1 | #[cfg (not(no_global_oom_handling))] |
2 | use super::AsVecIntoIter; |
3 | use crate::alloc::{Allocator, Global}; |
4 | #[cfg (not(no_global_oom_handling))] |
5 | use crate::collections::VecDeque; |
6 | use crate::raw_vec::RawVec; |
7 | use core::array; |
8 | use core::fmt; |
9 | use core::iter::{ |
10 | FusedIterator, InPlaceIterable, SourceIter, TrustedFused, TrustedLen, |
11 | TrustedRandomAccessNoCoerce, |
12 | }; |
13 | use core::marker::PhantomData; |
14 | use core::mem::{ManuallyDrop, MaybeUninit, SizedTypeProperties}; |
15 | use core::num::NonZero; |
16 | #[cfg (not(no_global_oom_handling))] |
17 | use core::ops::Deref; |
18 | use core::ptr::{self, NonNull}; |
19 | use core::slice::{self}; |
20 | |
21 | macro non_null { |
22 | (mut $place:expr, $t:ident) => {{ |
23 | #![allow(unused_unsafe)] // we're sometimes used within an unsafe block |
24 | unsafe { &mut *(ptr::addr_of_mut!($place) as *mut NonNull<$t>) } |
25 | }}, |
26 | ($place:expr, $t:ident) => {{ |
27 | #![allow(unused_unsafe)] // we're sometimes used within an unsafe block |
28 | unsafe { *(ptr::addr_of!($place) as *const NonNull<$t>) } |
29 | }}, |
30 | } |
31 | |
32 | /// An iterator that moves out of a vector. |
33 | /// |
34 | /// This `struct` is created by the `into_iter` method on [`Vec`](super::Vec) |
35 | /// (provided by the [`IntoIterator`] trait). |
36 | /// |
37 | /// # Example |
38 | /// |
39 | /// ``` |
40 | /// let v = vec![0, 1, 2]; |
41 | /// let iter: std::vec::IntoIter<_> = v.into_iter(); |
42 | /// ``` |
43 | #[stable (feature = "rust1" , since = "1.0.0" )] |
44 | #[rustc_insignificant_dtor ] |
45 | pub struct IntoIter< |
46 | T, |
47 | #[unstable (feature = "allocator_api" , issue = "32838" )] A: Allocator = Global, |
48 | > { |
49 | pub(super) buf: NonNull<T>, |
50 | pub(super) phantom: PhantomData<T>, |
51 | pub(super) cap: usize, |
52 | // the drop impl reconstructs a RawVec from buf, cap and alloc |
53 | // to avoid dropping the allocator twice we need to wrap it into ManuallyDrop |
54 | pub(super) alloc: ManuallyDrop<A>, |
55 | pub(super) ptr: NonNull<T>, |
56 | /// If T is a ZST, this is actually ptr+len. This encoding is picked so that |
57 | /// ptr == end is a quick test for the Iterator being empty, that works |
58 | /// for both ZST and non-ZST. |
59 | /// For non-ZSTs the pointer is treated as `NonNull<T>` |
60 | pub(super) end: *const T, |
61 | } |
62 | |
63 | #[stable (feature = "vec_intoiter_debug" , since = "1.13.0" )] |
64 | impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> { |
65 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
66 | f.debug_tuple(name:"IntoIter" ).field(&self.as_slice()).finish() |
67 | } |
68 | } |
69 | |
70 | impl<T, A: Allocator> IntoIter<T, A> { |
71 | /// Returns the remaining items of this iterator as a slice. |
72 | /// |
73 | /// # Examples |
74 | /// |
75 | /// ``` |
76 | /// let vec = vec!['a' , 'b' , 'c' ]; |
77 | /// let mut into_iter = vec.into_iter(); |
78 | /// assert_eq!(into_iter.as_slice(), &['a' , 'b' , 'c' ]); |
79 | /// let _ = into_iter.next().unwrap(); |
80 | /// assert_eq!(into_iter.as_slice(), &['b' , 'c' ]); |
81 | /// ``` |
82 | #[stable (feature = "vec_into_iter_as_slice" , since = "1.15.0" )] |
83 | pub fn as_slice(&self) -> &[T] { |
84 | unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len()) } |
85 | } |
86 | |
87 | /// Returns the remaining items of this iterator as a mutable slice. |
88 | /// |
89 | /// # Examples |
90 | /// |
91 | /// ``` |
92 | /// let vec = vec!['a' , 'b' , 'c' ]; |
93 | /// let mut into_iter = vec.into_iter(); |
94 | /// assert_eq!(into_iter.as_slice(), &['a' , 'b' , 'c' ]); |
