1 | // Copyright 2017 The Rust Project Developers. See the COPYRIGHT |
2 | // file at the top-level directory of this distribution and at |
3 | // http://rust-lang.org/COPYRIGHT. |
4 | // |
5 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
6 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
7 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
8 | // option. This file may not be copied, modified, or distributed |
9 | // except according to those terms. |
10 | |
11 | use datafrog::{Iteration, Relation, RelationLeaper}; |
12 | use std::time::Instant; |
13 | |
14 | use crate::facts::FactTypes; |
15 | use crate::output::{Context, Output}; |
16 | |
17 | pub(super) fn compute<T: FactTypes>( |
18 | ctx: &Context<'_, T>, |
19 | result: &mut Output<T>, |
20 | ) -> ( |
21 | Relation<(T::Loan, T::Point)>, |
22 | Relation<(T::Origin, T::Origin, T::Point)>, |
23 | ) { |
24 | let timer = Instant::now(); |
25 | |
26 | let (errors, subset_errors) = { |
27 | // Static inputs |
28 | let origin_live_on_entry_rel = &ctx.origin_live_on_entry; |
29 | let cfg_edge_rel = &ctx.cfg_edge; |
30 | let loan_killed_at = &ctx.loan_killed_at; |
31 | let known_placeholder_subset = &ctx.known_placeholder_subset; |
32 | let placeholder_origin = &ctx.placeholder_origin; |
33 | |
34 | // Create a new iteration context, ... |
35 | let mut iteration = Iteration::new(); |
36 | |
37 | // `loan_invalidated_at` facts, stored ready for joins |
38 | let loan_invalidated_at = |
39 | iteration.variable::<((T::Loan, T::Point), ())>("loan_invalidated_at" ); |
40 | |
41 | // we need `origin_live_on_entry` in both variable and relation forms, |
42 | // (respectively, for join and antijoin). |
43 | let origin_live_on_entry_var = |
44 | iteration.variable::<((T::Origin, T::Point), ())>("origin_live_on_entry" ); |
45 | |
46 | // `loan_issued_at` input but organized for join |
47 | let loan_issued_at_op = |
48 | iteration.variable::<((T::Origin, T::Point), T::Loan)>("loan_issued_at_op" ); |
49 | |
50 | // .decl subset(origin1, origin2, point) |
51 | // |
52 | // Indicates that `origin1: origin2` at `point`. |
53 | let subset_o1p = iteration.variable::<((T::Origin, T::Point), T::Origin)>("subset_o1p" ); |
54 | |
55 | // .decl origin_contains_loan_on_entry(origin, loan, point) |
56 | // |
57 | // At `point`, things with `origin` may depend on data from `loan`. |
58 | let origin_contains_loan_on_entry_op = iteration |
59 | .variable::<((T::Origin, T::Point), T::Loan)>("origin_contains_loan_on_entry_op" ); |
60 | |
61 | // .decl loan_live_at(loan, point) |
62 | // |
63 | // True if the restrictions of the `loan` need to be enforced at `point`. |
64 | let loan_live_at = iteration.variable::<((T::Loan, T::Point), ())>("loan_live_at" ); |
65 | |
66 | // .decl live_to_dying_regions(origin1, origin2, point1, point2) |
67 | // |
68 | // The origins `origin1` and `origin2` are "live to dead" |
69 | // on the edge `point1 -> point2` if: |
70 | // |
71 | // - In `point1`, `origin1` <= `origin2` |
72 | // - In `point2`, `origin1` is live but `origin2` is dead. |
73 | // |
74 | // In that case, `point2` would like to add all the |
75 | // live things reachable from `origin2` to `origin1`. |
76 | // |
77 | let live_to_dying_regions_o2pq = iteration |
78 | .variable::<((T::Origin, T::Point, T::Point), T::Origin)>("live_to_dying_regions_o2pq" ); |
79 | |
80 | // .decl dying_region_requires((origin, point1, point2), loan) |
