1 | // Copyright 2018-2023 Developers of the Rand project. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
4 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
5 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
6 | // option. This file may not be copied, modified, or distributed |
7 | // except according to those terms. |
8 | |
9 | //! `IndexedRandom`, `IndexedMutRandom`, `SliceRandom` |
10 | |
11 | use super::increasing_uniform::IncreasingUniform; |
12 | use super::index; |
13 | #[cfg (feature = "alloc" )] |
14 | use crate::distr::uniform::{SampleBorrow, SampleUniform}; |
15 | #[cfg (feature = "alloc" )] |
16 | use crate::distr::weighted::{Error as WeightError, Weight}; |
17 | use crate::Rng; |
18 | use core::ops::{Index, IndexMut}; |
19 | |
20 | /// Extension trait on indexable lists, providing random sampling methods. |
21 | /// |
22 | /// This trait is implemented on `[T]` slice types. Other types supporting |
23 | /// [`std::ops::Index<usize>`] may implement this (only [`Self::len`] must be |
24 | /// specified). |
25 | pub trait IndexedRandom: Index<usize> { |
26 | /// The length |
27 | fn len(&self) -> usize; |
28 | |
29 | /// True when the length is zero |
30 | #[inline ] |
31 | fn is_empty(&self) -> bool { |
32 | self.len() == 0 |
33 | } |
34 | |
35 | /// Uniformly sample one element |
36 | /// |
37 | /// Returns a reference to one uniformly-sampled random element of |
38 | /// the slice, or `None` if the slice is empty. |
39 | /// |
40 | /// For slices, complexity is `O(1)`. |
41 | /// |
42 | /// # Example |
43 | /// |
44 | /// ``` |
45 | /// use rand::seq::IndexedRandom; |
46 | /// |
47 | /// let choices = [1, 2, 4, 8, 16, 32]; |
48 | /// let mut rng = rand::rng(); |
49 | /// println!("{:?}" , choices.choose(&mut rng)); |
50 | /// assert_eq!(choices[..0].choose(&mut rng), None); |
51 | /// ``` |
52 | fn choose<R>(&self, rng: &mut R) -> Option<&Self::Output> |
53 | where |
54 | R: Rng + ?Sized, |
55 | { |
56 | if self.is_empty() { |
57 | None |
58 | } else { |
59 | Some(&self[rng.random_range(..self.len())]) |
60 | } |
61 | } |
62 | |
63 | /// Uniformly sample `amount` distinct elements from self |
64 | /// |
65 | /// Chooses `amount` elements from the slice at random, without repetition, |
66 | /// and in random order. The returned iterator is appropriate both for |
67 | /// collection into a `Vec` and filling an existing buffer (see example). |
68 | /// |
69 | /// In case this API is not sufficiently flexible, use [`index::sample`]. |
70 | /// |
71 | /// For slices, complexity is the same as [`index::sample`]. |
72 | /// |
73 | /// # Example |
74 | /// ``` |
75 | /// use rand::seq::IndexedRandom; |
76 | /// |
77 | /// let mut rng = &mut rand::rng(); |
78 | /// let sample = "Hello, audience!" .as_bytes(); |
79 | /// |
80 | /// // collect the results into a vector: |
81 | /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect(); |
82 | /// |
83 | /// // store in a buffer: |
84 | /// let mut buf = [0u8; 5]; |
85 | /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) { |
86 | /// *slot = *b; |
87 | /// } |
88 | /// ``` |
89 | #[cfg (feature = "alloc" )] |
90 | fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Output> |
91 | where |
92 | Self::Output: Sized, |
93 | R: Rng + ?Sized, |
94 | { |
95 | let amount = core::cmp::min(amount, self.len()); |
96 | SliceChooseIter { |
97 | slice: self, |
