| 1 | //! Determining the structure of a set of ruleset names. |
| 2 | //! |
| 3 | //! The names of time zones in the zoneinfo database are of the form |
| 4 | //! `Area/Location`, or more rarely, `Area/Location/Sublocation`. This means |
| 5 | //! they form a hierarchy, with each level either serving as a time zone |
| 6 | //! itself (usually a location) or as a parent of multiple other entries |
| 7 | //! (usually an area). |
| 8 | //! |
| 9 | //! When generating Rust code containing the timezone data, we need to |
| 10 | //! generate the entire tree structure, not just the leaves of actual timezone |
| 11 | //! data. This module determines that structure, allowing it to be created |
| 12 | //! before any actual timezone data is written. |
| 13 | //! |
| 14 | //! For example, say we have the following subset of time zone entries: |
| 15 | //! |
| 16 | //! - America/Antigua |
| 17 | //! - America/Araguaina |
| 18 | //! - America/Argentina/Buenos_Aires |
| 19 | //! - America/Argentina/Catamarca |
| 20 | //! - America/Argentina/Cordoba |
| 21 | //! - America/Aruba |
| 22 | //! |
| 23 | //! On top of the six actual time zone files, we would need to create the following: |
| 24 | //! |
| 25 | //! - An America module that has three private submodules (Antigua, Araguaína, |
| 26 | //! and Aruba) and one public submodule (Argentina); |
| 27 | //! - An America/Argentina submodule that has there private submodules (Buenos |
| 28 | //! Aires, Catamarca, Cordoba). |
| 29 | //! |
| 30 | //! This module contains an iterator that finds all parent zonesets, and |
| 31 | //! sorts them so they’re output in a correct order. |
| 32 | |
| 33 | use std::collections::{BTreeMap, BTreeSet}; |
| 34 | |
| 35 | use crate::table::Table; |
| 36 | |
| 37 | /// Trait to put the `structure` method on Tables. |
| 38 | pub trait Structure { |
| 39 | /// Returns an iterator over the structure of this table. |
| 40 | fn structure(&self) -> TableStructure; |
| 41 | } |
| 42 | |
| 43 | impl Structure for Table { |
| 44 | fn structure(&self) -> TableStructure { |
| 45 | let mut mappings = BTreeMap::new(); |
| 46 | |
| 47 | for key in self.zonesets.keys().chain(self.links.keys()) { |
| 48 | // Extract the name from the *last* slash. So |
| 49 | // `America/Kentucky/Louisville` is split into |
| 50 | // `America/Kentucky` and `Louisville` components. |
| 51 | let last_slash = match key.rfind('/' ) { |
| 52 | Some(pos) => pos, |
| 53 | None => continue, |
| 54 | }; |
| 55 | |
| 56 | // Split the string around the slash, which gets removed. |
| 57 | let parent = &key[..last_slash]; |
| 58 | { |
| 59 | let set = mappings.entry(parent).or_insert_with(BTreeSet::new); |
| 60 | set.insert(Child::TimeZone(&key[last_slash + 1..])); |
| 61 | } |
| 62 | |
| 63 | // If the *parent* name still has a slash in it, then this is |
| 64 | // a time zone of the form `America/Kentucky/Louisville`. We |
| 65 | // need to make sure that `America` now has a `Kentucky` |
| 66 | // child, too. |
| 67 | if let Some(first_slash) = parent.find('/' ) { |
| 68 | let grandparent = &parent[..first_slash]; |
| 69 | let set = mappings.entry(grandparent).or_insert_with(BTreeSet::new); |
| 70 | set.insert(Child::Submodule(&parent[first_slash + 1..])); |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | TableStructure { mappings } |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | /// The structure of a set of time zone names. |
| 79 | #[derive (PartialEq, Debug)] |
| 80 | pub struct TableStructure<'table> { |
| 81 | mappings: BTreeMap<&'table str, BTreeSet<Child<'table>>>, |
| 82 | } |
| 83 | |
| 84 | impl<'table> IntoIterator for TableStructure<'table> { |
| 85 | type Item = TableStructureEntry<'table>; |
| 86 | type IntoIter = Iter<'table>; |
| 87 | |
| 88 | fn into_iter(self) -> Self::IntoIter { |
| 89 | // It’s necessary to sort the keys before producing them, to |
| 90 | // ensure that (for example) `America` is produced before |
| 91 | // `America/Kentucky`. |
| 92 | let mut keys: Vec<_> = self.mappings.keys().cloned().collect(); |
| 93 | keys.sort_by(|a: &&str, b: &&str| b.cmp(a)); |
