | |
| 52 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 53 | pub use self::iter::Iter; |
| 54 | |
| 55 | mod iter; |
| 56 | |
| 57 | use self::spec_extend::{SpecExtend, SpecExtendFront}; |
| 58 | |
| 59 | mod spec_extend; |
| 60 | |
| 61 | use self::spec_from_iter::SpecFromIter; |
| 62 | |
| 63 | mod spec_from_iter; |
| 64 | |
| 65 | #[cfg (not(no_global_oom_handling))] |
| 66 | #[unstable (feature = "deque_extend_front" , issue = "146975" )] |
| 67 | pub use self::splice::Splice; |
| 68 | |
| 69 | #[cfg (not(no_global_oom_handling))] |
| 70 | mod splice; |
| 71 | |
| 72 | #[cfg (test)] |
| 73 | mod tests; |
| 74 | |
| 75 | /// A double-ended queue implemented with a growable ring buffer. |
| 76 | /// |
| 77 | /// The "default" usage of this type as a queue is to use [`push_back`] to add to |
| 78 | /// the queue, and [`pop_front`] to remove from the queue. [`extend`] and [`append`] |
| 79 | /// push onto the back in this manner, and iterating over `VecDeque` goes front |
| 80 | /// to back. |
| 81 | /// |
| 82 | /// A `VecDeque` with a known list of items can be initialized from an array: |
| 83 | /// |
| 84 | /// ``` |
| 85 | /// use std::collections::VecDeque; |
| 86 | /// |
| 87 | /// let deq = VecDeque::from([-1, 0, 1]); |
| 88 | /// ``` |
| 89 | /// |
| 90 | /// Since `VecDeque` is a ring buffer, its elements are not necessarily contiguous |
| 91 | /// in memory. If you want to access the elements as a single slice, such as for |
| 92 | /// efficient sorting, you can use [`make_contiguous`]. It rotates the `VecDeque` |
| 93 | /// so that its elements do not wrap, and returns a mutable slice to the |
| 94 | /// now-contiguous element sequence. |
| 95 | /// |
| 96 | /// [`push_back`]: VecDeque::push_back |
| 97 | /// [`pop_front`]: VecDeque::pop_front |
| 98 | /// [`extend`]: VecDeque::extend |
| 99 | /// [`append`]: VecDeque::append |
| 100 | /// [`make_contiguous`]: VecDeque::make_contiguous |
| 101 | #[cfg_attr (not(test), rustc_diagnostic_item = "VecDeque" )] |
| 102 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 103 | #[rustc_insignificant_dtor ] |
| 104 | pub struct VecDeque< |
| 105 | T, |
| 106 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
| 107 | > { |
| 108 | // `self[0]`, if it exists, is `buf[head]`. |
| 109 | // `head < buf.capacity()`, unless `buf.capacity() == 0` when `head == 0`. |
| 110 | head: usize, |
| 111 | // the number of initialized elements, starting from the one at `head` and potentially wrapping around. |
| 112 | // if `len == 0`, the exact value of `head` is unimportant. |
| 113 | // if `T` is zero-Sized, then `self.len <= usize::MAX`, otherwise `self.len <= isize::MAX as usize`. |
| 114 | len: usize, |
| 115 | buf: RawVec<T, A>, |
| 116 | } |
| 117 | |
| 118 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 119 | impl<T: Clone, A: Allocator + Clone> Clone for VecDeque<T, A> { |
| 120 | fn clone(&self) -> Self { |
| 121 | let mut deq: VecDeque = Self::with_capacity_in(self.len(), self.allocator().clone()); |
| 122 | deq.extend(self.iter().cloned()); |
| 123 | deq |
| 124 | } |
| 125 | |
| 126 | /// Overwrites the contents of `self` with a clone of the contents of `source`. |
| 127 | /// |
| 128 | /// This method is preferred over simply assigning `source.clone()` to `self`, |
| 129 | /// as it avoids reallocation if possible. |
| 130 | fn clone_from(&mut self, source: &Self) { |
| 131 | self.clear(); |
| 132 | self.extend(source.iter().cloned()); |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 137 | unsafe impl<#[may_dangle ] T, A: Allocator> Drop for VecDeque<T, A> { |
| 138 | fn drop(&mut self) { |
| 139 | /// Runs the destructor for all items in the slice when it gets dropped (normally or |
| 140 | /// during unwinding). |
| 141 | struct Dropper<'a, T>(&'a mut [T]); |
| 142 | |
| 143 | impl<'a, T> Drop for Dropper<'a, T> { |
| 144 | fn drop(&mut self) { |
| 145 | unsafe { |
| 146 | ptr::drop_in_place(self.0); |
| 147 | } |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | let (front: &mut [T], back: &mut [T]) = self.as_mut_slices(); |
| 152 | unsafe { |
| 153 | let _back_dropper: Dropper<'_, T> = Dropper(back); |
| 154 | // use drop for [T] |
| 155 | ptr::drop_in_place(front); |
| 156 | } |
| 157 | // RawVec handles deallocation |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 162 | impl<T> Default for VecDeque<T> { |
| 163 | /// Creates an empty deque. |
| 164 | #[inline ] |
| 165 | fn default() -> VecDeque<T> { |
| 166 | VecDeque::new() |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | impl<T, A: Allocator> VecDeque<T, A> { |
| 171 | /// Marginally more convenient |
| 172 | #[inline ] |
| 173 | fn ptr(&self) -> *mut T { |
| 174 | self.buf.ptr() |
| 175 | } |
| 176 | |
| 177 | /// Appends an element to the buffer. |
| 178 | /// |
| 179 | /// # Safety |
| 180 | /// |
| 181 | /// May only be called if `deque.len() < deque.capacity()` |
| 182 | #[inline ] |
| 183 | unsafe fn push_unchecked(&mut self, element: T) { |
| 184 | // SAFETY: Because of the precondition, it's guaranteed that there is space |
| 185 | // in the logical array after the last element. |
| 186 | unsafe { self.buffer_write(self.to_physical_idx(self.len), element) }; |
| 187 | // This can't overflow because `deque.len() < deque.capacity() <= usize::MAX`. |
| 188 | self.len += 1; |
| 189 | } |
| 190 | |
| 191 | /// Prepends an element to the buffer. |
| 192 | /// |
| 193 | /// # Safety |
| 194 | /// |
| 195 | /// May only be called if `deque.len() < deque.capacity()` |
| 196 | #[inline ] |
| 197 | unsafe fn push_front_unchecked(&mut self, element: T) { |
| 198 | self.head = self.wrap_sub(self.head, 1); |
| 199 | // SAFETY: Because of the precondition, it's guaranteed that there is space |
| 200 | // in the logical array before the first element (where self.head is now). |
| 201 | unsafe { self.buffer_write(self.head, element) }; |
| 202 | // This can't overflow because `deque.len() < deque.capacity() <= usize::MAX`. |
| 203 | self.len += 1; |
| 204 | } |
| 205 | |
| 206 | /// Moves an element out of the buffer |
| 207 | #[inline ] |
| 208 | unsafe fn buffer_read(&mut self, off: usize) -> T { |
| 209 | unsafe { ptr::read(self.ptr().add(off)) } |
| 210 | } |
| 211 | |
| 212 | /// Writes an element into the buffer, moving it and returning a pointer to it. |
| 213 | /// # Safety |
| 214 | /// |
| 215 | /// May only be called if `off < self.capacity()`. |
| 216 | #[inline ] |
| 217 | unsafe fn buffer_write(&mut self, off: usize, value: T) -> &mut T { |
| 218 | unsafe { |
| 219 | let ptr = self.ptr().add(off); |
| 220 | ptr::write(ptr, value); |
| 221 | &mut *ptr |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | /// Returns a slice pointer into the buffer. |
| 226 | /// `range` must lie inside `0..self.capacity()`. |
| 227 | #[inline ] |
| 228 | unsafe fn buffer_range(&self, range: Range<usize>) -> *mut [T] { |
| 229 | unsafe { |
| 230 | ptr::slice_from_raw_parts_mut(self.ptr().add(range.start), range.end - range.start) |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | /// Returns `true` if the buffer is at full capacity. |
| 235 | #[inline ] |
| 236 | fn is_full(&self) -> bool { |
| 237 | self.len == self.capacity() |
| 238 | } |
| 239 | |
| 240 | /// Returns the index in the underlying buffer for a given logical element |
| 241 | /// index + addend. |
| 242 | #[inline ] |
| 243 | fn wrap_add(&self, idx: usize, addend: usize) -> usize { |
| 244 | wrap_index(idx.wrapping_add(addend), self.capacity()) |
| 245 | } |
| 246 | |
| 247 | #[inline ] |
| 248 | fn to_physical_idx(&self, idx: usize) -> usize { |
| 249 | self.wrap_add(self.head, idx) |
| 250 | } |
| 251 | |
| 252 | /// Returns the index in the underlying buffer for a given logical element |
| 253 | /// index - subtrahend. |
| 254 | #[inline ] |
| 255 | fn wrap_sub(&self, idx: usize, subtrahend: usize) -> usize { |
| 256 | wrap_index(idx.wrapping_sub(subtrahend).wrapping_add(self.capacity()), self.capacity()) |
| 257 | } |
| 258 | |
| 259 | /// Get source, destination and count (like the arguments to [`ptr::copy_nonoverlapping`]) |
| 260 | /// for copying `count` values from index `src` to index `dst`. |
| 261 | /// One of the ranges can wrap around the physical buffer, for this reason 2 triples are returned. |
| 262 | /// |
| 263 | /// Use of the word "ranges" specifically refers to `src..src + count` and `dst..dst + count`. |
| 264 | /// |
| 265 | /// # Safety |
| 266 | /// |
| 267 | /// - Ranges must not overlap: `src.abs_diff(dst) >= count`. |
| 268 | /// - Ranges must be in bounds of the logical buffer: `src + count <= self.capacity()` and `dst + count <= self.capacity()`. |
| 269 | /// - `head` must be in bounds: `head < self.capacity()`. |
| 270 | #[cfg (not(no_global_oom_handling))] |
| 271 | unsafe fn nonoverlapping_ranges( |
| 272 | &mut self, |
| 273 | src: usize, |
| 274 | dst: usize, |
| 275 | count: usize, |
| 276 | head: usize, |
| 277 | ) -> [(*const T, *mut T, usize); 2] { |
| 278 | // "`src` and `dst` must be at least as far apart as `count`" |
| 279 | debug_assert!( |
| 280 | src.abs_diff(dst) >= count, |
| 281 | "`src` and `dst` must not overlap. src={src} dst={dst} count={count}" , |
| 282 | ); |
| 283 | debug_assert!( |
| 284 | src.max(dst) + count <= self.capacity(), |
| 285 | "ranges must be in bounds. src={src} dst={dst} count={count} cap={}" , |
| 286 | self.capacity(), |
| 287 | ); |
| 288 | |
| 289 | let wrapped_src = self.wrap_add(head, src); |
| 290 | let wrapped_dst = self.wrap_add(head, dst); |
| 291 | |
| 292 | let room_after_src = self.capacity() - wrapped_src; |
| 293 | let room_after_dst = self.capacity() - wrapped_dst; |
| 294 | |
| 295 | let src_wraps = room_after_src < count; |
| 296 | let dst_wraps = room_after_dst < count; |
| 297 | |
| 298 | // Wrapping occurs if `capacity` is contained within `wrapped_src..wrapped_src + count` or `wrapped_dst..wrapped_dst + count`. |
| 299 | // Since these two ranges must not overlap as per the safety invariants of this function, only one range can wrap. |
| 300 | debug_assert!( |
| 301 | !(src_wraps && dst_wraps), |
| 302 | "BUG: at most one of src and dst can wrap. src={src} dst={dst} count={count} cap={}" , |
| 303 | self.capacity(), |
| 304 | ); |
| 305 | |
| 306 | unsafe { |
| 307 | let ptr = self.ptr(); |
| 308 | let src_ptr = ptr.add(wrapped_src); |
| 309 | let dst_ptr = ptr.add(wrapped_dst); |
| 310 | |
| 311 | if src_wraps { |
| 312 | [ |
| 313 | (src_ptr, dst_ptr, room_after_src), |
| 314 | (ptr, dst_ptr.add(room_after_src), count - room_after_src), |
| 315 | ] |
| 316 | } else if dst_wraps { |
| 317 | [ |
| 318 | (src_ptr, dst_ptr, room_after_dst), |
| 319 | (src_ptr.add(room_after_dst), ptr, count - room_after_dst), |
| 320 | ] |
| 321 | } else { |
| 322 | [ |
| 323 | (src_ptr, dst_ptr, count), |
| 324 | // null pointers are fine as long as the count is 0 |
| 325 | (ptr::null(), ptr::null_mut(), 0), |
| 326 | ] |
| 327 | } |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | /// Copies a contiguous block of memory len long from src to dst |
| 332 | #[inline ] |
| 333 | unsafe fn copy(&mut self, src: usize, dst: usize, len: usize) { |
| 334 | debug_assert!( |
| 335 | dst + len <= self.capacity(), |
| 336 | "cpy dst={} src={} len={} cap={}" , |
| 337 | dst, |
| 338 | src, |
| 339 | len, |
| 340 | self.capacity() |
| 341 | ); |
| 342 | debug_assert!( |
| 343 | src + len <= self.capacity(), |
| 344 | "cpy dst={} src={} len={} cap={}" , |
| 345 | dst, |
| 346 | src, |
| 347 | len, |
| 348 | self.capacity() |
| 349 | ); |
| 350 | unsafe { |
| 351 | ptr::copy(self.ptr().add(src), self.ptr().add(dst), len); |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | /// Copies a contiguous block of memory len long from src to dst |
| 356 | #[inline ] |
| 357 | unsafe fn copy_nonoverlapping(&mut self, src: usize, dst: usize, len: usize) { |
| 358 | debug_assert!( |
| 359 | dst + len <= self.capacity(), |
| 360 | "cno dst={} src={} len={} cap={}" , |
| 361 | dst, |
| 362 | src, |
| 363 | len, |
| 364 | self.capacity() |
| 365 | ); |
| 366 | debug_assert!( |
| 367 | src + len <= self.capacity(), |
| 368 | "cno dst={} src={} len={} cap={}" , |
| 369 | dst, |
| 370 | src, |
| 371 | len, |
| 372 | self.capacity() |
| 373 | ); |
| 374 | unsafe { |
| 375 | ptr::copy_nonoverlapping(self.ptr().add(src), self.ptr().add(dst), len); |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | /// Copies a potentially wrapping block of memory len long from src to dest. |
| 380 | /// (abs(dst - src) + len) must be no larger than capacity() (There must be at |
| 381 | /// most one continuous overlapping region between src and dest). |
| 382 | unsafe fn wrap_copy(&mut self, src: usize, dst: usize, len: usize) { |
| 383 | debug_assert!( |
| 384 | cmp::min(src.abs_diff(dst), self.capacity() - src.abs_diff(dst)) + len |
| 385 | <= self.capacity(), |
| 386 | "wrc dst={} src={} len={} cap={}" , |
| 387 | dst, |
| 388 | src, |
| 389 | len, |
| 390 | self.capacity() |
| 391 | ); |
| 392 | |
| 393 | // If T is a ZST, don't do any copying. |
| 394 | if T::IS_ZST || src == dst || len == 0 { |
| 395 | return; |
| 396 | } |
| 397 | |
| 398 | let dst_after_src = self.wrap_sub(dst, src) < len; |
| 399 | |
| 400 | let src_pre_wrap_len = self.capacity() - src; |
| 401 | let dst_pre_wrap_len = self.capacity() - dst; |
| 402 | let src_wraps = src_pre_wrap_len < len; |
| 403 | let dst_wraps = dst_pre_wrap_len < len; |
| 404 | |
| 405 | match (dst_after_src, src_wraps, dst_wraps) { |
| 406 | (_, false, false) => { |
| 407 | // src doesn't wrap, dst doesn't wrap |
| 408 | // |
| 409 | // S . . . |
| 410 | // 1 [_ _ A A B B C C _] |
| 411 | // 2 [_ _ A A A A B B _] |
| 412 | // D . . . |
| 413 | // |
| 414 | unsafe { |
| 415 | self.copy(src, dst, len); |
| 416 | } |
| 417 | } |
| 418 | (false, false, true) => { |
| 419 | // dst before src, src doesn't wrap, dst wraps |
| 420 | // |
| 421 | // S . . . |
| 422 | // 1 [A A B B _ _ _ C C] |
| 423 | // 2 [A A B B _ _ _ A A] |
| 424 | // 3 [B B B B _ _ _ A A] |
| 425 | // . . D . |
| 426 | // |
| 427 | unsafe { |
| 428 | self.copy(src, dst, dst_pre_wrap_len); |
| 429 | self.copy(src + dst_pre_wrap_len, 0, len - dst_pre_wrap_len); |
| 430 | } |
| 431 | } |
| 432 | (true, false, true) => { |
| 433 | // src before dst, src doesn't wrap, dst wraps |
| 434 | // |
| 435 | // S . . . |
| 436 | // 1 [C C _ _ _ A A B B] |
| 437 | // 2 [B B _ _ _ A A B B] |
| 438 | // 3 [B B _ _ _ A A A A] |
| 439 | // . . D . |
| 440 | // |
| 441 | unsafe { |
| 442 | self.copy(src + dst_pre_wrap_len, 0, len - dst_pre_wrap_len); |
| 443 | self.copy(src, dst, dst_pre_wrap_len); |
| 444 | } |
| 445 | } |
| 446 | (false, true, false) => { |
| 447 | // dst before src, src wraps, dst doesn't wrap |
| 448 | // |
| 449 | // . . S . |
| 450 | // 1 [C C _ _ _ A A B B] |
| 451 | // 2 [C C _ _ _ B B B B] |
| 452 | // 3 [C C _ _ _ B B C C] |
| 453 | // D . . . |
| 454 | // |
| 455 | unsafe { |
| 456 | self.copy(src, dst, src_pre_wrap_len); |
| 457 | self.copy(0, dst + src_pre_wrap_len, len - src_pre_wrap_len); |
| 458 | } |
| 459 | } |
| 460 | (true, true, false) => { |
| 461 | // src before dst, src wraps, dst doesn't wrap |
| 462 | // |
| 463 | // . . S . |
| 464 | // 1 [A A B B _ _ _ C C] |
| 465 | // 2 [A A A A _ _ _ C C] |
| 466 | // 3 [C C A A _ _ _ C C] |
| 467 | // D . . . |
| 468 | // |
| 469 | unsafe { |
| 470 | self.copy(0, dst + src_pre_wrap_len, len - src_pre_wrap_len); |
| 471 | self.copy(src, dst, src_pre_wrap_len); |
| 472 | } |
| 473 | } |
| 474 | (false, true, true) => { |
| 475 | // dst before src, src wraps, dst wraps |
| 476 | // |
| 477 | // . . . S . |
| 478 | // 1 [A B C D _ E F G H] |
| 479 | // 2 [A B C D _ E G H H] |
| 480 | // 3 [A B C D _ E G H A] |
| 481 | // 4 [B C C D _ E G H A] |
| 482 | // . . D . . |
| 483 | // |
| 484 | debug_assert!(dst_pre_wrap_len > src_pre_wrap_len); |
| 485 | let delta = dst_pre_wrap_len - src_pre_wrap_len; |
| 486 | unsafe { |
| 487 | self.copy(src, dst, src_pre_wrap_len); |
| 488 | self.copy(0, dst + src_pre_wrap_len, delta); |
| 489 | self.copy(delta, 0, len - dst_pre_wrap_len); |
| 490 | } |
| 491 | } |
| 492 | (true, true, true) => { |
| 493 | // src before dst, src wraps, dst wraps |
| 494 | // |
| 495 | // . . S . . |
| 496 | // 1 [A B C D _ E F G H] |
| 497 | // 2 [A A B D _ E F G H] |
| 498 | // 3 [H A B D _ E F G H] |
| 499 | // 4 [H A B D _ E F F G] |
| 500 | // . . . D . |
| 501 | // |
| 502 | debug_assert!(src_pre_wrap_len > dst_pre_wrap_len); |
| 503 | let delta = src_pre_wrap_len - dst_pre_wrap_len; |
| 504 | unsafe { |
| 505 | self.copy(0, delta, len - src_pre_wrap_len); |
| 506 | self.copy(self.capacity() - delta, 0, delta); |
| 507 | self.copy(src, dst, dst_pre_wrap_len); |
| 508 | } |
| 509 | } |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | /// Copies all values from `src` to `dst`, wrapping around if needed. |
| 514 | /// Assumes capacity is sufficient. |
| 515 | #[inline ] |
| 516 | unsafe fn copy_slice(&mut self, dst: usize, src: &[T]) { |
| 517 | debug_assert!(src.len() <= self.capacity()); |
| 518 | let head_room = self.capacity() - dst; |
| 519 | if src.len() <= head_room { |
| 520 | unsafe { |
| 521 | ptr::copy_nonoverlapping(src.as_ptr(), self.ptr().add(dst), src.len()); |
| 522 | } |
| 523 | } else { |
| 524 | let (left, right) = src.split_at(head_room); |
| 525 | unsafe { |
| 526 | ptr::copy_nonoverlapping(left.as_ptr(), self.ptr().add(dst), left.len()); |
| 527 | ptr::copy_nonoverlapping(right.as_ptr(), self.ptr(), right.len()); |
| 528 | } |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | /// Copies all values from `src` to `dst` in reversed order, wrapping around if needed. |
| 533 | /// Assumes capacity is sufficient. |
| 534 | /// Equivalent to calling [`VecDeque::copy_slice`] with a [reversed](https://doc.rust-lang.org/std/primitive.slice.html#method.reverse) slice. |
| 535 | #[inline ] |
| 536 | unsafe fn copy_slice_reversed(&mut self, dst: usize, src: &[T]) { |
| 537 | /// # Safety |
| 538 | /// |
| 539 | /// See [`ptr::copy_nonoverlapping`]. |
| 540 | unsafe fn copy_nonoverlapping_reversed<T>(src: *const T, dst: *mut T, count: usize) { |
| 541 | for i in 0..count { |
| 542 | unsafe { ptr::copy_nonoverlapping(src.add(count - 1 - i), dst.add(i), 1) }; |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | debug_assert!(src.len() <= self.capacity()); |
| 547 | let head_room = self.capacity() - dst; |