98 | _phantom: Default::default(), |
99 | indices: index::sample(rng, self.len(), amount).into_iter(), |
100 | } |
101 | } |
102 | |
103 | /// Uniformly sample a fixed-size array of distinct elements from self |
104 | /// |
105 | /// Chooses `N` elements from the slice at random, without repetition, |
106 | /// and in random order. |
107 | /// |
108 | /// For slices, complexity is the same as [`index::sample_array`]. |
109 | /// |
110 | /// # Example |
111 | /// ``` |
112 | /// use rand::seq::IndexedRandom; |
113 | /// |
114 | /// let mut rng = &mut rand::rng(); |
115 | /// let sample = "Hello, audience!" .as_bytes(); |
116 | /// |
117 | /// let a: [u8; 3] = sample.choose_multiple_array(&mut rng).unwrap(); |
118 | /// ``` |
119 | fn choose_multiple_array<R, const N: usize>(&self, rng: &mut R) -> Option<[Self::Output; N]> |
120 | where |
121 | Self::Output: Clone + Sized, |
122 | R: Rng + ?Sized, |
123 | { |
124 | let indices = index::sample_array(rng, self.len())?; |
125 | Some(indices.map(|index| self[index].clone())) |
126 | } |
127 | |
128 | /// Biased sampling for one element |
129 | /// |
130 | /// Returns a reference to one element of the slice, sampled according |
131 | /// to the provided weights. Returns `None` only if the slice is empty. |
132 | /// |
133 | /// The specified function `weight` maps each item `x` to a relative |
134 | /// likelihood `weight(x)`. The probability of each item being selected is |
135 | /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. |
136 | /// |
137 | /// For slices of length `n`, complexity is `O(n)`. |
138 | /// For more information about the underlying algorithm, |
139 | /// see the [`WeightedIndex`] distribution. |
140 | /// |
141 | /// See also [`choose_weighted_mut`]. |
142 | /// |
143 | /// # Example |
144 | /// |
145 | /// ``` |
146 | /// use rand::prelude::*; |
147 | /// |
148 | /// let choices = [('a' , 2), ('b' , 1), ('c' , 1), ('d' , 0)]; |
149 | /// let mut rng = rand::rng(); |
150 | /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c', |
151 | /// // and 'd' will never be printed |
152 | /// println!("{:?}" , choices.choose_weighted(&mut rng, |item| item.1).unwrap().0); |
153 | /// ``` |
154 | /// [`choose`]: IndexedRandom::choose |
155 | /// [`choose_weighted_mut`]: IndexedMutRandom::choose_weighted_mut |
156 | /// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex |
157 | #[cfg (feature = "alloc" )] |
158 | fn choose_weighted<R, F, B, X>( |
159 | &self, |
160 | rng: &mut R, |
161 | weight: F, |
162 | ) -> Result<&Self::Output, WeightError> |
163 | where |
164 | R: Rng + ?Sized, |
165 | F: Fn(&Self::Output) -> B, |
166 | B: SampleBorrow<X>, |
167 | X: SampleUniform + Weight + PartialOrd<X>, |
168 | { |
169 | use crate::distr::{weighted::WeightedIndex, Distribution}; |
170 | let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?; |
171 | Ok(&self[distr.sample(rng)]) |
172 | } |
173 | |
174 | /// Biased sampling of `amount` distinct elements |
175 | /// |
176 | /// Similar to [`choose_multiple`], but where the likelihood of each |
177 | /// element's inclusion in the output may be specified. Zero-weighted |
178 | /// elements are never returned; the result may therefore contain fewer |
179 | /// elements than `amount` even when `self.len() >= amount`. The elements |
180 | /// are returned in an arbitrary, unspecified order. |
181 | /// |
