| 1 | use core::iter::{Copied, Rev, TrustedLen}; |
| 2 | use core::slice; |
| 3 | |
| 4 | use super::{Drain, VecDeque}; |
| 5 | use crate::alloc::Allocator; |
| 6 | #[cfg (not(test))] |
| 7 | use crate::vec; |
| 8 | |
| 9 | // Specialization trait used for VecDeque::extend |
| 10 | pub(super) trait SpecExtend<T, I> { |
| 11 | fn spec_extend(&mut self, iter: I); |
| 12 | } |
| 13 | |
| 14 | impl<T, I, A: Allocator> SpecExtend<T, I> for VecDeque<T, A> |
| 15 | where |
| 16 | I: Iterator<Item = T>, |
| 17 | { |
| 18 | default fn spec_extend(&mut self, mut iter: I) { |
| 19 | // This function should be the moral equivalent of: |
| 20 | // |
| 21 | // for item in iter { |
| 22 | // self.push_back(item); |
| 23 | // } |
| 24 | |
| 25 | while let Some(element) = iter.next() { |
| 26 | let (lower, _) = iter.size_hint(); |
| 27 | self.reserve(lower.saturating_add(1)); |
| 28 | |
| 29 | // SAFETY: We just reserved space for at least one element. |
| 30 | unsafe { self.push_unchecked(element) }; |
| 31 | |
| 32 | // Inner loop to avoid repeatedly calling `reserve`. |
| 33 | while self.len < self.capacity() { |
| 34 | let Some(element) = iter.next() else { |
| 35 | return; |
| 36 | }; |
| 37 | // SAFETY: The loop condition guarantees that `self.len() < self.capacity()`. |
| 38 | unsafe { self.push_unchecked(element) }; |
| 39 | } |
| 40 | } |
| 41 | } |
| 42 | } |
| 43 | |
| 44 | impl<T, I, A: Allocator> SpecExtend<T, I> for VecDeque<T, A> |
| 45 | where |
| 46 | I: TrustedLen<Item = T>, |
| 47 | { |
| 48 | default fn spec_extend(&mut self, iter: I) { |
| 49 | // This is the case for a TrustedLen iterator. |
| 50 | let (low, high) = iter.size_hint(); |
| 51 | if let Some(additional) = high { |
| 52 | debug_assert_eq!( |
| 53 | low, |
| 54 | additional, |
| 55 | "TrustedLen iterator's size hint is not exact: {:?}" , |
| 56 | (low, high) |
| 57 | ); |
| 58 | self.reserve(additional); |
| 59 | |
| 60 | let written = unsafe { |
| 61 | self.write_iter_wrapping(self.to_physical_idx(self.len), iter, additional) |
| 62 | }; |
| 63 | |
| 64 | debug_assert_eq!( |
| 65 | additional, written, |
| 66 | "The number of items written to VecDeque doesn't match the TrustedLen size hint" |
| 67 | ); |
| 68 | } else { |
| 69 | // Per TrustedLen contract a `None` upper bound means that the iterator length |
| 70 | // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway. |
| 71 | // Since the other branch already panics eagerly (via `reserve()`) we do the same here. |
| 72 | // This avoids additional codegen for a fallback code path which would eventually |
| 73 | // panic anyway. |
| 74 | panic!("capacity overflow" ); |
| 75 | } |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | #[cfg (not(test))] |
| 80 | impl<T, A1: Allocator, A2: Allocator> SpecExtend<T, vec::IntoIter<T, A2>> for VecDeque<T, A1> { |
| 81 | fn spec_extend(&mut self, mut iterator: vec::IntoIter<T, A2>) { |
| 82 | let slice: &[T] = iterator.as_slice(); |
| 83 | self.reserve(additional:slice.len()); |
| 84 | |
| 85 | unsafe { |
| 86 | self.copy_slice(self.to_physical_idx(self.len), src:slice); |
| 87 | self.len += slice.len(); |
| 88 | } |
| 89 | iterator.forget_remaining_elements(); |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | impl<'a, T: 'a, I, A: Allocator> SpecExtend<&'a T, I> for VecDeque<T, A> |
| 94 | where |
| 95 | I: Iterator<Item = &'a T>, |
| 96 | T: Copy, |
| 97 | { |
| 98 | default fn spec_extend(&mut self, iterator: I) { |
| 99 | self.spec_extend(iter:iterator.copied()) |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | impl<'a, T: 'a, A: Allocator> SpecExtend<&'a T, slice::Iter<'a, T>> for VecDeque<T, A> |
| 104 | where |