95 | /// into_iter.as_mut_slice()[2] = 'z' ; |
96 | /// assert_eq!(into_iter.next().unwrap(), 'a' ); |
97 | /// assert_eq!(into_iter.next().unwrap(), 'b' ); |
98 | /// assert_eq!(into_iter.next().unwrap(), 'z' ); |
99 | /// ``` |
100 | #[stable (feature = "vec_into_iter_as_slice" , since = "1.15.0" )] |
101 | pub fn as_mut_slice(&mut self) -> &mut [T] { |
102 | unsafe { &mut *self.as_raw_mut_slice() } |
103 | } |
104 | |
105 | /// Returns a reference to the underlying allocator. |
106 | #[unstable (feature = "allocator_api" , issue = "32838" )] |
107 | #[inline ] |
108 | pub fn allocator(&self) -> &A { |
109 | &self.alloc |
110 | } |
111 | |
112 | fn as_raw_mut_slice(&mut self) -> *mut [T] { |
113 | ptr::slice_from_raw_parts_mut(self.ptr.as_ptr(), self.len()) |
114 | } |
115 | |
116 | /// Drops remaining elements and relinquishes the backing allocation. |
117 | /// This method guarantees it won't panic before relinquishing |
118 | /// the backing allocation. |
119 | /// |
120 | /// This is roughly equivalent to the following, but more efficient |
121 | /// |
122 | /// ``` |
123 | /// # let mut into_iter = Vec::<u8>::with_capacity(10).into_iter(); |
124 | /// let mut into_iter = std::mem::replace(&mut into_iter, Vec::new().into_iter()); |
125 | /// (&mut into_iter).for_each(drop); |
126 | /// std::mem::forget(into_iter); |
127 | /// ``` |
128 | /// |
129 | /// This method is used by in-place iteration, refer to the vec::in_place_collect |
130 | /// documentation for an overview. |
131 | #[cfg (not(no_global_oom_handling))] |
132 | pub(super) fn forget_allocation_drop_remaining(&mut self) { |
133 | let remaining = self.as_raw_mut_slice(); |
134 | |
135 | // overwrite the individual fields instead of creating a new |
136 | // struct and then overwriting &mut self. |
137 | // this creates less assembly |
138 | self.cap = 0; |
139 | self.buf = RawVec::NEW.non_null(); |
140 | self.ptr = self.buf; |
141 | self.end = self.buf.as_ptr(); |
142 | |
143 | // Dropping the remaining elements can panic, so this needs to be |
144 | // done only after updating the other fields. |
145 | unsafe { |
146 | ptr::drop_in_place(remaining); |
147 | } |
148 | } |
149 | |
150 | /// Forgets to Drop the remaining elements while still allowing the backing allocation to be freed. |
151 | pub(crate) fn forget_remaining_elements(&mut self) { |
152 | // For the ZST case, it is crucial that we mutate `end` here, not `ptr`. |
153 | // `ptr` must stay aligned, while `end` may be unaligned. |
154 | self.end = self.ptr.as_ptr(); |
155 | } |
156 | |
157 | #[cfg (not(no_global_oom_handling))] |
158 | #[inline ] |
159 | pub(crate) fn into_vecdeque(self) -> VecDeque<T, A> { |
160 | // Keep our `Drop` impl from dropping the elements and the allocator |
161 | let mut this = ManuallyDrop::new(self); |
162 | |
163 | // SAFETY: This allocation originally came from a `Vec`, so it passes |
164 | // all those checks. We have `this.buf` ≤ `this.ptr` ≤ `this.end`, |
165 | // so the `sub_ptr`s below cannot wrap, and will produce a well-formed |
166 | // range. `end` ≤ `buf + cap`, so the range will be in-bounds. |
167 | // Taking `alloc` is ok because nothing else is going to look at it, |
168 | // since our `Drop` impl isn't going to run so there's no more code. |
169 | unsafe { |
170 | let buf = this.buf.as_ptr(); |
171 | let initialized = if T::IS_ZST { |
172 | // All the pointers are the same for ZSTs, so it's fine to |
173 | // say that they're all at the beginning of the "allocation". |
174 | 0..this.len() |
175 | } else { |
176 | this.ptr.sub_ptr(this.buf)..this.end.sub_ptr(buf) |
177 | }; |