182 | /// The specified function `weight` maps each item `x` to a relative |
183 | /// likelihood `weight(x)`. The probability of each item being selected is |
184 | /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. |
185 | /// |
186 | /// This implementation uses `O(length + amount)` space and `O(length)` time. |
187 | /// See [`index::sample_weighted`] for details. |
188 | /// |
189 | /// # Example |
190 | /// |
191 | /// ``` |
192 | /// use rand::prelude::*; |
193 | /// |
194 | /// let choices = [('a', 2), ('b', 1), ('c', 1)]; |
195 | /// let mut rng = rand::rng(); |
196 | /// // First Draw * Second Draw = total odds |
197 | /// // ----------------------- |
198 | /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order. |
199 | /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order. |
200 | /// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order. |
201 | /// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>()); |
202 | /// ``` |
203 | /// [`choose_multiple`]: IndexedRandom::choose_multiple |
204 | // Note: this is feature-gated on std due to usage of f64::powf. |
205 | // If necessary, we may use alloc+libm as an alternative (see PR #1089). |
206 | #[cfg (feature = "std" )] |
207 | fn choose_multiple_weighted<R, F, X>( |
208 | &self, |
209 | rng: &mut R, |
210 | amount: usize, |
211 | weight: F, |
212 | ) -> Result<SliceChooseIter<Self, Self::Output>, WeightError> |
213 | where |
214 | Self::Output: Sized, |
215 | R: Rng + ?Sized, |
216 | F: Fn(&Self::Output) -> X, |
217 | X: Into<f64>, |
218 | { |
219 | let amount = core::cmp::min(amount, self.len()); |
220 | Ok(SliceChooseIter { |
221 | slice: self, |
222 | _phantom: Default::default(), |
223 | indices: index::sample_weighted( |
224 | rng, |
225 | self.len(), |
226 | |idx| weight(&self[idx]).into(), |
227 | amount, |
228 | )? |
229 | .into_iter(), |
230 | }) |
231 | } |
232 | } |
233 | |
234 | /// Extension trait on indexable lists, providing random sampling methods. |
235 | /// |
236 | /// This trait is implemented automatically for every type implementing |
237 | /// [`IndexedRandom`] and [`std::ops::IndexMut<usize>`]. |
238 | pub trait IndexedMutRandom: IndexedRandom + IndexMut<usize> { |
239 | /// Uniformly sample one element (mut) |
240 | /// |
241 | /// Returns a mutable reference to one uniformly-sampled random element of |
242 | /// the slice, or `None` if the slice is empty. |
243 | /// |
244 | /// For slices, complexity is `O(1)`. |
245 | fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Output> |
246 | where |
247 | R: Rng + ?Sized, |
248 | { |
249 | if self.is_empty() { |
250 | None |
251 | } else { |
252 | let len = self.len(); |
253 | Some(&mut self[rng.random_range(..len)]) |
254 | } |
255 | } |
256 | |
257 | /// Biased sampling for one element (mut) |
258 | /// |
259 | /// Returns a mutable reference to one element of the slice, sampled according |
260 | /// to the provided weights. Returns `None` only if the slice is empty. |
261 | /// |
262 | /// The specified function `weight` maps each item `x` to a relative |
263 | /// likelihood `weight(x)`. The probability of each item being selected is |
264 | /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. |
265 | /// |
266 | /// For slices of length `n`, complexity is `O(n)`. |
267 | /// For more information about the underlying algorithm, |
268 | /// see the [`WeightedIndex`] distribution. |
269 | /// |