| 105 | T: Copy, |
| 106 | { |
| 107 | fn spec_extend(&mut self, iterator: slice::Iter<'a, T>) { |
| 108 | let slice: &[T] = iterator.as_slice(); |
| 109 | self.reserve(additional:slice.len()); |
| 110 | |
| 111 | unsafe { |
| 112 | self.copy_slice(self.to_physical_idx(self.len), src:slice); |
| 113 | self.len += slice.len(); |
| 114 | } |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | // Specialization trait used for VecDeque::extend_front |
| 119 | pub(super) trait SpecExtendFront<T, I> { |
| 120 | #[track_caller ] |
| 121 | fn spec_extend_front(&mut self, iter: I); |
| 122 | } |
| 123 | |
| 124 | impl<T, I, A: Allocator> SpecExtendFront<T, I> for VecDeque<T, A> |
| 125 | where |
| 126 | I: Iterator<Item = T>, |
| 127 | { |
| 128 | #[track_caller ] |
| 129 | default fn spec_extend_front(&mut self, mut iter: I) { |
| 130 | // This function should be the moral equivalent of: |
| 131 | // |
| 132 | // for item in iter { |
| 133 | // self.push_front(item); |
| 134 | // } |
| 135 | |
| 136 | while let Some(element) = iter.next() { |
| 137 | let (lower, _) = iter.size_hint(); |
| 138 | self.reserve(lower.saturating_add(1)); |
| 139 | |
| 140 | // SAFETY: We just reserved space for at least one element. |
| 141 | unsafe { self.push_front_unchecked(element) }; |
| 142 | |
| 143 | // Inner loop to avoid repeatedly calling `reserve`. |
| 144 | while self.len < self.capacity() { |
| 145 | let Some(element) = iter.next() else { |
| 146 | return; |
| 147 | }; |
| 148 | // SAFETY: The loop condition guarantees that `self.len() < self.capacity()`. |
| 149 | unsafe { self.push_front_unchecked(element) }; |
| 150 | } |
| 151 | } |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | #[cfg (not(test))] |
| 156 | impl<T, A1: Allocator, A2: Allocator> SpecExtendFront<T, vec::IntoIter<T, A2>> for VecDeque<T, A1> { |
| 157 | #[track_caller ] |
| 158 | fn spec_extend_front(&mut self, mut iterator: vec::IntoIter<T, A2>) { |
| 159 | let slice: &[T] = iterator.as_slice(); |
| 160 | self.reserve(additional:slice.len()); |
| 161 | // SAFETY: `slice.len()` space was just reserved and elements in the slice are forgotten after this call |
| 162 | unsafe { prepend_reversed(self, slice) }; |
| 163 | iterator.forget_remaining_elements(); |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | #[cfg (not(test))] |
| 168 | impl<T, A1: Allocator, A2: Allocator> SpecExtendFront<T, Rev<vec::IntoIter<T, A2>>> |
| 169 | for VecDeque<T, A1> |
| 170 | { |
| 171 | #[track_caller ] |
| 172 | fn spec_extend_front(&mut self, iterator: Rev<vec::IntoIter<T, A2>>) { |
| 173 | let mut iterator = iterator.into_inner(); |
| 174 | let slice: &[T] = iterator.as_slice(); |
| 175 | self.reserve(additional:slice.len()); |
| 176 | // SAFETY: `slice.len()` space was just reserved and elements in the slice are forgotten after this call |
| 177 | unsafe { prepend(self, slice) }; |
| 178 | iterator.forget_remaining_elements(); |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | impl<'a, T, A: Allocator> SpecExtendFront<T, Copied<slice::Iter<'a, T>>> for VecDeque<T, A> |
| 183 | where |
| 184 | Copied<slice::Iter<'a, T>>: Iterator<Item = T>, |
| 185 | { |
| 186 | #[track_caller ] |
| 187 | fn spec_extend_front(&mut self, iter: Copied<slice::Iter<'a, T>>) { |
| 188 | let slice: &[T] = iter.into_inner().as_slice(); |
| 189 | self.reserve(additional:slice.len()); |
| 190 | // SAFETY: `slice.len()` space was just reserved and T is Copy because Copied<slice::Iter<'a, T>> is Iterator |
| 191 | unsafe { prepend_reversed(self, slice) }; |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | impl<'a, T, A: Allocator> SpecExtendFront<T, Rev<Copied<slice::Iter<'a, T>>>> for VecDeque<T, A> |
