1 | //! Traits for writing parallel programs using an iterator-style interface |
2 | //! |
3 | //! You will rarely need to interact with this module directly unless you have |
4 | //! need to name one of the iterator types. |
5 | //! |
6 | //! Parallel iterators make it easy to write iterator-like chains that |
7 | //! execute in parallel: typically all you have to do is convert the |
8 | //! first `.iter()` (or `iter_mut()`, `into_iter()`, etc) method into |
9 | //! `par_iter()` (or `par_iter_mut()`, `into_par_iter()`, etc). For |
10 | //! example, to compute the sum of the squares of a sequence of |
11 | //! integers, one might write: |
12 | //! |
13 | //! ```rust |
14 | //! use rayon::prelude::*; |
15 | //! fn sum_of_squares(input: &[i32]) -> i32 { |
16 | //! input.par_iter() |
17 | //! .map(|i| i * i) |
18 | //! .sum() |
19 | //! } |
20 | //! ``` |
21 | //! |
22 | //! Or, to increment all the integers in a slice, you could write: |
23 | //! |
24 | //! ```rust |
25 | //! use rayon::prelude::*; |
26 | //! fn increment_all(input: &mut [i32]) { |
27 | //! input.par_iter_mut() |
28 | //! .for_each(|p| *p += 1); |
29 | //! } |
30 | //! ``` |
31 | //! |
32 | //! To use parallel iterators, first import the traits by adding |
33 | //! something like `use rayon::prelude::*` to your module. You can |
34 | //! then call `par_iter`, `par_iter_mut`, or `into_par_iter` to get a |
35 | //! parallel iterator. Like a [regular iterator][], parallel |
36 | //! iterators work by first constructing a computation and then |
37 | //! executing it. |
38 | //! |
39 | //! In addition to `par_iter()` and friends, some types offer other |
40 | //! ways to create (or consume) parallel iterators: |
41 | //! |
42 | //! - Slices (`&[T]`, `&mut [T]`) offer methods like `par_split` and |
43 | //! `par_windows`, as well as various parallel sorting |
44 | //! operations. See [the `ParallelSlice` trait] for the full list. |
45 | //! - Strings (`&str`) offer methods like `par_split` and `par_lines`. |
46 | //! See [the `ParallelString` trait] for the full list. |
47 | //! - Various collections offer [`par_extend`], which grows a |
48 | //! collection given a parallel iterator. (If you don't have a |
49 | //! collection to extend, you can use [`collect()`] to create a new |
50 | //! one from scratch.) |
51 | //! |
52 | //! [the `ParallelSlice` trait]: ../slice/trait.ParallelSlice.html |
53 | //! [the `ParallelString` trait]: ../str/trait.ParallelString.html |
54 | //! [`par_extend`]: trait.ParallelExtend.html |
55 | //! [`collect()`]: trait.ParallelIterator.html#method.collect |
56 | //! |
57 | //! To see the full range of methods available on parallel iterators, |
58 | //! check out the [`ParallelIterator`] and [`IndexedParallelIterator`] |
59 | //! traits. |
60 | //! |
61 | //! If you'd like to build a custom parallel iterator, or to write your own |
62 | //! combinator, then check out the [split] function and the [plumbing] module. |
63 | //! |
64 | //! [regular iterator]: https://doc.rust-lang.org/std/iter/trait.Iterator.html |
65 | //! [`ParallelIterator`]: trait.ParallelIterator.html |
66 | //! [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html |
67 | //! [split]: fn.split.html |
68 | //! [plumbing]: plumbing/index.html |
69 | //! |
70 | //! Note: Several of the `ParallelIterator` methods rely on a `Try` trait which |
71 | //! has been deliberately obscured from the public API. This trait is intended |
72 | //! to mirror the unstable `std::ops::Try` with implementations for `Option` and |
73 | //! `Result`, where `Some`/`Ok` values will let those iterators continue, but |
74 | //! `None`/`Err` values will exit early. |
75 | //! |
76 | //! A note about object safety: It is currently _not_ possible to wrap |
77 | //! a `ParallelIterator` (or any trait that depends on it) using a |
78 | //! `Box<dyn ParallelIterator>` or other kind of dynamic allocation, |
79 | //! because `ParallelIterator` is **not object-safe**. |
80 | //! (This keeps the implementation simpler and allows extra optimizations.) |
81 | |
82 | use self::plumbing::*; |
83 | use self::private::Try; |
84 | pub use either::Either; |
85 | use std::cmp::{self, Ordering}; |
86 | use std::iter::{Product, Sum}; |
87 | use std::ops::{Fn, RangeBounds}; |
88 | |
89 | pub mod plumbing; |
90 | |
91 | #[cfg (test)] |
92 | mod test; |
93 | |
94 | // There is a method to the madness here: |
95 | // |
96 | // - These modules are private but expose certain types to the end-user |
97 | // (e.g., `enumerate::Enumerate`) -- specifically, the types that appear in the |
98 | // public API surface of the `ParallelIterator` traits. |
99 | // - In **this** module, those public types are always used unprefixed, which forces |
100 | // us to add a `pub use` and helps identify if we missed anything. |
101 | // - In contrast, items that appear **only** in the body of a method, |
102 | // e.g. `find::find()`, are always used **prefixed**, so that they |
103 | // can be readily distinguished. |
104 | |
105 | mod chain; |
106 | mod chunks; |
107 | mod cloned; |
108 | mod collect; |
109 | mod copied; |
110 | mod empty; |
111 | mod enumerate; |
112 | mod extend; |
113 | mod filter; |
114 | mod filter_map; |
115 | mod find; |
116 | mod find_first_last; |
117 | mod flat_map; |
118 | mod flat_map_iter; |
119 | mod flatten; |
120 | mod flatten_iter; |
121 | mod fold; |
122 | mod fold_chunks; |
123 | mod fold_chunks_with; |
124 | mod for_each; |
125 | mod from_par_iter; |
126 | mod inspect; |
127 | mod interleave; |
128 | mod interleave_shortest; |
129 | mod intersperse; |
130 | mod len; |
131 | mod map; |
132 | mod map_with; |
133 | mod multizip; |
134 | mod noop; |
135 | mod once; |
136 | mod panic_fuse; |
137 | mod par_bridge; |
138 | mod positions; |
139 | mod product; |
140 | mod reduce; |
141 | mod repeat; |
142 | mod rev; |
143 | mod skip; |
144 | mod skip_any; |
145 | mod skip_any_while; |
146 | mod splitter; |
147 | mod step_by; |
148 | mod sum; |
149 | mod take; |
150 | mod take_any; |
151 | mod take_any_while; |
152 | mod try_fold; |
153 | mod try_reduce; |
154 | mod try_reduce_with; |
155 | mod unzip; |
156 | mod update; |
157 | mod while_some; |
158 | mod zip; |
159 | mod zip_eq; |
160 | |
161 | pub use self::{ |
162 | chain::Chain, |
163 | chunks::Chunks, |
164 | cloned::Cloned, |
165 | copied::Copied, |
166 | empty::{empty, Empty}, |
167 | enumerate::Enumerate, |
168 | filter::Filter, |
169 | filter_map::FilterMap, |
170 | flat_map::FlatMap, |
171 | flat_map_iter::FlatMapIter, |
172 | flatten::Flatten, |
173 | flatten_iter::FlattenIter, |
174 | fold::{Fold, FoldWith}, |
175 | fold_chunks::FoldChunks, |
176 | fold_chunks_with::FoldChunksWith, |
177 | inspect::Inspect, |
178 | interleave::Interleave, |
179 | interleave_shortest::InterleaveShortest, |
180 | intersperse::Intersperse, |
181 | len::{MaxLen, MinLen}, |
182 | map::Map, |
183 | map_with::{MapInit, MapWith}, |
184 | multizip::MultiZip, |
185 | once::{once, Once}, |
186 | panic_fuse::PanicFuse, |
187 | par_bridge::{IterBridge, ParallelBridge}, |
188 | positions::Positions, |
189 | repeat::{repeat, repeatn, Repeat, RepeatN}, |
190 | rev::Rev, |
191 | skip::Skip, |
192 | skip_any::SkipAny, |
193 | skip_any_while::SkipAnyWhile, |
194 | splitter::{split, Split}, |
195 | step_by::StepBy, |
196 | take::Take, |
197 | take_any::TakeAny, |
198 | take_any_while::TakeAnyWhile, |
199 | try_fold::{TryFold, TryFoldWith}, |
200 | update::Update, |
201 | while_some::WhileSome, |
202 | zip::Zip, |
203 | zip_eq::ZipEq, |
204 | }; |
205 | |
206 | /// `IntoParallelIterator` implements the conversion to a [`ParallelIterator`]. |
207 | /// |
208 | /// By implementing `IntoParallelIterator` for a type, you define how it will |
209 | /// transformed into an iterator. This is a parallel version of the standard |
210 | /// library's [`std::iter::IntoIterator`] trait. |
211 | /// |
212 | /// [`ParallelIterator`]: trait.ParallelIterator.html |
213 | /// [`std::iter::IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html |
214 | pub trait IntoParallelIterator { |
215 | /// The parallel iterator type that will be created. |
216 | type Iter: ParallelIterator<Item = Self::Item>; |
217 | |
218 | /// The type of item that the parallel iterator will produce. |
219 | type Item: Send; |
220 | |
221 | /// Converts `self` into a parallel iterator. |
222 | /// |
223 | /// # Examples |
224 | /// |
225 | /// ``` |
226 | /// use rayon::prelude::*; |
227 | /// |
228 | /// println!("counting in parallel:" ); |
229 | /// (0..100).into_par_iter() |
230 | /// .for_each(|i| println!("{}" , i)); |
231 | /// ``` |
232 | /// |
233 | /// This conversion is often implicit for arguments to methods like [`zip`]. |
234 | /// |
235 | /// ``` |
236 | /// use rayon::prelude::*; |
237 | /// |
238 | /// let v: Vec<_> = (0..5).into_par_iter().zip(5..10).collect(); |
239 | /// assert_eq!(v, [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]); |