178 | let cap = this.cap; |
179 | let alloc = ManuallyDrop::take(&mut this.alloc); |
180 | VecDeque::from_contiguous_raw_parts_in(buf, initialized, cap, alloc) |
181 | } |
182 | } |
183 | } |
184 | |
185 | #[stable (feature = "vec_intoiter_as_ref" , since = "1.46.0" )] |
186 | impl<T, A: Allocator> AsRef<[T]> for IntoIter<T, A> { |
187 | fn as_ref(&self) -> &[T] { |
188 | self.as_slice() |
189 | } |
190 | } |
191 | |
192 | #[stable (feature = "rust1" , since = "1.0.0" )] |
193 | unsafe impl<T: Send, A: Allocator + Send> Send for IntoIter<T, A> {} |
194 | #[stable (feature = "rust1" , since = "1.0.0" )] |
195 | unsafe impl<T: Sync, A: Allocator + Sync> Sync for IntoIter<T, A> {} |
196 | |
197 | #[stable (feature = "rust1" , since = "1.0.0" )] |
198 | impl<T, A: Allocator> Iterator for IntoIter<T, A> { |
199 | type Item = T; |
200 | |
201 | #[inline ] |
202 | fn next(&mut self) -> Option<T> { |
203 | let ptr = if T::IS_ZST { |
204 | if self.ptr.as_ptr() == self.end as *mut T { |
205 | return None; |
206 | } |
207 | // `ptr` has to stay where it is to remain aligned, so we reduce the length by 1 by |
208 | // reducing the `end`. |
209 | self.end = self.end.wrapping_byte_sub(1); |
210 | self.ptr |
211 | } else { |
212 | if self.ptr == non_null!(self.end, T) { |
213 | return None; |
214 | } |
215 | let old = self.ptr; |
216 | self.ptr = unsafe { old.add(1) }; |
217 | old |
218 | }; |
219 | Some(unsafe { ptr.read() }) |
220 | } |
221 | |
222 | #[inline ] |
223 | fn size_hint(&self) -> (usize, Option<usize>) { |
224 | let exact = if T::IS_ZST { |
225 | self.end.addr().wrapping_sub(self.ptr.as_ptr().addr()) |
226 | } else { |
227 | unsafe { non_null!(self.end, T).sub_ptr(self.ptr) } |
228 | }; |
229 | (exact, Some(exact)) |
230 | } |
231 | |
232 | #[inline ] |
233 | fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> { |
234 | let step_size = self.len().min(n); |
235 | let to_drop = ptr::slice_from_raw_parts_mut(self.ptr.as_ptr(), step_size); |
236 | if T::IS_ZST { |
237 | // See `next` for why we sub `end` here. |
238 | self.end = self.end.wrapping_byte_sub(step_size); |
239 | } else { |
240 | // SAFETY: the min() above ensures that step_size is in bounds |
241 | self.ptr = unsafe { self.ptr.add(step_size) }; |
242 | } |
243 | // SAFETY: the min() above ensures that step_size is in bounds |
244 | unsafe { |
245 | ptr::drop_in_place(to_drop); |
246 | } |
247 | NonZero::new(n - step_size).map_or(Ok(()), Err) |
248 | } |
249 | |
250 | #[inline ] |
251 | fn count(self) -> usize { |
252 | self.len() |
253 | } |
254 | |
255 | #[inline ] |
256 | fn next_chunk<const N: usize>(&mut self) -> Result<[T; N], core::array::IntoIter<T, N>> { |
257 | let mut raw_ary = MaybeUninit::uninit_array(); |
258 | |
259 | let len = self.len(); |
260 | |
261 | if T::IS_ZST { |
262 | if len < N { |
263 | self.forget_remaining_elements(); |
264 | // Safety: ZSTs can be conjured ex nihilo, only the amount has to be correct |
265 | return Err(unsafe { array::IntoIter::new_unchecked(raw_ary, 0..len) }); |
266 | } |
267 | |
268 | self.end = self.end.wrapping_byte_sub(N); |
269 | // Safety: ditto |
270 | return Ok(unsafe { raw_ary.transpose().assume_init() }); |
271 | } |
272 | |
273 | if len < N { |
274 | // Safety: `len` indicates that this many elements are available and we just checked that |
275 | // it fits into the array. |
276 | unsafe { |
277 | ptr::copy_nonoverlapping(self.ptr.as_ptr(), raw_ary.as_mut_ptr() as *mut T, len); |
278 | self.forget_remaining_elements(); |
279 | return Err(array::IntoIter::new_unchecked(raw_ary, 0..len)); |
280 | } |
281 | } |
282 | |