| 548 | if src.len() <= head_room { |
| 549 | unsafe { |
| 550 | copy_nonoverlapping_reversed(src.as_ptr(), self.ptr().add(dst), src.len()); |
| 551 | } |
| 552 | } else { |
| 553 | let (left, right) = src.split_at(src.len() - head_room); |
| 554 | unsafe { |
| 555 | copy_nonoverlapping_reversed(right.as_ptr(), self.ptr().add(dst), right.len()); |
| 556 | copy_nonoverlapping_reversed(left.as_ptr(), self.ptr(), left.len()); |
| 557 | } |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | /// Writes all values from `iter` to `dst`. |
| 562 | /// |
| 563 | /// # Safety |
| 564 | /// |
| 565 | /// Assumes no wrapping around happens. |
| 566 | /// Assumes capacity is sufficient. |
| 567 | #[inline ] |
| 568 | unsafe fn write_iter( |
| 569 | &mut self, |
| 570 | dst: usize, |
| 571 | iter: impl Iterator<Item = T>, |
| 572 | written: &mut usize, |
| 573 | ) { |
| 574 | iter.enumerate().for_each(|(i, element)| unsafe { |
| 575 | self.buffer_write(dst + i, element); |
| 576 | *written += 1; |
| 577 | }); |
| 578 | } |
| 579 | |
| 580 | /// Writes all values from `iter` to `dst`, wrapping |
| 581 | /// at the end of the buffer and returns the number |
| 582 | /// of written values. |
| 583 | /// |
| 584 | /// # Safety |
| 585 | /// |
| 586 | /// Assumes that `iter` yields at most `len` items. |
| 587 | /// Assumes capacity is sufficient. |
| 588 | unsafe fn write_iter_wrapping( |
| 589 | &mut self, |
| 590 | dst: usize, |
| 591 | mut iter: impl Iterator<Item = T>, |
| 592 | len: usize, |
| 593 | ) -> usize { |
| 594 | struct Guard<'a, T, A: Allocator> { |
| 595 | deque: &'a mut VecDeque<T, A>, |
| 596 | written: usize, |
| 597 | } |
| 598 | |
| 599 | impl<'a, T, A: Allocator> Drop for Guard<'a, T, A> { |
| 600 | fn drop(&mut self) { |
| 601 | self.deque.len += self.written; |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | let head_room = self.capacity() - dst; |
| 606 | |
| 607 | let mut guard = Guard { deque: self, written: 0 }; |
| 608 | |
| 609 | if head_room >= len { |
| 610 | unsafe { guard.deque.write_iter(dst, iter, &mut guard.written) }; |
| 611 | } else { |
| 612 | unsafe { |
| 613 | guard.deque.write_iter( |
| 614 | dst, |
| 615 | ByRefSized(&mut iter).take(head_room), |
| 616 | &mut guard.written, |
| 617 | ); |
| 618 | guard.deque.write_iter(0, iter, &mut guard.written) |
| 619 | }; |
| 620 | } |
| 621 | |
| 622 | guard.written |
| 623 | } |
| 624 | |
| 625 | /// Frobs the head and tail sections around to handle the fact that we |
| 626 | /// just reallocated. Unsafe because it trusts old_capacity. |
| 627 | #[inline ] |
| 628 | unsafe fn handle_capacity_increase(&mut self, old_capacity: usize) { |
| 629 | let new_capacity = self.capacity(); |
| 630 | debug_assert!(new_capacity >= old_capacity); |
| 631 | |
| 632 | // Move the shortest contiguous section of the ring buffer |
| 633 | // |
| 634 | // H := head |
| 635 | // L := last element (`self.to_physical_idx(self.len - 1)`) |
| 636 | // |
| 637 | // H L |
| 638 | // [o o o o o o o o ] |
| 639 | // H L |
| 640 | // A [o o o o o o o o . . . . . . . . ] |
| 641 | // L H |
| 642 | // [o o o o o o o o ] |
| 643 | // H L |
| 644 | // B [. . . o o o o o o o o . . . . . ] |
| 645 | // L H |
| 646 | // [o o o o o o o o ] |
| 647 | // L H |
| 648 | // C [o o o o o o . . . . . . . . o o ] |
| 649 | |
| 650 | // can't use is_contiguous() because the capacity is already updated. |
| 651 | if self.head <= old_capacity - self.len { |
| 652 | // A |
| 653 | // Nop |
| 654 | } else { |
| 655 | let head_len = old_capacity - self.head; |
| 656 | let tail_len = self.len - head_len; |
| 657 | if head_len > tail_len && new_capacity - old_capacity >= tail_len { |
| 658 | // B |
| 659 | unsafe { |
| 660 | self.copy_nonoverlapping(0, old_capacity, tail_len); |
| 661 | } |
| 662 | } else { |
| 663 | // C |
| 664 | let new_head = new_capacity - head_len; |
| 665 | unsafe { |
| 666 | // can't use copy_nonoverlapping here, because if e.g. head_len = 2 |
| 667 | // and new_capacity = old_capacity + 1, then the heads overlap. |
| 668 | self.copy(self.head, new_head, head_len); |
| 669 | } |
| 670 | self.head = new_head; |
| 671 | } |
| 672 | } |
| 673 | debug_assert!(self.head < self.capacity() || self.capacity() == 0); |
| 674 | } |
| 675 | |
| 676 | /// Creates an iterator which uses a closure to determine if an element in the range should be removed. |
| 677 | /// |
| 678 | /// If the closure returns `true`, the element is removed from the deque and yielded. If the closure |
| 679 | /// returns `false`, or panics, the element remains in the deque and will not be yielded. |
| 680 | /// |
| 681 | /// Only elements that fall in the provided range are considered for extraction, but any elements |
| 682 | /// after the range will still have to be moved if any element has been extracted. |
| 683 | /// |
| 684 | /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating |
| 685 | /// or the iteration short-circuits, then the remaining elements will be retained. |
| 686 | /// Use `extract_if().for_each(drop)` if you do not need the returned iterator, |
| 687 | /// or [`retain_mut`] with a negated predicate if you also do not need to restrict the range. |
| 688 | /// |
| 689 | /// [`retain_mut`]: VecDeque::retain_mut |
| 690 | /// |
| 691 | /// Using this method is equivalent to the following code: |
| 692 | /// |
| 693 | /// ``` |
| 694 | /// #![feature(vec_deque_extract_if)] |
| 695 | /// # use std::collections::VecDeque; |
| 696 | /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 }; |
| 697 | /// # let mut deq: VecDeque<_> = (0..10).collect(); |
| 698 | /// # let mut deq2 = deq.clone(); |
| 699 | /// # let range = 1..5; |
| 700 | /// let mut i = range.start; |
| 701 | /// let end_items = deq.len() - range.end; |
| 702 | /// # let mut extracted = vec![]; |
| 703 | /// |
| 704 | /// while i < deq.len() - end_items { |
| 705 | /// if some_predicate(&mut deq[i]) { |
| 706 | /// let val = deq.remove(i).unwrap(); |
| 707 | /// // your code here |
| 708 | /// # extracted.push(val); |
| 709 | /// } else { |
| 710 | /// i += 1; |
| 711 | /// } |
| 712 | /// } |
| 713 | /// |
| 714 | /// # let extracted2: Vec<_> = deq2.extract_if(range, some_predicate).collect(); |
| 715 | /// # assert_eq!(deq, deq2); |
| 716 | /// # assert_eq!(extracted, extracted2); |
| 717 | /// ``` |
| 718 | /// |
| 719 | /// But `extract_if` is easier to use. `extract_if` is also more efficient, |
| 720 | /// because it can backshift the elements of the array in bulk. |
| 721 | /// |
| 722 | /// The iterator also lets you mutate the value of each element in the |
| 723 | /// closure, regardless of whether you choose to keep or remove it. |
| 724 | /// |
| 725 | /// # Panics |
| 726 | /// |
| 727 | /// If `range` is out of bounds. |
| 728 | /// |
| 729 | /// # Examples |
| 730 | /// |
| 731 | /// Splitting a deque into even and odd values, reusing the original deque: |
| 732 | /// |
| 733 | /// ``` |
| 734 | /// #![feature(vec_deque_extract_if)] |
| 735 | /// use std::collections::VecDeque; |
| 736 | /// |
| 737 | /// let mut numbers = VecDeque::from([1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]); |
| 738 | /// |
| 739 | /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<VecDeque<_>>(); |
| 740 | /// let odds = numbers; |
| 741 | /// |
| 742 | /// assert_eq!(evens, VecDeque::from([2, 4, 6, 8, 14])); |
| 743 | /// assert_eq!(odds, VecDeque::from([1, 3, 5, 9, 11, 13, 15])); |
| 744 | /// ``` |
| 745 | /// |
| 746 | /// Using the range argument to only process a part of the deque: |
| 747 | /// |
| 748 | /// ``` |
| 749 | /// #![feature(vec_deque_extract_if)] |
| 750 | /// use std::collections::VecDeque; |
| 751 | /// |
| 752 | /// let mut items = VecDeque::from([0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2]); |
| 753 | /// let ones = items.extract_if(7.., |x| *x == 1).collect::<VecDeque<_>>(); |
| 754 | /// assert_eq!(items, VecDeque::from([0, 0, 0, 0, 0, 0, 0, 2, 2, 2])); |
| 755 | /// assert_eq!(ones.len(), 3); |
| 756 | /// ``` |
| 757 | #[unstable (feature = "vec_deque_extract_if" , issue = "147750" )] |
| 758 | pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A> |
| 759 | where |
| 760 | F: FnMut(&mut T) -> bool, |
| 761 | R: RangeBounds<usize>, |
| 762 | { |
| 763 | ExtractIf::new(self, filter, range) |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | impl<T> VecDeque<T> { |
| 768 | /// Creates an empty deque. |
| 769 | /// |
| 770 | /// # Examples |
| 771 | /// |
| 772 | /// ``` |
| 773 | /// use std::collections::VecDeque; |
| 774 | /// |
| 775 | /// let deque: VecDeque<u32> = VecDeque::new(); |
| 776 | /// ``` |
| 777 | #[inline ] |
| 778 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 779 | #[rustc_const_stable (feature = "const_vec_deque_new" , since = "1.68.0" )] |
| 780 | #[must_use ] |
| 781 | pub const fn new() -> VecDeque<T> { |
| 782 | // FIXME(const-hack): This should just be `VecDeque::new_in(Global)` once that hits stable. |
| 783 | VecDeque { head: 0, len: 0, buf: RawVec::new() } |
| 784 | } |
| 785 | |
| 786 | /// Creates an empty deque with space for at least `capacity` elements. |
| 787 | /// |
| 788 | /// # Examples |
| 789 | /// |
| 790 | /// ``` |
| 791 | /// use std::collections::VecDeque; |
| 792 | /// |
| 793 | /// let deque: VecDeque<u32> = VecDeque::with_capacity(10); |
| 794 | /// ``` |
| 795 | #[inline ] |
| 796 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 797 | #[must_use ] |
| 798 | pub fn with_capacity(capacity: usize) -> VecDeque<T> { |
| 799 | Self::with_capacity_in(capacity, Global) |
| 800 | } |
| 801 | |
| 802 | /// Creates an empty deque with space for at least `capacity` elements. |
| 803 | /// |
| 804 | /// # Errors |
| 805 | /// |
| 806 | /// Returns an error if the capacity exceeds `isize::MAX` _bytes_, |
| 807 | /// or if the allocator reports allocation failure. |
| 808 | /// |
| 809 | /// # Examples |
| 810 | /// |
| 811 | /// ``` |
| 812 | /// # #![feature (try_with_capacity)] |
| 813 | /// # #[allow (unused)] |
| 814 | /// # fn example() -> Result<(), std::collections::TryReserveError> { |
| 815 | /// use std::collections::VecDeque; |
| 816 | /// |
| 817 | /// let deque: VecDeque<u32> = VecDeque::try_with_capacity(10)?; |
| 818 | /// # Ok(()) } |
| 819 | /// ``` |
| 820 | #[inline ] |
| 821 | #[unstable (feature = "try_with_capacity" , issue = "91913" )] |
| 822 | pub fn try_with_capacity(capacity: usize) -> Result<VecDeque<T>, TryReserveError> { |
| 823 | Ok(VecDeque { head: 0, len: 0, buf: RawVec::try_with_capacity_in(capacity, Global)? }) |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | impl<T, A: Allocator> VecDeque<T, A> { |
| 828 | /// Creates an empty deque. |
| 829 | /// |
| 830 | /// # Examples |
| 831 | /// |
| 832 | /// ``` |
| 833 | /// use std::collections::VecDeque; |
| 834 | /// |
| 835 | /// let deque: VecDeque<u32> = VecDeque::new(); |
| 836 | /// ``` |
| 837 | #[inline ] |
| 838 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 839 | pub const fn new_in(alloc: A) -> VecDeque<T, A> { |
| 840 | VecDeque { head: 0, len: 0, buf: RawVec::new_in(alloc) } |
| 841 | } |
| 842 | |
| 843 | /// Creates an empty deque with space for at least `capacity` elements. |
| 844 | /// |
| 845 | /// # Examples |
| 846 | /// |
| 847 | /// ``` |
| 848 | /// use std::collections::VecDeque; |
| 849 | /// |
| 850 | /// let deque: VecDeque<u32> = VecDeque::with_capacity(10); |
| 851 | /// ``` |
| 852 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 853 | pub fn with_capacity_in(capacity: usize, alloc: A) -> VecDeque<T, A> { |
| 854 | VecDeque { head: 0, len: 0, buf: RawVec::with_capacity_in(capacity, alloc) } |
| 855 | } |
| 856 | |
| 857 | /// Creates a `VecDeque` from a raw allocation, when the initialized |
| 858 | /// part of that allocation forms a *contiguous* subslice thereof. |
| 859 | /// |
| 860 | /// For use by `vec::IntoIter::into_vecdeque` |
| 861 | /// |
| 862 | /// # Safety |
| 863 | /// |
| 864 | /// All the usual requirements on the allocated memory like in |
| 865 | /// `Vec::from_raw_parts_in`, but takes a *range* of elements that are |
| 866 | /// initialized rather than only supporting `0..len`. Requires that |
| 867 | /// `initialized.start` ≤ `initialized.end` ≤ `capacity`. |
| 868 | #[inline ] |
| 869 | #[cfg (not(test))] |
| 870 | pub(crate) unsafe fn from_contiguous_raw_parts_in( |
| 871 | ptr: *mut T, |
| 872 | initialized: Range<usize>, |
| 873 | capacity: usize, |
| 874 | alloc: A, |
| 875 | ) -> Self { |
| 876 | debug_assert!(initialized.start <= initialized.end); |
| 877 | debug_assert!(initialized.end <= capacity); |
| 878 | |
| 879 | // SAFETY: Our safety precondition guarantees the range length won't wrap, |
| 880 | // and that the allocation is valid for use in `RawVec`. |
| 881 | unsafe { |
| 882 | VecDeque { |
| 883 | head: initialized.start, |
| 884 | len: initialized.end.unchecked_sub(initialized.start), |
| 885 | buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), |
| 886 | } |
| 887 | } |
| 888 | } |
| 889 | |
| 890 | /// Provides a reference to the element at the given index. |
| 891 | /// |
| 892 | /// Element at index 0 is the front of the queue. |
| 893 | /// |
| 894 | /// # Examples |
| 895 | /// |
| 896 | /// ``` |
| 897 | /// use std::collections::VecDeque; |
| 898 | /// |
| 899 | /// let mut buf = VecDeque::new(); |
| 900 | /// buf.push_back(3); |
| 901 | /// buf.push_back(4); |
| 902 | /// buf.push_back(5); |
| 903 | /// buf.push_back(6); |
| 904 | /// assert_eq!(buf.get(1), Some(&4)); |
| 905 | /// ``` |
| 906 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 907 | pub fn get(&self, index: usize) -> Option<&T> { |
| 908 | if index < self.len { |
| 909 | let idx = self.to_physical_idx(index); |
| 910 | unsafe { Some(&*self.ptr().add(idx)) } |
| 911 | } else { |
| 912 | None |
| 913 | } |
| 914 | } |
| 915 | |
| 916 | /// Provides a mutable reference to the element at the given index. |
| 917 | /// |
| 918 | /// Element at index 0 is the front of the queue. |
| 919 | /// |
| 920 | /// # Examples |
| 921 | /// |
| 922 | /// ``` |
| 923 | /// use std::collections::VecDeque; |
| 924 | /// |
| 925 | /// let mut buf = VecDeque::new(); |
| 926 | /// buf.push_back(3); |
| 927 | /// buf.push_back(4); |
| 928 | /// buf.push_back(5); |
| 929 | /// buf.push_back(6); |
| 930 | /// assert_eq!(buf[1], 4); |
| 931 | /// if let Some(elem) = buf.get_mut(1) { |
| 932 | /// *elem = 7; |
| 933 | /// } |
| 934 | /// assert_eq!(buf[1], 7); |
| 935 | /// ``` |
| 936 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 937 | pub fn get_mut(&mut self, index: usize) -> Option<&mut T> { |
| 938 | if index < self.len { |
| 939 | let idx = self.to_physical_idx(index); |
| 940 | unsafe { Some(&mut *self.ptr().add(idx)) } |
| 941 | } else { |
| 942 | None |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | /// Swaps elements at indices `i` and `j`. |
| 947 | /// |
| 948 | /// `i` and `j` may be equal. |
| 949 | /// |
| 950 | /// Element at index 0 is the front of the queue. |
| 951 | /// |
| 952 | /// # Panics |
| 953 | /// |
| 954 | /// Panics if either index is out of bounds. |
| 955 | /// |
| 956 | /// # Examples |
| 957 | /// |
| 958 | /// ``` |
| 959 | /// use std::collections::VecDeque; |
| 960 | /// |
| 961 | /// let mut buf = VecDeque::new(); |
| 962 | /// buf.push_back(3); |
| 963 | /// buf.push_back(4); |
| 964 | /// buf.push_back(5); |
| 965 | /// assert_eq!(buf, [3, 4, 5]); |
| 966 | /// buf.swap(0, 2); |
| 967 | /// assert_eq!(buf, [5, 4, 3]); |
| 968 | /// ``` |
| 969 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 970 | pub fn swap(&mut self, i: usize, j: usize) { |
| 971 | assert!(i < self.len()); |
| 972 | assert!(j < self.len()); |
| 973 | let ri = self.to_physical_idx(i); |
| 974 | let rj = self.to_physical_idx(j); |
| 975 | unsafe { ptr::swap(self.ptr().add(ri), self.ptr().add(rj)) } |
| 976 | } |
| 977 | |
| 978 | /// Returns the number of elements the deque can hold without |
| 979 | /// reallocating. |
| 980 | /// |
| 981 | /// # Examples |
| 982 | /// |
| 983 | /// ``` |
| 984 | /// use std::collections::VecDeque; |
| 985 | /// |
| 986 | /// let buf: VecDeque<i32> = VecDeque::with_capacity(10); |
| 987 | /// assert!(buf.capacity() >= 10); |
| 988 | /// ``` |
| 989 | #[inline ] |
| 990 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 991 | pub fn capacity(&self) -> usize { |
| 992 | if T::IS_ZST { usize::MAX } else { self.buf.capacity() } |
| 993 | } |
| 994 | |
| 995 | /// Reserves the minimum capacity for at least `additional` more elements to be inserted in the |
| 996 | /// given deque. Does nothing if the capacity is already sufficient. |
| 997 | /// |
| 998 | /// Note that the allocator may give the collection more space than it requests. Therefore |
| 999 | /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future |
| 1000 | /// insertions are expected. |
| 1001 | /// |
| 1002 | /// # Panics |
| 1003 | /// |
| 1004 | /// Panics if the new capacity overflows `usize`. |
| 1005 | /// |
| 1006 | /// # Examples |
| 1007 | /// |
| 1008 | /// ``` |
| 1009 | /// use std::collections::VecDeque; |
| 1010 | /// |
| 1011 | /// let mut buf: VecDeque<i32> = [1].into(); |
| 1012 | /// buf.reserve_exact(10); |
| 1013 | /// assert!(buf.capacity() >= 11); |
| 1014 | /// ``` |
| 1015 | /// |
| 1016 | /// [`reserve`]: VecDeque::reserve |
| 1017 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1018 | pub fn reserve_exact(&mut self, additional: usize) { |
| 1019 | let new_cap = self.len.checked_add(additional).expect("capacity overflow" ); |
| 1020 | let old_cap = self.capacity(); |
| 1021 | |
| 1022 | if new_cap > old_cap { |
| 1023 | self.buf.reserve_exact(self.len, additional); |
| 1024 | unsafe { |
| 1025 | self.handle_capacity_increase(old_cap); |
| 1026 | } |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | /// Reserves capacity for at least `additional` more elements to be inserted in the given |
| 1031 | /// deque. The collection may reserve more space to speculatively avoid frequent reallocations. |
| 1032 | /// |
| 1033 | /// # Panics |
| 1034 | /// |
| 1035 | /// Panics if the new capacity overflows `usize`. |
| 1036 | /// |
| 1037 | /// # Examples |
| 1038 | /// |
| 1039 | /// ``` |
| 1040 | /// use std::collections::VecDeque; |
| 1041 | /// |
| 1042 | /// let mut buf: VecDeque<i32> = [1].into(); |
| 1043 | /// buf.reserve(10); |
| 1044 | /// assert!(buf.capacity() >= 11); |
| 1045 | /// ``` |