270 | /// See also [`choose_weighted`]. |
271 | /// |
272 | /// [`choose_mut`]: IndexedMutRandom::choose_mut |
273 | /// [`choose_weighted`]: IndexedRandom::choose_weighted |
274 | /// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex |
275 | #[cfg (feature = "alloc" )] |
276 | fn choose_weighted_mut<R, F, B, X>( |
277 | &mut self, |
278 | rng: &mut R, |
279 | weight: F, |
280 | ) -> Result<&mut Self::Output, WeightError> |
281 | where |
282 | R: Rng + ?Sized, |
283 | F: Fn(&Self::Output) -> B, |
284 | B: SampleBorrow<X>, |
285 | X: SampleUniform + Weight + PartialOrd<X>, |
286 | { |
287 | use crate::distr::{weighted::WeightedIndex, Distribution}; |
288 | let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?; |
289 | let index = distr.sample(rng); |
290 | Ok(&mut self[index]) |
291 | } |
292 | } |
293 | |
294 | /// Extension trait on slices, providing shuffling methods. |
295 | /// |
296 | /// This trait is implemented on all `[T]` slice types, providing several |
297 | /// methods for choosing and shuffling elements. You must `use` this trait: |
298 | /// |
299 | /// ``` |
300 | /// use rand::seq::SliceRandom; |
301 | /// |
302 | /// let mut rng = rand::rng(); |
303 | /// let mut bytes = "Hello, random!" .to_string().into_bytes(); |
304 | /// bytes.shuffle(&mut rng); |
305 | /// let str = String::from_utf8(bytes).unwrap(); |
306 | /// println!("{}" , str); |
307 | /// ``` |
308 | /// Example output (non-deterministic): |
309 | /// ```none |
310 | /// l,nmroHado !le |
311 | /// ``` |
312 | pub trait SliceRandom: IndexedMutRandom { |
313 | /// Shuffle a mutable slice in place. |
314 | /// |
315 | /// For slices of length `n`, complexity is `O(n)`. |
316 | /// The resulting permutation is picked uniformly from the set of all possible permutations. |
317 | /// |
318 | /// # Example |
319 | /// |
320 | /// ``` |
321 | /// use rand::seq::SliceRandom; |
322 | /// |
323 | /// let mut rng = rand::rng(); |
324 | /// let mut y = [1, 2, 3, 4, 5]; |
325 | /// println!("Unshuffled: {:?}" , y); |
326 | /// y.shuffle(&mut rng); |
327 | /// println!("Shuffled: {:?}" , y); |
328 | /// ``` |
329 | fn shuffle<R>(&mut self, rng: &mut R) |
330 | where |
331 | R: Rng + ?Sized; |
332 | |
333 | /// Shuffle a slice in place, but exit early. |
334 | /// |
335 | /// Returns two mutable slices from the source slice. The first contains |
336 | /// `amount` elements randomly permuted. The second has the remaining |
337 | /// elements that are not fully shuffled. |
338 | /// |
339 | /// This is an efficient method to select `amount` elements at random from |
340 | /// the slice, provided the slice may be mutated. |
341 | /// |
342 | /// If you only need to choose elements randomly and `amount > self.len()/2` |
343 | /// then you may improve performance by taking |
344 | /// `amount = self.len() - amount` and using only the second slice. |
345 | /// |
346 | /// If `amount` is greater than the number of elements in the slice, this |
347 | /// will perform a full shuffle. |
348 | /// |
349 | /// For slices, complexity is `O(m)` where `m = amount`. |
350 | fn partial_shuffle<R>( |
351 | &mut self, |
352 | rng: &mut R, |
353 | amount: usize, |
354 | ) -> (&mut [Self::Output], &mut [Self::Output]) |
355 | where |
356 | Self::Output: Sized, |
357 | R: Rng + ?Sized; |
358 | } |
359 | |
360 | impl<T> IndexedRandom for [T] { |
361 | fn len(&self) -> usize { |