240 | /// ``` |
241 | /// |
242 | /// [`zip`]: trait.IndexedParallelIterator.html#method.zip |
243 | fn into_par_iter(self) -> Self::Iter; |
244 | } |
245 | |
246 | /// `IntoParallelRefIterator` implements the conversion to a |
247 | /// [`ParallelIterator`], providing shared references to the data. |
248 | /// |
249 | /// This is a parallel version of the `iter()` method |
250 | /// defined by various collections. |
251 | /// |
252 | /// This trait is automatically implemented |
253 | /// `for I where &I: IntoParallelIterator`. In most cases, users |
254 | /// will want to implement [`IntoParallelIterator`] rather than implement |
255 | /// this trait directly. |
256 | /// |
257 | /// [`ParallelIterator`]: trait.ParallelIterator.html |
258 | /// [`IntoParallelIterator`]: trait.IntoParallelIterator.html |
259 | pub trait IntoParallelRefIterator<'data> { |
260 | /// The type of the parallel iterator that will be returned. |
261 | type Iter: ParallelIterator<Item = Self::Item>; |
262 | |
263 | /// The type of item that the parallel iterator will produce. |
264 | /// This will typically be an `&'data T` reference type. |
265 | type Item: Send + 'data; |
266 | |
267 | /// Converts `self` into a parallel iterator. |
268 | /// |
269 | /// # Examples |
270 | /// |
271 | /// ``` |
272 | /// use rayon::prelude::*; |
273 | /// |
274 | /// let v: Vec<_> = (0..100).collect(); |
275 | /// assert_eq!(v.par_iter().sum::<i32>(), 100 * 99 / 2); |
276 | /// |
277 | /// // `v.par_iter()` is shorthand for `(&v).into_par_iter()`, |
278 | /// // producing the exact same references. |
279 | /// assert!(v.par_iter().zip(&v) |
280 | /// .all(|(a, b)| std::ptr::eq(a, b))); |
281 | /// ``` |
282 | fn par_iter(&'data self) -> Self::Iter; |
283 | } |
284 | |
285 | impl<'data, I: 'data + ?Sized> IntoParallelRefIterator<'data> for I |
286 | where |
287 | &'data I: IntoParallelIterator, |
288 | { |
289 | type Iter = <&'data I as IntoParallelIterator>::Iter; |
290 | type Item = <&'data I as IntoParallelIterator>::Item; |
291 | |
292 | fn par_iter(&'data self) -> Self::Iter { |
293 | self.into_par_iter() |
294 | } |
295 | } |
296 | |
297 | /// `IntoParallelRefMutIterator` implements the conversion to a |
298 | /// [`ParallelIterator`], providing mutable references to the data. |
299 | /// |
300 | /// This is a parallel version of the `iter_mut()` method |
301 | /// defined by various collections. |
302 | /// |
303 | /// This trait is automatically implemented |
304 | /// `for I where &mut I: IntoParallelIterator`. In most cases, users |
305 | /// will want to implement [`IntoParallelIterator`] rather than implement |
306 | /// this trait directly. |
307 | /// |
308 | /// [`ParallelIterator`]: trait.ParallelIterator.html |
309 | /// [`IntoParallelIterator`]: trait.IntoParallelIterator.html |
310 | pub trait IntoParallelRefMutIterator<'data> { |
311 | /// The type of iterator that will be created. |
312 | type Iter: ParallelIterator<Item = Self::Item>; |
313 | |
314 | /// The type of item that will be produced; this is typically an |
315 | /// `&'data mut T` reference. |
316 | type Item: Send + 'data; |
317 | |
318 | /// Creates the parallel iterator from `self`. |
319 | /// |
320 | /// # Examples |
321 | /// |
322 | /// ``` |
323 | /// use rayon::prelude::*; |
324 | /// |
325 | /// let mut v = vec![0usize; 5]; |
326 | /// v.par_iter_mut().enumerate().for_each(|(i, x)| *x = i); |
327 | /// assert_eq!(v, [0, 1, 2, 3, 4]); |
328 | /// ``` |
329 | fn par_iter_mut(&'data mut self) -> Self::Iter; |
330 | } |
331 | |
332 | impl<'data, I: 'data + ?Sized> IntoParallelRefMutIterator<'data> for I |
333 | where |
334 | &'data mut I: IntoParallelIterator, |
335 | { |
336 | type Iter = <&'data mut I as IntoParallelIterator>::Iter; |
337 | type Item = <&'data mut I as IntoParallelIterator>::Item; |
338 | |
339 | fn par_iter_mut(&'data mut self) -> Self::Iter { |
340 | self.into_par_iter() |
341 | } |
342 | } |
343 | |
344 | /// Parallel version of the standard iterator trait. |
345 | /// |
346 | /// The combinators on this trait are available on **all** parallel |
347 | /// iterators. Additional methods can be found on the |
348 | /// [`IndexedParallelIterator`] trait: those methods are only |
349 | /// available for parallel iterators where the number of items is |
350 | /// known in advance (so, e.g., after invoking `filter`, those methods |
351 | /// become unavailable). |
352 | /// |
353 | /// For examples of using parallel iterators, see [the docs on the |
354 | /// `iter` module][iter]. |
355 | /// |
356 | /// [iter]: index.html |
357 | /// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html |
358 | pub trait ParallelIterator: Sized + Send { |
359 | /// The type of item that this parallel iterator produces. |
360 | /// For example, if you use the [`for_each`] method, this is the type of |
361 | /// item that your closure will be invoked with. |
362 | /// |
363 | /// [`for_each`]: #method.for_each |
364 | type Item: Send; |
365 | |
366 | /// Executes `OP` on each item produced by the iterator, in parallel. |
367 | /// |
368 | /// # Examples |
369 | /// |
370 | /// ``` |
371 | /// use rayon::prelude::*; |
372 | /// |
373 | /// (0..100).into_par_iter().for_each(|x| println!("{:?}" , x)); |
374 | /// ``` |
375 | fn for_each<OP>(self, op: OP) |
376 | where |
377 | OP: Fn(Self::Item) + Sync + Send, |
378 | { |
379 | for_each::for_each(self, &op) |
380 | } |
381 | |
382 | /// Executes `OP` on the given `init` value with each item produced by |
383 | /// the iterator, in parallel. |
384 | /// |
385 | /// The `init` value will be cloned only as needed to be paired with |
386 | /// the group of items in each rayon job. It does not require the type |
387 | /// to be `Sync`. |
388 | /// |
389 | /// # Examples |
390 | /// |
391 | /// ``` |
392 | /// use std::sync::mpsc::channel; |
393 | /// use rayon::prelude::*; |
394 | /// |
395 | /// let (sender, receiver) = channel(); |
396 | /// |
397 | /// (0..5).into_par_iter().for_each_with(sender, |s, x| s.send(x).unwrap()); |
398 | /// |
399 | /// let mut res: Vec<_> = receiver.iter().collect(); |
400 | /// |
401 | /// res.sort(); |
402 | /// |
403 | /// assert_eq!(&res[..], &[0, 1, 2, 3, 4]) |
404 | /// ``` |
405 | fn for_each_with<OP, T>(self, init: T, op: OP) |
406 | where |
407 | OP: Fn(&mut T, Self::Item) + Sync + Send, |
408 | T: Send + Clone, |
409 | { |
410 | self.map_with(init, op).collect() |
411 | } |
412 | |
413 | /// Executes `OP` on a value returned by `init` with each item produced by |
414 | /// the iterator, in parallel. |
415 | /// |
416 | /// The `init` function will be called only as needed for a value to be |
417 | /// paired with the group of items in each rayon job. There is no |
418 | /// constraint on that returned type at all! |
419 | /// |
420 | /// # Examples |
421 | /// |
422 | /// ``` |
423 | /// use rand::Rng; |
424 | /// use rayon::prelude::*; |
425 | /// |
426 | /// let mut v = vec![0u8; 1_000_000]; |
427 | /// |
428 | /// v.par_chunks_mut(1000) |
429 | /// .for_each_init( |
430 | /// || rand::thread_rng(), |
431 | /// |rng, chunk| rng.fill(chunk), |
432 | /// ); |
433 | /// |
434 | /// // There's a remote chance that this will fail... |
435 | /// for i in 0u8..=255 { |
436 | /// assert!(v.contains(&i)); |
437 | /// } |
438 | /// ``` |
439 | fn for_each_init<OP, INIT, T>(self, init: INIT, op: OP) |
440 | where |
441 | OP: Fn(&mut T, Self::Item) + Sync + Send, |
442 | INIT: Fn() -> T + Sync + Send, |
443 | { |
444 | self.map_init(init, op).collect() |
445 | } |
446 | |
447 | /// Executes a fallible `OP` on each item produced by the iterator, in parallel. |
448 | /// |
449 | /// If the `OP` returns `Result::Err` or `Option::None`, we will attempt to |
450 | /// stop processing the rest of the items in the iterator as soon as |
451 | /// possible, and we will return that terminating value. Otherwise, we will |
452 | /// return an empty `Result::Ok(())` or `Option::Some(())`. If there are |
453 | /// multiple errors in parallel, it is not specified which will be returned. |
454 | /// |
455 | /// # Examples |
456 | /// |
457 | /// ``` |
458 | /// use rayon::prelude::*; |
459 | /// use std::io::{self, Write}; |
460 | /// |
461 | /// // This will stop iteration early if there's any write error, like |
462 | /// // having piped output get closed on the other end. |
463 | /// (0..100).into_par_iter() |
464 | /// .try_for_each(|x| writeln!(io::stdout(), "{:?}" , x)) |
465 | /// .expect("expected no write errors" ); |
466 | /// ``` |
467 | fn try_for_each<OP, R>(self, op: OP) -> R |
468 | where |
469 | OP: Fn(Self::Item) -> R + Sync + Send, |
470 | R: Try<Output = ()> + Send, |
471 | { |
472 | fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R { |
473 | R::from_output(()) |
474 | } |
475 | |
476 | self.map(op).try_reduce(<()>::default, ok) |
477 | } |
478 | |
479 | /// Executes a fallible `OP` on the given `init` value with each item |