| 1046 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1047 | #[cfg_attr (not(test), rustc_diagnostic_item = "vecdeque_reserve" )] |
| 1048 | pub fn reserve(&mut self, additional: usize) { |
| 1049 | let new_cap = self.len.checked_add(additional).expect("capacity overflow" ); |
| 1050 | let old_cap = self.capacity(); |
| 1051 | |
| 1052 | if new_cap > old_cap { |
| 1053 | // we don't need to reserve_exact(), as the size doesn't have |
| 1054 | // to be a power of 2. |
| 1055 | self.buf.reserve(self.len, additional); |
| 1056 | unsafe { |
| 1057 | self.handle_capacity_increase(old_cap); |
| 1058 | } |
| 1059 | } |
| 1060 | } |
| 1061 | |
| 1062 | /// Tries to reserve the minimum capacity for at least `additional` more elements to |
| 1063 | /// be inserted in the given deque. After calling `try_reserve_exact`, |
| 1064 | /// capacity will be greater than or equal to `self.len() + additional` if |
| 1065 | /// it returns `Ok(())`. Does nothing if the capacity is already sufficient. |
| 1066 | /// |
| 1067 | /// Note that the allocator may give the collection more space than it |
| 1068 | /// requests. Therefore, capacity can not be relied upon to be precisely |
| 1069 | /// minimal. Prefer [`try_reserve`] if future insertions are expected. |
| 1070 | /// |
| 1071 | /// [`try_reserve`]: VecDeque::try_reserve |
| 1072 | /// |
| 1073 | /// # Errors |
| 1074 | /// |
| 1075 | /// If the capacity overflows `usize`, or the allocator reports a failure, then an error |
| 1076 | /// is returned. |
| 1077 | /// |
| 1078 | /// # Examples |
| 1079 | /// |
| 1080 | /// ``` |
| 1081 | /// use std::collections::TryReserveError; |
| 1082 | /// use std::collections::VecDeque; |
| 1083 | /// |
| 1084 | /// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> { |
| 1085 | /// let mut output = VecDeque::new(); |
| 1086 | /// |
| 1087 | /// // Pre-reserve the memory, exiting if we can't |
| 1088 | /// output.try_reserve_exact(data.len())?; |
| 1089 | /// |
| 1090 | /// // Now we know this can't OOM(Out-Of-Memory) in the middle of our complex work |
| 1091 | /// output.extend(data.iter().map(|&val| { |
| 1092 | /// val * 2 + 5 // very complicated |
| 1093 | /// })); |
| 1094 | /// |
| 1095 | /// Ok(output) |
| 1096 | /// } |
| 1097 | /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?" ); |
| 1098 | /// ``` |
| 1099 | #[stable (feature = "try_reserve" , since = "1.57.0" )] |
| 1100 | pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { |
| 1101 | let new_cap = |
| 1102 | self.len.checked_add(additional).ok_or(TryReserveErrorKind::CapacityOverflow)?; |
| 1103 | let old_cap = self.capacity(); |
| 1104 | |
| 1105 | if new_cap > old_cap { |
| 1106 | self.buf.try_reserve_exact(self.len, additional)?; |
| 1107 | unsafe { |
| 1108 | self.handle_capacity_increase(old_cap); |
| 1109 | } |
| 1110 | } |
| 1111 | Ok(()) |
| 1112 | } |
| 1113 | |
| 1114 | /// Tries to reserve capacity for at least `additional` more elements to be inserted |
| 1115 | /// in the given deque. The collection may reserve more space to speculatively avoid |
| 1116 | /// frequent reallocations. After calling `try_reserve`, capacity will be |
| 1117 | /// greater than or equal to `self.len() + additional` if it returns |
| 1118 | /// `Ok(())`. Does nothing if capacity is already sufficient. This method |
| 1119 | /// preserves the contents even if an error occurs. |
| 1120 | /// |
| 1121 | /// # Errors |
| 1122 | /// |
| 1123 | /// If the capacity overflows `usize`, or the allocator reports a failure, then an error |
| 1124 | /// is returned. |
| 1125 | /// |
| 1126 | /// # Examples |
| 1127 | /// |
| 1128 | /// ``` |
| 1129 | /// use std::collections::TryReserveError; |
| 1130 | /// use std::collections::VecDeque; |
| 1131 | /// |
| 1132 | /// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> { |
| 1133 | /// let mut output = VecDeque::new(); |
| 1134 | /// |
| 1135 | /// // Pre-reserve the memory, exiting if we can't |
| 1136 | /// output.try_reserve(data.len())?; |
| 1137 | /// |
| 1138 | /// // Now we know this can't OOM in the middle of our complex work |
| 1139 | /// output.extend(data.iter().map(|&val| { |
| 1140 | /// val * 2 + 5 // very complicated |
| 1141 | /// })); |
| 1142 | /// |
| 1143 | /// Ok(output) |
| 1144 | /// } |
| 1145 | /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?" ); |
| 1146 | /// ``` |
| 1147 | #[stable (feature = "try_reserve" , since = "1.57.0" )] |
| 1148 | pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { |
| 1149 | let new_cap = |
| 1150 | self.len.checked_add(additional).ok_or(TryReserveErrorKind::CapacityOverflow)?; |
| 1151 | let old_cap = self.capacity(); |
| 1152 | |
| 1153 | if new_cap > old_cap { |
| 1154 | self.buf.try_reserve(self.len, additional)?; |
| 1155 | unsafe { |
| 1156 | self.handle_capacity_increase(old_cap); |
| 1157 | } |
| 1158 | } |
| 1159 | Ok(()) |
| 1160 | } |
| 1161 | |
| 1162 | /// Shrinks the capacity of the deque as much as possible. |
| 1163 | /// |
| 1164 | /// It will drop down as close as possible to the length but the allocator may still inform the |
| 1165 | /// deque that there is space for a few more elements. |
| 1166 | /// |
| 1167 | /// # Examples |
| 1168 | /// |
| 1169 | /// ``` |
| 1170 | /// use std::collections::VecDeque; |
| 1171 | /// |
| 1172 | /// let mut buf = VecDeque::with_capacity(15); |
| 1173 | /// buf.extend(0..4); |
| 1174 | /// assert_eq!(buf.capacity(), 15); |
| 1175 | /// buf.shrink_to_fit(); |
| 1176 | /// assert!(buf.capacity() >= 4); |
| 1177 | /// ``` |
| 1178 | #[stable (feature = "deque_extras_15" , since = "1.5.0" )] |
| 1179 | pub fn shrink_to_fit(&mut self) { |
| 1180 | self.shrink_to(0); |
| 1181 | } |
| 1182 | |
| 1183 | /// Shrinks the capacity of the deque with a lower bound. |
| 1184 | /// |
| 1185 | /// The capacity will remain at least as large as both the length |
| 1186 | /// and the supplied value. |
| 1187 | /// |
| 1188 | /// If the current capacity is less than the lower limit, this is a no-op. |
| 1189 | /// |
| 1190 | /// # Examples |
| 1191 | /// |
| 1192 | /// ``` |
| 1193 | /// use std::collections::VecDeque; |
| 1194 | /// |
| 1195 | /// let mut buf = VecDeque::with_capacity(15); |
| 1196 | /// buf.extend(0..4); |
| 1197 | /// assert_eq!(buf.capacity(), 15); |
| 1198 | /// buf.shrink_to(6); |
| 1199 | /// assert!(buf.capacity() >= 6); |
| 1200 | /// buf.shrink_to(0); |
| 1201 | /// assert!(buf.capacity() >= 4); |
| 1202 | /// ``` |
| 1203 | #[stable (feature = "shrink_to" , since = "1.56.0" )] |
| 1204 | pub fn shrink_to(&mut self, min_capacity: usize) { |
| 1205 | let target_cap = min_capacity.max(self.len); |
| 1206 | |
| 1207 | // never shrink ZSTs |
| 1208 | if T::IS_ZST || self.capacity() <= target_cap { |
| 1209 | return; |
| 1210 | } |
| 1211 | |
| 1212 | // There are three cases of interest: |
| 1213 | // All elements are out of desired bounds |
| 1214 | // Elements are contiguous, and tail is out of desired bounds |
| 1215 | // Elements are discontiguous |
| 1216 | // |
| 1217 | // At all other times, element positions are unaffected. |
| 1218 | |
| 1219 | // `head` and `len` are at most `isize::MAX` and `target_cap < self.capacity()`, so nothing can |
| 1220 | // overflow. |
| 1221 | let tail_outside = (target_cap + 1..=self.capacity()).contains(&(self.head + self.len)); |
| 1222 | // Used in the drop guard below. |
| 1223 | let old_head = self.head; |
| 1224 | |
| 1225 | if self.len == 0 { |
| 1226 | self.head = 0; |
| 1227 | } else if self.head >= target_cap && tail_outside { |
| 1228 | // Head and tail are both out of bounds, so copy all of them to the front. |
| 1229 | // |
| 1230 | // H := head |
| 1231 | // L := last element |
| 1232 | // H L |
| 1233 | // [. . . . . . . . o o o o o o o . ] |
| 1234 | // H L |
| 1235 | // [o o o o o o o . ] |
| 1236 | unsafe { |
| 1237 | // nonoverlapping because `self.head >= target_cap >= self.len`. |
| 1238 | self.copy_nonoverlapping(self.head, 0, self.len); |
| 1239 | } |
| 1240 | self.head = 0; |
| 1241 | } else if self.head < target_cap && tail_outside { |
| 1242 | // Head is in bounds, tail is out of bounds. |
| 1243 | // Copy the overflowing part to the beginning of the |
| 1244 | // buffer. This won't overlap because `target_cap >= self.len`. |
| 1245 | // |
| 1246 | // H := head |
| 1247 | // L := last element |
| 1248 | // H L |
| 1249 | // [. . . o o o o o o o . . . . . . ] |
| 1250 | // L H |
| 1251 | // [o o . o o o o o ] |
| 1252 | let len = self.head + self.len - target_cap; |
| 1253 | unsafe { |
| 1254 | self.copy_nonoverlapping(target_cap, 0, len); |
| 1255 | } |
| 1256 | } else if !self.is_contiguous() { |
| 1257 | // The head slice is at least partially out of bounds, tail is in bounds. |
| 1258 | // Copy the head backwards so it lines up with the target capacity. |
| 1259 | // This won't overlap because `target_cap >= self.len`. |
| 1260 | // |
| 1261 | // H := head |
| 1262 | // L := last element |
| 1263 | // L H |
| 1264 | // [o o o o o . . . . . . . . . o o ] |
| 1265 | // L H |
| 1266 | // [o o o o o . o o ] |
| 1267 | let head_len = self.capacity() - self.head; |
| 1268 | let new_head = target_cap - head_len; |
| 1269 | unsafe { |
| 1270 | // can't use `copy_nonoverlapping()` here because the new and old |
| 1271 | // regions for the head might overlap. |
| 1272 | self.copy(self.head, new_head, head_len); |
| 1273 | } |
| 1274 | self.head = new_head; |
| 1275 | } |
| 1276 | |
| 1277 | struct Guard<'a, T, A: Allocator> { |
| 1278 | deque: &'a mut VecDeque<T, A>, |
| 1279 | old_head: usize, |
| 1280 | target_cap: usize, |
| 1281 | } |
| 1282 | |
| 1283 | impl<T, A: Allocator> Drop for Guard<'_, T, A> { |
| 1284 | #[cold ] |
| 1285 | fn drop(&mut self) { |
| 1286 | unsafe { |
| 1287 | // SAFETY: This is only called if `buf.shrink_to_fit` unwinds, |
| 1288 | // which is the only time it's safe to call `abort_shrink`. |
| 1289 | self.deque.abort_shrink(self.old_head, self.target_cap) |
| 1290 | } |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | let guard = Guard { deque: self, old_head, target_cap }; |
| 1295 | |
| 1296 | guard.deque.buf.shrink_to_fit(target_cap); |
| 1297 | |
| 1298 | // Don't drop the guard if we didn't unwind. |
| 1299 | mem::forget(guard); |
| 1300 | |
| 1301 | debug_assert!(self.head < self.capacity() || self.capacity() == 0); |
| 1302 | debug_assert!(self.len <= self.capacity()); |
| 1303 | } |
| 1304 | |
| 1305 | /// Reverts the deque back into a consistent state in case `shrink_to` failed. |
| 1306 | /// This is necessary to prevent UB if the backing allocator returns an error |
| 1307 | /// from `shrink` and `handle_alloc_error` subsequently unwinds (see #123369). |
| 1308 | /// |
| 1309 | /// `old_head` refers to the head index before `shrink_to` was called. `target_cap` |
| 1310 | /// is the capacity that it was trying to shrink to. |
| 1311 | unsafe fn abort_shrink(&mut self, old_head: usize, target_cap: usize) { |
| 1312 | // Moral equivalent of self.head + self.len <= target_cap. Won't overflow |
| 1313 | // because `self.len <= target_cap`. |
| 1314 | if self.head <= target_cap - self.len { |
| 1315 | // The deque's buffer is contiguous, so no need to copy anything around. |
| 1316 | return; |
| 1317 | } |
| 1318 | |
| 1319 | // `shrink_to` already copied the head to fit into the new capacity, so this won't overflow. |
| 1320 | let head_len = target_cap - self.head; |
| 1321 | // `self.head > target_cap - self.len` => `self.len > target_cap - self.head =: head_len` so this must be positive. |
| 1322 | let tail_len = self.len - head_len; |
| 1323 | |
| 1324 | if tail_len <= cmp::min(head_len, self.capacity() - target_cap) { |
| 1325 | // There's enough spare capacity to copy the tail to the back (because `tail_len < self.capacity() - target_cap`), |
| 1326 | // and copying the tail should be cheaper than copying the head (because `tail_len <= head_len`). |
| 1327 | |
| 1328 | unsafe { |
| 1329 | // The old tail and the new tail can't overlap because the head slice lies between them. The |
| 1330 | // head slice ends at `target_cap`, so that's where we copy to. |
| 1331 | self.copy_nonoverlapping(0, target_cap, tail_len); |
| 1332 | } |
| 1333 | } else { |
| 1334 | // Either there's not enough spare capacity to make the deque contiguous, or the head is shorter than the tail |
| 1335 | // (and therefore hopefully cheaper to copy). |
| 1336 | unsafe { |
| 1337 | // The old and the new head slice can overlap, so we can't use `copy_nonoverlapping` here. |
| 1338 | self.copy(self.head, old_head, head_len); |
| 1339 | self.head = old_head; |
| 1340 | } |
| 1341 | } |
| 1342 | } |
| 1343 | |
| 1344 | /// Shortens the deque, keeping the first `len` elements and dropping |
| 1345 | /// the rest. |
| 1346 | /// |
| 1347 | /// If `len` is greater or equal to the deque's current length, this has |
| 1348 | /// no effect. |
| 1349 | /// |
| 1350 | /// # Examples |
| 1351 | /// |
| 1352 | /// ``` |
| 1353 | /// use std::collections::VecDeque; |
| 1354 | /// |
| 1355 | /// let mut buf = VecDeque::new(); |
| 1356 | /// buf.push_back(5); |
| 1357 | /// buf.push_back(10); |
| 1358 | /// buf.push_back(15); |
| 1359 | /// assert_eq!(buf, [5, 10, 15]); |
| 1360 | /// buf.truncate(1); |
| 1361 | /// assert_eq!(buf, [5]); |
| 1362 | /// ``` |
| 1363 | #[stable (feature = "deque_extras" , since = "1.16.0" )] |
| 1364 | pub fn truncate(&mut self, len: usize) { |
| 1365 | /// Runs the destructor for all items in the slice when it gets dropped (normally or |
| 1366 | /// during unwinding). |
| 1367 | struct Dropper<'a, T>(&'a mut [T]); |
| 1368 | |
| 1369 | impl<'a, T> Drop for Dropper<'a, T> { |
| 1370 | fn drop(&mut self) { |
| 1371 | unsafe { |
| 1372 | ptr::drop_in_place(self.0); |
| 1373 | } |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | // Safe because: |
| 1378 | // |
| 1379 | // * Any slice passed to `drop_in_place` is valid; the second case has |
| 1380 | // `len <= front.len()` and returning on `len > self.len()` ensures |
| 1381 | // `begin <= back.len()` in the first case |
| 1382 | // * The head of the VecDeque is moved before calling `drop_in_place`, |
| 1383 | // so no value is dropped twice if `drop_in_place` panics |
| 1384 | unsafe { |
| 1385 | if len >= self.len { |
| 1386 | return; |
| 1387 | } |
| 1388 | |
| 1389 | let (front, back) = self.as_mut_slices(); |
| 1390 | if len > front.len() { |
| 1391 | let begin = len - front.len(); |
| 1392 | let drop_back = back.get_unchecked_mut(begin..) as *mut _; |
| 1393 | self.len = len; |
| 1394 | ptr::drop_in_place(drop_back); |
| 1395 | } else { |
| 1396 | let drop_back = back as *mut _; |
| 1397 | let drop_front = front.get_unchecked_mut(len..) as *mut _; |
| 1398 | self.len = len; |
| 1399 | |
| 1400 | // Make sure the second half is dropped even when a destructor |
| 1401 | // in the first one panics. |
| 1402 | let _back_dropper = Dropper(&mut *drop_back); |
| 1403 | ptr::drop_in_place(drop_front); |
| 1404 | } |
| 1405 | } |
| 1406 | } |
| 1407 | |
| 1408 | /// Shortens the deque, keeping the last `len` elements and dropping |
| 1409 | /// the rest. |
| 1410 | /// |
| 1411 | /// If `len` is greater or equal to the deque's current length, this has |
| 1412 | /// no effect. |
| 1413 | /// |
| 1414 | /// # Examples |
| 1415 | /// |
| 1416 | /// ``` |
| 1417 | /// # #![feature (vec_deque_truncate_front)] |
| 1418 | /// use std::collections::VecDeque; |
| 1419 | /// |
| 1420 | /// let mut buf = VecDeque::new(); |
| 1421 | /// buf.push_front(5); |
| 1422 | /// buf.push_front(10); |
| 1423 | /// buf.push_front(15); |
| 1424 | /// assert_eq!(buf, [15, 10, 5]); |
| 1425 | /// assert_eq!(buf.as_slices(), (&[15, 10, 5][..], &[][..])); |
| 1426 | /// buf.truncate_front(1); |
| 1427 | /// assert_eq!(buf.as_slices(), (&[5][..], &[][..])); |
| 1428 | /// ``` |
| 1429 | #[unstable (feature = "vec_deque_truncate_front" , issue = "140667" )] |
| 1430 | pub fn truncate_front(&mut self, len: usize) { |
| 1431 | /// Runs the destructor for all items in the slice when it gets dropped (normally or |
| 1432 | /// during unwinding). |
| 1433 | struct Dropper<'a, T>(&'a mut [T]); |
| 1434 | |
| 1435 | impl<'a, T> Drop for Dropper<'a, T> { |
| 1436 | fn drop(&mut self) { |
| 1437 | unsafe { |
| 1438 | ptr::drop_in_place(self.0); |
| 1439 | } |
| 1440 | } |
| 1441 | } |
| 1442 | |
| 1443 | unsafe { |
| 1444 | if len >= self.len { |
| 1445 | // No action is taken |
| 1446 | return; |
| 1447 | } |
| 1448 | |
| 1449 | let (front, back) = self.as_mut_slices(); |
| 1450 | if len > back.len() { |
| 1451 | // The 'back' slice remains unchanged. |
| 1452 | // front.len() + back.len() == self.len, so 'end' is non-negative |
| 1453 | // and end < front.len() |
| 1454 | let end = front.len() - (len - back.len()); |
| 1455 | let drop_front = front.get_unchecked_mut(..end) as *mut _; |
| 1456 | self.head += end; |
| 1457 | self.len = len; |
| 1458 | ptr::drop_in_place(drop_front); |
| 1459 | } else { |
| 1460 | let drop_front = front as *mut _; |
| 1461 | // 'end' is non-negative by the condition above |
| 1462 | let end = back.len() - len; |
| 1463 | let drop_back = back.get_unchecked_mut(..end) as *mut _; |
| 1464 | self.head = self.to_physical_idx(self.len - len); |
| 1465 | self.len = len; |
| 1466 | |
| 1467 | // Make sure the second half is dropped even when a destructor |
| 1468 | // in the first one panics. |
| 1469 | let _back_dropper = Dropper(&mut *drop_back); |
| 1470 | ptr::drop_in_place(drop_front); |
| 1471 | } |
| 1472 | } |
| 1473 | } |
| 1474 | |
| 1475 | /// Returns a reference to the underlying allocator. |
| 1476 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
| 1477 | #[inline ] |
| 1478 | pub fn allocator(&self) -> &A { |
| 1479 | self.buf.allocator() |
| 1480 | } |
| 1481 | |
| 1482 | /// Returns a front-to-back iterator. |
| 1483 | /// |
| 1484 | /// # Examples |
| 1485 | /// |
| 1486 | /// ``` |
| 1487 | /// use std::collections::VecDeque; |
| 1488 | /// |
| 1489 | /// let mut buf = VecDeque::new(); |
| 1490 | /// buf.push_back(5); |
| 1491 | /// buf.push_back(3); |
| 1492 | /// buf.push_back(4); |
| 1493 | /// let b: &[_] = &[&5, &3, &4]; |
| 1494 | /// let c: Vec<&i32> = buf.iter().collect(); |
| 1495 | /// assert_eq!(&c[..], b); |
| 1496 | /// ``` |
| 1497 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1498 | #[cfg_attr (not(test), rustc_diagnostic_item = "vecdeque_iter" )] |
| 1499 | pub fn iter(&self) -> Iter<'_, T> { |
| 1500 | let (a, b) = self.as_slices(); |