362 | self.len() |
363 | } |
364 | } |
365 | |
366 | impl<IR: IndexedRandom + IndexMut<usize> + ?Sized> IndexedMutRandom for IR {} |
367 | |
368 | impl<T> SliceRandom for [T] { |
369 | fn shuffle<R>(&mut self, rng: &mut R) |
370 | where |
371 | R: Rng + ?Sized, |
372 | { |
373 | if self.len() <= 1 { |
374 | // There is no need to shuffle an empty or single element slice |
375 | return; |
376 | } |
377 | self.partial_shuffle(rng, self.len()); |
378 | } |
379 | |
380 | fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize) -> (&mut [T], &mut [T]) |
381 | where |
382 | R: Rng + ?Sized, |
383 | { |
384 | let m = self.len().saturating_sub(amount); |
385 | |
386 | // The algorithm below is based on Durstenfeld's algorithm for the |
387 | // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm) |
388 | // for an unbiased permutation. |
389 | // It ensures that the last `amount` elements of the slice |
390 | // are randomly selected from the whole slice. |
391 | |
392 | // `IncreasingUniform::next_index()` is faster than `Rng::random_range` |
393 | // but only works for 32 bit integers |
394 | // So we must use the slow method if the slice is longer than that. |
395 | if self.len() < (u32::MAX as usize) { |
396 | let mut chooser = IncreasingUniform::new(rng, m as u32); |
397 | for i in m..self.len() { |
398 | let index = chooser.next_index(); |
399 | self.swap(i, index); |
400 | } |
401 | } else { |
402 | for i in m..self.len() { |
403 | let index = rng.random_range(..i + 1); |
404 | self.swap(i, index); |
405 | } |
406 | } |
407 | let r = self.split_at_mut(m); |
408 | (r.1, r.0) |
409 | } |
410 | } |
411 | |
412 | /// An iterator over multiple slice elements. |
413 | /// |
414 | /// This struct is created by |
415 | /// [`IndexedRandom::choose_multiple`](trait.IndexedRandom.html#tymethod.choose_multiple). |
416 | #[cfg (feature = "alloc" )] |
417 | #[derive(Debug)] |
418 | pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> { |
419 | slice: &'a S, |
420 | _phantom: core::marker::PhantomData<T>, |
421 | indices: index::IndexVecIntoIter, |
422 | } |
423 | |
424 | #[cfg (feature = "alloc" )] |
425 | impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> { |
426 | type Item = &'a T; |
427 | |
428 | fn next(&mut self) -> Option<Self::Item> { |
429 | // TODO: investigate using SliceIndex::get_unchecked when stable |
430 | self.indices.next().map(|i| &self.slice[i]) |
431 | } |
432 | |
433 | fn size_hint(&self) -> (usize, Option<usize>) { |
434 | (self.indices.len(), Some(self.indices.len())) |
435 | } |
436 | } |
437 | |
438 | #[cfg (feature = "alloc" )] |
439 | impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator |
440 | for SliceChooseIter<'a, S, T> |
441 | { |
442 | fn len(&self) -> usize { |
443 | self.indices.len() |
444 | } |
445 | } |
446 | |
447 | #[cfg (test)] |
448 | mod test { |
449 | use super::*; |
450 | #[cfg (feature = "alloc" )] |
451 | use alloc::vec::Vec; |
452 | |
453 | #[test] |
454 | fn test_slice_choose() { |
455 | let mut r = crate::test::rng(107); |
456 | let chars = [ |
457 | 'a' , 'b' , 'c' , 'd' , 'e' , 'f' , 'g' , 'h' , 'i' , 'j' , 'k' , 'l' , 'm' , 'n' , |
458 | ]; |
459 | let mut chosen = [0i32; 14]; |
460 | // The below all use a binomial distribution with n=1000, p=1/14. |
461 | // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5 |
462 | for _ in 0..1000 { |
463 | let picked = *chars.choose(&mut r).unwrap(); |