| 94 | |
| 95 | Iter { |
| 96 | structure: self, |
| 97 | keys, |
| 98 | } |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | /// Iterator over sorted entries in a `TableStructure`. |
| 103 | #[derive (PartialEq, Debug)] |
| 104 | pub struct Iter<'table> { |
| 105 | structure: TableStructure<'table>, |
| 106 | keys: Vec<&'table str>, |
| 107 | } |
| 108 | |
| 109 | impl<'table> Iterator for Iter<'table> { |
| 110 | type Item = TableStructureEntry<'table>; |
| 111 | |
| 112 | fn next(&mut self) -> Option<Self::Item> { |
| 113 | let key: &'table str = self.keys.pop()?; |
| 114 | |
| 115 | // Move the strings out into an (automatically-sorted) vector. |
| 116 | let values: Vec> = self.structure.mappings[key].iter().cloned().collect(); |
| 117 | |
| 118 | Some(TableStructureEntry { |
| 119 | name: key, |
| 120 | children: values, |
| 121 | }) |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | /// An entry returned from a `TableStructure` iterator. |
| 126 | #[derive (PartialEq, Debug)] |
| 127 | pub struct TableStructureEntry<'table> { |
| 128 | /// This entry’s name, which *can* still include slashes. |
| 129 | pub name: &'table str, |
| 130 | |
| 131 | /// A vector of sorted child names, which should have no slashes in. |
| 132 | pub children: Vec<Child<'table>>, |
| 133 | } |
| 134 | |
| 135 | /// A child module that needs to be created. |
| 136 | /// |
| 137 | /// The order here is important for `PartialOrd`: submodules need to be |
| 138 | /// created before actual time zones, as directories need to be created |
| 139 | /// before the files in them can be written. |
| 140 | #[derive (PartialEq, Eq, PartialOrd, Ord, Debug, Copy, Clone)] |
| 141 | pub enum Child<'table> { |
| 142 | /// A module containing **only** submodules, no time zones. |
| 143 | Submodule(&'table str), |
| 144 | |
| 145 | /// A module containing **only** the details of a time zone. |
| 146 | TimeZone(&'table str), |
| 147 | } |
| 148 | |
| 149 | #[cfg (test)] |
| 150 | #[allow (unused_results)] |
| 151 | mod test { |
| 152 | use super::*; |
| 153 | use crate::table::Table; |
| 154 | |
| 155 | #[test ] |
| 156 | fn empty() { |
| 157 | let table = Table::default(); |
| 158 | let mut structure = table.structure().into_iter(); |
| 159 | assert_eq!(structure.next(), None); |
| 160 | } |
| 161 | |
| 162 | #[test ] |
| 163 | fn separate() { |
| 164 | let mut table = Table::default(); |
| 165 | table.zonesets.insert("a" .to_owned(), Vec::new()); |
| 166 | table.zonesets.insert("b" .to_owned(), Vec::new()); |
| 167 | table.zonesets.insert("c" .to_owned(), Vec::new()); |
| 168 | |
| 169 | let mut structure = table.structure().into_iter(); |
| 170 | assert_eq!(structure.next(), None); |
| 171 | } |
| 172 | |
| 173 | #[test ] |
| 174 | fn child() { |
| 175 | let mut table = Table::default(); |
| 176 | table.zonesets.insert("a/b" .to_owned(), Vec::new()); |
| 177 | |
| 178 | let mut structure = table.structure().into_iter(); |
| 179 | assert_eq!( |
| 180 | structure.next(), |
| 181 | Some(TableStructureEntry { |
| 182 | name: "a" , |
| 183 | children: vec![Child::TimeZone("b" )] |
| 184 | }) |
| 185 | ); |
| 186 | assert_eq!(structure.next(), None); |
| 187 | } |
| 188 | |
| 189 | #[test ] |
| 190 | fn hierarchy() { |
| 191 | let mut table = Table::default(); |
| 192 | table.zonesets.insert("a/b/c" .to_owned(), Vec::new()); |
| 193 | table.zonesets.insert("a/b/d" .to_owned(), Vec::new()); |
| 194 | table.zonesets.insert("a/e" .to_owned(), Vec::new()); |
| 195 | |
| 196 | let mut structure = table.structure().into_iter(); |
| 197 | assert_eq!( |
| 198 | structure.next(), |
| 199 | Some(TableStructureEntry { |
| 200 | name: "a" , |
| 201 | children: vec![Child::Submodule("b" ), Child::TimeZone("e" )] |
| 202 | }) |
| 203 | ); |
| 204 | assert_eq!( |
| 205 | structure.next(), |
| 206 | Some(TableStructureEntry { |
| 207 | name: "a/b" , |
| 208 | children: vec![Child::TimeZone("c" ), Child::TimeZone("d" )] |
| 209 | }) |
| 210 | ); |
| 211 | assert_eq!(structure.next(), None); |
| 212 | } |
| 213 | } |
| 214 | |