283 | // Safety: `len` is larger than the array size. Copy a fixed amount here to fully initialize |
284 | // the array. |
285 | return unsafe { |
286 | ptr::copy_nonoverlapping(self.ptr.as_ptr(), raw_ary.as_mut_ptr() as *mut T, N); |
287 | self.ptr = self.ptr.add(N); |
288 | Ok(raw_ary.transpose().assume_init()) |
289 | }; |
290 | } |
291 | |
292 | unsafe fn __iterator_get_unchecked(&mut self, i: usize) -> Self::Item |
293 | where |
294 | Self: TrustedRandomAccessNoCoerce, |
295 | { |
296 | // SAFETY: the caller must guarantee that `i` is in bounds of the |
297 | // `Vec<T>`, so `i` cannot overflow an `isize`, and the `self.ptr.add(i)` |
298 | // is guaranteed to pointer to an element of the `Vec<T>` and |
299 | // thus guaranteed to be valid to dereference. |
300 | // |
301 | // Also note the implementation of `Self: TrustedRandomAccess` requires |
302 | // that `T: Copy` so reading elements from the buffer doesn't invalidate |
303 | // them for `Drop`. |
304 | unsafe { self.ptr.add(i).read() } |
305 | } |
306 | } |
307 | |
308 | #[stable (feature = "rust1" , since = "1.0.0" )] |
309 | impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> { |
310 | #[inline ] |
311 | fn next_back(&mut self) -> Option<T> { |
312 | if T::IS_ZST { |
313 | if self.ptr.as_ptr() == self.end as *mut _ { |
314 | return None; |
315 | } |
316 | // See above for why 'ptr.offset' isn't used |
317 | self.end = self.end.wrapping_byte_sub(1); |
318 | // Note that even though this is next_back() we're reading from `self.ptr`, not |
319 | // `self.end`. We track our length using the byte offset from `self.ptr` to `self.end`, |
320 | // so the end pointer may not be suitably aligned for T. |
321 | Some(unsafe { ptr::read(self.ptr.as_ptr()) }) |
322 | } else { |
323 | if self.ptr == non_null!(self.end, T) { |
324 | return None; |
325 | } |
326 | unsafe { |
327 | self.end = self.end.sub(1); |
328 | Some(ptr::read(self.end)) |
329 | } |
330 | } |
331 | } |
332 | |
333 | #[inline ] |
334 | fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> { |
335 | let step_size = self.len().min(n); |
336 | if T::IS_ZST { |
337 | // SAFETY: same as for advance_by() |
338 | self.end = self.end.wrapping_byte_sub(step_size); |
339 | } else { |
340 | // SAFETY: same as for advance_by() |
341 | self.end = unsafe { self.end.sub(step_size) }; |
342 | } |
343 | let to_drop = ptr::slice_from_raw_parts_mut(self.end as *mut T, step_size); |
344 | // SAFETY: same as for advance_by() |
345 | unsafe { |
346 | ptr::drop_in_place(to_drop); |
347 | } |
348 | NonZero::new(n - step_size).map_or(Ok(()), Err) |
349 | } |
350 | } |
351 | |
352 | #[stable (feature = "rust1" , since = "1.0.0" )] |
353 | impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> { |
354 | fn is_empty(&self) -> bool { |
355 | if T::IS_ZST { |
356 | self.ptr.as_ptr() == self.end as *mut _ |
357 | } else { |
358 | self.ptr == non_null!(self.end, T) |
359 | } |
360 | } |
361 | } |
362 | |
363 | #[stable (feature = "fused" , since = "1.26.0" )] |
364 | impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {} |
365 | |
366 | #[doc (hidden)] |
367 | #[unstable (issue = "none" , feature = "trusted_fused" )] |
368 | unsafe impl<T, A: Allocator> TrustedFused for IntoIter<T, A> {} |
369 | |
370 | #[unstable (feature = "trusted_len" , issue = "37572" )] |
371 | unsafe impl<T, A: Allocator> TrustedLen for IntoIter<T, A> {} |
372 | |
373 | #[stable (feature = "default_iters" , since = "1.70.0" )] |
374 | impl<T, A> Default for IntoIter<T, A> |
375 | where |
376 | A: Allocator + Default, |
377 | { |
378 | /// Creates an empty `vec::IntoIter`. |
379 | /// |
380 | /// ``` |
381 | /// # use std::vec; |