| 1501 | Iter::new(a.iter(), b.iter()) |
| 1502 | } |
| 1503 | |
| 1504 | /// Returns a front-to-back iterator that returns mutable references. |
| 1505 | /// |
| 1506 | /// # Examples |
| 1507 | /// |
| 1508 | /// ``` |
| 1509 | /// use std::collections::VecDeque; |
| 1510 | /// |
| 1511 | /// let mut buf = VecDeque::new(); |
| 1512 | /// buf.push_back(5); |
| 1513 | /// buf.push_back(3); |
| 1514 | /// buf.push_back(4); |
| 1515 | /// for num in buf.iter_mut() { |
| 1516 | /// *num = *num - 2; |
| 1517 | /// } |
| 1518 | /// let b: &[_] = &[&mut 3, &mut 1, &mut 2]; |
| 1519 | /// assert_eq!(&buf.iter_mut().collect::<Vec<&mut i32>>()[..], b); |
| 1520 | /// ``` |
| 1521 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1522 | pub fn iter_mut(&mut self) -> IterMut<'_, T> { |
| 1523 | let (a, b) = self.as_mut_slices(); |
| 1524 | IterMut::new(a.iter_mut(), b.iter_mut()) |
| 1525 | } |
| 1526 | |
| 1527 | /// Returns a pair of slices which contain, in order, the contents of the |
| 1528 | /// deque. |
| 1529 | /// |
| 1530 | /// If [`make_contiguous`] was previously called, all elements of the |
| 1531 | /// deque will be in the first slice and the second slice will be empty. |
| 1532 | /// Otherwise, the exact split point depends on implementation details |
| 1533 | /// and is not guaranteed. |
| 1534 | /// |
| 1535 | /// [`make_contiguous`]: VecDeque::make_contiguous |
| 1536 | /// |
| 1537 | /// # Examples |
| 1538 | /// |
| 1539 | /// ``` |
| 1540 | /// use std::collections::VecDeque; |
| 1541 | /// |
| 1542 | /// let mut deque = VecDeque::new(); |
| 1543 | /// |
| 1544 | /// deque.push_back(0); |
| 1545 | /// deque.push_back(1); |
| 1546 | /// deque.push_back(2); |
| 1547 | /// |
| 1548 | /// let expected = [0, 1, 2]; |
| 1549 | /// let (front, back) = deque.as_slices(); |
| 1550 | /// assert_eq!(&expected[..front.len()], front); |
| 1551 | /// assert_eq!(&expected[front.len()..], back); |
| 1552 | /// |
| 1553 | /// deque.push_front(10); |
| 1554 | /// deque.push_front(9); |
| 1555 | /// |
| 1556 | /// let expected = [9, 10, 0, 1, 2]; |
| 1557 | /// let (front, back) = deque.as_slices(); |
| 1558 | /// assert_eq!(&expected[..front.len()], front); |
| 1559 | /// assert_eq!(&expected[front.len()..], back); |
| 1560 | /// ``` |
| 1561 | #[inline ] |
| 1562 | #[stable (feature = "deque_extras_15" , since = "1.5.0" )] |
| 1563 | pub fn as_slices(&self) -> (&[T], &[T]) { |
| 1564 | let (a_range, b_range) = self.slice_ranges(.., self.len); |
| 1565 | // SAFETY: `slice_ranges` always returns valid ranges into |
| 1566 | // the physical buffer. |
| 1567 | unsafe { (&*self.buffer_range(a_range), &*self.buffer_range(b_range)) } |
| 1568 | } |
| 1569 | |
| 1570 | /// Returns a pair of slices which contain, in order, the contents of the |
| 1571 | /// deque. |
| 1572 | /// |
| 1573 | /// If [`make_contiguous`] was previously called, all elements of the |
| 1574 | /// deque will be in the first slice and the second slice will be empty. |
| 1575 | /// Otherwise, the exact split point depends on implementation details |
| 1576 | /// and is not guaranteed. |
| 1577 | /// |
| 1578 | /// [`make_contiguous`]: VecDeque::make_contiguous |
| 1579 | /// |
| 1580 | /// # Examples |
| 1581 | /// |
| 1582 | /// ``` |
| 1583 | /// use std::collections::VecDeque; |
| 1584 | /// |
| 1585 | /// let mut deque = VecDeque::new(); |
| 1586 | /// |
| 1587 | /// deque.push_back(0); |
| 1588 | /// deque.push_back(1); |
| 1589 | /// |
| 1590 | /// deque.push_front(10); |
| 1591 | /// deque.push_front(9); |
| 1592 | /// |
| 1593 | /// // Since the split point is not guaranteed, we may need to update |
| 1594 | /// // either slice. |
| 1595 | /// let mut update_nth = |index: usize, val: u32| { |
| 1596 | /// let (front, back) = deque.as_mut_slices(); |
| 1597 | /// if index > front.len() - 1 { |
| 1598 | /// back[index - front.len()] = val; |
| 1599 | /// } else { |
| 1600 | /// front[index] = val; |
| 1601 | /// } |
| 1602 | /// }; |
| 1603 | /// |
| 1604 | /// update_nth(0, 42); |
| 1605 | /// update_nth(2, 24); |
| 1606 | /// |
| 1607 | /// let v: Vec<_> = deque.into(); |
| 1608 | /// assert_eq!(v, [42, 10, 24, 1]); |
| 1609 | /// ``` |
| 1610 | #[inline ] |
| 1611 | #[stable (feature = "deque_extras_15" , since = "1.5.0" )] |
| 1612 | pub fn as_mut_slices(&mut self) -> (&mut [T], &mut [T]) { |
| 1613 | let (a_range, b_range) = self.slice_ranges(.., self.len); |
| 1614 | // SAFETY: `slice_ranges` always returns valid ranges into |
| 1615 | // the physical buffer. |
| 1616 | unsafe { (&mut *self.buffer_range(a_range), &mut *self.buffer_range(b_range)) } |
| 1617 | } |
| 1618 | |
| 1619 | /// Returns the number of elements in the deque. |
| 1620 | /// |
| 1621 | /// # Examples |
| 1622 | /// |
| 1623 | /// ``` |
| 1624 | /// use std::collections::VecDeque; |
| 1625 | /// |
| 1626 | /// let mut deque = VecDeque::new(); |
| 1627 | /// assert_eq!(deque.len(), 0); |
| 1628 | /// deque.push_back(1); |
| 1629 | /// assert_eq!(deque.len(), 1); |
| 1630 | /// ``` |
| 1631 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1632 | #[rustc_confusables ("length" , "size" )] |
| 1633 | pub fn len(&self) -> usize { |
| 1634 | self.len |
| 1635 | } |
| 1636 | |
| 1637 | /// Returns `true` if the deque is empty. |
| 1638 | /// |
| 1639 | /// # Examples |
| 1640 | /// |
| 1641 | /// ``` |
| 1642 | /// use std::collections::VecDeque; |
| 1643 | /// |
| 1644 | /// let mut deque = VecDeque::new(); |
| 1645 | /// assert!(deque.is_empty()); |
| 1646 | /// deque.push_front(1); |
| 1647 | /// assert!(!deque.is_empty()); |
| 1648 | /// ``` |
| 1649 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1650 | pub fn is_empty(&self) -> bool { |
| 1651 | self.len == 0 |
| 1652 | } |
| 1653 | |
| 1654 | /// Given a range into the logical buffer of the deque, this function |
| 1655 | /// return two ranges into the physical buffer that correspond to |
| 1656 | /// the given range. The `len` parameter should usually just be `self.len`; |
| 1657 | /// the reason it's passed explicitly is that if the deque is wrapped in |
| 1658 | /// a `Drain`, then `self.len` is not actually the length of the deque. |
| 1659 | /// |
| 1660 | /// # Safety |
| 1661 | /// |
| 1662 | /// This function is always safe to call. For the resulting ranges to be valid |
| 1663 | /// ranges into the physical buffer, the caller must ensure that the result of |
| 1664 | /// calling `slice::range(range, ..len)` represents a valid range into the |
| 1665 | /// logical buffer, and that all elements in that range are initialized. |
| 1666 | fn slice_ranges<R>(&self, range: R, len: usize) -> (Range<usize>, Range<usize>) |
| 1667 | where |
| 1668 | R: RangeBounds<usize>, |
| 1669 | { |
| 1670 | let Range { start, end } = slice::range(range, ..len); |
| 1671 | let len = end - start; |
| 1672 | |
| 1673 | if len == 0 { |
| 1674 | (0..0, 0..0) |
| 1675 | } else { |
| 1676 | // `slice::range` guarantees that `start <= end <= len`. |
| 1677 | // because `len != 0`, we know that `start < end`, so `start < len` |
| 1678 | // and the indexing is valid. |
| 1679 | let wrapped_start = self.to_physical_idx(start); |
| 1680 | |
| 1681 | // this subtraction can never overflow because `wrapped_start` is |
| 1682 | // at most `self.capacity()` (and if `self.capacity != 0`, then `wrapped_start` is strictly less |
| 1683 | // than `self.capacity`). |
| 1684 | let head_len = self.capacity() - wrapped_start; |
| 1685 | |
| 1686 | if head_len >= len { |
| 1687 | // we know that `len + wrapped_start <= self.capacity <= usize::MAX`, so this addition can't overflow |
| 1688 | (wrapped_start..wrapped_start + len, 0..0) |
| 1689 | } else { |
| 1690 | // can't overflow because of the if condition |
| 1691 | let tail_len = len - head_len; |
| 1692 | (wrapped_start..self.capacity(), 0..tail_len) |
| 1693 | } |
| 1694 | } |
| 1695 | } |
| 1696 | |
| 1697 | /// Creates an iterator that covers the specified range in the deque. |
| 1698 | /// |
| 1699 | /// # Panics |
| 1700 | /// |
| 1701 | /// Panics if the range has `start_bound > end_bound`, or, if the range is |
| 1702 | /// bounded on either end and past the length of the deque. |
| 1703 | /// |
| 1704 | /// # Examples |
| 1705 | /// |
| 1706 | /// ``` |
| 1707 | /// use std::collections::VecDeque; |
| 1708 | /// |
| 1709 | /// let deque: VecDeque<_> = [1, 2, 3].into(); |
| 1710 | /// let range = deque.range(2..).copied().collect::<VecDeque<_>>(); |
| 1711 | /// assert_eq!(range, [3]); |
| 1712 | /// |
| 1713 | /// // A full range covers all contents |
| 1714 | /// let all = deque.range(..); |
| 1715 | /// assert_eq!(all.len(), 3); |
| 1716 | /// ``` |
| 1717 | #[inline ] |
| 1718 | #[stable (feature = "deque_range" , since = "1.51.0" )] |
| 1719 | pub fn range<R>(&self, range: R) -> Iter<'_, T> |
| 1720 | where |
| 1721 | R: RangeBounds<usize>, |
| 1722 | { |
| 1723 | let (a_range, b_range) = self.slice_ranges(range, self.len); |
| 1724 | // SAFETY: The ranges returned by `slice_ranges` |
| 1725 | // are valid ranges into the physical buffer, so |
| 1726 | // it's ok to pass them to `buffer_range` and |
| 1727 | // dereference the result. |
| 1728 | let a = unsafe { &*self.buffer_range(a_range) }; |
| 1729 | let b = unsafe { &*self.buffer_range(b_range) }; |
| 1730 | Iter::new(a.iter(), b.iter()) |
| 1731 | } |
| 1732 | |
| 1733 | /// Creates an iterator that covers the specified mutable range in the deque. |
| 1734 | /// |
| 1735 | /// # Panics |
| 1736 | /// |
| 1737 | /// Panics if the range has `start_bound > end_bound`, or, if the range is |
| 1738 | /// bounded on either end and past the length of the deque. |
| 1739 | /// |
| 1740 | /// # Examples |
| 1741 | /// |
| 1742 | /// ``` |
| 1743 | /// use std::collections::VecDeque; |
| 1744 | /// |
| 1745 | /// let mut deque: VecDeque<_> = [1, 2, 3].into(); |
| 1746 | /// for v in deque.range_mut(2..) { |
| 1747 | /// *v *= 2; |
| 1748 | /// } |
| 1749 | /// assert_eq!(deque, [1, 2, 6]); |
| 1750 | /// |
| 1751 | /// // A full range covers all contents |
| 1752 | /// for v in deque.range_mut(..) { |
| 1753 | /// *v *= 2; |
| 1754 | /// } |
| 1755 | /// assert_eq!(deque, [2, 4, 12]); |
| 1756 | /// ``` |
| 1757 | #[inline ] |
| 1758 | #[stable (feature = "deque_range" , since = "1.51.0" )] |
| 1759 | pub fn range_mut<R>(&mut self, range: R) -> IterMut<'_, T> |
| 1760 | where |
| 1761 | R: RangeBounds<usize>, |
| 1762 | { |
| 1763 | let (a_range, b_range) = self.slice_ranges(range, self.len); |
| 1764 | // SAFETY: The ranges returned by `slice_ranges` |
| 1765 | // are valid ranges into the physical buffer, so |
| 1766 | // it's ok to pass them to `buffer_range` and |
| 1767 | // dereference the result. |
| 1768 | let a = unsafe { &mut *self.buffer_range(a_range) }; |
| 1769 | let b = unsafe { &mut *self.buffer_range(b_range) }; |
| 1770 | IterMut::new(a.iter_mut(), b.iter_mut()) |
| 1771 | } |
| 1772 | |
| 1773 | /// Removes the specified range from the deque in bulk, returning all |
| 1774 | /// removed elements as an iterator. If the iterator is dropped before |
| 1775 | /// being fully consumed, it drops the remaining removed elements. |
| 1776 | /// |
| 1777 | /// The returned iterator keeps a mutable borrow on the queue to optimize |
| 1778 | /// its implementation. |
| 1779 | /// |
| 1780 | /// |
| 1781 | /// # Panics |
| 1782 | /// |
| 1783 | /// Panics if the range has `start_bound > end_bound`, or, if the range is |
| 1784 | /// bounded on either end and past the length of the deque. |
| 1785 | /// |
| 1786 | /// # Leaking |
| 1787 | /// |
| 1788 | /// If the returned iterator goes out of scope without being dropped (due to |
| 1789 | /// [`mem::forget`], for example), the deque may have lost and leaked |
| 1790 | /// elements arbitrarily, including elements outside the range. |
| 1791 | /// |
| 1792 | /// # Examples |
| 1793 | /// |
| 1794 | /// ``` |
| 1795 | /// use std::collections::VecDeque; |
| 1796 | /// |
| 1797 | /// let mut deque: VecDeque<_> = [1, 2, 3].into(); |
| 1798 | /// let drained = deque.drain(2..).collect::<VecDeque<_>>(); |
| 1799 | /// assert_eq!(drained, [3]); |
| 1800 | /// assert_eq!(deque, [1, 2]); |
| 1801 | /// |
| 1802 | /// // A full range clears all contents, like `clear()` does |
| 1803 | /// deque.drain(..); |
| 1804 | /// assert!(deque.is_empty()); |
| 1805 | /// ``` |
| 1806 | #[inline ] |
| 1807 | #[stable (feature = "drain" , since = "1.6.0" )] |
| 1808 | pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A> |
| 1809 | where |
| 1810 | R: RangeBounds<usize>, |
| 1811 | { |
| 1812 | // Memory safety |
| 1813 | // |
| 1814 | // When the Drain is first created, the source deque is shortened to |
| 1815 | // make sure no uninitialized or moved-from elements are accessible at |
| 1816 | // all if the Drain's destructor never gets to run. |
| 1817 | // |
| 1818 | // Drain will ptr::read out the values to remove. |
| 1819 | // When finished, the remaining data will be copied back to cover the hole, |
| 1820 | // and the head/tail values will be restored correctly. |
| 1821 | // |
| 1822 | let Range { start, end } = slice::range(range, ..self.len); |
| 1823 | let drain_start = start; |
| 1824 | let drain_len = end - start; |
| 1825 | |
| 1826 | // The deque's elements are parted into three segments: |
| 1827 | // * 0 -> drain_start |
| 1828 | // * drain_start -> drain_start+drain_len |
| 1829 | // * drain_start+drain_len -> self.len |
| 1830 | // |
| 1831 | // H = self.head; T = self.head+self.len; t = drain_start+drain_len; h = drain_head |
| 1832 | // |
| 1833 | // We store drain_start as self.len, and drain_len and self.len as |
| 1834 | // drain_len and orig_len respectively on the Drain. This also |
| 1835 | // truncates the effective array such that if the Drain is leaked, we |
| 1836 | // have forgotten about the potentially moved values after the start of |
| 1837 | // the drain. |
| 1838 | // |
| 1839 | // H h t T |
| 1840 | // [. . . o o x x o o . . .] |
| 1841 | // |
| 1842 | // "forget" about the values after the start of the drain until after |
| 1843 | // the drain is complete and the Drain destructor is run. |
| 1844 | |
| 1845 | unsafe { Drain::new(self, drain_start, drain_len) } |
| 1846 | } |
| 1847 | |
| 1848 | /// Creates a splicing iterator that replaces the specified range in the deque with the given |
| 1849 | /// `replace_with` iterator and yields the removed items. `replace_with` does not need to be the |
| 1850 | /// same length as `range`. |
| 1851 | /// |
| 1852 | /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped. |
| 1853 | /// |
| 1854 | /// It is unspecified how many elements are removed from the deque if the `Splice` value is |
| 1855 | /// leaked. |
| 1856 | /// |
| 1857 | /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped. |
| 1858 | /// |
| 1859 | /// This is optimal if: |
| 1860 | /// |
| 1861 | /// * The tail (elements in the deque after `range`) is empty, |
| 1862 | /// * or `replace_with` yields fewer or equal elements than `range`'s length |
| 1863 | /// * or the lower bound of its `size_hint()` is exact. |
| 1864 | /// |
| 1865 | /// Otherwise, a temporary vector is allocated and the tail is moved twice. |
| 1866 | /// |
| 1867 | /// # Panics |
| 1868 | /// |
| 1869 | /// Panics if the range has `start_bound > end_bound`, or, if the range is |
| 1870 | /// bounded on either end and past the length of the deque. |
| 1871 | /// |
| 1872 | /// # Examples |
| 1873 | /// |
| 1874 | /// ``` |
| 1875 | /// # #![feature (deque_extend_front)] |
| 1876 | /// # use std::collections::VecDeque; |
| 1877 | /// |
| 1878 | /// let mut v = VecDeque::from(vec![1, 2, 3, 4]); |
| 1879 | /// let new = [7, 8, 9]; |
| 1880 | /// let u: Vec<_> = v.splice(1..3, new).collect(); |
| 1881 | /// assert_eq!(v, [1, 7, 8, 9, 4]); |
| 1882 | /// assert_eq!(u, [2, 3]); |
| 1883 | /// ``` |
| 1884 | /// |
| 1885 | /// Using `splice` to insert new items into a vector efficiently at a specific position |
| 1886 | /// indicated by an empty range: |
| 1887 | /// |
| 1888 | /// ``` |
| 1889 | /// # #![feature(deque_extend_front)] |
| 1890 | /// # use std::collections::VecDeque; |
| 1891 | /// |
| 1892 | /// let mut v = VecDeque::from(vec![1, 5]); |
| 1893 | /// let new = [2, 3, 4]; |
| 1894 | /// v.splice(1..1, new); |
| 1895 | /// assert_eq!(v, [1, 2, 3, 4, 5]); |
| 1896 | /// ``` |
| 1897 | #[unstable (feature = "deque_extend_front" , issue = "146975" )] |
| 1898 | pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A> |
| 1899 | where |
| 1900 | R: RangeBounds<usize>, |
| 1901 | I: IntoIterator<Item = T>, |
| 1902 | { |
| 1903 | Splice { drain: self.drain(range), replace_with: replace_with.into_iter() } |
| 1904 | } |
| 1905 | |
| 1906 | /// Clears the deque, removing all values. |
| 1907 | /// |
| 1908 | /// # Examples |
| 1909 | /// |
| 1910 | /// ``` |
| 1911 | /// use std::collections::VecDeque; |
| 1912 | /// |
| 1913 | /// let mut deque = VecDeque::new(); |
| 1914 | /// deque.push_back(1); |
| 1915 | /// deque.clear(); |
| 1916 | /// assert!(deque.is_empty()); |
| 1917 | /// ``` |
| 1918 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1919 | #[inline ] |
| 1920 | pub fn clear(&mut self) { |
| 1921 | self.truncate(0); |
| 1922 | // Not strictly necessary, but leaves things in a more consistent/predictable state. |
| 1923 | self.head = 0; |
| 1924 | } |
| 1925 | |
| 1926 | /// Returns `true` if the deque contains an element equal to the |
| 1927 | /// given value. |
| 1928 | /// |
| 1929 | /// This operation is *O*(*n*). |
| 1930 | /// |
| 1931 | /// Note that if you have a sorted `VecDeque`, [`binary_search`] may be faster. |
| 1932 | /// |
| 1933 | /// [`binary_search`]: VecDeque::binary_search |
| 1934 | /// |
| 1935 | /// # Examples |
| 1936 | /// |
| 1937 | /// ``` |
| 1938 | /// use std::collections::VecDeque; |
| 1939 | /// |
| 1940 | /// let mut deque: VecDeque<u32> = VecDeque::new(); |
| 1941 | /// |
| 1942 | /// deque.push_back(0); |
| 1943 | /// deque.push_back(1); |
| 1944 | /// |
| 1945 | /// assert_eq!(deque.contains(&1), true); |
| 1946 | /// assert_eq!(deque.contains(&10), false); |
| 1947 | /// ``` |
| 1948 | #[stable (feature = "vec_deque_contains" , since = "1.12.0" )] |
| 1949 | pub fn contains(&self, x: &T) -> bool |
| 1950 | where |
| 1951 | T: PartialEq<T>, |
| 1952 | { |
| 1953 | let (a, b) = self.as_slices(); |
| 1954 | a.contains(x) || b.contains(x) |
| 1955 | } |
| 1956 | |