480 | /// produced by the iterator, in parallel. |
481 | /// |
482 | /// This combines the `init` semantics of [`for_each_with()`] and the |
483 | /// failure semantics of [`try_for_each()`]. |
484 | /// |
485 | /// [`for_each_with()`]: #method.for_each_with |
486 | /// [`try_for_each()`]: #method.try_for_each |
487 | /// |
488 | /// # Examples |
489 | /// |
490 | /// ``` |
491 | /// use std::sync::mpsc::channel; |
492 | /// use rayon::prelude::*; |
493 | /// |
494 | /// let (sender, receiver) = channel(); |
495 | /// |
496 | /// (0..5).into_par_iter() |
497 | /// .try_for_each_with(sender, |s, x| s.send(x)) |
498 | /// .expect("expected no send errors" ); |
499 | /// |
500 | /// let mut res: Vec<_> = receiver.iter().collect(); |
501 | /// |
502 | /// res.sort(); |
503 | /// |
504 | /// assert_eq!(&res[..], &[0, 1, 2, 3, 4]) |
505 | /// ``` |
506 | fn try_for_each_with<OP, T, R>(self, init: T, op: OP) -> R |
507 | where |
508 | OP: Fn(&mut T, Self::Item) -> R + Sync + Send, |
509 | T: Send + Clone, |
510 | R: Try<Output = ()> + Send, |
511 | { |
512 | fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R { |
513 | R::from_output(()) |
514 | } |
515 | |
516 | self.map_with(init, op).try_reduce(<()>::default, ok) |
517 | } |
518 | |
519 | /// Executes a fallible `OP` on a value returned by `init` with each item |
520 | /// produced by the iterator, in parallel. |
521 | /// |
522 | /// This combines the `init` semantics of [`for_each_init()`] and the |
523 | /// failure semantics of [`try_for_each()`]. |
524 | /// |
525 | /// [`for_each_init()`]: #method.for_each_init |
526 | /// [`try_for_each()`]: #method.try_for_each |
527 | /// |
528 | /// # Examples |
529 | /// |
530 | /// ``` |
531 | /// use rand::Rng; |
532 | /// use rayon::prelude::*; |
533 | /// |
534 | /// let mut v = vec![0u8; 1_000_000]; |
535 | /// |
536 | /// v.par_chunks_mut(1000) |
537 | /// .try_for_each_init( |
538 | /// || rand::thread_rng(), |
539 | /// |rng, chunk| rng.try_fill(chunk), |
540 | /// ) |
541 | /// .expect("expected no rand errors" ); |
542 | /// |
543 | /// // There's a remote chance that this will fail... |
544 | /// for i in 0u8..=255 { |
545 | /// assert!(v.contains(&i)); |
546 | /// } |
547 | /// ``` |
548 | fn try_for_each_init<OP, INIT, T, R>(self, init: INIT, op: OP) -> R |
549 | where |
550 | OP: Fn(&mut T, Self::Item) -> R + Sync + Send, |
551 | INIT: Fn() -> T + Sync + Send, |
552 | R: Try<Output = ()> + Send, |
553 | { |
554 | fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R { |
555 | R::from_output(()) |
556 | } |
557 | |
558 | self.map_init(init, op).try_reduce(<()>::default, ok) |
559 | } |
560 | |
561 | /// Counts the number of items in this parallel iterator. |
562 | /// |
563 | /// # Examples |
564 | /// |
565 | /// ``` |
566 | /// use rayon::prelude::*; |
567 | /// |
568 | /// let count = (0..100).into_par_iter().count(); |
569 | /// |
570 | /// assert_eq!(count, 100); |
571 | /// ``` |
572 | fn count(self) -> usize { |
573 | fn one<T>(_: T) -> usize { |
574 | 1 |
575 | } |
576 | |
577 | self.map(one).sum() |
578 | } |
579 | |
580 | /// Applies `map_op` to each item of this iterator, producing a new |
581 | /// iterator with the results. |
582 | /// |
583 | /// # Examples |
584 | /// |
585 | /// ``` |
586 | /// use rayon::prelude::*; |
587 | /// |
588 | /// let mut par_iter = (0..5).into_par_iter().map(|x| x * 2); |
589 | /// |
590 | /// let doubles: Vec<_> = par_iter.collect(); |
591 | /// |
592 | /// assert_eq!(&doubles[..], &[0, 2, 4, 6, 8]); |
593 | /// ``` |
594 | fn map<F, R>(self, map_op: F) -> Map<Self, F> |
595 | where |
596 | F: Fn(Self::Item) -> R + Sync + Send, |
597 | R: Send, |
598 | { |
599 | Map::new(self, map_op) |
600 | } |
601 | |
602 | /// Applies `map_op` to the given `init` value with each item of this |
603 | /// iterator, producing a new iterator with the results. |
604 | /// |
605 | /// The `init` value will be cloned only as needed to be paired with |
606 | /// the group of items in each rayon job. It does not require the type |
607 | /// to be `Sync`. |
608 | /// |
609 | /// # Examples |
610 | /// |
611 | /// ``` |
612 | /// use std::sync::mpsc::channel; |
613 | /// use rayon::prelude::*; |
614 | /// |
615 | /// let (sender, receiver) = channel(); |
616 | /// |
617 | /// let a: Vec<_> = (0..5) |
618 | /// .into_par_iter() // iterating over i32 |
619 | /// .map_with(sender, |s, x| { |
620 | /// s.send(x).unwrap(); // sending i32 values through the channel |
621 | /// x // returning i32 |
622 | /// }) |
623 | /// .collect(); // collecting the returned values into a vector |
624 | /// |
625 | /// let mut b: Vec<_> = receiver.iter() // iterating over the values in the channel |
626 | /// .collect(); // and collecting them |
627 | /// b.sort(); |
628 | /// |
629 | /// assert_eq!(a, b); |
630 | /// ``` |
631 | fn map_with<F, T, R>(self, init: T, map_op: F) -> MapWith<Self, T, F> |
632 | where |
633 | F: Fn(&mut T, Self::Item) -> R + Sync + Send, |
634 | T: Send + Clone, |
635 | R: Send, |
636 | { |
637 | MapWith::new(self, init, map_op) |
638 | } |
639 | |
640 | /// Applies `map_op` to a value returned by `init` with each item of this |
641 | /// iterator, producing a new iterator with the results. |
642 | /// |
643 | /// The `init` function will be called only as needed for a value to be |
644 | /// paired with the group of items in each rayon job. There is no |
645 | /// constraint on that returned type at all! |
646 | /// |
647 | /// # Examples |
648 | /// |
649 | /// ``` |
650 | /// use rand::Rng; |
651 | /// use rayon::prelude::*; |
652 | /// |
653 | /// let a: Vec<_> = (1i32..1_000_000) |
654 | /// .into_par_iter() |
655 | /// .map_init( |
656 | /// || rand::thread_rng(), // get the thread-local RNG |
657 | /// |rng, x| if rng.gen() { // randomly negate items |
658 | /// -x |
659 | /// } else { |
660 | /// x |
661 | /// }, |
662 | /// ).collect(); |
663 | /// |
664 | /// // There's a remote chance that this will fail... |
665 | /// assert!(a.iter().any(|&x| x < 0)); |
666 | /// assert!(a.iter().any(|&x| x > 0)); |
667 | /// ``` |
668 | fn map_init<F, INIT, T, R>(self, init: INIT, map_op: F) -> MapInit<Self, INIT, F> |
669 | where |
670 | F: Fn(&mut T, Self::Item) -> R + Sync + Send, |
671 | INIT: Fn() -> T + Sync + Send, |
672 | R: Send, |
673 | { |
674 | MapInit::new(self, init, map_op) |
675 | } |
676 | |
677 | /// Creates an iterator which clones all of its elements. This may be |
678 | /// useful when you have an iterator over `&T`, but you need `T`, and |
679 | /// that type implements `Clone`. See also [`copied()`]. |
680 | /// |
681 | /// [`copied()`]: #method.copied |
682 | /// |
683 | /// # Examples |
684 | /// |
685 | /// ``` |
686 | /// use rayon::prelude::*; |
687 | /// |
688 | /// let a = [1, 2, 3]; |
689 | /// |
690 | /// let v_cloned: Vec<_> = a.par_iter().cloned().collect(); |
691 | /// |
692 | /// // cloned is the same as .map(|&x| x), for integers |
693 | /// let v_map: Vec<_> = a.par_iter().map(|&x| x).collect(); |
694 | /// |
695 | /// assert_eq!(v_cloned, vec![1, 2, 3]); |
696 | /// assert_eq!(v_map, vec![1, 2, 3]); |
697 | /// ``` |
698 | fn cloned<'a, T>(self) -> Cloned<Self> |
699 | where |
700 | T: 'a + Clone + Send, |
701 | Self: ParallelIterator<Item = &'a T>, |
702 | { |
703 | Cloned::new(self) |
704 | } |
705 | |
706 | /// Creates an iterator which copies all of its elements. This may be |
707 | /// useful when you have an iterator over `&T`, but you need `T`, and |
708 | /// that type implements `Copy`. See also [`cloned()`]. |
709 | /// |
710 | /// [`cloned()`]: #method.cloned |
711 | /// |
712 | /// # Examples |
713 | /// |
714 | /// ``` |
715 | /// use rayon::prelude::*; |
716 | /// |
717 | /// let a = [1, 2, 3]; |
718 | /// |
719 | /// let v_copied: Vec<_> = a.par_iter().copied().collect(); |
720 | /// |
721 | /// // copied is the same as .map(|&x| x), for integers |
722 | /// let v_map: Vec<_> = a.par_iter().map(|&x| x).collect(); |
723 | /// |
724 | /// assert_eq!(v_copied, vec![1, 2, 3]); |
725 | /// assert_eq!(v_map, vec![1, 2, 3]); |
726 | /// ``` |
727 | fn copied<'a, T>(self) -> Copied<Self> |
728 | where |
729 | T: 'a + Copy + Send, |
730 | Self: ParallelIterator<Item = &'a T>, |
731 | { |
732 | Copied::new(self) |
733 | } |
734 | |
735 | /// Applies `inspect_op` to a reference to each item of this iterator, |
736 | /// producing a new iterator passing through the original items. This is |
737 | /// often useful for debugging to see what's happening in iterator stages. |
738 | /// |
739 | /// # Examples |
740 | /// |
741 | /// ``` |
742 | /// use rayon::prelude::*; |
743 | /// |
744 | /// let a = [1, 4, 2, 3]; |
745 | /// |
746 | /// // this iterator sequence is complex. |
747 | /// let sum = a.par_iter() |
748 | /// .cloned() |
749 | /// .filter(|&x| x % 2 == 0) |
750 | /// .reduce(|| 0, |sum, i| sum + i); |
751 | /// |
752 | /// println!("{}" , sum); |
753 | /// |
754 | /// // let's add some inspect() calls to investigate what's happening |