382 | /// let iter: vec::IntoIter<u8> = Default::default(); |
383 | /// assert_eq!(iter.len(), 0); |
384 | /// assert_eq!(iter.as_slice(), &[]); |
385 | /// ``` |
386 | fn default() -> Self { |
387 | super::Vec::new_in(alloc:Default::default()).into_iter() |
388 | } |
389 | } |
390 | |
391 | #[doc (hidden)] |
392 | #[unstable (issue = "none" , feature = "std_internals" )] |
393 | #[rustc_unsafe_specialization_marker ] |
394 | pub trait NonDrop {} |
395 | |
396 | // T: Copy as approximation for !Drop since get_unchecked does not advance self.ptr |
397 | // and thus we can't implement drop-handling |
398 | #[unstable (issue = "none" , feature = "std_internals" )] |
399 | impl<T: Copy> NonDrop for T {} |
400 | |
401 | #[doc (hidden)] |
402 | #[unstable (issue = "none" , feature = "std_internals" )] |
403 | // TrustedRandomAccess (without NoCoerce) must not be implemented because |
404 | // subtypes/supertypes of `T` might not be `NonDrop` |
405 | unsafe impl<T, A: Allocator> TrustedRandomAccessNoCoerce for IntoIter<T, A> |
406 | where |
407 | T: NonDrop, |
408 | { |
409 | const MAY_HAVE_SIDE_EFFECT: bool = false; |
410 | } |
411 | |
412 | #[cfg (not(no_global_oom_handling))] |
413 | #[stable (feature = "vec_into_iter_clone" , since = "1.8.0" )] |
414 | impl<T: Clone, A: Allocator + Clone> Clone for IntoIter<T, A> { |
415 | #[cfg (not(test))] |
416 | fn clone(&self) -> Self { |
417 | self.as_slice().to_vec_in(self.alloc.deref().clone()).into_iter() |
418 | } |
419 | #[cfg (test)] |
420 | fn clone(&self) -> Self { |
421 | crate::slice::to_vec(self.as_slice(), self.alloc.deref().clone()).into_iter() |
422 | } |
423 | } |
424 | |
425 | #[stable (feature = "rust1" , since = "1.0.0" )] |
426 | unsafe impl<#[may_dangle ] T, A: Allocator> Drop for IntoIter<T, A> { |
427 | fn drop(&mut self) { |
428 | struct DropGuard<'a, T, A: Allocator>(&'a mut IntoIter<T, A>); |
429 | |
430 | impl<T, A: Allocator> Drop for DropGuard<'_, T, A> { |
431 | fn drop(&mut self) { |
432 | unsafe { |
433 | // `IntoIter::alloc` is not used anymore after this and will be dropped by RawVec |
434 | let alloc: A = ManuallyDrop::take(&mut self.0.alloc); |
435 | // RawVec handles deallocation |
436 | let _ = RawVec::from_nonnull_in(self.0.buf, self.0.cap, alloc); |
437 | } |
438 | } |
439 | } |
440 | |
441 | let guard: DropGuard<'_, T, A> = DropGuard(self); |
442 | // destroy the remaining elements |
443 | unsafe { |
444 | ptr::drop_in_place(to_drop:guard.0.as_raw_mut_slice()); |
445 | } |
446 | // now `guard` will be dropped and do the rest |
447 | } |
448 | } |
449 | |
450 | // In addition to the SAFETY invariants of the following three unsafe traits |
451 | // also refer to the vec::in_place_collect module documentation to get an overview |
452 | #[unstable (issue = "none" , feature = "inplace_iteration" )] |
453 | #[doc (hidden)] |
454 | unsafe impl<T, A: Allocator> InPlaceIterable for IntoIter<T, A> { |
455 | const EXPAND_BY: Option<NonZero<usize>> = NonZero::new(1); |
456 | const MERGE_BY: Option<NonZero<usize>> = NonZero::new(1); |
457 | } |
458 | |
459 | #[unstable (issue = "none" , feature = "inplace_iteration" )] |
460 | #[doc (hidden)] |
461 | unsafe impl<T, A: Allocator> SourceIter for IntoIter<T, A> { |
462 | type Source = Self; |
463 | |
464 | #[inline ] |
465 | unsafe fn as_inner(&mut self) -> &mut Self::Source { |
466 | self |
467 | } |
468 | } |
469 | |
470 | #[cfg (not(no_global_oom_handling))] |
471 | unsafe impl<T> AsVecIntoIter for IntoIter<T> { |
472 | type Item = T; |
473 | |
474 | fn as_into_iter(&mut self) -> &mut IntoIter<Self::Item> { |
475 | self |
476 | } |
477 | } |
478 | |