| 1957 | /// Provides a reference to the front element, or `None` if the deque is |
| 1958 | /// empty. |
| 1959 | /// |
| 1960 | /// # Examples |
| 1961 | /// |
| 1962 | /// ``` |
| 1963 | /// use std::collections::VecDeque; |
| 1964 | /// |
| 1965 | /// let mut d = VecDeque::new(); |
| 1966 | /// assert_eq!(d.front(), None); |
| 1967 | /// |
| 1968 | /// d.push_back(1); |
| 1969 | /// d.push_back(2); |
| 1970 | /// assert_eq!(d.front(), Some(&1)); |
| 1971 | /// ``` |
| 1972 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1973 | #[rustc_confusables ("first" )] |
| 1974 | pub fn front(&self) -> Option<&T> { |
| 1975 | self.get(0) |
| 1976 | } |
| 1977 | |
| 1978 | /// Provides a mutable reference to the front element, or `None` if the |
| 1979 | /// deque is empty. |
| 1980 | /// |
| 1981 | /// # Examples |
| 1982 | /// |
| 1983 | /// ``` |
| 1984 | /// use std::collections::VecDeque; |
| 1985 | /// |
| 1986 | /// let mut d = VecDeque::new(); |
| 1987 | /// assert_eq!(d.front_mut(), None); |
| 1988 | /// |
| 1989 | /// d.push_back(1); |
| 1990 | /// d.push_back(2); |
| 1991 | /// match d.front_mut() { |
| 1992 | /// Some(x) => *x = 9, |
| 1993 | /// None => (), |
| 1994 | /// } |
| 1995 | /// assert_eq!(d.front(), Some(&9)); |
| 1996 | /// ``` |
| 1997 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 1998 | pub fn front_mut(&mut self) -> Option<&mut T> { |
| 1999 | self.get_mut(0) |
| 2000 | } |
| 2001 | |
| 2002 | /// Provides a reference to the back element, or `None` if the deque is |
| 2003 | /// empty. |
| 2004 | /// |
| 2005 | /// # Examples |
| 2006 | /// |
| 2007 | /// ``` |
| 2008 | /// use std::collections::VecDeque; |
| 2009 | /// |
| 2010 | /// let mut d = VecDeque::new(); |
| 2011 | /// assert_eq!(d.back(), None); |
| 2012 | /// |
| 2013 | /// d.push_back(1); |
| 2014 | /// d.push_back(2); |
| 2015 | /// assert_eq!(d.back(), Some(&2)); |
| 2016 | /// ``` |
| 2017 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2018 | #[rustc_confusables ("last" )] |
| 2019 | pub fn back(&self) -> Option<&T> { |
| 2020 | self.get(self.len.wrapping_sub(1)) |
| 2021 | } |
| 2022 | |
| 2023 | /// Provides a mutable reference to the back element, or `None` if the |
| 2024 | /// deque is empty. |
| 2025 | /// |
| 2026 | /// # Examples |
| 2027 | /// |
| 2028 | /// ``` |
| 2029 | /// use std::collections::VecDeque; |
| 2030 | /// |
| 2031 | /// let mut d = VecDeque::new(); |
| 2032 | /// assert_eq!(d.back(), None); |
| 2033 | /// |
| 2034 | /// d.push_back(1); |
| 2035 | /// d.push_back(2); |
| 2036 | /// match d.back_mut() { |
| 2037 | /// Some(x) => *x = 9, |
| 2038 | /// None => (), |
| 2039 | /// } |
| 2040 | /// assert_eq!(d.back(), Some(&9)); |
| 2041 | /// ``` |
| 2042 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2043 | pub fn back_mut(&mut self) -> Option<&mut T> { |
| 2044 | self.get_mut(self.len.wrapping_sub(1)) |
| 2045 | } |
| 2046 | |
| 2047 | /// Removes the first element and returns it, or `None` if the deque is |
| 2048 | /// empty. |
| 2049 | /// |
| 2050 | /// # Examples |
| 2051 | /// |
| 2052 | /// ``` |
| 2053 | /// use std::collections::VecDeque; |
| 2054 | /// |
| 2055 | /// let mut d = VecDeque::new(); |
| 2056 | /// d.push_back(1); |
| 2057 | /// d.push_back(2); |
| 2058 | /// |
| 2059 | /// assert_eq!(d.pop_front(), Some(1)); |
| 2060 | /// assert_eq!(d.pop_front(), Some(2)); |
| 2061 | /// assert_eq!(d.pop_front(), None); |
| 2062 | /// ``` |
| 2063 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2064 | pub fn pop_front(&mut self) -> Option<T> { |
| 2065 | if self.is_empty() { |
| 2066 | None |
| 2067 | } else { |
| 2068 | let old_head = self.head; |
| 2069 | self.head = self.to_physical_idx(1); |
| 2070 | self.len -= 1; |
| 2071 | unsafe { |
| 2072 | core::hint::assert_unchecked(self.len < self.capacity()); |
| 2073 | Some(self.buffer_read(old_head)) |
| 2074 | } |
| 2075 | } |
| 2076 | } |
| 2077 | |
| 2078 | /// Removes the last element from the deque and returns it, or `None` if |
| 2079 | /// it is empty. |
| 2080 | /// |
| 2081 | /// # Examples |
| 2082 | /// |
| 2083 | /// ``` |
| 2084 | /// use std::collections::VecDeque; |
| 2085 | /// |
| 2086 | /// let mut buf = VecDeque::new(); |
| 2087 | /// assert_eq!(buf.pop_back(), None); |
| 2088 | /// buf.push_back(1); |
| 2089 | /// buf.push_back(3); |
| 2090 | /// assert_eq!(buf.pop_back(), Some(3)); |
| 2091 | /// ``` |
| 2092 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2093 | pub fn pop_back(&mut self) -> Option<T> { |
| 2094 | if self.is_empty() { |
| 2095 | None |
| 2096 | } else { |
| 2097 | self.len -= 1; |
| 2098 | unsafe { |
| 2099 | core::hint::assert_unchecked(self.len < self.capacity()); |
| 2100 | Some(self.buffer_read(self.to_physical_idx(self.len))) |
| 2101 | } |
| 2102 | } |
| 2103 | } |
| 2104 | |
| 2105 | /// Removes and returns the first element from the deque if the predicate |
| 2106 | /// returns `true`, or [`None`] if the predicate returns false or the deque |
| 2107 | /// is empty (the predicate will not be called in that case). |
| 2108 | /// |
| 2109 | /// # Examples |
| 2110 | /// |
| 2111 | /// ``` |
| 2112 | /// use std::collections::VecDeque; |
| 2113 | /// |
| 2114 | /// let mut deque: VecDeque<i32> = vec![0, 1, 2, 3, 4].into(); |
| 2115 | /// let pred = |x: &mut i32| *x % 2 == 0; |
| 2116 | /// |
| 2117 | /// assert_eq!(deque.pop_front_if(pred), Some(0)); |
| 2118 | /// assert_eq!(deque, [1, 2, 3, 4]); |
| 2119 | /// assert_eq!(deque.pop_front_if(pred), None); |
| 2120 | /// ``` |
| 2121 | #[stable (feature = "vec_deque_pop_if" , since = "1.93.0" )] |
| 2122 | pub fn pop_front_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> { |
| 2123 | let first = self.front_mut()?; |
| 2124 | if predicate(first) { self.pop_front() } else { None } |
| 2125 | } |
| 2126 | |
| 2127 | /// Removes and returns the last element from the deque if the predicate |
| 2128 | /// returns `true`, or [`None`] if the predicate returns false or the deque |
| 2129 | /// is empty (the predicate will not be called in that case). |
| 2130 | /// |
| 2131 | /// # Examples |
| 2132 | /// |
| 2133 | /// ``` |
| 2134 | /// use std::collections::VecDeque; |
| 2135 | /// |
| 2136 | /// let mut deque: VecDeque<i32> = vec![0, 1, 2, 3, 4].into(); |
| 2137 | /// let pred = |x: &mut i32| *x % 2 == 0; |
| 2138 | /// |
| 2139 | /// assert_eq!(deque.pop_back_if(pred), Some(4)); |
| 2140 | /// assert_eq!(deque, [0, 1, 2, 3]); |
| 2141 | /// assert_eq!(deque.pop_back_if(pred), None); |
| 2142 | /// ``` |
| 2143 | #[stable (feature = "vec_deque_pop_if" , since = "1.93.0" )] |
| 2144 | pub fn pop_back_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> { |
| 2145 | let last = self.back_mut()?; |
| 2146 | if predicate(last) { self.pop_back() } else { None } |
| 2147 | } |
| 2148 | |
| 2149 | /// Prepends an element to the deque. |
| 2150 | /// |
| 2151 | /// # Examples |
| 2152 | /// |
| 2153 | /// ``` |
| 2154 | /// use std::collections::VecDeque; |
| 2155 | /// |
| 2156 | /// let mut d = VecDeque::new(); |
| 2157 | /// d.push_front(1); |
| 2158 | /// d.push_front(2); |
| 2159 | /// assert_eq!(d.front(), Some(&2)); |
| 2160 | /// ``` |
| 2161 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2162 | pub fn push_front(&mut self, value: T) { |
| 2163 | let _ = self.push_front_mut(value); |
| 2164 | } |
| 2165 | |
| 2166 | /// Prepends an element to the deque, returning a reference to it. |
| 2167 | /// |
| 2168 | /// # Examples |
| 2169 | /// |
| 2170 | /// ``` |
| 2171 | /// use std::collections::VecDeque; |
| 2172 | /// |
| 2173 | /// let mut d = VecDeque::from([1, 2, 3]); |
| 2174 | /// let x = d.push_front_mut(8); |
| 2175 | /// *x -= 1; |
| 2176 | /// assert_eq!(d.front(), Some(&7)); |
| 2177 | /// ``` |
| 2178 | #[stable (feature = "push_mut" , since = "CURRENT_RUSTC_VERSION" )] |
| 2179 | #[must_use = "if you don't need a reference to the value, use `VecDeque::push_front` instead" ] |
| 2180 | pub fn push_front_mut(&mut self, value: T) -> &mut T { |
| 2181 | if self.is_full() { |
| 2182 | self.grow(); |
| 2183 | } |
| 2184 | |
| 2185 | self.head = self.wrap_sub(self.head, 1); |
| 2186 | self.len += 1; |
| 2187 | // SAFETY: We know that self.head is within range of the deque. |
| 2188 | unsafe { self.buffer_write(self.head, value) } |
| 2189 | } |
| 2190 | |
| 2191 | /// Appends an element to the back of the deque. |
| 2192 | /// |
| 2193 | /// # Examples |
| 2194 | /// |
| 2195 | /// ``` |
| 2196 | /// use std::collections::VecDeque; |
| 2197 | /// |
| 2198 | /// let mut buf = VecDeque::new(); |
| 2199 | /// buf.push_back(1); |
| 2200 | /// buf.push_back(3); |
| 2201 | /// assert_eq!(3, *buf.back().unwrap()); |
| 2202 | /// ``` |
| 2203 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2204 | #[rustc_confusables ("push" , "put" , "append" )] |
| 2205 | pub fn push_back(&mut self, value: T) { |
| 2206 | let _ = self.push_back_mut(value); |
| 2207 | } |
| 2208 | |
| 2209 | /// Appends an element to the back of the deque, returning a reference to it. |
| 2210 | /// |
| 2211 | /// # Examples |
| 2212 | /// |
| 2213 | /// ``` |
| 2214 | /// use std::collections::VecDeque; |
| 2215 | /// |
| 2216 | /// let mut d = VecDeque::from([1, 2, 3]); |
| 2217 | /// let x = d.push_back_mut(9); |
| 2218 | /// *x += 1; |
| 2219 | /// assert_eq!(d.back(), Some(&10)); |
| 2220 | /// ``` |
| 2221 | #[stable (feature = "push_mut" , since = "CURRENT_RUSTC_VERSION" )] |
| 2222 | #[must_use = "if you don't need a reference to the value, use `VecDeque::push_back` instead" ] |
| 2223 | pub fn push_back_mut(&mut self, value: T) -> &mut T { |
| 2224 | if self.is_full() { |
| 2225 | self.grow(); |
| 2226 | } |
| 2227 | |
| 2228 | let len = self.len; |
| 2229 | self.len += 1; |
| 2230 | unsafe { self.buffer_write(self.to_physical_idx(len), value) } |
| 2231 | } |
| 2232 | |
| 2233 | /// Prepends all contents of the iterator to the front of the deque. |
| 2234 | /// The order of the contents is preserved. |
| 2235 | /// |
| 2236 | /// To get behavior like [`append`][VecDeque::append] where elements are moved |
| 2237 | /// from the other collection to this one, use `self.prepend(other.drain(..))`. |
| 2238 | /// |
| 2239 | /// # Examples |
| 2240 | /// |
| 2241 | /// ``` |
| 2242 | /// #![feature(deque_extend_front)] |
| 2243 | /// use std::collections::VecDeque; |
| 2244 | /// |
| 2245 | /// let mut deque = VecDeque::from([4, 5, 6]); |
| 2246 | /// deque.prepend([1, 2, 3]); |
| 2247 | /// assert_eq!(deque, [1, 2, 3, 4, 5, 6]); |
| 2248 | /// ``` |
| 2249 | /// |
| 2250 | /// Move values between collections like [`append`][VecDeque::append] does but prepend to the front: |
| 2251 | /// |
| 2252 | /// ``` |
| 2253 | /// #![feature(deque_extend_front)] |
| 2254 | /// use std::collections::VecDeque; |
| 2255 | /// |
| 2256 | /// let mut deque1 = VecDeque::from([4, 5, 6]); |
| 2257 | /// let mut deque2 = VecDeque::from([1, 2, 3]); |
| 2258 | /// deque1.prepend(deque2.drain(..)); |
| 2259 | /// assert_eq!(deque1, [1, 2, 3, 4, 5, 6]); |
| 2260 | /// assert!(deque2.is_empty()); |
| 2261 | /// ``` |
| 2262 | #[unstable (feature = "deque_extend_front" , issue = "146975" )] |
| 2263 | #[track_caller ] |
| 2264 | pub fn prepend<I: IntoIterator<Item = T, IntoIter: DoubleEndedIterator>>(&mut self, other: I) { |
| 2265 | self.extend_front(other.into_iter().rev()) |
| 2266 | } |
| 2267 | |
| 2268 | /// Prepends all contents of the iterator to the front of the deque, |
| 2269 | /// as if [`push_front`][VecDeque::push_front] was called repeatedly with |
| 2270 | /// the values yielded by the iterator. |
| 2271 | /// |
| 2272 | /// # Examples |
| 2273 | /// |
| 2274 | /// ``` |
| 2275 | /// #![feature(deque_extend_front)] |
| 2276 | /// use std::collections::VecDeque; |
| 2277 | /// |
| 2278 | /// let mut deque = VecDeque::from([4, 5, 6]); |
| 2279 | /// deque.extend_front([3, 2, 1]); |
| 2280 | /// assert_eq!(deque, [1, 2, 3, 4, 5, 6]); |
| 2281 | /// ``` |
| 2282 | /// |
| 2283 | /// This behaves like [`push_front`][VecDeque::push_front] was called repeatedly: |
| 2284 | /// |
| 2285 | /// ``` |
| 2286 | /// use std::collections::VecDeque; |
| 2287 | /// |
| 2288 | /// let mut deque = VecDeque::from([4, 5, 6]); |
| 2289 | /// for v in [3, 2, 1] { |
| 2290 | /// deque.push_front(v); |
| 2291 | /// } |
| 2292 | /// assert_eq!(deque, [1, 2, 3, 4, 5, 6]); |
| 2293 | /// ``` |
| 2294 | #[unstable (feature = "deque_extend_front" , issue = "146975" )] |
| 2295 | #[track_caller ] |
| 2296 | pub fn extend_front<I: IntoIterator<Item = T>>(&mut self, iter: I) { |
| 2297 | <Self as SpecExtendFront<T, I::IntoIter>>::spec_extend_front(self, iter.into_iter()); |
| 2298 | } |
| 2299 | |
| 2300 | #[inline ] |
| 2301 | fn is_contiguous(&self) -> bool { |
| 2302 | // Do the calculation like this to avoid overflowing if len + head > usize::MAX |
| 2303 | self.head <= self.capacity() - self.len |
| 2304 | } |
| 2305 | |
| 2306 | /// Removes an element from anywhere in the deque and returns it, |
| 2307 | /// replacing it with the first element. |
| 2308 | /// |
| 2309 | /// This does not preserve ordering, but is *O*(1). |
| 2310 | /// |
| 2311 | /// Returns `None` if `index` is out of bounds. |
| 2312 | /// |
| 2313 | /// Element at index 0 is the front of the queue. |
| 2314 | /// |
| 2315 | /// # Examples |
| 2316 | /// |
| 2317 | /// ``` |
| 2318 | /// use std::collections::VecDeque; |
| 2319 | /// |
| 2320 | /// let mut buf = VecDeque::new(); |
| 2321 | /// assert_eq!(buf.swap_remove_front(0), None); |
| 2322 | /// buf.push_back(1); |
| 2323 | /// buf.push_back(2); |
| 2324 | /// buf.push_back(3); |
| 2325 | /// assert_eq!(buf, [1, 2, 3]); |
| 2326 | /// |
| 2327 | /// assert_eq!(buf.swap_remove_front(2), Some(3)); |
| 2328 | /// assert_eq!(buf, [2, 1]); |
| 2329 | /// ``` |
| 2330 | #[stable (feature = "deque_extras_15" , since = "1.5.0" )] |
| 2331 | pub fn swap_remove_front(&mut self, index: usize) -> Option<T> { |
| 2332 | let length = self.len; |
| 2333 | if index < length && index != 0 { |
| 2334 | self.swap(index, 0); |
| 2335 | } else if index >= length { |
| 2336 | return None; |
| 2337 | } |
| 2338 | self.pop_front() |
| 2339 | } |
| 2340 | |
| 2341 | /// Removes an element from anywhere in the deque and returns it, |
| 2342 | /// replacing it with the last element. |
| 2343 | /// |
| 2344 | /// This does not preserve ordering, but is *O*(1). |
| 2345 | /// |
| 2346 | /// Returns `None` if `index` is out of bounds. |
| 2347 | /// |
| 2348 | /// Element at index 0 is the front of the queue. |
| 2349 | /// |
| 2350 | /// # Examples |
| 2351 | /// |
| 2352 | /// ``` |
| 2353 | /// use std::collections::VecDeque; |
| 2354 | /// |
| 2355 | /// let mut buf = VecDeque::new(); |
| 2356 | /// assert_eq!(buf.swap_remove_back(0), None); |
| 2357 | /// buf.push_back(1); |
| 2358 | /// buf.push_back(2); |
| 2359 | /// buf.push_back(3); |
| 2360 | /// assert_eq!(buf, [1, 2, 3]); |
| 2361 | /// |
| 2362 | /// assert_eq!(buf.swap_remove_back(0), Some(1)); |
| 2363 | /// assert_eq!(buf, [3, 2]); |
| 2364 | /// ``` |
| 2365 | #[stable (feature = "deque_extras_15" , since = "1.5.0" )] |
| 2366 | pub fn swap_remove_back(&mut self, index: usize) -> Option<T> { |
| 2367 | let length = self.len; |
| 2368 | if length > 0 && index < length - 1 { |
| 2369 | self.swap(index, length - 1); |
| 2370 | } else if index >= length { |
| 2371 | return None; |
| 2372 | } |
| 2373 | self.pop_back() |
| 2374 | } |
| 2375 | |
| 2376 | /// Inserts an element at `index` within the deque, shifting all elements |
| 2377 | /// with indices greater than or equal to `index` towards the back. |
| 2378 | /// |
| 2379 | /// Element at index 0 is the front of the queue. |
| 2380 | /// |
| 2381 | /// # Panics |
| 2382 | /// |
| 2383 | /// Panics if `index` is strictly greater than the deque's length. |
| 2384 | /// |
| 2385 | /// # Examples |
| 2386 | /// |
| 2387 | /// ``` |
| 2388 | /// use std::collections::VecDeque; |
| 2389 | /// |
| 2390 | /// let mut vec_deque = VecDeque::new(); |
| 2391 | /// vec_deque.push_back('a' ); |
| 2392 | /// vec_deque.push_back('b' ); |
| 2393 | /// vec_deque.push_back('c' ); |
| 2394 | /// assert_eq!(vec_deque, &['a' , 'b' , 'c' ]); |
| 2395 | /// |
| 2396 | /// vec_deque.insert(1, 'd' ); |
| 2397 | /// assert_eq!(vec_deque, &['a' , 'd' , 'b' , 'c' ]); |
| 2398 | /// |
| 2399 | /// vec_deque.insert(4, 'e' ); |
| 2400 | /// assert_eq!(vec_deque, &['a' , 'd' , 'b' , 'c' , 'e' ]); |
| 2401 | /// ``` |
| 2402 | #[stable (feature = "deque_extras_15" , since = "1.5.0" )] |
| 2403 | pub fn insert(&mut self, index: usize, value: T) { |
| 2404 | let _ = self.insert_mut(index, value); |
| 2405 | } |
| 2406 | |
| 2407 | /// Inserts an element at `index` within the deque, shifting all elements |
| 2408 | /// with indices greater than or equal to `index` towards the back, and |
| 2409 | /// returning a reference to it. |
| 2410 | /// |
| 2411 | /// Element at index 0 is the front of the queue. |
| 2412 | /// |
| 2413 | /// # Panics |
| 2414 | /// |
| 2415 | /// Panics if `index` is strictly greater than the deque's length. |
| 2416 | /// |
| 2417 | /// # Examples |
| 2418 | /// |
| 2419 | /// ``` |
| 2420 | /// use std::collections::VecDeque; |
| 2421 | /// |
| 2422 | /// let mut vec_deque = VecDeque::from([1, 2, 3]); |
| 2423 | /// |
| 2424 | /// let x = vec_deque.insert_mut(1, 5); |
| 2425 | /// *x += 7; |
| 2426 | /// assert_eq!(vec_deque, &[1, 12, 2, 3]); |
| 2427 | /// ``` |
| 2428 | #[stable (feature = "push_mut" , since = "CURRENT_RUSTC_VERSION" )] |
| 2429 | #[must_use = "if you don't need a reference to the value, use `VecDeque::insert` instead" ] |
| 2430 | pub fn insert_mut(&mut self, index: usize, value: T) -> &mut T { |
| 2431 | assert!(index <= self.len(), "index out of bounds" ); |
| 2432 | |
| 2433 | if self.is_full() { |
| 2434 | self.grow(); |
| 2435 | } |
| 2436 | |
| 2437 | let k = self.len - index; |
| 2438 | if k < index { |
| 2439 | // `index + 1` can't overflow, because if index was usize::MAX, then either the |
| 2440 | // assert would've failed, or the deque would've tried to grow past usize::MAX |
| 2441 | // and panicked. |
| 2442 | unsafe { |
| 2443 | // see `remove()` for explanation why this wrap_copy() call is safe. |
| 2444 | self.wrap_copy(self.to_physical_idx(index), self.to_physical_idx(index + 1), k); |
| 2445 | self.len += 1; |
| 2446 | self.buffer_write(self.to_physical_idx(index), value) |
| 2447 | } |
| 2448 | } else { |