755 | /// let sum = a.par_iter() |
756 | /// .cloned() |
757 | /// .inspect(|x| println!("about to filter: {}" , x)) |
758 | /// .filter(|&x| x % 2 == 0) |
759 | /// .inspect(|x| println!("made it through filter: {}" , x)) |
760 | /// .reduce(|| 0, |sum, i| sum + i); |
761 | /// |
762 | /// println!("{}" , sum); |
763 | /// ``` |
764 | fn inspect<OP>(self, inspect_op: OP) -> Inspect<Self, OP> |
765 | where |
766 | OP: Fn(&Self::Item) + Sync + Send, |
767 | { |
768 | Inspect::new(self, inspect_op) |
769 | } |
770 | |
771 | /// Mutates each item of this iterator before yielding it. |
772 | /// |
773 | /// # Examples |
774 | /// |
775 | /// ``` |
776 | /// use rayon::prelude::*; |
777 | /// |
778 | /// let par_iter = (0..5).into_par_iter().update(|x| {*x *= 2;}); |
779 | /// |
780 | /// let doubles: Vec<_> = par_iter.collect(); |
781 | /// |
782 | /// assert_eq!(&doubles[..], &[0, 2, 4, 6, 8]); |
783 | /// ``` |
784 | fn update<F>(self, update_op: F) -> Update<Self, F> |
785 | where |
786 | F: Fn(&mut Self::Item) + Sync + Send, |
787 | { |
788 | Update::new(self, update_op) |
789 | } |
790 | |
791 | /// Applies `filter_op` to each item of this iterator, producing a new |
792 | /// iterator with only the items that gave `true` results. |
793 | /// |
794 | /// # Examples |
795 | /// |
796 | /// ``` |
797 | /// use rayon::prelude::*; |
798 | /// |
799 | /// let mut par_iter = (0..10).into_par_iter().filter(|x| x % 2 == 0); |
800 | /// |
801 | /// let even_numbers: Vec<_> = par_iter.collect(); |
802 | /// |
803 | /// assert_eq!(&even_numbers[..], &[0, 2, 4, 6, 8]); |
804 | /// ``` |
805 | fn filter<P>(self, filter_op: P) -> Filter<Self, P> |
806 | where |
807 | P: Fn(&Self::Item) -> bool + Sync + Send, |
808 | { |
809 | Filter::new(self, filter_op) |
810 | } |
811 | |
812 | /// Applies `filter_op` to each item of this iterator to get an `Option`, |
813 | /// producing a new iterator with only the items from `Some` results. |
814 | /// |
815 | /// # Examples |
816 | /// |
817 | /// ``` |
818 | /// use rayon::prelude::*; |
819 | /// |
820 | /// let mut par_iter = (0..10).into_par_iter() |
821 | /// .filter_map(|x| { |
822 | /// if x % 2 == 0 { Some(x * 3) } |
823 | /// else { None } |
824 | /// }); |
825 | /// |
826 | /// let even_numbers: Vec<_> = par_iter.collect(); |
827 | /// |
828 | /// assert_eq!(&even_numbers[..], &[0, 6, 12, 18, 24]); |
829 | /// ``` |
830 | fn filter_map<P, R>(self, filter_op: P) -> FilterMap<Self, P> |
831 | where |
832 | P: Fn(Self::Item) -> Option<R> + Sync + Send, |
833 | R: Send, |
834 | { |
835 | FilterMap::new(self, filter_op) |
836 | } |
837 | |
838 | /// Applies `map_op` to each item of this iterator to get nested parallel iterators, |
839 | /// producing a new parallel iterator that flattens these back into one. |
840 | /// |
841 | /// See also [`flat_map_iter`](#method.flat_map_iter). |
842 | /// |
843 | /// # Examples |
844 | /// |
845 | /// ``` |
846 | /// use rayon::prelude::*; |
847 | /// |
848 | /// let a = [[1, 2], [3, 4], [5, 6], [7, 8]]; |
849 | /// |
850 | /// let par_iter = a.par_iter().cloned().flat_map(|a| a.to_vec()); |
851 | /// |
852 | /// let vec: Vec<_> = par_iter.collect(); |
853 | /// |
854 | /// assert_eq!(&vec[..], &[1, 2, 3, 4, 5, 6, 7, 8]); |
855 | /// ``` |
856 | fn flat_map<F, PI>(self, map_op: F) -> FlatMap<Self, F> |
857 | where |
858 | F: Fn(Self::Item) -> PI + Sync + Send, |
859 | PI: IntoParallelIterator, |
860 | { |
861 | FlatMap::new(self, map_op) |
862 | } |
863 | |
864 | /// Applies `map_op` to each item of this iterator to get nested serial iterators, |
865 | /// producing a new parallel iterator that flattens these back into one. |
866 | /// |
867 | /// # `flat_map_iter` versus `flat_map` |
868 | /// |
869 | /// These two methods are similar but behave slightly differently. With [`flat_map`], |
870 | /// each of the nested iterators must be a parallel iterator, and they will be further |
871 | /// split up with nested parallelism. With `flat_map_iter`, each nested iterator is a |
872 | /// sequential `Iterator`, and we only parallelize _between_ them, while the items |
873 | /// produced by each nested iterator are processed sequentially. |
874 | /// |
875 | /// When choosing between these methods, consider whether nested parallelism suits the |
876 | /// potential iterators at hand. If there's little computation involved, or its length |
877 | /// is much less than the outer parallel iterator, then it may perform better to avoid |
878 | /// the overhead of parallelism, just flattening sequentially with `flat_map_iter`. |
879 | /// If there is a lot of computation, potentially outweighing the outer parallel |
880 | /// iterator, then the nested parallelism of `flat_map` may be worthwhile. |
881 | /// |
882 | /// [`flat_map`]: #method.flat_map |
883 | /// |
884 | /// # Examples |
885 | /// |
886 | /// ``` |
887 | /// use rayon::prelude::*; |
888 | /// use std::cell::RefCell; |
889 | /// |
890 | /// let a = [[1, 2], [3, 4], [5, 6], [7, 8]]; |
891 | /// |
892 | /// let par_iter = a.par_iter().flat_map_iter(|a| { |
893 | /// // The serial iterator doesn't have to be thread-safe, just its items. |
894 | /// let cell_iter = RefCell::new(a.iter().cloned()); |
895 | /// std::iter::from_fn(move || cell_iter.borrow_mut().next()) |
896 | /// }); |
897 | /// |
898 | /// let vec: Vec<_> = par_iter.collect(); |
899 | /// |
900 | /// assert_eq!(&vec[..], &[1, 2, 3, 4, 5, 6, 7, 8]); |
901 | /// ``` |
902 | fn flat_map_iter<F, SI>(self, map_op: F) -> FlatMapIter<Self, F> |
903 | where |
904 | F: Fn(Self::Item) -> SI + Sync + Send, |
905 | SI: IntoIterator, |
906 | SI::Item: Send, |
907 | { |
908 | FlatMapIter::new(self, map_op) |
909 | } |
910 | |
911 | /// An adaptor that flattens parallel-iterable `Item`s into one large iterator. |
912 | /// |
913 | /// See also [`flatten_iter`](#method.flatten_iter). |
914 | /// |
915 | /// # Examples |
916 | /// |
917 | /// ``` |
918 | /// use rayon::prelude::*; |
919 | /// |
920 | /// let x: Vec<Vec<_>> = vec![vec![1, 2], vec![3, 4]]; |
921 | /// let y: Vec<_> = x.into_par_iter().flatten().collect(); |
922 | /// |
923 | /// assert_eq!(y, vec![1, 2, 3, 4]); |
924 | /// ``` |
925 | fn flatten(self) -> Flatten<Self> |
926 | where |
927 | Self::Item: IntoParallelIterator, |
928 | { |
929 | Flatten::new(self) |
930 | } |
931 | |
932 | /// An adaptor that flattens serial-iterable `Item`s into one large iterator. |
933 | /// |
934 | /// See also [`flatten`](#method.flatten) and the analogous comparison of |
935 | /// [`flat_map_iter` versus `flat_map`](#flat_map_iter-versus-flat_map). |
936 | /// |
937 | /// # Examples |
938 | /// |
939 | /// ``` |
940 | /// use rayon::prelude::*; |
941 | /// |
942 | /// let x: Vec<Vec<_>> = vec![vec![1, 2], vec![3, 4]]; |
943 | /// let iters: Vec<_> = x.into_iter().map(Vec::into_iter).collect(); |
944 | /// let y: Vec<_> = iters.into_par_iter().flatten_iter().collect(); |
945 | /// |
946 | /// assert_eq!(y, vec![1, 2, 3, 4]); |
947 | /// ``` |
948 | fn flatten_iter(self) -> FlattenIter<Self> |
949 | where |
950 | Self::Item: IntoIterator, |
951 | <Self::Item as IntoIterator>::Item: Send, |
952 | { |
953 | FlattenIter::new(self) |
954 | } |
955 | |
956 | /// Reduces the items in the iterator into one item using `op`. |
957 | /// The argument `identity` should be a closure that can produce |
958 | /// "identity" value which may be inserted into the sequence as |
959 | /// needed to create opportunities for parallel execution. So, for |
960 | /// example, if you are doing a summation, then `identity()` ought |
961 | /// to produce something that represents the zero for your type |
962 | /// (but consider just calling `sum()` in that case). |
963 | /// |
964 | /// # Examples |
965 | /// |
966 | /// ``` |
967 | /// // Iterate over a sequence of pairs `(x0, y0), ..., (xN, yN)` |
968 | /// // and use reduce to compute one pair `(x0 + ... + xN, y0 + ... + yN)` |
969 | /// // where the first/second elements are summed separately. |
970 | /// use rayon::prelude::*; |
971 | /// let sums = [(0, 1), (5, 6), (16, 2), (8, 9)] |
972 | /// .par_iter() // iterating over &(i32, i32) |
973 | /// .cloned() // iterating over (i32, i32) |
974 | /// .reduce(|| (0, 0), // the "identity" is 0 in both columns |
975 | /// |a, b| (a.0 + b.0, a.1 + b.1)); |
976 | /// assert_eq!(sums, (0 + 5 + 16 + 8, 1 + 6 + 2 + 9)); |
977 | /// ``` |
978 | /// |
979 | /// **Note:** unlike a sequential `fold` operation, the order in |
980 | /// which `op` will be applied to reduce the result is not fully |
981 | /// specified. So `op` should be [associative] or else the results |
982 | /// will be non-deterministic. And of course `identity()` should |
983 | /// produce a true identity. |
984 | /// |
985 | /// [associative]: https://en.wikipedia.org/wiki/Associative_property |
986 | fn reduce<OP, ID>(self, identity: ID, op: OP) -> Self::Item |
987 | where |