81 | // |
82 | // The `origin` requires `loan`, but the `origin` goes dead |
83 | // along the edge `point1 -> point2`. |
84 | let dying_region_requires = iteration |
85 | .variable::<((T::Origin, T::Point, T::Point), T::Loan)>("dying_region_requires" ); |
86 | |
87 | // .decl dying_can_reach_origins(origin, point1, point2) |
88 | // |
89 | // Contains dead origins where we are interested |
90 | // in computing the transitive closure of things they |
91 | // can reach. |
92 | // |
93 | // FIXME: this relation was named before renaming the `regions` atoms to `origins`, and |
94 | // will need to be renamed to change "_origins" to "_ascendants", "_roots", etc. |
95 | let dying_can_reach_origins = |
96 | iteration.variable::<((T::Origin, T::Point), T::Point)>("dying_can_reach_origins" ); |
97 | |
98 | // .decl dying_can_reach(origin1, origin2, point1, point2) |
99 | // |
100 | // Indicates that `origin1`, which is dead |
101 | // in `point2`, can reach `origin2` in `point1`. |
102 | // |
103 | // This is effectively the transitive subset |
104 | // relation, but we try to limit it to origins |
105 | // that are dying on the edge `point1 -> point2`. |
106 | let dying_can_reach_o2q = |
107 | iteration.variable::<((T::Origin, T::Point), (T::Origin, T::Point))>("dying_can_reach" ); |
108 | let dying_can_reach_1 = iteration.variable_indistinct("dying_can_reach_1" ); |
109 | |
110 | // .decl dying_can_reach_live(origin1, origin2, point1, point2) |
111 | // |
112 | // Indicates that, along the edge `point1 -> point2`, the dead (in `point2`) |
113 | // `origin1` can reach the live (in `point2`) `origin2` via a subset |
114 | // relation. This is a subset of the full `dying_can_reach` |
115 | // relation where we filter down to those cases where `origin2` is |
116 | // live in `point2`. |
117 | let dying_can_reach_live = iteration |
118 | .variable::<((T::Origin, T::Point, T::Point), T::Origin)>("dying_can_reach_live" ); |
119 | |
120 | // .decl dead_borrow_region_can_reach_root((origin, point), loan) |
121 | // |
122 | // Indicates a "borrow region" `origin` at `point` which is not live on |
123 | // entry to `point`. |
124 | let dead_borrow_region_can_reach_root = iteration |
125 | .variable::<((T::Origin, T::Point), T::Loan)>("dead_borrow_region_can_reach_root" ); |
126 | |
127 | // .decl dead_borrow_region_can_reach_dead((origin2, point), loan) |
128 | let dead_borrow_region_can_reach_dead = iteration |
129 | .variable::<((T::Origin, T::Point), T::Loan)>("dead_borrow_region_can_reach_dead" ); |
130 | let dead_borrow_region_can_reach_dead_1 = |
131 | iteration.variable_indistinct("dead_borrow_region_can_reach_dead_1" ); |
132 | |
133 | // .decl errors(loan, point) |
134 | let errors = iteration.variable("errors" ); |
135 | let subset_errors = iteration.variable::<(T::Origin, T::Origin, T::Point)>("subset_errors" ); |
136 | |
137 | let subset_placeholder = |
138 | iteration.variable::<(T::Origin, T::Origin, T::Point)>("subset_placeholder" ); |
139 | let subset_placeholder_o2p = iteration.variable_indistinct("subset_placeholder_o2p" ); |
140 | |
141 | // Make "variable" versions of the relations, needed for joins. |
142 | loan_issued_at_op.extend( |
143 | ctx.loan_issued_at |
144 | .iter() |
145 | .map(|&(origin, loan, point)| ((origin, point), loan)), |
146 | ); |
147 | loan_invalidated_at.extend( |
148 | ctx.loan_invalidated_at |