| 2449 | let old_head = self.head; |
| 2450 | self.head = self.wrap_sub(self.head, 1); |
| 2451 | unsafe { |
| 2452 | self.wrap_copy(old_head, self.head, index); |
| 2453 | self.len += 1; |
| 2454 | self.buffer_write(self.to_physical_idx(index), value) |
| 2455 | } |
| 2456 | } |
| 2457 | } |
| 2458 | |
| 2459 | /// Removes and returns the element at `index` from the deque. |
| 2460 | /// Whichever end is closer to the removal point will be moved to make |
| 2461 | /// room, and all the affected elements will be moved to new positions. |
| 2462 | /// Returns `None` if `index` is out of bounds. |
| 2463 | /// |
| 2464 | /// Element at index 0 is the front of the queue. |
| 2465 | /// |
| 2466 | /// # Examples |
| 2467 | /// |
| 2468 | /// ``` |
| 2469 | /// use std::collections::VecDeque; |
| 2470 | /// |
| 2471 | /// let mut buf = VecDeque::new(); |
| 2472 | /// buf.push_back('a' ); |
| 2473 | /// buf.push_back('b' ); |
| 2474 | /// buf.push_back('c' ); |
| 2475 | /// assert_eq!(buf, ['a' , 'b' , 'c' ]); |
| 2476 | /// |
| 2477 | /// assert_eq!(buf.remove(1), Some('b' )); |
| 2478 | /// assert_eq!(buf, ['a' , 'c' ]); |
| 2479 | /// ``` |
| 2480 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 2481 | #[rustc_confusables ("delete" , "take" )] |
| 2482 | pub fn remove(&mut self, index: usize) -> Option<T> { |
| 2483 | if self.len <= index { |
| 2484 | return None; |
| 2485 | } |
| 2486 | |
| 2487 | let wrapped_idx = self.to_physical_idx(index); |
| 2488 | |
| 2489 | let elem = unsafe { Some(self.buffer_read(wrapped_idx)) }; |
| 2490 | |
| 2491 | let k = self.len - index - 1; |
| 2492 | // safety: due to the nature of the if-condition, whichever wrap_copy gets called, |
| 2493 | // its length argument will be at most `self.len / 2`, so there can't be more than |
| 2494 | // one overlapping area. |
| 2495 | if k < index { |
| 2496 | unsafe { self.wrap_copy(self.wrap_add(wrapped_idx, 1), wrapped_idx, k) }; |
| 2497 | self.len -= 1; |
| 2498 | } else { |
| 2499 | let old_head = self.head; |
| 2500 | self.head = self.to_physical_idx(1); |
| 2501 | unsafe { self.wrap_copy(old_head, self.head, index) }; |
| 2502 | self.len -= 1; |
| 2503 | } |
| 2504 | |
| 2505 | elem |
| 2506 | } |
| 2507 | |
| 2508 | /// Splits the deque into two at the given index. |
| 2509 | /// |
| 2510 | /// Returns a newly allocated `VecDeque`. `self` contains elements `[0, at)`, |
| 2511 | /// and the returned deque contains elements `[at, len)`. |
| 2512 | /// |
| 2513 | /// Note that the capacity of `self` does not change. |
| 2514 | /// |
| 2515 | /// Element at index 0 is the front of the queue. |
| 2516 | /// |
| 2517 | /// # Panics |
| 2518 | /// |
| 2519 | /// Panics if `at > len`. |
| 2520 | /// |
| 2521 | /// # Examples |
| 2522 | /// |
| 2523 | /// ``` |
| 2524 | /// use std::collections::VecDeque; |
| 2525 | /// |
| 2526 | /// let mut buf: VecDeque<_> = ['a' , 'b' , 'c' ].into(); |
| 2527 | /// let buf2 = buf.split_off(1); |
| 2528 | /// assert_eq!(buf, ['a' ]); |
| 2529 | /// assert_eq!(buf2, ['b' , 'c' ]); |
| 2530 | /// ``` |
| 2531 | #[inline ] |
| 2532 | #[must_use = "use `.truncate()` if you don't need the other half" ] |
| 2533 | #[stable (feature = "split_off" , since = "1.4.0" )] |
| 2534 | pub fn split_off(&mut self, at: usize) -> Self |
| 2535 | where |
| 2536 | A: Clone, |
| 2537 | { |
| 2538 | let len = self.len; |
| 2539 | assert!(at <= len, "`at` out of bounds" ); |
| 2540 | |
| 2541 | let other_len = len - at; |
| 2542 | let mut other = VecDeque::with_capacity_in(other_len, self.allocator().clone()); |
| 2543 | |
| 2544 | let (first_half, second_half) = self.as_slices(); |
| 2545 | let first_len = first_half.len(); |
| 2546 | let second_len = second_half.len(); |
| 2547 | |
| 2548 | unsafe { |
| 2549 | if at < first_len { |
| 2550 | // `at` lies in the first half. |
| 2551 | let amount_in_first = first_len - at; |
| 2552 | |
| 2553 | ptr::copy_nonoverlapping(first_half.as_ptr().add(at), other.ptr(), amount_in_first); |
| 2554 | |
| 2555 | // just take all of the second half. |
| 2556 | ptr::copy_nonoverlapping( |
| 2557 | second_half.as_ptr(), |
| 2558 | other.ptr().add(amount_in_first), |
| 2559 | second_len, |
| 2560 | ); |
| 2561 | } else { |
| 2562 | // `at` lies in the second half, need to factor in the elements we skipped |
| 2563 | // in the first half. |
| 2564 | let offset = at - first_len; |
| 2565 | let amount_in_second = second_len - offset; |
| 2566 | ptr::copy_nonoverlapping( |
| 2567 | second_half.as_ptr().add(offset), |
| 2568 | other.ptr(), |
| 2569 | amount_in_second, |
| 2570 | ); |
| 2571 | } |
| 2572 | } |
| 2573 | |
| 2574 | // Cleanup where the ends of the buffers are |
| 2575 | self.len = at; |
| 2576 | other.len = other_len; |
| 2577 | |
| 2578 | other |
| 2579 | } |
| 2580 | |
| 2581 | /// Moves all the elements of `other` into `self`, leaving `other` empty. |
| 2582 | /// |
| 2583 | /// # Panics |
| 2584 | /// |
| 2585 | /// Panics if the new number of elements in self overflows a `usize`. |
| 2586 | /// |
| 2587 | /// # Examples |
| 2588 | /// |
| 2589 | /// ``` |
| 2590 | /// use std::collections::VecDeque; |
| 2591 | /// |
| 2592 | /// let mut buf: VecDeque<_> = [1, 2].into(); |
| 2593 | /// let mut buf2: VecDeque<_> = [3, 4].into(); |
| 2594 | /// buf.append(&mut buf2); |
| 2595 | /// assert_eq!(buf, [1, 2, 3, 4]); |
| 2596 | /// assert_eq!(buf2, []); |
| 2597 | /// ``` |
| 2598 | #[inline ] |
| 2599 | #[stable (feature = "append" , since = "1.4.0" )] |
| 2600 | pub fn append(&mut self, other: &mut Self) { |
| 2601 | if T::IS_ZST { |
| 2602 | self.len = self.len.checked_add(other.len).expect("capacity overflow" ); |
| 2603 | other.len = 0; |
| 2604 | other.head = 0; |
| 2605 | return; |
| 2606 | } |
| 2607 | |
| 2608 | self.reserve(other.len); |
| 2609 | unsafe { |
| 2610 | let (left, right) = other.as_slices(); |
| 2611 | self.copy_slice(self.to_physical_idx(self.len), left); |
| 2612 | // no overflow, because self.capacity() >= old_cap + left.len() >= self.len + left.len() |
| 2613 | self.copy_slice(self.to_physical_idx(self.len + left.len()), right); |
| 2614 | } |
| 2615 | // SAFETY: Update pointers after copying to avoid leaving doppelganger |
| 2616 | // in case of panics. |
| 2617 | self.len += other.len; |
| 2618 | // Now that we own its values, forget everything in `other`. |
| 2619 | other.len = 0; |
| 2620 | other.head = 0; |
| 2621 | } |
| 2622 | |
| 2623 | /// Retains only the elements specified by the predicate. |
| 2624 | /// |
| 2625 | /// In other words, remove all elements `e` for which `f(&e)` returns false. |
| 2626 | /// This method operates in place, visiting each element exactly once in the |
| 2627 | /// original order, and preserves the order of the retained elements. |
| 2628 | /// |
| 2629 | /// # Examples |
| 2630 | /// |
| 2631 | /// ``` |
| 2632 | /// use std::collections::VecDeque; |
| 2633 | /// |
| 2634 | /// let mut buf = VecDeque::new(); |
| 2635 | /// buf.extend(1..5); |
| 2636 | /// buf.retain(|&x| x % 2 == 0); |
| 2637 | /// assert_eq!(buf, [2, 4]); |
| 2638 | /// ``` |
| 2639 | /// |
| 2640 | /// Because the elements are visited exactly once in the original order, |
| 2641 | /// external state may be used to decide which elements to keep. |
| 2642 | /// |
| 2643 | /// ``` |
| 2644 | /// use std::collections::VecDeque; |
| 2645 | /// |
| 2646 | /// let mut buf = VecDeque::new(); |
| 2647 | /// buf.extend(1..6); |
| 2648 | /// |
| 2649 | /// let keep = [false, true, true, false, true]; |
| 2650 | /// let mut iter = keep.iter(); |
| 2651 | /// buf.retain(|_| *iter.next().unwrap()); |
| 2652 | /// assert_eq!(buf, [2, 3, 5]); |
| 2653 | /// ``` |
| 2654 | #[stable (feature = "vec_deque_retain" , since = "1.4.0" )] |
| 2655 | pub fn retain<F>(&mut self, mut f: F) |
| 2656 | where |
| 2657 | F: FnMut(&T) -> bool, |
| 2658 | { |
| 2659 | self.retain_mut(|elem| f(elem)); |
| 2660 | } |
| 2661 | |
| 2662 | /// Retains only the elements specified by the predicate. |
| 2663 | /// |
| 2664 | /// In other words, remove all elements `e` for which `f(&mut e)` returns false. |
| 2665 | /// This method operates in place, visiting each element exactly once in the |
| 2666 | /// original order, and preserves the order of the retained elements. |
| 2667 | /// |
| 2668 | /// # Examples |
| 2669 | /// |
| 2670 | /// ``` |
| 2671 | /// use std::collections::VecDeque; |
| 2672 | /// |
| 2673 | /// let mut buf = VecDeque::new(); |
| 2674 | /// buf.extend(1..5); |
| 2675 | /// buf.retain_mut(|x| if *x % 2 == 0 { |
| 2676 | /// *x += 1; |
| 2677 | /// true |
| 2678 | /// } else { |
| 2679 | /// false |
| 2680 | /// }); |
| 2681 | /// assert_eq!(buf, [3, 5]); |
| 2682 | /// ``` |
| 2683 | #[stable (feature = "vec_retain_mut" , since = "1.61.0" )] |
| 2684 | pub fn retain_mut<F>(&mut self, mut f: F) |
| 2685 | where |
| 2686 | F: FnMut(&mut T) -> bool, |
| 2687 | { |
| 2688 | let len = self.len; |
| 2689 | let mut idx = 0; |
| 2690 | let mut cur = 0; |
| 2691 | |
| 2692 | // Stage 1: All values are retained. |
| 2693 | while cur < len { |
| 2694 | if !f(&mut self[cur]) { |
| 2695 | cur += 1; |
| 2696 | break; |
| 2697 | } |
| 2698 | cur += 1; |
| 2699 | idx += 1; |
| 2700 | } |
| 2701 | // Stage 2: Swap retained value into current idx. |
| 2702 | while cur < len { |
| 2703 | if !f(&mut self[cur]) { |
| 2704 | cur += 1; |
| 2705 | continue; |
| 2706 | } |
| 2707 | |
| 2708 | self.swap(idx, cur); |
| 2709 | cur += 1; |
| 2710 | idx += 1; |
| 2711 | } |
| 2712 | // Stage 3: Truncate all values after idx. |
| 2713 | if cur != idx { |
| 2714 | self.truncate(idx); |
| 2715 | } |
| 2716 | } |
| 2717 | |
| 2718 | // Double the buffer size. This method is inline(never), so we expect it to only |
| 2719 | // be called in cold paths. |
| 2720 | // This may panic or abort |
| 2721 | #[inline (never)] |
| 2722 | fn grow(&mut self) { |
| 2723 | // Extend or possibly remove this assertion when valid use-cases for growing the |
| 2724 | // buffer without it being full emerge |
| 2725 | debug_assert!(self.is_full()); |
| 2726 | let old_cap = self.capacity(); |
| 2727 | self.buf.grow_one(); |
| 2728 | unsafe { |
| 2729 | self.handle_capacity_increase(old_cap); |
| 2730 | } |
| 2731 | debug_assert!(!self.is_full()); |
| 2732 | } |
| 2733 | |
| 2734 | /// Modifies the deque in-place so that `len()` is equal to `new_len`, |
| 2735 | /// either by removing excess elements from the back or by appending |
| 2736 | /// elements generated by calling `generator` to the back. |
| 2737 | /// |
| 2738 | /// # Examples |
| 2739 | /// |
| 2740 | /// ``` |
| 2741 | /// use std::collections::VecDeque; |
| 2742 | /// |
| 2743 | /// let mut buf = VecDeque::new(); |
| 2744 | /// buf.push_back(5); |
| 2745 | /// buf.push_back(10); |
| 2746 | /// buf.push_back(15); |
| 2747 | /// assert_eq!(buf, [5, 10, 15]); |
| 2748 | /// |
| 2749 | /// buf.resize_with(5, Default::default); |
| 2750 | /// assert_eq!(buf, [5, 10, 15, 0, 0]); |
| 2751 | /// |
| 2752 | /// buf.resize_with(2, || unreachable!()); |
| 2753 | /// assert_eq!(buf, [5, 10]); |
| 2754 | /// |
| 2755 | /// let mut state = 100; |
| 2756 | /// buf.resize_with(5, || { state += 1; state }); |
| 2757 | /// assert_eq!(buf, [5, 10, 101, 102, 103]); |
| 2758 | /// ``` |
| 2759 | #[stable (feature = "vec_resize_with" , since = "1.33.0" )] |
| 2760 | pub fn resize_with(&mut self, new_len: usize, generator: impl FnMut() -> T) { |
| 2761 | let len = self.len; |
| 2762 | |
| 2763 | if new_len > len { |
| 2764 | self.extend(repeat_with(generator).take(new_len - len)) |
| 2765 | } else { |
| 2766 | self.truncate(new_len); |
| 2767 | } |
| 2768 | } |
| 2769 | |
| 2770 | /// Rearranges the internal storage of this deque so it is one contiguous |
| 2771 | /// slice, which is then returned. |
| 2772 | /// |
| 2773 | /// This method does not allocate and does not change the order of the |
| 2774 | /// inserted elements. As it returns a mutable slice, this can be used to |
| 2775 | /// sort a deque. |
| 2776 | /// |
| 2777 | /// Once the internal storage is contiguous, the [`as_slices`] and |
| 2778 | /// [`as_mut_slices`] methods will return the entire contents of the |
| 2779 | /// deque in a single slice. |
| 2780 | /// |
| 2781 | /// [`as_slices`]: VecDeque::as_slices |
| 2782 | /// [`as_mut_slices`]: VecDeque::as_mut_slices |
| 2783 | /// |
| 2784 | /// # Examples |
| 2785 | /// |
| 2786 | /// Sorting the content of a deque. |
| 2787 | /// |
| 2788 | /// ``` |
| 2789 | /// use std::collections::VecDeque; |
| 2790 | /// |
| 2791 | /// let mut buf = VecDeque::with_capacity(15); |
| 2792 | /// |
| 2793 | /// buf.push_back(2); |
| 2794 | /// buf.push_back(1); |
| 2795 | /// buf.push_front(3); |
| 2796 | /// |
| 2797 | /// // sorting the deque |
| 2798 | /// buf.make_contiguous().sort(); |
| 2799 | /// assert_eq!(buf.as_slices(), (&[1, 2, 3] as &[_], &[] as &[_])); |
| 2800 | /// |
| 2801 | /// // sorting it in reverse order |
| 2802 | /// buf.make_contiguous().sort_by(|a, b| b.cmp(a)); |
| 2803 | /// assert_eq!(buf.as_slices(), (&[3, 2, 1] as &[_], &[] as &[_])); |
| 2804 | /// ``` |
| 2805 | /// |
| 2806 | /// Getting immutable access to the contiguous slice. |
| 2807 | /// |
| 2808 | /// ```rust |
| 2809 | /// use std::collections::VecDeque; |
| 2810 | /// |
| 2811 | /// let mut buf = VecDeque::new(); |
| 2812 | /// |
| 2813 | /// buf.push_back(2); |
| 2814 | /// buf.push_back(1); |
| 2815 | /// buf.push_front(3); |
| 2816 | /// |
| 2817 | /// buf.make_contiguous(); |
| 2818 | /// if let (slice, &[]) = buf.as_slices() { |
| 2819 | /// // we can now be sure that `slice` contains all elements of the deque, |
| 2820 | /// // while still having immutable access to `buf`. |
| 2821 | /// assert_eq!(buf.len(), slice.len()); |
| 2822 | /// assert_eq!(slice, &[3, 2, 1] as &[_]); |
| 2823 | /// } |
| 2824 | /// ``` |
| 2825 | #[stable (feature = "deque_make_contiguous" , since = "1.48.0" )] |
| 2826 | pub fn make_contiguous(&mut self) -> &mut [T] { |
| 2827 | if T::IS_ZST { |
| 2828 | self.head = 0; |
| 2829 | } |
| 2830 | |
| 2831 | if self.is_contiguous() { |
| 2832 | unsafe { return slice::from_raw_parts_mut(self.ptr().add(self.head), self.len) } |
| 2833 | } |
| 2834 | |
| 2835 | let &mut Self { head, len, .. } = self; |
| 2836 | let ptr = self.ptr(); |
| 2837 | let cap = self.capacity(); |
| 2838 | |
| 2839 | let free = cap - len; |
| 2840 | let head_len = cap - head; |
| 2841 | let tail = len - head_len; |
| 2842 | let tail_len = tail; |
| 2843 | |
| 2844 | if free >= head_len { |
| 2845 | // there is enough free space to copy the head in one go, |
| 2846 | // this means that we first shift the tail backwards, and then |
| 2847 | // copy the head to the correct position. |
| 2848 | // |
| 2849 | // from: DEFGH....ABC |
| 2850 | // to: ABCDEFGH.... |
| 2851 | unsafe { |
| 2852 | self.copy(0, head_len, tail_len); |
| 2853 | // ...DEFGH.ABC |
| 2854 | self.copy_nonoverlapping(head, 0, head_len); |
| 2855 | // ABCDEFGH.... |
| 2856 | } |
| 2857 | |
| 2858 | self.head = 0; |
| 2859 | } else if free >= tail_len { |
| 2860 | // there is enough free space to copy the tail in one go, |
| 2861 | // this means that we first shift the head forwards, and then |
| 2862 | // copy the tail to the correct position. |
| 2863 | // |
| 2864 | // from: FGH....ABCDE |
| 2865 | // to: ...ABCDEFGH. |
| 2866 | unsafe { |
| 2867 | self.copy(head, tail, head_len); |
| 2868 | // FGHABCDE.... |
| 2869 | self.copy_nonoverlapping(0, tail + head_len, tail_len); |
| 2870 | // ...ABCDEFGH. |
| 2871 | } |
| 2872 | |
| 2873 | self.head = tail; |
| 2874 | } else { |
| 2875 | // `free` is smaller than both `head_len` and `tail_len`. |
| 2876 | // the general algorithm for this first moves the slices |
| 2877 | // right next to each other and then uses `slice::rotate` |
| 2878 | // to rotate them into place: |
| 2879 | // |
| 2880 | // initially: HIJK..ABCDEFG |
| 2881 | // step 1: ..HIJKABCDEFG |
| 2882 | // step 2: ..ABCDEFGHIJK |
| 2883 | // |
| 2884 | // or: |
| 2885 | // |
| 2886 | // initially: FGHIJK..ABCDE |
| 2887 | // step 1: FGHIJKABCDE.. |
| 2888 | // step 2: ABCDEFGHIJK.. |
| 2889 | |
| 2890 | // pick the shorter of the 2 slices to reduce the amount |
| 2891 | // of memory that needs to be moved around. |
| 2892 | if head_len > tail_len { |
| 2893 | // tail is shorter, so: |
| 2894 | // 1. copy tail forwards |
| 2895 | // 2. rotate used part of the buffer |
| 2896 | // 3. update head to point to the new beginning (which is just `free`) |
| 2897 | |
| 2898 | unsafe { |
| 2899 | // if there is no free space in the buffer, then the slices are already |
| 2900 | // right next to each other and we don't need to move any memory. |
| 2901 | if free != 0 { |
| 2902 | // because we only move the tail forward as much as there's free space |
| 2903 | // behind it, we don't overwrite any elements of the head slice, and |
| 2904 | // the slices end up right next to each other. |
| 2905 | self.copy(0, free, tail_len); |
| 2906 | } |
| 2907 | |
| 2908 | // We just copied the tail right next to the head slice, |
| 2909 | // so all of the elements in the range are initialized |
| 2910 | let slice = &mut *self.buffer_range(free..self.capacity()); |
| 2911 | |
| 2912 | // because the deque wasn't contiguous, we know that `tail_len < self.len == slice.len()`, |
| 2913 | // so this will never panic. |
| 2914 | slice.rotate_left(tail_len); |
| 2915 | |
| 2916 | // the used part of the buffer now is `free..self.capacity()`, so set |
| 2917 | // `head` to the beginning of that range. |
| 2918 | self.head = free; |
| 2919 | } |
| 2920 | } else { |
| 2921 | // head is shorter so: |
| 2922 | // 1. copy head backwards |
| 2923 | // 2. rotate used part of the buffer |
| 2924 | // 3. update head to point to the new beginning (which is the beginning of the buffer) |
| 2925 | |
| 2926 | unsafe { |
| 2927 | // if there is no free space in the buffer, then the slices are already |
| 2928 | // right next to each other and we don't need to move any memory. |
| 2929 | if free != 0 { |
| 2930 | // copy the head slice to lie right behind the tail slice. |
| 2931 | self.copy(self.head, tail_len, head_len); |
| 2932 | } |
| 2933 | |
| 2934 | // because we copied the head slice so that both slices lie right |
| 2935 | // next to each other, all the elements in the range are initialized. |
| 2936 | let slice = &mut *self.buffer_range(0..self.len); |
| 2937 | |