988 | OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send, |
989 | ID: Fn() -> Self::Item + Sync + Send, |
990 | { |
991 | reduce::reduce(self, identity, op) |
992 | } |
993 | |
994 | /// Reduces the items in the iterator into one item using `op`. |
995 | /// If the iterator is empty, `None` is returned; otherwise, |
996 | /// `Some` is returned. |
997 | /// |
998 | /// This version of `reduce` is simple but somewhat less |
999 | /// efficient. If possible, it is better to call `reduce()`, which |
1000 | /// requires an identity element. |
1001 | /// |
1002 | /// # Examples |
1003 | /// |
1004 | /// ``` |
1005 | /// use rayon::prelude::*; |
1006 | /// let sums = [(0, 1), (5, 6), (16, 2), (8, 9)] |
1007 | /// .par_iter() // iterating over &(i32, i32) |
1008 | /// .cloned() // iterating over (i32, i32) |
1009 | /// .reduce_with(|a, b| (a.0 + b.0, a.1 + b.1)) |
1010 | /// .unwrap(); |
1011 | /// assert_eq!(sums, (0 + 5 + 16 + 8, 1 + 6 + 2 + 9)); |
1012 | /// ``` |
1013 | /// |
1014 | /// **Note:** unlike a sequential `fold` operation, the order in |
1015 | /// which `op` will be applied to reduce the result is not fully |
1016 | /// specified. So `op` should be [associative] or else the results |
1017 | /// will be non-deterministic. |
1018 | /// |
1019 | /// [associative]: https://en.wikipedia.org/wiki/Associative_property |
1020 | fn reduce_with<OP>(self, op: OP) -> Option<Self::Item> |
1021 | where |
1022 | OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send, |
1023 | { |
1024 | fn opt_fold<T>(op: impl Fn(T, T) -> T) -> impl Fn(Option<T>, T) -> Option<T> { |
1025 | move |opt_a, b| match opt_a { |
1026 | Some(a) => Some(op(a, b)), |
1027 | None => Some(b), |
1028 | } |
1029 | } |
1030 | |
1031 | fn opt_reduce<T>(op: impl Fn(T, T) -> T) -> impl Fn(Option<T>, Option<T>) -> Option<T> { |
1032 | move |opt_a, opt_b| match (opt_a, opt_b) { |
1033 | (Some(a), Some(b)) => Some(op(a, b)), |
1034 | (Some(v), None) | (None, Some(v)) => Some(v), |
1035 | (None, None) => None, |
1036 | } |
1037 | } |
1038 | |
1039 | self.fold(<_>::default, opt_fold(&op)) |
1040 | .reduce(<_>::default, opt_reduce(&op)) |
1041 | } |
1042 | |
1043 | /// Reduces the items in the iterator into one item using a fallible `op`. |
1044 | /// The `identity` argument is used the same way as in [`reduce()`]. |
1045 | /// |
1046 | /// [`reduce()`]: #method.reduce |
1047 | /// |
1048 | /// If a `Result::Err` or `Option::None` item is found, or if `op` reduces |
1049 | /// to one, we will attempt to stop processing the rest of the items in the |
1050 | /// iterator as soon as possible, and we will return that terminating value. |
1051 | /// Otherwise, we will return the final reduced `Result::Ok(T)` or |
1052 | /// `Option::Some(T)`. If there are multiple errors in parallel, it is not |
1053 | /// specified which will be returned. |
1054 | /// |
1055 | /// # Examples |
1056 | /// |
1057 | /// ``` |
1058 | /// use rayon::prelude::*; |
1059 | /// |
1060 | /// // Compute the sum of squares, being careful about overflow. |
1061 | /// fn sum_squares<I: IntoParallelIterator<Item = i32>>(iter: I) -> Option<i32> { |
1062 | /// iter.into_par_iter() |
1063 | /// .map(|i| i.checked_mul(i)) // square each item, |
1064 | /// .try_reduce(|| 0, i32::checked_add) // and add them up! |
1065 | /// } |
1066 | /// assert_eq!(sum_squares(0..5), Some(0 + 1 + 4 + 9 + 16)); |
1067 | /// |
1068 | /// // The sum might overflow |
1069 | /// assert_eq!(sum_squares(0..10_000), None); |
1070 | /// |
1071 | /// // Or the squares might overflow before it even reaches `try_reduce` |
1072 | /// assert_eq!(sum_squares(1_000_000..1_000_001), None); |
1073 | /// ``` |
1074 | fn try_reduce<T, OP, ID>(self, identity: ID, op: OP) -> Self::Item |
1075 | where |
1076 | OP: Fn(T, T) -> Self::Item + Sync + Send, |
1077 | ID: Fn() -> T + Sync + Send, |
1078 | Self::Item: Try<Output = T>, |
1079 | { |
1080 | try_reduce::try_reduce(self, identity, op) |
1081 | } |
1082 | |
1083 | /// Reduces the items in the iterator into one item using a fallible `op`. |
1084 | /// |
1085 | /// Like [`reduce_with()`], if the iterator is empty, `None` is returned; |
1086 | /// otherwise, `Some` is returned. Beyond that, it behaves like |
1087 | /// [`try_reduce()`] for handling `Err`/`None`. |
1088 | /// |
1089 | /// [`reduce_with()`]: #method.reduce_with |
1090 | /// [`try_reduce()`]: #method.try_reduce |
1091 | /// |
1092 | /// For instance, with `Option` items, the return value may be: |
1093 | /// - `None`, the iterator was empty |
1094 | /// - `Some(None)`, we stopped after encountering `None`. |
1095 | /// - `Some(Some(x))`, the entire iterator reduced to `x`. |
1096 | /// |
1097 | /// With `Result` items, the nesting is more obvious: |
1098 | /// - `None`, the iterator was empty |
1099 | /// - `Some(Err(e))`, we stopped after encountering an error `e`. |
1100 | /// - `Some(Ok(x))`, the entire iterator reduced to `x`. |
1101 | /// |
1102 | /// # Examples |
1103 | /// |
1104 | /// ``` |
1105 | /// use rayon::prelude::*; |
1106 | /// |
1107 | /// let files = ["/dev/null" , "/does/not/exist" ]; |
1108 | /// |
1109 | /// // Find the biggest file |
1110 | /// files.into_par_iter() |
1111 | /// .map(|path| std::fs::metadata(path).map(|m| (path, m.len()))) |
1112 | /// .try_reduce_with(|a, b| { |
1113 | /// Ok(if a.1 >= b.1 { a } else { b }) |
1114 | /// }) |
1115 | /// .expect("Some value, since the iterator is not empty" ) |
1116 | /// .expect_err("not found" ); |
1117 | /// ``` |
1118 | fn try_reduce_with<T, OP>(self, op: OP) -> Option<Self::Item> |
1119 | where |
1120 | OP: Fn(T, T) -> Self::Item + Sync + Send, |
1121 | Self::Item: Try<Output = T>, |
1122 | { |
1123 | try_reduce_with::try_reduce_with(self, op) |
1124 | } |
1125 | |
1126 | /// Parallel fold is similar to sequential fold except that the |
1127 | /// sequence of items may be subdivided before it is |
1128 | /// folded. Consider a list of numbers like `22 3 77 89 46`. If |
1129 | /// you used sequential fold to add them (`fold(0, |a,b| a+b)`, |
1130 | /// you would wind up first adding 0 + 22, then 22 + 3, then 25 + |
1131 | /// 77, and so forth. The **parallel fold** works similarly except |
1132 | /// that it first breaks up your list into sublists, and hence |
1133 | /// instead of yielding up a single sum at the end, it yields up |
1134 | /// multiple sums. The number of results is nondeterministic, as |
1135 | /// is the point where the breaks occur. |
1136 | /// |
1137 | /// So if we did the same parallel fold (`fold(0, |a,b| a+b)`) on |
1138 | /// our example list, we might wind up with a sequence of two numbers, |
1139 | /// like so: |
1140 | /// |
1141 | /// ```notrust |
1142 | /// 22 3 77 89 46 |
1143 | /// | | |
1144 | /// 102 135 |
1145 | /// ``` |
1146 | /// |
1147 | /// Or perhaps these three numbers: |
1148 | /// |
1149 | /// ```notrust |
1150 | /// 22 3 77 89 46 |
1151 | /// | | | |
1152 | /// 102 89 46 |
1153 | /// ``` |
1154 | /// |
1155 | /// In general, Rayon will attempt to find good breaking points |
1156 | /// that keep all of your cores busy. |
1157 | /// |
1158 | /// ### Fold versus reduce |
1159 | /// |
1160 | /// The `fold()` and `reduce()` methods each take an identity element |
1161 | /// and a combining function, but they operate rather differently. |
1162 | /// |
1163 | /// `reduce()` requires that the identity function has the same |
1164 | /// type as the things you are iterating over, and it fully |
1165 | /// reduces the list of items into a single item. So, for example, |
1166 | /// imagine we are iterating over a list of bytes `bytes: [128_u8, |
1167 | /// 64_u8, 64_u8]`. If we used `bytes.reduce(|| 0_u8, |a: u8, b: |
1168 | /// u8| a + b)`, we would get an overflow. This is because `0`, |
1169 | /// `a`, and `b` here are all bytes, just like the numbers in the |
1170 | /// list (I wrote the types explicitly above, but those are the |
1171 | /// only types you can use). To avoid the overflow, we would need |
1172 | /// to do something like `bytes.map(|b| b as u32).reduce(|| 0, |a, |
1173 | /// b| a + b)`, in which case our result would be `256`. |
1174 | /// |
1175 | /// In contrast, with `fold()`, the identity function does not |
1176 | /// have to have the same type as the things you are iterating |
1177 | /// over, and you potentially get back many results. So, if we |
1178 | /// continue with the `bytes` example from the previous paragraph, |
1179 | /// we could do `bytes.fold(|| 0_u32, |a, b| a + (b as u32))` to |
1180 | /// convert our bytes into `u32`. And of course we might not get |
1181 | /// back a single sum. |
1182 | /// |
1183 | /// There is a more subtle distinction as well, though it's |
1184 | /// actually implied by the above points. When you use `reduce()`, |
1185 | /// your reduction function is sometimes called with values that |
1186 | /// were never part of your original parallel iterator (for |
1187 | /// example, both the left and right might be a partial sum). With |