149 | .iter() |
150 | .map(|&(loan, point)| ((loan, point), ())), |
151 | ); |
152 | origin_live_on_entry_var.extend( |
153 | origin_live_on_entry_rel |
154 | .iter() |
155 | .map(|&(origin, point)| ((origin, point), ())), |
156 | ); |
157 | |
158 | // subset(origin1, origin2, point) :- |
159 | // subset_base(origin1, origin2, point). |
160 | subset_o1p.extend( |
161 | ctx.subset_base |
162 | .iter() |
163 | .map(|&(origin1, origin2, point)| ((origin1, point), origin2)), |
164 | ); |
165 | |
166 | // origin_contains_loan_on_entry(origin, loan, point) :- |
167 | // loan_issued_at(origin, loan, point). |
168 | origin_contains_loan_on_entry_op.extend( |
169 | ctx.loan_issued_at |
170 | .iter() |
171 | .map(|&(origin, loan, point)| ((origin, point), loan)), |
172 | ); |
173 | |
174 | // .. and then start iterating rules! |
175 | while iteration.changed() { |
176 | // Cleanup step: remove symmetries |
177 | // - remove origins which are `subset`s of themselves |
178 | // |
179 | // FIXME: investigate whether is there a better way to do that without complicating |
180 | // the rules too much, because it would also require temporary variables and |
181 | // impact performance. Until then, the big reduction in tuples improves performance |
182 | // a lot, even if we're potentially adding a small number of tuples |
183 | // per round just to remove them in the next round. |
184 | subset_o1p |
185 | .recent |
186 | .borrow_mut() |
187 | .elements |
188 | .retain(|&((origin1, _), origin2)| origin1 != origin2); |
189 | |
190 | subset_placeholder |
191 | .recent |
192 | .borrow_mut() |
193 | .elements |
194 | .retain(|&(origin1, origin2, _)| origin1 != origin2); |
195 | subset_placeholder_o2p.from_map(&subset_placeholder, |&(origin1, origin2, point)| { |
196 | ((origin2, point), origin1) |
197 | }); |
198 | |
199 | // live_to_dying_regions(origin1, origin2, point1, point2) :- |
200 | // subset(origin1, origin2, point1), |
201 | // cfg_edge(point1, point2), |
202 | // origin_live_on_entry(origin1, point2), |
203 | // !origin_live_on_entry(origin2, point2). |
204 | live_to_dying_regions_o2pq.from_leapjoin( |
205 | &subset_o1p, |
206 | ( |
207 | cfg_edge_rel.extend_with(|&((_, point1), _)| point1), |
208 | origin_live_on_entry_rel.extend_with(|&((origin1, _), _)| origin1), |
209 | origin_live_on_entry_rel.extend_anti(|&((_, _), origin2)| origin2), |
210 | ), |
211 | |&((origin1, point1), origin2), &point2| ((origin2, point1, point2), origin1), |
212 | ); |
213 | |
214 | // dying_region_requires((origin, point1, point2), loan) :- |
215 | // origin_contains_loan_on_entry(origin, loan, point1), |
216 | // !loan_killed_at(loan, point1), |
217 | // cfg_edge(point1, point2), |
218 | // !origin_live_on_entry(origin, point2). |
219 | dying_region_requires.from_leapjoin( |
220 | &origin_contains_loan_on_entry_op, |
221 | ( |
222 | loan_killed_at.filter_anti(|&((_, point1), loan)| (loan, point1)), |
223 | cfg_edge_rel.extend_with(|&((_, point1), _)| point1), |
224 | origin_live_on_entry_rel.extend_anti(|&((origin, _), _)| origin), |
225 | ), |
226 | |&((origin, point1), loan), &point2| ((origin, point1, point2), loan), |
227 | ); |
228 | |
229 | // dying_can_reach_origins(origin2, point1, point2) :- |
230 | // live_to_dying_regions(_, origin2, point1, point2). |
231 | dying_can_reach_origins.from_map( |
232 | &live_to_dying_regions_o2pq, |