| 196 | where |
| 197 | Rev<Copied<slice::Iter<'a, T>>>: Iterator<Item = T>, |
| 198 | { |
| 199 | #[track_caller ] |
| 200 | fn spec_extend_front(&mut self, iter: Rev<Copied<slice::Iter<'a, T>>>) { |
| 201 | let slice: &[T] = iter.into_inner().into_inner().as_slice(); |
| 202 | self.reserve(additional:slice.len()); |
| 203 | // SAFETY: `slice.len()` space was just reserved and T is Copy because Rev<Copied<slice::Iter<'a, T>>> is Iterator |
| 204 | unsafe { prepend(self, slice) }; |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | impl<'a, T, A1: Allocator, A2: Allocator> SpecExtendFront<T, Drain<'a, T, A2>> for VecDeque<T, A1> { |
| 209 | #[track_caller ] |
| 210 | fn spec_extend_front(&mut self, mut iter: Drain<'a, T, A2>) { |
| 211 | if iter.remaining == 0 { |
| 212 | return; |
| 213 | } |
| 214 | |
| 215 | self.reserve(additional:iter.remaining); |
| 216 | unsafe { |
| 217 | // SAFETY: iter.remaining != 0. |
| 218 | let (left: *mut [T], right: *mut [T]) = iter.as_slices(); |
| 219 | // SAFETY: |
| 220 | // - `iter.remaining` space was reserved, `iter.remaining == left.len() + right.len()`. |
| 221 | // - The elements in `left` and `right` are forgotten after these calls. |
| 222 | prepend_reversed(self, &*left); |
| 223 | prepend_reversed(self, &*right); |
| 224 | } |
| 225 | |
| 226 | iter.idx += iter.remaining; |
| 227 | iter.remaining = 0; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | impl<'a, T, A1: Allocator, A2: Allocator> SpecExtendFront<T, Rev<Drain<'a, T, A2>>> |
| 232 | for VecDeque<T, A1> |
| 233 | { |
| 234 | #[track_caller ] |
| 235 | fn spec_extend_front(&mut self, iter: Rev<Drain<'a, T, A2>>) { |
| 236 | let mut iter = iter.into_inner(); |
| 237 | |
| 238 | if iter.remaining == 0 { |
| 239 | return; |
| 240 | } |
| 241 | |
| 242 | self.reserve(additional:iter.remaining); |
| 243 | unsafe { |
| 244 | // SAFETY: iter.remaining != 0. |
| 245 | let (left, right) = iter.as_slices(); |
| 246 | // SAFETY: |
| 247 | // - `iter.remaining` space was reserved, `iter.remaining == left.len() + right.len()`. |
| 248 | // - The elements in `left` and `right` are forgotten after these calls. |
| 249 | prepend(self, &*right); |
| 250 | prepend(self, &*left); |
| 251 | } |
| 252 | |
| 253 | iter.idx += iter.remaining; |
| 254 | iter.remaining = 0; |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | /// Prepends elements of `slice` to `deque` using a copy. |
| 259 | /// |
| 260 | /// # Safety |
| 261 | /// |
| 262 | /// - `deque` must have space for `slice.len()` new elements. |
| 263 | /// - Elements of `slice` will be copied into the deque, make sure to forget the elements if `T` is not `Copy`. |
| 264 | unsafe fn prepend<T, A: Allocator>(deque: &mut VecDeque<T, A>, slice: &[T]) { |
| 265 | unsafe { |
| 266 | deque.head = deque.wrap_sub(idx:deque.head, subtrahend:slice.len()); |
| 267 | deque.copy_slice(dst:deque.head, src:slice); |
| 268 | deque.len += slice.len(); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | /// Prepends elements of `slice` to `deque` in reverse order using a copy. |
| 273 | /// |
| 274 | /// # Safety |
| 275 | /// |
| 276 | /// - `deque` must have space for `slice.len()` new elements. |
| 277 | /// - Elements of `slice` will be copied into the deque, make sure to forget the elements if `T` is not `Copy`. |
| 278 | unsafe fn prepend_reversed<T, A: Allocator>(deque: &mut VecDeque<T, A>, slice: &[T]) { |
| 279 | unsafe { |
| 280 | deque.head = deque.wrap_sub(idx:deque.head, subtrahend:slice.len()); |
| 281 | deque.copy_slice_reversed(dst:deque.head, src:slice); |
| 282 | deque.len += slice.len(); |
| 283 | } |
| 284 | } |
| 285 | |