1188 | /// `fold()`, in contrast, the left value in the fold function is |
1189 | /// always the accumulator, and the right value is always from |
1190 | /// your original sequence. |
1191 | /// |
1192 | /// ### Fold vs Map/Reduce |
1193 | /// |
1194 | /// Fold makes sense if you have some operation where it is |
1195 | /// cheaper to create groups of elements at a time. For example, |
1196 | /// imagine collecting characters into a string. If you were going |
1197 | /// to use map/reduce, you might try this: |
1198 | /// |
1199 | /// ``` |
1200 | /// use rayon::prelude::*; |
1201 | /// |
1202 | /// let s = |
1203 | /// ['a' , 'b' , 'c' , 'd' , 'e' ] |
1204 | /// .par_iter() |
1205 | /// .map(|c: &char| format!("{}" , c)) |
1206 | /// .reduce(|| String::new(), |
1207 | /// |mut a: String, b: String| { a.push_str(&b); a }); |
1208 | /// |
1209 | /// assert_eq!(s, "abcde" ); |
1210 | /// ``` |
1211 | /// |
1212 | /// Because reduce produces the same type of element as its input, |
1213 | /// you have to first map each character into a string, and then |
1214 | /// you can reduce them. This means we create one string per |
1215 | /// element in our iterator -- not so great. Using `fold`, we can |
1216 | /// do this instead: |
1217 | /// |
1218 | /// ``` |
1219 | /// use rayon::prelude::*; |
1220 | /// |
1221 | /// let s = |
1222 | /// ['a' , 'b' , 'c' , 'd' , 'e' ] |
1223 | /// .par_iter() |
1224 | /// .fold(|| String::new(), |
1225 | /// |mut s: String, c: &char| { s.push(*c); s }) |
1226 | /// .reduce(|| String::new(), |
1227 | /// |mut a: String, b: String| { a.push_str(&b); a }); |
1228 | /// |
1229 | /// assert_eq!(s, "abcde" ); |
1230 | /// ``` |
1231 | /// |
1232 | /// Now `fold` will process groups of our characters at a time, |
1233 | /// and we only make one string per group. We should wind up with |
1234 | /// some small-ish number of strings roughly proportional to the |
1235 | /// number of CPUs you have (it will ultimately depend on how busy |
1236 | /// your processors are). Note that we still need to do a reduce |
1237 | /// afterwards to combine those groups of strings into a single |
1238 | /// string. |
1239 | /// |
1240 | /// You could use a similar trick to save partial results (e.g., a |
1241 | /// cache) or something similar. |
1242 | /// |
1243 | /// ### Combining fold with other operations |
1244 | /// |
1245 | /// You can combine `fold` with `reduce` if you want to produce a |
1246 | /// single value. This is then roughly equivalent to a map/reduce |
1247 | /// combination in effect: |
1248 | /// |
1249 | /// ``` |
1250 | /// use rayon::prelude::*; |
1251 | /// |
1252 | /// let bytes = 0..22_u8; |
1253 | /// let sum = bytes.into_par_iter() |
1254 | /// .fold(|| 0_u32, |a: u32, b: u8| a + (b as u32)) |
1255 | /// .sum::<u32>(); |
1256 | /// |
1257 | /// assert_eq!(sum, (0..22).sum()); // compare to sequential |
1258 | /// ``` |
1259 | fn fold<T, ID, F>(self, identity: ID, fold_op: F) -> Fold<Self, ID, F> |
1260 | where |
1261 | F: Fn(T, Self::Item) -> T + Sync + Send, |
1262 | ID: Fn() -> T + Sync + Send, |
1263 | T: Send, |
1264 | { |
1265 | Fold::new(self, identity, fold_op) |
1266 | } |
1267 | |
1268 | /// Applies `fold_op` to the given `init` value with each item of this |
1269 | /// iterator, finally producing the value for further use. |
1270 | /// |
1271 | /// This works essentially like `fold(|| init.clone(), fold_op)`, except |
1272 | /// it doesn't require the `init` type to be `Sync`, nor any other form |
1273 | /// of added synchronization. |
1274 | /// |
1275 | /// # Examples |
1276 | /// |
1277 | /// ``` |
1278 | /// use rayon::prelude::*; |
1279 | /// |
1280 | /// let bytes = 0..22_u8; |
1281 | /// let sum = bytes.into_par_iter() |
1282 | /// .fold_with(0_u32, |a: u32, b: u8| a + (b as u32)) |
1283 | /// .sum::<u32>(); |
1284 | /// |
1285 | /// assert_eq!(sum, (0..22).sum()); // compare to sequential |
1286 | /// ``` |
1287 | fn fold_with<F, T>(self, init: T, fold_op: F) -> FoldWith<Self, T, F> |
1288 | where |
1289 | F: Fn(T, Self::Item) -> T + Sync + Send, |
1290 | T: Send + Clone, |
1291 | { |
1292 | FoldWith::new(self, init, fold_op) |
1293 | } |
1294 | |
1295 | /// Performs a fallible parallel fold. |
1296 | /// |
1297 | /// This is a variation of [`fold()`] for operations which can fail with |
1298 | /// `Option::None` or `Result::Err`. The first such failure stops |
1299 | /// processing the local set of items, without affecting other folds in the |
1300 | /// iterator's subdivisions. |
1301 | /// |
1302 | /// Often, `try_fold()` will be followed by [`try_reduce()`] |
1303 | /// for a final reduction and global short-circuiting effect. |
1304 | /// |
1305 | /// [`fold()`]: #method.fold |
1306 | /// [`try_reduce()`]: #method.try_reduce |
1307 | /// |
1308 | /// # Examples |
1309 | /// |
1310 | /// ``` |
1311 | /// use rayon::prelude::*; |
1312 | /// |
1313 | /// let bytes = 0..22_u8; |
1314 | /// let sum = bytes.into_par_iter() |
1315 | /// .try_fold(|| 0_u32, |a: u32, b: u8| a.checked_add(b as u32)) |
1316 | /// .try_reduce(|| 0, u32::checked_add); |
1317 | /// |
1318 | /// assert_eq!(sum, Some((0..22).sum())); // compare to sequential |
1319 | /// ``` |
1320 | fn try_fold<T, R, ID, F>(self, identity: ID, fold_op: F) -> TryFold<Self, R, ID, F> |
1321 | where |
1322 | F: Fn(T, Self::Item) -> R + Sync + Send, |
1323 | ID: Fn() -> T + Sync + Send, |
1324 | R: Try<Output = T> + Send, |
1325 | { |
1326 | TryFold::new(self, identity, fold_op) |
1327 | } |
1328 | |
1329 | /// Performs a fallible parallel fold with a cloneable `init` value. |
1330 | /// |
1331 | /// This combines the `init` semantics of [`fold_with()`] and the failure |
1332 | /// semantics of [`try_fold()`]. |
1333 | /// |
1334 | /// [`fold_with()`]: #method.fold_with |
1335 | /// [`try_fold()`]: #method.try_fold |
1336 | /// |
1337 | /// ``` |
1338 | /// use rayon::prelude::*; |
1339 | /// |
1340 | /// let bytes = 0..22_u8; |
1341 | /// let sum = bytes.into_par_iter() |
1342 | /// .try_fold_with(0_u32, |a: u32, b: u8| a.checked_add(b as u32)) |
1343 | /// .try_reduce(|| 0, u32::checked_add); |
1344 | /// |
1345 | /// assert_eq!(sum, Some((0..22).sum())); // compare to sequential |
1346 | /// ``` |
1347 | fn try_fold_with<F, T, R>(self, init: T, fold_op: F) -> TryFoldWith<Self, R, F> |
1348 | where |
1349 | F: Fn(T, Self::Item) -> R + Sync + Send, |
1350 | R: Try<Output = T> + Send, |
1351 | T: Clone + Send, |
1352 | { |
1353 | TryFoldWith::new(self, init, fold_op) |
1354 | } |
1355 | |
1356 | /// Sums up the items in the iterator. |
1357 | /// |
1358 | /// Note that the order in items will be reduced is not specified, |
1359 | /// so if the `+` operator is not truly [associative] \(as is the |
1360 | /// case for floating point numbers), then the results are not |
1361 | /// fully deterministic. |
1362 | /// |
1363 | /// [associative]: https://en.wikipedia.org/wiki/Associative_property |
1364 | /// |
1365 | /// Basically equivalent to `self.reduce(|| 0, |a, b| a + b)`, |
1366 | /// except that the type of `0` and the `+` operation may vary |
1367 | /// depending on the type of value being produced. |
1368 | /// |
1369 | /// # Examples |
1370 | /// |
1371 | /// ``` |
1372 | /// use rayon::prelude::*; |
1373 | /// |
1374 | /// let a = [1, 5, 7]; |
1375 | /// |
1376 | /// let sum: i32 = a.par_iter().sum(); |
1377 | /// |
1378 | /// assert_eq!(sum, 13); |
1379 | /// ``` |
1380 | fn sum<S>(self) -> S |
1381 | where |
1382 | S: Send + Sum<Self::Item> + Sum<S>, |
1383 | { |
1384 | sum::sum(self) |
1385 | } |
1386 | |
1387 | /// Multiplies all the items in the iterator. |
1388 | /// |
1389 | /// Note that the order in items will be reduced is not specified, |
1390 | /// so if the `*` operator is not truly [associative] \(as is the |
1391 | /// case for floating point numbers), then the results are not |
1392 | /// fully deterministic. |
1393 | /// |
1394 | /// [associative]: https://en.wikipedia.org/wiki/Associative_property |
1395 | /// |
1396 | /// Basically equivalent to `self.reduce(|| 1, |a, b| a * b)`, |
1397 | /// except that the type of `1` and the `*` operation may vary |
1398 | /// depending on the type of value being produced. |
1399 | /// |
1400 | /// # Examples |
1401 | /// |
1402 | /// ``` |
1403 | /// use rayon::prelude::*; |
1404 | /// |
1405 | /// fn factorial(n: u32) -> u32 { |
1406 | /// (1..n+1).into_par_iter().product() |
1407 | /// } |
1408 | /// |
1409 | /// assert_eq!(factorial(0), 1); |
1410 | /// assert_eq!(factorial(1), 1); |
1411 | /// assert_eq!(factorial(5), 120); |
1412 | /// ``` |
1413 | fn product<P>(self) -> P |
1414 | where |
1415 | P: Send + Product<Self::Item> + Product<P>, |
1416 | { |
1417 | product::product(self) |
1418 | } |
1419 | |
1420 | /// Computes the minimum of all the items in the iterator. If the |
1421 | /// iterator is empty, `None` is returned; otherwise, `Some(min)` |
1422 | /// is returned. |
1423 | /// |