| 2938 | // because the deque wasn't contiguous, we know that `head_len < self.len == slice.len()` |
| 2939 | // so this will never panic. |
| 2940 | slice.rotate_right(head_len); |
| 2941 | |
| 2942 | // the used part of the buffer now is `0..self.len`, so set |
| 2943 | // `head` to the beginning of that range. |
| 2944 | self.head = 0; |
| 2945 | } |
| 2946 | } |
| 2947 | } |
| 2948 | |
| 2949 | unsafe { slice::from_raw_parts_mut(ptr.add(self.head), self.len) } |
| 2950 | } |
| 2951 | |
| 2952 | /// Rotates the double-ended queue `n` places to the left. |
| 2953 | /// |
| 2954 | /// Equivalently, |
| 2955 | /// - Rotates item `n` into the first position. |
| 2956 | /// - Pops the first `n` items and pushes them to the end. |
| 2957 | /// - Rotates `len() - n` places to the right. |
| 2958 | /// |
| 2959 | /// # Panics |
| 2960 | /// |
| 2961 | /// If `n` is greater than `len()`. Note that `n == len()` |
| 2962 | /// does _not_ panic and is a no-op rotation. |
| 2963 | /// |
| 2964 | /// # Complexity |
| 2965 | /// |
| 2966 | /// Takes `*O*(min(n, len() - n))` time and no extra space. |
| 2967 | /// |
| 2968 | /// # Examples |
| 2969 | /// |
| 2970 | /// ``` |
| 2971 | /// use std::collections::VecDeque; |
| 2972 | /// |
| 2973 | /// let mut buf: VecDeque<_> = (0..10).collect(); |
| 2974 | /// |
| 2975 | /// buf.rotate_left(3); |
| 2976 | /// assert_eq!(buf, [3, 4, 5, 6, 7, 8, 9, 0, 1, 2]); |
| 2977 | /// |
| 2978 | /// for i in 1..10 { |
| 2979 | /// assert_eq!(i * 3 % 10, buf[0]); |
| 2980 | /// buf.rotate_left(3); |
| 2981 | /// } |
| 2982 | /// assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]); |
| 2983 | /// ``` |
| 2984 | #[stable (feature = "vecdeque_rotate" , since = "1.36.0" )] |
| 2985 | pub fn rotate_left(&mut self, n: usize) { |
| 2986 | assert!(n <= self.len()); |
| 2987 | let k = self.len - n; |
| 2988 | if n <= k { |
| 2989 | unsafe { self.rotate_left_inner(n) } |
| 2990 | } else { |
| 2991 | unsafe { self.rotate_right_inner(k) } |
| 2992 | } |
| 2993 | } |
| 2994 | |
| 2995 | /// Rotates the double-ended queue `n` places to the right. |
| 2996 | /// |
| 2997 | /// Equivalently, |
| 2998 | /// - Rotates the first item into position `n`. |
| 2999 | /// - Pops the last `n` items and pushes them to the front. |
| 3000 | /// - Rotates `len() - n` places to the left. |
| 3001 | /// |
| 3002 | /// # Panics |
| 3003 | /// |
| 3004 | /// If `n` is greater than `len()`. Note that `n == len()` |
| 3005 | /// does _not_ panic and is a no-op rotation. |
| 3006 | /// |
| 3007 | /// # Complexity |
| 3008 | /// |
| 3009 | /// Takes `*O*(min(n, len() - n))` time and no extra space. |
| 3010 | /// |
| 3011 | /// # Examples |
| 3012 | /// |
| 3013 | /// ``` |
| 3014 | /// use std::collections::VecDeque; |
| 3015 | /// |
| 3016 | /// let mut buf: VecDeque<_> = (0..10).collect(); |
| 3017 | /// |
| 3018 | /// buf.rotate_right(3); |
| 3019 | /// assert_eq!(buf, [7, 8, 9, 0, 1, 2, 3, 4, 5, 6]); |
| 3020 | /// |
| 3021 | /// for i in 1..10 { |
| 3022 | /// assert_eq!(0, buf[i * 3 % 10]); |
| 3023 | /// buf.rotate_right(3); |
| 3024 | /// } |
| 3025 | /// assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]); |
| 3026 | /// ``` |
| 3027 | #[stable (feature = "vecdeque_rotate" , since = "1.36.0" )] |
| 3028 | pub fn rotate_right(&mut self, n: usize) { |
| 3029 | assert!(n <= self.len()); |
| 3030 | let k = self.len - n; |
| 3031 | if n <= k { |
| 3032 | unsafe { self.rotate_right_inner(n) } |
| 3033 | } else { |
| 3034 | unsafe { self.rotate_left_inner(k) } |
| 3035 | } |
| 3036 | } |
| 3037 | |
| 3038 | // SAFETY: the following two methods require that the rotation amount |
| 3039 | // be less than half the length of the deque. |
| 3040 | // |
| 3041 | // `wrap_copy` requires that `min(x, capacity() - x) + copy_len <= capacity()`, |
| 3042 | // but then `min` is never more than half the capacity, regardless of x, |
| 3043 | // so it's sound to call here because we're calling with something |
| 3044 | // less than half the length, which is never above half the capacity. |
| 3045 | |
| 3046 | unsafe fn rotate_left_inner(&mut self, mid: usize) { |
| 3047 | debug_assert!(mid * 2 <= self.len()); |
| 3048 | unsafe { |
| 3049 | self.wrap_copy(self.head, self.to_physical_idx(self.len), mid); |
| 3050 | } |
| 3051 | self.head = self.to_physical_idx(mid); |
| 3052 | } |
| 3053 | |
| 3054 | unsafe fn rotate_right_inner(&mut self, k: usize) { |
| 3055 | debug_assert!(k * 2 <= self.len()); |
| 3056 | self.head = self.wrap_sub(self.head, k); |
| 3057 | unsafe { |
| 3058 | self.wrap_copy(self.to_physical_idx(self.len), self.head, k); |
| 3059 | } |
| 3060 | } |
| 3061 | |
| 3062 | /// Binary searches this `VecDeque` for a given element. |
| 3063 | /// If the `VecDeque` is not sorted, the returned result is unspecified and |
| 3064 | /// meaningless. |
| 3065 | /// |
| 3066 | /// If the value is found then [`Result::Ok`] is returned, containing the |
| 3067 | /// index of the matching element. If there are multiple matches, then any |
| 3068 | /// one of the matches could be returned. If the value is not found then |
| 3069 | /// [`Result::Err`] is returned, containing the index where a matching |
| 3070 | /// element could be inserted while maintaining sorted order. |
| 3071 | /// |
| 3072 | /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`]. |
| 3073 | /// |
| 3074 | /// [`binary_search_by`]: VecDeque::binary_search_by |
| 3075 | /// [`binary_search_by_key`]: VecDeque::binary_search_by_key |
| 3076 | /// [`partition_point`]: VecDeque::partition_point |
| 3077 | /// |
| 3078 | /// # Examples |
| 3079 | /// |
| 3080 | /// Looks up a series of four elements. The first is found, with a |
| 3081 | /// uniquely determined position; the second and third are not |
| 3082 | /// found; the fourth could match any position in `[1, 4]`. |
| 3083 | /// |
| 3084 | /// ``` |
| 3085 | /// use std::collections::VecDeque; |
| 3086 | /// |
| 3087 | /// let deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into(); |
| 3088 | /// |
| 3089 | /// assert_eq!(deque.binary_search(&13), Ok(9)); |
| 3090 | /// assert_eq!(deque.binary_search(&4), Err(7)); |
| 3091 | /// assert_eq!(deque.binary_search(&100), Err(13)); |
| 3092 | /// let r = deque.binary_search(&1); |
| 3093 | /// assert!(matches!(r, Ok(1..=4))); |
| 3094 | /// ``` |
| 3095 | /// |
| 3096 | /// If you want to insert an item to a sorted deque, while maintaining |
| 3097 | /// sort order, consider using [`partition_point`]: |
| 3098 | /// |
| 3099 | /// ``` |
| 3100 | /// use std::collections::VecDeque; |
| 3101 | /// |
| 3102 | /// let mut deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into(); |
| 3103 | /// let num = 42; |
| 3104 | /// let idx = deque.partition_point(|&x| x <= num); |
| 3105 | /// // If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to |
| 3106 | /// // `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` may allow `insert` |
| 3107 | /// // to shift less elements. |
| 3108 | /// deque.insert(idx, num); |
| 3109 | /// assert_eq!(deque, &[0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]); |
| 3110 | /// ``` |
| 3111 | #[stable (feature = "vecdeque_binary_search" , since = "1.54.0" )] |
| 3112 | #[inline ] |
| 3113 | pub fn binary_search(&self, x: &T) -> Result<usize, usize> |
| 3114 | where |
| 3115 | T: Ord, |
| 3116 | { |
| 3117 | self.binary_search_by(|e| e.cmp(x)) |
| 3118 | } |
| 3119 | |
| 3120 | /// Binary searches this `VecDeque` with a comparator function. |
| 3121 | /// |
| 3122 | /// The comparator function should return an order code that indicates |
| 3123 | /// whether its argument is `Less`, `Equal` or `Greater` the desired |
| 3124 | /// target. |
| 3125 | /// If the `VecDeque` is not sorted or if the comparator function does not |
| 3126 | /// implement an order consistent with the sort order of the underlying |
| 3127 | /// `VecDeque`, the returned result is unspecified and meaningless. |
| 3128 | /// |
| 3129 | /// If the value is found then [`Result::Ok`] is returned, containing the |
| 3130 | /// index of the matching element. If there are multiple matches, then any |
| 3131 | /// one of the matches could be returned. If the value is not found then |
| 3132 | /// [`Result::Err`] is returned, containing the index where a matching |
| 3133 | /// element could be inserted while maintaining sorted order. |
| 3134 | /// |
| 3135 | /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`]. |
| 3136 | /// |
| 3137 | /// [`binary_search`]: VecDeque::binary_search |
| 3138 | /// [`binary_search_by_key`]: VecDeque::binary_search_by_key |
| 3139 | /// [`partition_point`]: VecDeque::partition_point |
| 3140 | /// |
| 3141 | /// # Examples |
| 3142 | /// |
| 3143 | /// Looks up a series of four elements. The first is found, with a |
| 3144 | /// uniquely determined position; the second and third are not |
| 3145 | /// found; the fourth could match any position in `[1, 4]`. |
| 3146 | /// |
| 3147 | /// ``` |
| 3148 | /// use std::collections::VecDeque; |
| 3149 | /// |
| 3150 | /// let deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into(); |
| 3151 | /// |
| 3152 | /// assert_eq!(deque.binary_search_by(|x| x.cmp(&13)), Ok(9)); |
| 3153 | /// assert_eq!(deque.binary_search_by(|x| x.cmp(&4)), Err(7)); |
| 3154 | /// assert_eq!(deque.binary_search_by(|x| x.cmp(&100)), Err(13)); |
| 3155 | /// let r = deque.binary_search_by(|x| x.cmp(&1)); |
| 3156 | /// assert!(matches!(r, Ok(1..=4))); |
| 3157 | /// ``` |
| 3158 | #[stable (feature = "vecdeque_binary_search" , since = "1.54.0" )] |
| 3159 | pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize> |
| 3160 | where |
| 3161 | F: FnMut(&'a T) -> Ordering, |
| 3162 | { |
| 3163 | let (front, back) = self.as_slices(); |
| 3164 | let cmp_back = back.first().map(|elem| f(elem)); |
| 3165 | |
| 3166 | if let Some(Ordering::Equal) = cmp_back { |
| 3167 | Ok(front.len()) |
| 3168 | } else if let Some(Ordering::Less) = cmp_back { |
| 3169 | back.binary_search_by(f).map(|idx| idx + front.len()).map_err(|idx| idx + front.len()) |
| 3170 | } else { |
| 3171 | front.binary_search_by(f) |
| 3172 | } |
| 3173 | } |
| 3174 | |
| 3175 | /// Binary searches this `VecDeque` with a key extraction function. |
| 3176 | /// |
| 3177 | /// Assumes that the deque is sorted by the key, for instance with |
| 3178 | /// [`make_contiguous().sort_by_key()`] using the same key extraction function. |
| 3179 | /// If the deque is not sorted by the key, the returned result is |
| 3180 | /// unspecified and meaningless. |
| 3181 | /// |
| 3182 | /// If the value is found then [`Result::Ok`] is returned, containing the |
| 3183 | /// index of the matching element. If there are multiple matches, then any |
| 3184 | /// one of the matches could be returned. If the value is not found then |
| 3185 | /// [`Result::Err`] is returned, containing the index where a matching |
| 3186 | /// element could be inserted while maintaining sorted order. |
| 3187 | /// |
| 3188 | /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`]. |
| 3189 | /// |
| 3190 | /// [`make_contiguous().sort_by_key()`]: VecDeque::make_contiguous |
| 3191 | /// [`binary_search`]: VecDeque::binary_search |
| 3192 | /// [`binary_search_by`]: VecDeque::binary_search_by |
| 3193 | /// [`partition_point`]: VecDeque::partition_point |
| 3194 | /// |
| 3195 | /// # Examples |
| 3196 | /// |
| 3197 | /// Looks up a series of four elements in a slice of pairs sorted by |
| 3198 | /// their second elements. The first is found, with a uniquely |
| 3199 | /// determined position; the second and third are not found; the |
| 3200 | /// fourth could match any position in `[1, 4]`. |
| 3201 | /// |
| 3202 | /// ``` |
| 3203 | /// use std::collections::VecDeque; |
| 3204 | /// |
| 3205 | /// let deque: VecDeque<_> = [(0, 0), (2, 1), (4, 1), (5, 1), |
| 3206 | /// (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), |
| 3207 | /// (1, 21), (2, 34), (4, 55)].into(); |
| 3208 | /// |
| 3209 | /// assert_eq!(deque.binary_search_by_key(&13, |&(a, b)| b), Ok(9)); |
| 3210 | /// assert_eq!(deque.binary_search_by_key(&4, |&(a, b)| b), Err(7)); |
| 3211 | /// assert_eq!(deque.binary_search_by_key(&100, |&(a, b)| b), Err(13)); |
| 3212 | /// let r = deque.binary_search_by_key(&1, |&(a, b)| b); |
| 3213 | /// assert!(matches!(r, Ok(1..=4))); |
| 3214 | /// ``` |
| 3215 | #[stable (feature = "vecdeque_binary_search" , since = "1.54.0" )] |
| 3216 | #[inline ] |
| 3217 | pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize> |
| 3218 | where |
| 3219 | F: FnMut(&'a T) -> B, |
| 3220 | B: Ord, |
| 3221 | { |
| 3222 | self.binary_search_by(|k| f(k).cmp(b)) |
| 3223 | } |
| 3224 | |
| 3225 | /// Returns the index of the partition point according to the given predicate |
| 3226 | /// (the index of the first element of the second partition). |
| 3227 | /// |
| 3228 | /// The deque is assumed to be partitioned according to the given predicate. |
| 3229 | /// This means that all elements for which the predicate returns true are at the start of the deque |
| 3230 | /// and all elements for which the predicate returns false are at the end. |
| 3231 | /// For example, `[7, 15, 3, 5, 4, 12, 6]` is partitioned under the predicate `x % 2 != 0` |
| 3232 | /// (all odd numbers are at the start, all even at the end). |
| 3233 | /// |
| 3234 | /// If the deque is not partitioned, the returned result is unspecified and meaningless, |
| 3235 | /// as this method performs a kind of binary search. |
| 3236 | /// |
| 3237 | /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`]. |
| 3238 | /// |
| 3239 | /// [`binary_search`]: VecDeque::binary_search |
| 3240 | /// [`binary_search_by`]: VecDeque::binary_search_by |
| 3241 | /// [`binary_search_by_key`]: VecDeque::binary_search_by_key |
| 3242 | /// |
| 3243 | /// # Examples |
| 3244 | /// |
| 3245 | /// ``` |
| 3246 | /// use std::collections::VecDeque; |
| 3247 | /// |
| 3248 | /// let deque: VecDeque<_> = [1, 2, 3, 3, 5, 6, 7].into(); |
| 3249 | /// let i = deque.partition_point(|&x| x < 5); |
| 3250 | /// |
| 3251 | /// assert_eq!(i, 4); |
| 3252 | /// assert!(deque.iter().take(i).all(|&x| x < 5)); |
| 3253 | /// assert!(deque.iter().skip(i).all(|&x| !(x < 5))); |
| 3254 | /// ``` |
| 3255 | /// |
| 3256 | /// If you want to insert an item to a sorted deque, while maintaining |
| 3257 | /// sort order: |
| 3258 | /// |
| 3259 | /// ``` |
| 3260 | /// use std::collections::VecDeque; |
| 3261 | /// |
| 3262 | /// let mut deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into(); |
| 3263 | /// let num = 42; |
| 3264 | /// let idx = deque.partition_point(|&x| x < num); |
| 3265 | /// deque.insert(idx, num); |
| 3266 | /// assert_eq!(deque, &[0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]); |
| 3267 | /// ``` |
| 3268 | #[stable (feature = "vecdeque_binary_search" , since = "1.54.0" )] |
| 3269 | pub fn partition_point<P>(&self, mut pred: P) -> usize |
| 3270 | where |
| 3271 | P: FnMut(&T) -> bool, |
| 3272 | { |
| 3273 | let (front, back) = self.as_slices(); |
| 3274 | |
| 3275 | if let Some(true) = back.first().map(|v| pred(v)) { |
| 3276 | back.partition_point(pred) + front.len() |
| 3277 | } else { |
| 3278 | front.partition_point(pred) |
| 3279 | } |
| 3280 | } |
| 3281 | } |
| 3282 | |
| 3283 | impl<T: Clone, A: Allocator> VecDeque<T, A> { |
| 3284 | /// Modifies the deque in-place so that `len()` is equal to new_len, |
| 3285 | /// either by removing excess elements from the back or by appending clones of `value` |
| 3286 | /// to the back. |
| 3287 | /// |
| 3288 | /// # Examples |
| 3289 | /// |
| 3290 | /// ``` |
| 3291 | /// use std::collections::VecDeque; |
| 3292 | /// |
| 3293 | /// let mut buf = VecDeque::new(); |
| 3294 | /// buf.push_back(5); |
| 3295 | /// buf.push_back(10); |
| 3296 | /// buf.push_back(15); |
| 3297 | /// assert_eq!(buf, [5, 10, 15]); |
| 3298 | /// |
| 3299 | /// buf.resize(2, 0); |
| 3300 | /// assert_eq!(buf, [5, 10]); |
| 3301 | /// |
| 3302 | /// buf.resize(5, 20); |
| 3303 | /// assert_eq!(buf, [5, 10, 20, 20, 20]); |
| 3304 | /// ``` |
| 3305 | #[stable (feature = "deque_extras" , since = "1.16.0" )] |
| 3306 | pub fn resize(&mut self, new_len: usize, value: T) { |
| 3307 | if new_len > self.len() { |
| 3308 | let extra = new_len - self.len(); |
| 3309 | self.extend(repeat_n(value, extra)) |
| 3310 | } else { |
| 3311 | self.truncate(new_len); |
| 3312 | } |
| 3313 | } |
| 3314 | |
| 3315 | /// Clones the elements at the range `src` and appends them to the end. |
| 3316 | /// |
| 3317 | /// # Panics |
| 3318 | /// |
| 3319 | /// Panics if the starting index is greater than the end index |
| 3320 | /// or if either index is greater than the length of the vector. |
| 3321 | /// |
| 3322 | /// # Examples |
| 3323 | /// |
| 3324 | /// ``` |
| 3325 | /// #![feature(deque_extend_front)] |
| 3326 | /// use std::collections::VecDeque; |
| 3327 | /// |
| 3328 | /// let mut characters = VecDeque::from(['a' , 'b' , 'c' , 'd' , 'e' ]); |
| 3329 | /// characters.extend_from_within(2..); |
| 3330 | /// assert_eq!(characters, ['a' , 'b' , 'c' , 'd' , 'e' , 'c' , 'd' , 'e' ]); |
| 3331 | /// |
| 3332 | /// let mut numbers = VecDeque::from([0, 1, 2, 3, 4]); |
| 3333 | /// numbers.extend_from_within(..2); |
| 3334 | /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]); |
| 3335 | /// |
| 3336 | /// let mut strings = VecDeque::from([String::from("hello" ), String::from("world" ), String::from("!" )]); |
| 3337 | /// strings.extend_from_within(1..=2); |
| 3338 | /// assert_eq!(strings, ["hello" , "world" , "!" , "world" , "!" ]); |
| 3339 | /// ``` |
| 3340 | #[cfg (not(no_global_oom_handling))] |
| 3341 | #[unstable (feature = "deque_extend_front" , issue = "146975" )] |
| 3342 | pub fn extend_from_within<R>(&mut self, src: R) |
| 3343 | where |
| 3344 | R: RangeBounds<usize>, |
| 3345 | { |
| 3346 | let range = slice::range(src, ..self.len()); |
| 3347 | self.reserve(range.len()); |
| 3348 | |
| 3349 | // SAFETY: |
| 3350 | // - `slice::range` guarantees that the given range is valid for indexing self |
| 3351 | // - at least `range.len()` additional space is available |
| 3352 | unsafe { |
| 3353 | self.spec_extend_from_within(range); |
| 3354 | } |
| 3355 | } |
| 3356 | |
| 3357 | /// Clones the elements at the range `src` and prepends them to the front. |
| 3358 | /// |
| 3359 | /// # Panics |
| 3360 | /// |
| 3361 | /// Panics if the starting index is greater than the end index |