233 | |&((origin2, point1, point2), _origin1)| ((origin2, point1), point2), |
234 | ); |
235 | |
236 | // dying_can_reach_origins(origin, point1, point2) :- |
237 | // dying_region_requires(origin, point1, point2, _loan). |
238 | dying_can_reach_origins.from_map( |
239 | &dying_region_requires, |
240 | |&((origin, point1, point2), _loan)| ((origin, point1), point2), |
241 | ); |
242 | |
243 | // dying_can_reach(origin1, origin2, point1, point2) :- |
244 | // dying_can_reach_origins(origin1, point1, point2), |
245 | // subset(origin1, origin2, point1). |
246 | dying_can_reach_o2q.from_join( |
247 | &dying_can_reach_origins, |
248 | &subset_o1p, |
249 | |&(origin1, point1), &point2, &origin2| ((origin2, point2), (origin1, point1)), |
250 | ); |
251 | |
252 | // dying_can_reach(origin1, origin3, point1, point2) :- |
253 | // dying_can_reach(origin1, origin2, point1, point2), |
254 | // !origin_live_on_entry(origin2, point2), |
255 | // subset(origin2, origin3, point1). |
256 | // |
257 | // This is the "transitive closure" rule, but |
258 | // note that we only apply it with the |
259 | // "intermediate" `origin2` is dead at `point2`. |
260 | dying_can_reach_1.from_antijoin( |
261 | &dying_can_reach_o2q, |
262 | &origin_live_on_entry_rel, |
263 | |&(origin2, point2), &(origin1, point1)| ((origin2, point1), (origin1, point2)), |
264 | ); |
265 | dying_can_reach_o2q.from_join( |
266 | &dying_can_reach_1, |
267 | &subset_o1p, |
268 | |&(_origin2, point1), &(origin1, point2), &origin3| { |
269 | ((origin3, point2), (origin1, point1)) |
270 | }, |
271 | ); |
272 | |
273 | // dying_can_reach_live(origin1, origin2, point1, point2) :- |
274 | // dying_can_reach(origin1, origin2, point1, point2), |
275 | // origin_live_on_entry(origin2, point2). |
276 | dying_can_reach_live.from_join( |
277 | &dying_can_reach_o2q, |
278 | &origin_live_on_entry_var, |
279 | |&(origin2, point2), &(origin1, point1), _| ((origin1, point1, point2), origin2), |
280 | ); |
281 | |
282 | // subset(origin1, origin2, point2) :- |
283 | // subset(origin1, origin2, point1), |
284 | // cfg_edge(point1, point2), |
285 | // origin_live_on_entry(origin1, point2), |
286 | // origin_live_on_entry(origin2, point2). |
287 | // |
288 | // Carry `origin1 <= origin2` from `point1` into `point2` if both `origin1` and |
289 | // `origin2` are live in `point2`. |
290 | subset_o1p.from_leapjoin( |
291 | &subset_o1p, |
292 | ( |
293 | cfg_edge_rel.extend_with(|&((_, point1), _)| point1), |
294 | origin_live_on_entry_rel.extend_with(|&((origin1, _), _)| origin1), |
295 | origin_live_on_entry_rel.extend_with(|&((_, _), origin2)| origin2), |
296 | ), |
297 | |&((origin1, _point1), origin2), &point2| ((origin1, point2), origin2), |
298 | ); |
299 | |
300 | // subset(origin1, origin3, point2) :- |
301 | // live_to_dying_regions(origin1, origin2, point1, point2), |
302 | // dying_can_reach_live(origin2, origin3, point1, point2). |
303 | subset_o1p.from_join( |
304 | &live_to_dying_regions_o2pq, |
305 | &dying_can_reach_live, |
306 | |&(_origin2, _point1, point2), &origin1, &origin3| ((origin1, point2), origin3), |
307 | ); |
308 | |
309 | // origin_contains_loan_on_entry(origin2, loan, point2) :- |
310 | // dying_region_requires(origin1, loan, point1, point2), |
311 | // dying_can_reach_live(origin1, origin2, point1, point2). |
312 | // |
313 | // Communicate a `origin1 contains loan` relation across |