464 | chosen[(picked as usize) - ('a' as usize)] += 1; |
465 | } |
466 | for count in chosen.iter() { |
467 | assert!(40 < *count && *count < 106); |
468 | } |
469 | |
470 | chosen.iter_mut().for_each(|x| *x = 0); |
471 | for _ in 0..1000 { |
472 | *chosen.choose_mut(&mut r).unwrap() += 1; |
473 | } |
474 | for count in chosen.iter() { |
475 | assert!(40 < *count && *count < 106); |
476 | } |
477 | |
478 | let mut v: [isize; 0] = []; |
479 | assert_eq!(v.choose(&mut r), None); |
480 | assert_eq!(v.choose_mut(&mut r), None); |
481 | } |
482 | |
483 | #[test] |
484 | fn value_stability_slice() { |
485 | let mut r = crate::test::rng(413); |
486 | let chars = [ |
487 | 'a' , 'b' , 'c' , 'd' , 'e' , 'f' , 'g' , 'h' , 'i' , 'j' , 'k' , 'l' , 'm' , 'n' , |
488 | ]; |
489 | let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; |
490 | |
491 | assert_eq!(chars.choose(&mut r), Some(&'l' )); |
492 | assert_eq!(nums.choose_mut(&mut r), Some(&mut 3)); |
493 | |
494 | assert_eq!( |
495 | &chars.choose_multiple_array(&mut r), |
496 | &Some(['f' , 'i' , 'd' , 'b' , 'c' , 'm' , 'j' , 'k' ]) |
497 | ); |
498 | |
499 | #[cfg (feature = "alloc" )] |
500 | assert_eq!( |
501 | &chars |
502 | .choose_multiple(&mut r, 8) |
503 | .cloned() |
504 | .collect::<Vec<char>>(), |
505 | &['h' , 'm' , 'd' , 'b' , 'c' , 'e' , 'n' , 'f' ] |
506 | ); |
507 | |
508 | #[cfg (feature = "alloc" )] |
509 | assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'i' )); |
510 | #[cfg (feature = "alloc" )] |
511 | assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 2)); |
512 | |
513 | let mut r = crate::test::rng(414); |
514 | nums.shuffle(&mut r); |
515 | assert_eq!(nums, [5, 11, 0, 8, 7, 12, 6, 4, 9, 3, 1, 2, 10]); |
516 | nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; |
517 | let res = nums.partial_shuffle(&mut r, 6); |
518 | assert_eq!(res.0, &mut [7, 12, 6, 8, 1, 9]); |
519 | assert_eq!(res.1, &mut [0, 11, 2, 3, 4, 5, 10]); |
520 | } |
521 | |
522 | #[test] |
523 | #[cfg_attr (miri, ignore)] // Miri is too slow |
524 | fn test_shuffle() { |
525 | let mut r = crate::test::rng(108); |
526 | let empty: &mut [isize] = &mut []; |
527 | empty.shuffle(&mut r); |
528 | let mut one = [1]; |
529 | one.shuffle(&mut r); |
530 | let b: &[_] = &[1]; |
531 | assert_eq!(one, b); |
532 | |
533 | let mut two = [1, 2]; |
534 | two.shuffle(&mut r); |
535 | assert!(two == [1, 2] || two == [2, 1]); |
536 | |
537 | fn move_last(slice: &mut [usize], pos: usize) { |
538 | // use slice[pos..].rotate_left(1); once we can use that |
539 | let last_val = slice[pos]; |
540 | for i in pos..slice.len() - 1 { |
541 | slice[i] = slice[i + 1]; |
542 | } |
543 | *slice.last_mut().unwrap() = last_val; |
544 | } |
545 | let mut counts = [0i32; 24]; |
546 | for _ in 0..10000 { |
547 | let mut arr: [usize; 4] = [0, 1, 2, 3]; |
548 | arr.shuffle(&mut r); |
549 | let mut permutation = 0usize; |
550 | let mut pos_value = counts.len(); |
551 | for i in 0..4 { |
552 | pos_value /= 4 - i; |
553 | let pos = arr.iter().position(|&x| x == i).unwrap(); |
554 | assert!(pos < (4 - i)); |
555 | permutation += pos * pos_value; |
556 | move_last(&mut arr, pos); |
557 | assert_eq!(arr[3], i); |
558 | } |
559 | for (i, &a) in arr.iter().enumerate() { |
560 | assert_eq!(a, i); |
561 | } |
562 | counts[permutation] += 1; |
563 | } |
564 | for count in counts.iter() { |