1424 | /// Note that the order in which the items will be reduced is not |
1425 | /// specified, so if the `Ord` impl is not truly associative, then |
1426 | /// the results are not deterministic. |
1427 | /// |
1428 | /// Basically equivalent to `self.reduce_with(|a, b| cmp::min(a, b))`. |
1429 | /// |
1430 | /// # Examples |
1431 | /// |
1432 | /// ``` |
1433 | /// use rayon::prelude::*; |
1434 | /// |
1435 | /// let a = [45, 74, 32]; |
1436 | /// |
1437 | /// assert_eq!(a.par_iter().min(), Some(&32)); |
1438 | /// |
1439 | /// let b: [i32; 0] = []; |
1440 | /// |
1441 | /// assert_eq!(b.par_iter().min(), None); |
1442 | /// ``` |
1443 | fn min(self) -> Option<Self::Item> |
1444 | where |
1445 | Self::Item: Ord, |
1446 | { |
1447 | self.reduce_with(cmp::min) |
1448 | } |
1449 | |
1450 | /// Computes the minimum of all the items in the iterator with respect to |
1451 | /// the given comparison function. If the iterator is empty, `None` is |
1452 | /// returned; otherwise, `Some(min)` is returned. |
1453 | /// |
1454 | /// Note that the order in which the items will be reduced is not |
1455 | /// specified, so if the comparison function is not associative, then |
1456 | /// the results are not deterministic. |
1457 | /// |
1458 | /// # Examples |
1459 | /// |
1460 | /// ``` |
1461 | /// use rayon::prelude::*; |
1462 | /// |
1463 | /// let a = [-3_i32, 77, 53, 240, -1]; |
1464 | /// |
1465 | /// assert_eq!(a.par_iter().min_by(|x, y| x.cmp(y)), Some(&-3)); |
1466 | /// ``` |
1467 | fn min_by<F>(self, f: F) -> Option<Self::Item> |
1468 | where |
1469 | F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering, |
1470 | { |
1471 | fn min<T>(f: impl Fn(&T, &T) -> Ordering) -> impl Fn(T, T) -> T { |
1472 | move |a, b| match f(&a, &b) { |
1473 | Ordering::Greater => b, |
1474 | _ => a, |
1475 | } |
1476 | } |
1477 | |
1478 | self.reduce_with(min(f)) |
1479 | } |
1480 | |
1481 | /// Computes the item that yields the minimum value for the given |
1482 | /// function. If the iterator is empty, `None` is returned; |
1483 | /// otherwise, `Some(item)` is returned. |
1484 | /// |
1485 | /// Note that the order in which the items will be reduced is not |
1486 | /// specified, so if the `Ord` impl is not truly associative, then |
1487 | /// the results are not deterministic. |
1488 | /// |
1489 | /// # Examples |
1490 | /// |
1491 | /// ``` |
1492 | /// use rayon::prelude::*; |
1493 | /// |
1494 | /// let a = [-3_i32, 34, 2, 5, -10, -3, -23]; |
1495 | /// |
1496 | /// assert_eq!(a.par_iter().min_by_key(|x| x.abs()), Some(&2)); |
1497 | /// ``` |
1498 | fn min_by_key<K, F>(self, f: F) -> Option<Self::Item> |
1499 | where |
1500 | K: Ord + Send, |
1501 | F: Sync + Send + Fn(&Self::Item) -> K, |
1502 | { |
1503 | fn key<T, K>(f: impl Fn(&T) -> K) -> impl Fn(T) -> (K, T) { |
1504 | move |x| (f(&x), x) |
1505 | } |
1506 | |
1507 | fn min_key<T, K: Ord>(a: (K, T), b: (K, T)) -> (K, T) { |
1508 | match (a.0).cmp(&b.0) { |
1509 | Ordering::Greater => b, |
1510 | _ => a, |
1511 | } |
1512 | } |
1513 | |
1514 | let (_, x) = self.map(key(f)).reduce_with(min_key)?; |
1515 | Some(x) |
1516 | } |
1517 | |
1518 | /// Computes the maximum of all the items in the iterator. If the |
1519 | /// iterator is empty, `None` is returned; otherwise, `Some(max)` |
1520 | /// is returned. |
1521 | /// |
1522 | /// Note that the order in which the items will be reduced is not |
1523 | /// specified, so if the `Ord` impl is not truly associative, then |
1524 | /// the results are not deterministic. |
1525 | /// |
1526 | /// Basically equivalent to `self.reduce_with(|a, b| cmp::max(a, b))`. |
1527 | /// |
1528 | /// # Examples |
1529 | /// |
1530 | /// ``` |
1531 | /// use rayon::prelude::*; |
1532 | /// |
1533 | /// let a = [45, 74, 32]; |
1534 | /// |
1535 | /// assert_eq!(a.par_iter().max(), Some(&74)); |
1536 | /// |
1537 | /// let b: [i32; 0] = []; |
1538 | /// |
1539 | /// assert_eq!(b.par_iter().max(), None); |
1540 | /// ``` |
1541 | fn max(self) -> Option<Self::Item> |
1542 | where |
1543 | Self::Item: Ord, |
1544 | { |
1545 | self.reduce_with(cmp::max) |
1546 | } |
1547 | |
1548 | /// Computes the maximum of all the items in the iterator with respect to |
1549 | /// the given comparison function. If the iterator is empty, `None` is |
1550 | /// returned; otherwise, `Some(max)` is returned. |
1551 | /// |
1552 | /// Note that the order in which the items will be reduced is not |
1553 | /// specified, so if the comparison function is not associative, then |
1554 | /// the results are not deterministic. |
1555 | /// |
1556 | /// # Examples |
1557 | /// |
1558 | /// ``` |
1559 | /// use rayon::prelude::*; |
1560 | /// |
1561 | /// let a = [-3_i32, 77, 53, 240, -1]; |
1562 | /// |
1563 | /// assert_eq!(a.par_iter().max_by(|x, y| x.abs().cmp(&y.abs())), Some(&240)); |
1564 | /// ``` |
1565 | fn max_by<F>(self, f: F) -> Option<Self::Item> |
1566 | where |
1567 | F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering, |
1568 | { |
1569 | fn max<T>(f: impl Fn(&T, &T) -> Ordering) -> impl Fn(T, T) -> T { |
1570 | move |a, b| match f(&a, &b) { |
1571 | Ordering::Greater => a, |
1572 | _ => b, |
1573 | } |
1574 | } |
1575 | |
1576 | self.reduce_with(max(f)) |
1577 | } |
1578 | |
1579 | /// Computes the item that yields the maximum value for the given |
1580 | /// function. If the iterator is empty, `None` is returned; |
1581 | /// otherwise, `Some(item)` is returned. |
1582 | /// |
1583 | /// Note that the order in which the items will be reduced is not |
1584 | /// specified, so if the `Ord` impl is not truly associative, then |
1585 | /// the results are not deterministic. |
1586 | /// |
1587 | /// # Examples |
1588 | /// |
1589 | /// ``` |
1590 | /// use rayon::prelude::*; |
1591 | /// |
1592 | /// let a = [-3_i32, 34, 2, 5, -10, -3, -23]; |
1593 | /// |
1594 | /// assert_eq!(a.par_iter().max_by_key(|x| x.abs()), Some(&34)); |
1595 | /// ``` |
1596 | fn max_by_key<K, F>(self, f: F) -> Option<Self::Item> |
1597 | where |
1598 | K: Ord + Send, |
1599 | F: Sync + Send + Fn(&Self::Item) -> K, |
1600 | { |
1601 | fn key<T, K>(f: impl Fn(&T) -> K) -> impl Fn(T) -> (K, T) { |
1602 | move |x| (f(&x), x) |
1603 | } |
1604 | |
1605 | fn max_key<T, K: Ord>(a: (K, T), b: (K, T)) -> (K, T) { |
1606 | match (a.0).cmp(&b.0) { |
1607 | Ordering::Greater => a, |
1608 | _ => b, |
1609 | } |
1610 | } |
1611 | |
1612 | let (_, x) = self.map(key(f)).reduce_with(max_key)?; |
1613 | Some(x) |
1614 | } |
1615 | |
1616 | /// Takes two iterators and creates a new iterator over both. |
1617 | /// |
1618 | /// # Examples |
1619 | /// |
1620 | /// ``` |
1621 | /// use rayon::prelude::*; |
1622 | /// |
1623 | /// let a = [0, 1, 2]; |
1624 | /// let b = [9, 8, 7]; |
1625 | /// |
1626 | /// let par_iter = a.par_iter().chain(b.par_iter()); |
1627 | /// |
1628 | /// let chained: Vec<_> = par_iter.cloned().collect(); |
1629 | /// |
1630 | /// assert_eq!(&chained[..], &[0, 1, 2, 9, 8, 7]); |
1631 | /// ``` |
1632 | fn chain<C>(self, chain: C) -> Chain<Self, C::Iter> |
1633 | where |
1634 | C: IntoParallelIterator<Item = Self::Item>, |
1635 | { |
1636 | Chain::new(self, chain.into_par_iter()) |
1637 | } |
1638 | |
1639 | /// Searches for **some** item in the parallel iterator that |
1640 | /// matches the given predicate and returns it. This operation |
1641 | /// is similar to [`find` on sequential iterators][find] but |
1642 | /// the item returned may not be the **first** one in the parallel |
1643 | /// sequence which matches, since we search the entire sequence in parallel. |
1644 | /// |
1645 | /// Once a match is found, we will attempt to stop processing |
1646 | /// the rest of the items in the iterator as soon as possible |
1647 | /// (just as `find` stops iterating once a match is found). |
1648 | /// |
1649 | /// [find]: https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.find |
1650 | /// |
1651 | /// # Examples |
1652 | /// |
1653 | /// ``` |
1654 | /// use rayon::prelude::*; |
1655 | /// |
1656 | /// let a = [1, 2, 3, 3]; |
1657 | /// |
1658 | /// assert_eq!(a.par_iter().find_any(|&&x| x == 3), Some(&3)); |
1659 | /// |
1660 | /// assert_eq!(a.par_iter().find_any(|&&x| x == 100), None); |
1661 | /// ``` |
1662 | fn find_any<P>(self, predicate: P) -> Option<Self::Item> |
1663 | where |
1664 | P: Fn(&Self::Item) -> bool + Sync + Send, |
1665 | { |
1666 | find::find(self, predicate) |
1667 | } |
1668 | |
1669 | /// Searches for the sequentially **first** item in the parallel iterator |
1670 | /// that matches the given predicate and returns it. |
1671 | /// |
1672 | /// Once a match is found, all attempts to the right of the match |
1673 | /// will be stopped, while attempts to the left must continue in case |
1674 | /// an earlier match is found. |
1675 | /// |
1676 | /// Note that not all parallel iterators have a useful order, much like |
1677 | /// sequential `HashMap` iteration, so "first" may be nebulous. If you |