314 | // an edge `point1 -> point2` where `origin1` is dead in `point2`; in |
315 | // that case, for each origin `origin2` live in `point2` |
316 | // where `origin1 <= origin2` in `point1`, we add `origin2 contains loan` |
317 | // to `point2`. |
318 | origin_contains_loan_on_entry_op.from_join( |
319 | &dying_region_requires, |
320 | &dying_can_reach_live, |
321 | |&(_origin1, _point1, point2), &loan, &origin2| ((origin2, point2), loan), |
322 | ); |
323 | |
324 | // origin_contains_loan_on_entry(origin, loan, point2) :- |
325 | // origin_contains_loan_on_entry(origin, loan, point1), |
326 | // !loan_killed_at(loan, point1), |
327 | // cfg_edge(point1, point2), |
328 | // origin_live_on_entry(origin, point2). |
329 | origin_contains_loan_on_entry_op.from_leapjoin( |
330 | &origin_contains_loan_on_entry_op, |
331 | ( |
332 | loan_killed_at.filter_anti(|&((_, point1), loan)| (loan, point1)), |
333 | cfg_edge_rel.extend_with(|&((_, point1), _)| point1), |
334 | origin_live_on_entry_rel.extend_with(|&((origin, _), _)| origin), |
335 | ), |
336 | |&((origin, _), loan), &point2| ((origin, point2), loan), |
337 | ); |
338 | |
339 | // dead_borrow_region_can_reach_root((origin, point), loan) :- |
340 | // loan_issued_at(origin, loan, point), |
341 | // !origin_live_on_entry(origin, point). |
342 | dead_borrow_region_can_reach_root.from_antijoin( |
343 | &loan_issued_at_op, |
344 | &origin_live_on_entry_rel, |
345 | |&(origin, point), &loan| ((origin, point), loan), |
346 | ); |
347 | |
348 | // dead_borrow_region_can_reach_dead((origin, point), loan) :- |
349 | // dead_borrow_region_can_reach_root((origin, point), loan). |
350 | dead_borrow_region_can_reach_dead |
351 | .from_map(&dead_borrow_region_can_reach_root, |&tuple| tuple); |
352 | |
353 | // dead_borrow_region_can_reach_dead((origin2, point), loan) :- |
354 | // dead_borrow_region_can_reach_dead(origin1, loan, point), |
355 | // subset(origin1, origin2, point), |
356 | // !origin_live_on_entry(origin2, point). |
357 | dead_borrow_region_can_reach_dead_1.from_join( |
358 | &dead_borrow_region_can_reach_dead, |
359 | &subset_o1p, |
360 | |&(_origin1, point), &loan, &origin2| ((origin2, point), loan), |
361 | ); |
362 | dead_borrow_region_can_reach_dead.from_antijoin( |
363 | &dead_borrow_region_can_reach_dead_1, |
364 | &origin_live_on_entry_rel, |
365 | |&(origin2, point), &loan| ((origin2, point), loan), |
366 | ); |
367 | |
368 | // loan_live_at(loan, point) :- |
369 | // origin_contains_loan_on_entry(origin, loan, point), |
370 | // origin_live_on_entry(origin, point). |
371 | loan_live_at.from_join( |
372 | &origin_contains_loan_on_entry_op, |
373 | &origin_live_on_entry_var, |
374 | |&(_origin, point), &loan, _| ((loan, point), ()), |
375 | ); |
376 | |
377 | // loan_live_at(loan, point) :- |
378 | // dead_borrow_region_can_reach_dead(origin1, loan, point), |
379 | // subset(origin1, origin2, point), |
380 | // origin_live_on_entry(origin2, point). |
381 | // |
382 | // NB: the datafrog code below uses |
383 | // `dead_borrow_region_can_reach_dead_1`, which is equal |
384 | // to `dead_borrow_region_can_reach_dead` and `subset` |
385 | // joined together. |
386 | loan_live_at.from_join( |
387 | &dead_borrow_region_can_reach_dead_1, |
388 | &origin_live_on_entry_var, |
389 | |&(_origin2, point), &loan, _| ((loan, point), ()), |
390 | ); |
391 | |
392 | // errors(loan, point) :- |