565 | // Binomial(10000, 1/24) with average 416.667 |
566 | // Octave: binocdf(n, 10000, 1/24) |
567 | // 99.9% chance samples lie within this range: |
568 | assert!(352 <= *count && *count <= 483, "count: {}" , count); |
569 | } |
570 | } |
571 | |
572 | #[test] |
573 | fn test_partial_shuffle() { |
574 | let mut r = crate::test::rng(118); |
575 | |
576 | let mut empty: [u32; 0] = []; |
577 | let res = empty.partial_shuffle(&mut r, 10); |
578 | assert_eq!((res.0.len(), res.1.len()), (0, 0)); |
579 | |
580 | let mut v = [1, 2, 3, 4, 5]; |
581 | let res = v.partial_shuffle(&mut r, 2); |
582 | assert_eq!((res.0.len(), res.1.len()), (2, 3)); |
583 | assert!(res.0[0] != res.0[1]); |
584 | // First elements are only modified if selected, so at least one isn't modified: |
585 | assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3); |
586 | } |
587 | |
588 | #[test] |
589 | #[cfg (feature = "alloc" )] |
590 | #[cfg_attr (miri, ignore)] // Miri is too slow |
591 | fn test_weighted() { |
592 | let mut r = crate::test::rng(406); |
593 | const N_REPS: u32 = 3000; |
594 | let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; |
595 | let total_weight = weights.iter().sum::<u32>() as f32; |
596 | |
597 | let verify = |result: [i32; 14]| { |
598 | for (i, count) in result.iter().enumerate() { |
599 | let exp = (weights[i] * N_REPS) as f32 / total_weight; |
600 | let mut err = (*count as f32 - exp).abs(); |
601 | if err != 0.0 { |
602 | err /= exp; |
603 | } |
604 | assert!(err <= 0.25); |
605 | } |
606 | }; |
607 | |
608 | // choose_weighted |
609 | fn get_weight<T>(item: &(u32, T)) -> u32 { |
610 | item.0 |
611 | } |
612 | let mut chosen = [0i32; 14]; |
613 | let mut items = [(0u32, 0usize); 14]; // (weight, index) |
614 | for (i, item) in items.iter_mut().enumerate() { |
615 | *item = (weights[i], i); |
616 | } |
617 | for _ in 0..N_REPS { |
618 | let item = items.choose_weighted(&mut r, get_weight).unwrap(); |
619 | chosen[item.1] += 1; |
620 | } |
621 | verify(chosen); |
622 | |
623 | // choose_weighted_mut |
624 | let mut items = [(0u32, 0i32); 14]; // (weight, count) |
625 | for (i, item) in items.iter_mut().enumerate() { |
626 | *item = (weights[i], 0); |
627 | } |
628 | for _ in 0..N_REPS { |
629 | items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1; |
630 | } |
631 | for (ch, item) in chosen.iter_mut().zip(items.iter()) { |
632 | *ch = item.1; |
633 | } |
634 | verify(chosen); |
635 | |
636 | // Check error cases |
637 | let empty_slice = &mut [10][0..0]; |
638 | assert_eq!( |
639 | empty_slice.choose_weighted(&mut r, |_| 1), |
640 | Err(WeightError::InvalidInput) |
641 | ); |
642 | assert_eq!( |
643 | empty_slice.choose_weighted_mut(&mut r, |_| 1), |
644 | Err(WeightError::InvalidInput) |
645 | ); |
646 | assert_eq!( |
647 | ['x' ].choose_weighted_mut(&mut r, |_| 0), |
648 | Err(WeightError::InsufficientNonZero) |
649 | ); |
650 | assert_eq!( |
651 | [0, -1].choose_weighted_mut(&mut r, |x| *x), |
652 | Err(WeightError::InvalidWeight) |
653 | ); |
654 | assert_eq!( |
655 | [-1, 0].choose_weighted_mut(&mut r, |x| *x), |
656 | Err(WeightError::InvalidWeight) |
657 | ); |
658 | } |
659 | |
660 | #[test] |
661 | #[cfg (feature = "std" )] |
662 | fn test_multiple_weighted_edge_cases() { |
663 | use super::*; |
664 | |
665 | let mut rng = crate::test::rng(413); |
666 | |
667 | // Case 1: One of the weights is 0 |