| 3362 | /// or if either index is greater than the length of the vector. |
| 3363 | /// |
| 3364 | /// # Examples |
| 3365 | /// |
| 3366 | /// ``` |
| 3367 | /// #![feature(deque_extend_front)] |
| 3368 | /// use std::collections::VecDeque; |
| 3369 | /// |
| 3370 | /// let mut characters = VecDeque::from(['a' , 'b' , 'c' , 'd' , 'e' ]); |
| 3371 | /// characters.prepend_from_within(2..); |
| 3372 | /// assert_eq!(characters, ['c' , 'd' , 'e' , 'a' , 'b' , 'c' , 'd' , 'e' ]); |
| 3373 | /// |
| 3374 | /// let mut numbers = VecDeque::from([0, 1, 2, 3, 4]); |
| 3375 | /// numbers.prepend_from_within(..2); |
| 3376 | /// assert_eq!(numbers, [0, 1, 0, 1, 2, 3, 4]); |
| 3377 | /// |
| 3378 | /// let mut strings = VecDeque::from([String::from("hello" ), String::from("world" ), String::from("!" )]); |
| 3379 | /// strings.prepend_from_within(1..=2); |
| 3380 | /// assert_eq!(strings, ["world" , "!" , "hello" , "world" , "!" ]); |
| 3381 | /// ``` |
| 3382 | #[cfg (not(no_global_oom_handling))] |
| 3383 | #[unstable (feature = "deque_extend_front" , issue = "146975" )] |
| 3384 | pub fn prepend_from_within<R>(&mut self, src: R) |
| 3385 | where |
| 3386 | R: RangeBounds<usize>, |
| 3387 | { |
| 3388 | let range = slice::range(src, ..self.len()); |
| 3389 | self.reserve(range.len()); |
| 3390 | |
| 3391 | // SAFETY: |
| 3392 | // - `slice::range` guarantees that the given range is valid for indexing self |
| 3393 | // - at least `range.len()` additional space is available |
| 3394 | unsafe { |
| 3395 | self.spec_prepend_from_within(range); |
| 3396 | } |
| 3397 | } |
| 3398 | } |
| 3399 | |
| 3400 | /// Associated functions have the following preconditions: |
| 3401 | /// |
| 3402 | /// - `src` needs to be a valid range: `src.start <= src.end <= self.len()`. |
| 3403 | /// - The buffer must have enough spare capacity: `self.capacity() - self.len() >= src.len()`. |
| 3404 | #[cfg (not(no_global_oom_handling))] |
| 3405 | trait SpecExtendFromWithin { |
| 3406 | unsafe fn spec_extend_from_within(&mut self, src: Range<usize>); |
| 3407 | |
| 3408 | unsafe fn spec_prepend_from_within(&mut self, src: Range<usize>); |
| 3409 | } |
| 3410 | |
| 3411 | #[cfg (not(no_global_oom_handling))] |
| 3412 | impl<T: Clone, A: Allocator> SpecExtendFromWithin for VecDeque<T, A> { |
| 3413 | default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) { |
| 3414 | let dst = self.len(); |
| 3415 | let count = src.end - src.start; |
| 3416 | let src = src.start; |
| 3417 | |
| 3418 | unsafe { |
| 3419 | // SAFETY: |
| 3420 | // - Ranges do not overlap: src entirely spans initialized values, dst entirely spans uninitialized values. |
| 3421 | // - Ranges are in bounds: guaranteed by the caller. |
| 3422 | let ranges = self.nonoverlapping_ranges(src, dst, count, self.head); |
| 3423 | |
| 3424 | // `len` is updated after every clone to prevent leaking and |
| 3425 | // leave the deque in the right state when a clone implementation panics |
| 3426 | |
| 3427 | for (src, dst, count) in ranges { |
| 3428 | for offset in 0..count { |
| 3429 | dst.add(offset).write((*src.add(offset)).clone()); |
| 3430 | self.len += 1; |
| 3431 | } |
| 3432 | } |
| 3433 | } |
| 3434 | } |
| 3435 | |
| 3436 | default unsafe fn spec_prepend_from_within(&mut self, src: Range<usize>) { |
| 3437 | let dst = 0; |
| 3438 | let count = src.end - src.start; |
| 3439 | let src = src.start + count; |
| 3440 | |
| 3441 | let new_head = self.wrap_sub(self.head, count); |
| 3442 | let cap = self.capacity(); |
| 3443 | |
| 3444 | unsafe { |
| 3445 | // SAFETY: |
| 3446 | // - Ranges do not overlap: src entirely spans initialized values, dst entirely spans uninitialized values. |
| 3447 | // - Ranges are in bounds: guaranteed by the caller. |
| 3448 | let ranges = self.nonoverlapping_ranges(src, dst, count, new_head); |
| 3449 | |
| 3450 | // Cloning is done in reverse because we prepend to the front of the deque, |
| 3451 | // we can't get holes in the *logical* buffer. |
| 3452 | // `head` and `len` are updated after every clone to prevent leaking and |
| 3453 | // leave the deque in the right state when a clone implementation panics |
| 3454 | |
| 3455 | // Clone the first range |
| 3456 | let (src, dst, count) = ranges[1]; |
| 3457 | for offset in (0..count).rev() { |
| 3458 | dst.add(offset).write((*src.add(offset)).clone()); |
| 3459 | self.head -= 1; |
| 3460 | self.len += 1; |
| 3461 | } |
| 3462 | |
| 3463 | // Clone the second range |
| 3464 | let (src, dst, count) = ranges[0]; |
| 3465 | let mut iter = (0..count).rev(); |
| 3466 | if let Some(offset) = iter.next() { |
| 3467 | dst.add(offset).write((*src.add(offset)).clone()); |
| 3468 | // After the first clone of the second range, wrap `head` around |
| 3469 | if self.head == 0 { |
| 3470 | self.head = cap; |
| 3471 | } |
| 3472 | self.head -= 1; |
| 3473 | self.len += 1; |
| 3474 | |
| 3475 | // Continue like normal |
| 3476 | for offset in iter { |
| 3477 | dst.add(offset).write((*src.add(offset)).clone()); |
| 3478 | self.head -= 1; |
| 3479 | self.len += 1; |
| 3480 | } |
| 3481 | } |
| 3482 | } |
| 3483 | } |
| 3484 | } |
| 3485 | |
| 3486 | #[cfg (not(no_global_oom_handling))] |
| 3487 | impl<T: TrivialClone, A: Allocator> SpecExtendFromWithin for VecDeque<T, A> { |
| 3488 | unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) { |
| 3489 | let dst = self.len(); |
| 3490 | let count = src.end - src.start; |
| 3491 | let src = src.start; |
| 3492 | |
| 3493 | unsafe { |
| 3494 | // SAFETY: |
| 3495 | // - Ranges do not overlap: src entirely spans initialized values, dst entirely spans uninitialized values. |
| 3496 | // - Ranges are in bounds: guaranteed by the caller. |
| 3497 | let ranges = self.nonoverlapping_ranges(src, dst, count, self.head); |
| 3498 | for (src, dst, count) in ranges { |
| 3499 | ptr::copy_nonoverlapping(src, dst, count); |
| 3500 | } |
| 3501 | } |
| 3502 | |
| 3503 | // SAFETY: |
| 3504 | // - The elements were just initialized by `copy_nonoverlapping` |
| 3505 | self.len += count; |
| 3506 | } |
| 3507 | |
| 3508 | unsafe fn spec_prepend_from_within(&mut self, src: Range<usize>) { |
| 3509 | let dst = 0; |
| 3510 | let count = src.end - src.start; |
| 3511 | let src = src.start + count; |
| 3512 | |
| 3513 | let new_head = self.wrap_sub(self.head, count); |
| 3514 | |
| 3515 | unsafe { |
| 3516 | // SAFETY: |
| 3517 | // - Ranges do not overlap: src entirely spans initialized values, dst entirely spans uninitialized values. |
| 3518 | // - Ranges are in bounds: guaranteed by the caller. |
| 3519 | let ranges = self.nonoverlapping_ranges(src, dst, count, new_head); |
| 3520 | for (src, dst, count) in ranges { |
| 3521 | ptr::copy_nonoverlapping(src, dst, count); |
| 3522 | } |
| 3523 | } |
| 3524 | |
| 3525 | // SAFETY: |
| 3526 | // - The elements were just initialized by `copy_nonoverlapping` |
| 3527 | self.head = new_head; |
| 3528 | self.len += count; |
| 3529 | } |
| 3530 | } |
| 3531 | |
| 3532 | /// Returns the index in the underlying buffer for a given logical element index. |
| 3533 | #[inline ] |
| 3534 | fn wrap_index(logical_index: usize, capacity: usize) -> usize { |
| 3535 | debug_assert!( |
| 3536 | (logical_index == 0 && capacity == 0) |
| 3537 | || logical_index < capacity |
| 3538 | || (logical_index - capacity) < capacity |
| 3539 | ); |
| 3540 | if logical_index >= capacity { logical_index - capacity } else { logical_index } |
| 3541 | } |
| 3542 | |
| 3543 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3544 | impl<T: PartialEq, A: Allocator> PartialEq for VecDeque<T, A> { |
| 3545 | fn eq(&self, other: &Self) -> bool { |
| 3546 | if self.len != other.len() { |
| 3547 | return false; |
| 3548 | } |
| 3549 | let (sa, sb) = self.as_slices(); |
| 3550 | let (oa, ob) = other.as_slices(); |
| 3551 | if sa.len() == oa.len() { |
| 3552 | sa == oa && sb == ob |
| 3553 | } else if sa.len() < oa.len() { |
| 3554 | // Always divisible in three sections, for example: |
| 3555 | // self: [a b c|d e f] |
| 3556 | // other: [0 1 2 3|4 5] |
| 3557 | // front = 3, mid = 1, |
| 3558 | // [a b c] == [0 1 2] && [d] == [3] && [e f] == [4 5] |
| 3559 | let front = sa.len(); |
| 3560 | let mid = oa.len() - front; |
| 3561 | |
| 3562 | let (oa_front, oa_mid) = oa.split_at(front); |
| 3563 | let (sb_mid, sb_back) = sb.split_at(mid); |
| 3564 | debug_assert_eq!(sa.len(), oa_front.len()); |
| 3565 | debug_assert_eq!(sb_mid.len(), oa_mid.len()); |
| 3566 | debug_assert_eq!(sb_back.len(), ob.len()); |
| 3567 | sa == oa_front && sb_mid == oa_mid && sb_back == ob |
| 3568 | } else { |
| 3569 | let front = oa.len(); |
| 3570 | let mid = sa.len() - front; |
| 3571 | |
| 3572 | let (sa_front, sa_mid) = sa.split_at(front); |
| 3573 | let (ob_mid, ob_back) = ob.split_at(mid); |
| 3574 | debug_assert_eq!(sa_front.len(), oa.len()); |
| 3575 | debug_assert_eq!(sa_mid.len(), ob_mid.len()); |
| 3576 | debug_assert_eq!(sb.len(), ob_back.len()); |
| 3577 | sa_front == oa && sa_mid == ob_mid && sb == ob_back |
| 3578 | } |
| 3579 | } |
| 3580 | } |
| 3581 | |
| 3582 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3583 | impl<T: Eq, A: Allocator> Eq for VecDeque<T, A> {} |
| 3584 | |
| 3585 | __impl_slice_eq1! { [] VecDeque<T, A>, Vec<U, A>, } |
| 3586 | __impl_slice_eq1! { [] VecDeque<T, A>, &[U], } |
| 3587 | __impl_slice_eq1! { [] VecDeque<T, A>, &mut [U], } |
| 3588 | __impl_slice_eq1! { [const N: usize] VecDeque<T, A>, [U; N], } |
| 3589 | __impl_slice_eq1! { [const N: usize] VecDeque<T, A>, &[U; N], } |
| 3590 | __impl_slice_eq1! { [const N: usize] VecDeque<T, A>, &mut [U; N], } |
| 3591 | |
| 3592 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3593 | impl<T: PartialOrd, A: Allocator> PartialOrd for VecDeque<T, A> { |
| 3594 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
| 3595 | self.iter().partial_cmp(other.iter()) |
| 3596 | } |
| 3597 | } |
| 3598 | |
| 3599 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3600 | impl<T: Ord, A: Allocator> Ord for VecDeque<T, A> { |
| 3601 | #[inline ] |
| 3602 | fn cmp(&self, other: &Self) -> Ordering { |
| 3603 | self.iter().cmp(other.iter()) |
| 3604 | } |
| 3605 | } |
| 3606 | |
| 3607 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3608 | impl<T: Hash, A: Allocator> Hash for VecDeque<T, A> { |
| 3609 | fn hash<H: Hasher>(&self, state: &mut H) { |
| 3610 | state.write_length_prefix(self.len); |
| 3611 | // It's not possible to use Hash::hash_slice on slices |
| 3612 | // returned by as_slices method as their length can vary |
| 3613 | // in otherwise identical deques. |
| 3614 | // |
| 3615 | // Hasher only guarantees equivalence for the exact same |
| 3616 | // set of calls to its methods. |
| 3617 | self.iter().for_each(|elem| elem.hash(state)); |
| 3618 | } |
| 3619 | } |
| 3620 | |
| 3621 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3622 | impl<T, A: Allocator> Index<usize> for VecDeque<T, A> { |
| 3623 | type Output = T; |
| 3624 | |
| 3625 | #[inline ] |
| 3626 | fn index(&self, index: usize) -> &T { |
| 3627 | self.get(index).expect("Out of bounds access" ) |
| 3628 | } |
| 3629 | } |
| 3630 | |
| 3631 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3632 | impl<T, A: Allocator> IndexMut<usize> for VecDeque<T, A> { |
| 3633 | #[inline ] |
| 3634 | fn index_mut(&mut self, index: usize) -> &mut T { |
| 3635 | self.get_mut(index).expect("Out of bounds access" ) |
| 3636 | } |
| 3637 | } |
| 3638 | |
| 3639 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3640 | impl<T> FromIterator<T> for VecDeque<T> { |
| 3641 | fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> VecDeque<T> { |
| 3642 | SpecFromIter::spec_from_iter(iter.into_iter()) |
| 3643 | } |
| 3644 | } |
| 3645 | |
| 3646 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3647 | impl<T, A: Allocator> IntoIterator for VecDeque<T, A> { |
| 3648 | type Item = T; |
| 3649 | type IntoIter = IntoIter<T, A>; |
| 3650 | |
| 3651 | /// Consumes the deque into a front-to-back iterator yielding elements by |
| 3652 | /// value. |
| 3653 | fn into_iter(self) -> IntoIter<T, A> { |
| 3654 | IntoIter::new(self) |
| 3655 | } |
| 3656 | } |
| 3657 | |
| 3658 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3659 | impl<'a, T, A: Allocator> IntoIterator for &'a VecDeque<T, A> { |
| 3660 | type Item = &'a T; |
| 3661 | type IntoIter = Iter<'a, T>; |
| 3662 | |
| 3663 | fn into_iter(self) -> Iter<'a, T> { |
| 3664 | self.iter() |
| 3665 | } |
| 3666 | } |
| 3667 | |
| 3668 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3669 | impl<'a, T, A: Allocator> IntoIterator for &'a mut VecDeque<T, A> { |
| 3670 | type Item = &'a mut T; |
| 3671 | type IntoIter = IterMut<'a, T>; |
| 3672 | |
| 3673 | fn into_iter(self) -> IterMut<'a, T> { |
| 3674 | self.iter_mut() |
| 3675 | } |
| 3676 | } |
| 3677 | |
| 3678 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3679 | impl<T, A: Allocator> Extend<T> for VecDeque<T, A> { |
| 3680 | fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { |
| 3681 | <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter()); |
| 3682 | } |
| 3683 | |
| 3684 | #[inline ] |
| 3685 | fn extend_one(&mut self, elem: T) { |
| 3686 | self.push_back(elem); |
| 3687 | } |
| 3688 | |
| 3689 | #[inline ] |
| 3690 | fn extend_reserve(&mut self, additional: usize) { |
| 3691 | self.reserve(additional); |
| 3692 | } |
| 3693 | |
| 3694 | #[inline ] |
| 3695 | unsafe fn extend_one_unchecked(&mut self, item: T) { |
| 3696 | // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly. |
| 3697 | unsafe { |
| 3698 | self.push_unchecked(element:item); |
| 3699 | } |
| 3700 | } |
| 3701 | } |
| 3702 | |
| 3703 | #[stable (feature = "extend_ref" , since = "1.2.0" )] |
| 3704 | impl<'a, T: 'a + Copy, A: Allocator> Extend<&'a T> for VecDeque<T, A> { |
| 3705 | fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { |
| 3706 | self.spec_extend(iter.into_iter()); |
| 3707 | } |
| 3708 | |
| 3709 | #[inline ] |
| 3710 | fn extend_one(&mut self, &elem: T: &'a T) { |
| 3711 | self.push_back(elem); |
| 3712 | } |
| 3713 | |
| 3714 | #[inline ] |
| 3715 | fn extend_reserve(&mut self, additional: usize) { |
| 3716 | self.reserve(additional); |
| 3717 | } |
| 3718 | |
| 3719 | #[inline ] |
| 3720 | unsafe fn extend_one_unchecked(&mut self, &item: T: &'a T) { |
| 3721 | // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly. |
| 3722 | unsafe { |
| 3723 | self.push_unchecked(element:item); |
| 3724 | } |
| 3725 | } |
| 3726 | } |
| 3727 | |
| 3728 | #[stable (feature = "rust1" , since = "1.0.0" )] |
| 3729 | impl<T: fmt::Debug, A: Allocator> fmt::Debug for VecDeque<T, A> { |
| 3730 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 3731 | f.debug_list().entries(self.iter()).finish() |
| 3732 | } |
| 3733 | } |
| 3734 | |
| 3735 | #[stable (feature = "vecdeque_vec_conversions" , since = "1.10.0" )] |
| 3736 | impl<T, A: Allocator> From<Vec<T, A>> for VecDeque<T, A> { |
| 3737 | /// Turn a [`Vec<T>`] into a [`VecDeque<T>`]. |
| 3738 | /// |
| 3739 | /// [`Vec<T>`]: crate::vec::Vec |
| 3740 | /// [`VecDeque<T>`]: crate::collections::VecDeque |
| 3741 | /// |
| 3742 | /// This conversion is guaranteed to run in *O*(1) time |
| 3743 | /// and to not re-allocate the `Vec`'s buffer or allocate |
| 3744 | /// any additional memory. |
| 3745 | #[inline ] |
| 3746 | fn from(other: Vec<T, A>) -> Self { |
| 3747 | let (ptr: *mut T, len: usize, cap: usize, alloc: A) = other.into_raw_parts_with_alloc(); |
| 3748 | Self { head: 0, len, buf: unsafe { RawVec::from_raw_parts_in(ptr, capacity:cap, alloc) } } |
| 3749 | } |
| 3750 | } |
| 3751 | |
| 3752 | #[stable (feature = "vecdeque_vec_conversions" , since = "1.10.0" )] |
| 3753 | impl<T, A: Allocator> From<VecDeque<T, A>> for Vec<T, A> { |
| 3754 | /// Turn a [`VecDeque<T>`] into a [`Vec<T>`]. |
| 3755 | /// |
| 3756 | /// [`Vec<T>`]: crate::vec::Vec |
| 3757 | /// [`VecDeque<T>`]: crate::collections::VecDeque |
| 3758 | /// |
| 3759 | /// This never needs to re-allocate, but does need to do *O*(*n*) data movement if |
| 3760 | /// the circular buffer doesn't happen to be at the beginning of the allocation. |
| 3761 | /// |
| 3762 | /// # Examples |
| 3763 | /// |
| 3764 | /// ``` |
| 3765 | /// use std::collections::VecDeque; |
| 3766 | /// |
| 3767 | /// // This one is *O*(1). |
| 3768 | /// let deque: VecDeque<_> = (1..5).collect(); |
| 3769 | /// let ptr = deque.as_slices().0.as_ptr(); |
| 3770 | /// let vec = Vec::from(deque); |
| 3771 | /// assert_eq!(vec, [1, 2, 3, 4]); |
| 3772 | /// assert_eq!(vec.as_ptr(), ptr); |
| 3773 | /// |
| 3774 | /// // This one needs data rearranging. |
| 3775 | /// let mut deque: VecDeque<_> = (1..5).collect(); |
| 3776 | /// deque.push_front(9); |
| 3777 | /// deque.push_front(8); |
| 3778 | /// let ptr = deque.as_slices().1.as_ptr(); |
| 3779 | /// let vec = Vec::from(deque); |
| 3780 | /// assert_eq!(vec, [8, 9, 1, 2, 3, 4]); |
| 3781 | /// assert_eq!(vec.as_ptr(), ptr); |
| 3782 | /// ``` |
| 3783 | fn from(mut other: VecDeque<T, A>) -> Self { |
| 3784 | other.make_contiguous(); |
| 3785 | |
| 3786 | unsafe { |
| 3787 | let other = ManuallyDrop::new(other); |
| 3788 | let buf = other.buf.ptr(); |
| 3789 | let len = other.len(); |
| 3790 | let cap = other.capacity(); |
| 3791 | let alloc = ptr::read(other.allocator()); |
| 3792 | |
| 3793 | if other.head != 0 { |
| 3794 | ptr::copy(buf.add(other.head), buf, len); |
| 3795 | } |
| 3796 | Vec::from_raw_parts_in(buf, len, cap, alloc) |
| 3797 | } |
| 3798 | } |
| 3799 | } |
| 3800 | |
| 3801 | #[stable (feature = "std_collections_from_array" , since = "1.56.0" )] |
| 3802 | impl<T, const N: usize> From<[T; N]> for VecDeque<T> { |
| 3803 | /// Converts a `[T; N]` into a `VecDeque<T>`. |
| 3804 | /// |
| 3805 | /// ``` |
| 3806 | /// use std::collections::VecDeque; |
| 3807 | /// |
| 3808 | /// let deq1 = VecDeque::from([1, 2, 3, 4]); |
| 3809 | /// let deq2: VecDeque<_> = [1, 2, 3, 4].into(); |
| 3810 | /// assert_eq!(deq1, deq2); |
| 3811 | /// ``` |
| 3812 | fn from(arr: [T; N]) -> Self { |
| 3813 | let mut deq: VecDeque = VecDeque::with_capacity(N); |
| 3814 | let arr = ManuallyDrop::new(arr); |
| 3815 | if !<T>::IS_ZST { |
| 3816 | // SAFETY: VecDeque::with_capacity ensures that there is enough capacity. |
| 3817 | unsafe { |
| 3818 | ptr::copy_nonoverlapping(arr.as_ptr(), deq.ptr(), N); |
| 3819 | } |
| 3820 | } |
| 3821 | deq.head = 0; |
| 3822 | deq.len = N; |
| 3823 | deq |
| 3824 | } |
| 3825 | } |
| 3826 | |