393 | // loan_invalidated_at(loan, point), |
394 | // loan_live_at(loan, point). |
395 | errors.from_join( |
396 | &loan_invalidated_at, |
397 | &loan_live_at, |
398 | |&(loan, point), _, _| (loan, point), |
399 | ); |
400 | |
401 | // subset_placeholder(Origin1, Origin2, Point) :- |
402 | // subset(Origin1, Origin2, Point), |
403 | // placeholder_origin(Origin1). |
404 | subset_placeholder.from_leapjoin( |
405 | &subset_o1p, |
406 | ( |
407 | placeholder_origin.extend_with(|&((origin1, _point), _origin2)| origin1), |
408 | // remove symmetries: |
409 | datafrog::ValueFilter::from(|&((origin1, _point), origin2), _| { |
410 | origin1 != origin2 |
411 | }), |
412 | ), |
413 | |&((origin1, point), origin2), _| (origin1, origin2, point), |
414 | ); |
415 | |
416 | // We compute the transitive closure of the placeholder origins, so we |
417 | // maintain the invariant from the rule above that `Origin1` is a placeholder origin. |
418 | // |
419 | // subset_placeholder(Origin1, Origin3, Point) :- |
420 | // subset_placeholder(Origin1, Origin2, Point), |
421 | // subset(Origin2, Origin3, Point). |
422 | subset_placeholder.from_join( |
423 | &subset_placeholder_o2p, |
424 | &subset_o1p, |
425 | |&(_origin2, point), &origin1, &origin3| (origin1, origin3, point), |
426 | ); |
427 | |
428 | // subset_error(Origin1, Origin2, Point) :- |
429 | // subset_placeholder(Origin1, Origin2, Point), |
430 | // placeholder_origin(Origin2), |
431 | // !known_placeholder_subset(Origin1, Origin2). |
432 | subset_errors.from_leapjoin( |
433 | &subset_placeholder, |
434 | ( |
435 | placeholder_origin.extend_with(|&(_origin1, origin2, _point)| origin2), |
436 | known_placeholder_subset |
437 | .filter_anti(|&(origin1, origin2, _point)| (origin1, origin2)), |
438 | // remove symmetries: |
439 | datafrog::ValueFilter::from(|&(origin1, origin2, _point), _| { |
440 | origin1 != origin2 |
441 | }), |
442 | ), |
443 | |&(origin1, origin2, point), _| (origin1, origin2, point), |
444 | ); |
445 | } |
446 | |
447 | if result.dump_enabled { |
448 | let subset_o1p = subset_o1p.complete(); |
449 | assert!( |
450 | subset_o1p |
451 | .iter() |
452 | .filter(|&((origin1, _), origin2)| origin1 == origin2) |
453 | .count() |
454 | == 0, |
455 | "unwanted subset symmetries" |
456 | ); |
457 | for &((origin1, location), origin2) in subset_o1p.iter() { |
458 | result |
459 | .subset |
460 | .entry(location) |
461 | .or_default() |
462 | .entry(origin1) |
463 | .or_default() |
464 | .insert(origin2); |
465 | } |
466 | |
467 | let origin_contains_loan_on_entry_op = origin_contains_loan_on_entry_op.complete(); |
468 | for &((origin, location), loan) in origin_contains_loan_on_entry_op.iter() { |
469 | result |
470 | .origin_contains_loan_at |
471 | .entry(location) |
472 | .or_default() |
473 | .entry(origin) |
474 | .or_default() |
475 | .insert(loan); |
476 | } |
477 | |
478 | let loan_live_at = loan_live_at.complete(); |
479 | for &((loan, location), _) in loan_live_at.iter() { |
480 | result.loan_live_at.entry(location).or_default().push(loan); |
481 | } |
482 | } |
483 | |
484 | (errors.complete(), subset_errors.complete()) |
485 | }; |
486 | |
487 | info!( |
488 | "analysis done: {} `errors` tuples, {} `subset_errors` tuples, {:?}" , |
489 | errors.len(), |
490 | subset_errors.len(), |
491 | timer.elapsed() |
492 | ); |
493 | |
494 | (errors, subset_errors) |
495 | } |
496 | |