668 | let choices = [('a' , 2), ('b' , 1), ('c' , 0)]; |
669 | for _ in 0..100 { |
670 | let result = choices |
671 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
672 | .unwrap() |
673 | .collect::<Vec<_>>(); |
674 | |
675 | assert_eq!(result.len(), 2); |
676 | assert!(!result.iter().any(|val| val.0 == 'c' )); |
677 | } |
678 | |
679 | // Case 2: All of the weights are 0 |
680 | let choices = [('a' , 0), ('b' , 0), ('c' , 0)]; |
681 | let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
682 | assert_eq!(r.unwrap().len(), 0); |
683 | |
684 | // Case 3: Negative weights |
685 | let choices = [('a' , -1), ('b' , 1), ('c' , 1)]; |
686 | let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
687 | assert_eq!(r.unwrap_err(), WeightError::InvalidWeight); |
688 | |
689 | // Case 4: Empty list |
690 | let choices = []; |
691 | let r = choices.choose_multiple_weighted(&mut rng, 0, |_: &()| 0); |
692 | assert_eq!(r.unwrap().count(), 0); |
693 | |
694 | // Case 5: NaN weights |
695 | let choices = [('a' , f64::NAN), ('b' , 1.0), ('c' , 1.0)]; |
696 | let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
697 | assert_eq!(r.unwrap_err(), WeightError::InvalidWeight); |
698 | |
699 | // Case 6: +infinity weights |
700 | let choices = [('a' , f64::INFINITY), ('b' , 1.0), ('c' , 1.0)]; |
701 | for _ in 0..100 { |
702 | let result = choices |
703 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
704 | .unwrap() |
705 | .collect::<Vec<_>>(); |
706 | assert_eq!(result.len(), 2); |
707 | assert!(result.iter().any(|val| val.0 == 'a' )); |
708 | } |
709 | |
710 | // Case 7: -infinity weights |
711 | let choices = [('a' , f64::NEG_INFINITY), ('b' , 1.0), ('c' , 1.0)]; |
712 | let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
713 | assert_eq!(r.unwrap_err(), WeightError::InvalidWeight); |
714 | |
715 | // Case 8: -0 weights |
716 | let choices = [('a' , -0.0), ('b' , 1.0), ('c' , 1.0)]; |
717 | let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
718 | assert!(r.is_ok()); |
719 | } |
720 | |
721 | #[test] |
722 | #[cfg (feature = "std" )] |
723 | fn test_multiple_weighted_distributions() { |
724 | use super::*; |
725 | |
726 | // The theoretical probabilities of the different outcomes are: |
727 | // AB: 0.5 * 0.667 = 0.3333 |
728 | // AC: 0.5 * 0.333 = 0.1667 |
729 | // BA: 0.333 * 0.75 = 0.25 |
730 | // BC: 0.333 * 0.25 = 0.0833 |
731 | // CA: 0.167 * 0.6 = 0.1 |
732 | // CB: 0.167 * 0.4 = 0.0667 |
733 | let choices = [('a' , 3), ('b' , 2), ('c' , 1)]; |
734 | let mut rng = crate::test::rng(414); |
735 | |
736 | let mut results = [0i32; 3]; |
737 | let expected_results = [5833, 2667, 1500]; |
738 | for _ in 0..10000 { |
739 | let result = choices |
740 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
741 | .unwrap() |
742 | .collect::<Vec<_>>(); |
743 | |
744 | assert_eq!(result.len(), 2); |
745 | |
746 | match (result[0].0, result[1].0) { |
747 | ('a' , 'b' ) | ('b' , 'a' ) => { |
748 | results[0] += 1; |
749 | } |
750 | ('a' , 'c' ) | ('c' , 'a' ) => { |
751 | results[1] += 1; |
752 | } |
753 | ('b' , 'c' ) | ('c' , 'b' ) => { |
754 | results[2] += 1; |
755 | } |
756 | (_, _) => panic!("unexpected result" ), |
757 | } |
758 | } |
759 | |
760 | let mut diffs = results |
761 | .iter() |
762 | .zip(&expected_results) |
763 | .map(|(a, b)| (a - b).abs()); |
764 | assert!(!diffs.any(|deviation| deviation > 100)); |
765 | } |
766 | } |
767 | |