1678 | /// just want the first match that discovered anywhere in the iterator, |
1679 | /// `find_any` is a better choice. |
1680 | /// |
1681 | /// # Examples |
1682 | /// |
1683 | /// ``` |
1684 | /// use rayon::prelude::*; |
1685 | /// |
1686 | /// let a = [1, 2, 3, 3]; |
1687 | /// |
1688 | /// assert_eq!(a.par_iter().find_first(|&&x| x == 3), Some(&3)); |
1689 | /// |
1690 | /// assert_eq!(a.par_iter().find_first(|&&x| x == 100), None); |
1691 | /// ``` |
1692 | fn find_first<P>(self, predicate: P) -> Option<Self::Item> |
1693 | where |
1694 | P: Fn(&Self::Item) -> bool + Sync + Send, |
1695 | { |
1696 | find_first_last::find_first(self, predicate) |
1697 | } |
1698 | |
1699 | /// Searches for the sequentially **last** item in the parallel iterator |
1700 | /// that matches the given predicate and returns it. |
1701 | /// |
1702 | /// Once a match is found, all attempts to the left of the match |
1703 | /// will be stopped, while attempts to the right must continue in case |
1704 | /// a later match is found. |
1705 | /// |
1706 | /// Note that not all parallel iterators have a useful order, much like |
1707 | /// sequential `HashMap` iteration, so "last" may be nebulous. When the |
1708 | /// order doesn't actually matter to you, `find_any` is a better choice. |
1709 | /// |
1710 | /// # Examples |
1711 | /// |
1712 | /// ``` |
1713 | /// use rayon::prelude::*; |
1714 | /// |
1715 | /// let a = [1, 2, 3, 3]; |
1716 | /// |
1717 | /// assert_eq!(a.par_iter().find_last(|&&x| x == 3), Some(&3)); |
1718 | /// |
1719 | /// assert_eq!(a.par_iter().find_last(|&&x| x == 100), None); |
1720 | /// ``` |
1721 | fn find_last<P>(self, predicate: P) -> Option<Self::Item> |
1722 | where |
1723 | P: Fn(&Self::Item) -> bool + Sync + Send, |
1724 | { |
1725 | find_first_last::find_last(self, predicate) |
1726 | } |
1727 | |
1728 | /// Applies the given predicate to the items in the parallel iterator |
1729 | /// and returns **any** non-None result of the map operation. |
1730 | /// |
1731 | /// Once a non-None value is produced from the map operation, we will |
1732 | /// attempt to stop processing the rest of the items in the iterator |
1733 | /// as soon as possible. |
1734 | /// |
1735 | /// Note that this method only returns **some** item in the parallel |
1736 | /// iterator that is not None from the map predicate. The item returned |
1737 | /// may not be the **first** non-None value produced in the parallel |
1738 | /// sequence, since the entire sequence is mapped over in parallel. |
1739 | /// |
1740 | /// # Examples |
1741 | /// |
1742 | /// ``` |
1743 | /// use rayon::prelude::*; |
1744 | /// |
1745 | /// let c = ["lol" , "NaN" , "5" , "5" ]; |
1746 | /// |
1747 | /// let found_number = c.par_iter().find_map_any(|s| s.parse().ok()); |
1748 | /// |
1749 | /// assert_eq!(found_number, Some(5)); |
1750 | /// ``` |
1751 | fn find_map_any<P, R>(self, predicate: P) -> Option<R> |
1752 | where |
1753 | P: Fn(Self::Item) -> Option<R> + Sync + Send, |
1754 | R: Send, |
1755 | { |
1756 | fn yes<T>(_: &T) -> bool { |
1757 | true |
1758 | } |
1759 | self.filter_map(predicate).find_any(yes) |
1760 | } |
1761 | |
1762 | /// Applies the given predicate to the items in the parallel iterator and |
1763 | /// returns the sequentially **first** non-None result of the map operation. |
1764 | /// |
1765 | /// Once a non-None value is produced from the map operation, all attempts |
1766 | /// to the right of the match will be stopped, while attempts to the left |
1767 | /// must continue in case an earlier match is found. |
1768 | /// |
1769 | /// Note that not all parallel iterators have a useful order, much like |
1770 | /// sequential `HashMap` iteration, so "first" may be nebulous. If you |
1771 | /// just want the first non-None value discovered anywhere in the iterator, |
1772 | /// `find_map_any` is a better choice. |
1773 | /// |
1774 | /// # Examples |
1775 | /// |
1776 | /// ``` |
1777 | /// use rayon::prelude::*; |
1778 | /// |
1779 | /// let c = ["lol" , "NaN" , "2" , "5" ]; |
1780 | /// |
1781 | /// let first_number = c.par_iter().find_map_first(|s| s.parse().ok()); |
1782 | /// |
1783 | /// assert_eq!(first_number, Some(2)); |
1784 | /// ``` |
1785 | fn find_map_first<P, R>(self, predicate: P) -> Option<R> |
1786 | where |
1787 | P: Fn(Self::Item) -> Option<R> + Sync + Send, |
1788 | R: Send, |
1789 | { |
1790 | fn yes<T>(_: &T) -> bool { |
1791 | true |
1792 | } |
1793 | self.filter_map(predicate).find_first(yes) |
1794 | } |
1795 | |
1796 | /// Applies the given predicate to the items in the parallel iterator and |
1797 | /// returns the sequentially **last** non-None result of the map operation. |
1798 | /// |
1799 | /// Once a non-None value is produced from the map operation, all attempts |
1800 | /// to the left of the match will be stopped, while attempts to the right |
1801 | /// must continue in case a later match is found. |
1802 | /// |
1803 | /// Note that not all parallel iterators have a useful order, much like |
1804 | /// sequential `HashMap` iteration, so "first" may be nebulous. If you |
1805 | /// just want the first non-None value discovered anywhere in the iterator, |
1806 | /// `find_map_any` is a better choice. |
1807 | /// |
1808 | /// # Examples |
1809 | /// |
1810 | /// ``` |
1811 | /// use rayon::prelude::*; |
1812 | /// |
1813 | /// let c = ["lol" , "NaN" , "2" , "5" ]; |
1814 | /// |
1815 | /// let last_number = c.par_iter().find_map_last(|s| s.parse().ok()); |
1816 | /// |
1817 | /// assert_eq!(last_number, Some(5)); |
1818 | /// ``` |
1819 | fn find_map_last<P, R>(self, predicate: P) -> Option<R> |
1820 | where |
1821 | P: Fn(Self::Item) -> Option<R> + Sync + Send, |
1822 | R: Send, |
1823 | { |
1824 | fn yes<T>(_: &T) -> bool { |
1825 | true |
1826 | } |
1827 | self.filter_map(predicate).find_last(yes) |
1828 | } |
1829 | |
1830 | #[doc (hidden)] |
1831 | #[deprecated (note = "parallel `find` does not search in order -- use `find_any`, \\ |
1832 | `find_first`, or `find_last`" )] |
1833 | fn find<P>(self, predicate: P) -> Option<Self::Item> |
1834 | where |
1835 | P: Fn(&Self::Item) -> bool + Sync + Send, |
1836 | { |
1837 | self.find_any(predicate) |
1838 | } |
1839 | |
1840 | /// Searches for **some** item in the parallel iterator that |
1841 | /// matches the given predicate, and if so returns true. Once |
1842 | /// a match is found, we'll attempt to stop process the rest |
1843 | /// of the items. Proving that there's no match, returning false, |
1844 | /// does require visiting every item. |
1845 | /// |
1846 | /// # Examples |
1847 | /// |
1848 | /// ``` |
1849 | /// use rayon::prelude::*; |
1850 | /// |
1851 | /// let a = [0, 12, 3, 4, 0, 23, 0]; |
1852 | /// |
1853 | /// let is_valid = a.par_iter().any(|&x| x > 10); |
1854 | /// |
1855 | /// assert!(is_valid); |
1856 | /// ``` |
1857 | fn any<P>(self, predicate: P) -> bool |
1858 | where |
1859 | P: Fn(Self::Item) -> bool + Sync + Send, |
1860 | { |
1861 | self.map(predicate).find_any(bool::clone).is_some() |
1862 | } |
1863 | |
1864 | /// Tests that every item in the parallel iterator matches the given |
1865 | /// predicate, and if so returns true. If a counter-example is found, |
1866 | /// we'll attempt to stop processing more items, then return false. |
1867 | /// |
1868 | /// # Examples |
1869 | /// |
1870 | /// ``` |
1871 | /// use rayon::prelude::*; |
1872 | /// |
1873 | /// let a = [0, 12, 3, 4, 0, 23, 0]; |
1874 | /// |
1875 | /// let is_valid = a.par_iter().all(|&x| x > 10); |
1876 | /// |
1877 | /// assert!(!is_valid); |
1878 | /// ``` |
1879 | fn all<P>(self, predicate: P) -> bool |
1880 | where |
1881 | P: Fn(Self::Item) -> bool + Sync + Send, |
1882 | { |
1883 | #[inline ] |
1884 | fn is_false(x: &bool) -> bool { |
1885 | !x |
1886 | } |
1887 | |
1888 | self.map(predicate).find_any(is_false).is_none() |
1889 | } |
1890 | |
1891 | /// Creates an iterator over the `Some` items of this iterator, halting |
1892 | /// as soon as any `None` is found. |
1893 | /// |
1894 | /// # Examples |
1895 | /// |
1896 | /// ``` |
1897 | /// use rayon::prelude::*; |
1898 | /// use std::sync::atomic::{AtomicUsize, Ordering}; |
1899 | /// |
1900 | /// let counter = AtomicUsize::new(0); |
1901 | /// let value = (0_i32..2048) |
1902 | /// .into_par_iter() |
1903 | /// .map(|x| { |
1904 | /// counter.fetch_add(1, Ordering::SeqCst); |
1905 | /// if x < 1024 { Some(x) } else { None } |
1906 | /// }) |
1907 | /// .while_some() |
1908 | /// .max(); |
1909 | /// |
1910 | /// assert!(value < Some(1024)); |
1911 | /// assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one |
1912 | /// ``` |
1913 | fn while_some<T>(self) -> WhileSome<Self> |
1914 | where |
1915 | Self: ParallelIterator<Item = Option<T>>, |
1916 | T: Send, |
1917 | { |
1918 | WhileSome::new(self) |
1919 | } |
1920 | |
1921 | /// Wraps an iterator with a fuse in case of panics, to halt all threads |
1922 | /// as soon as possible. |
1923 | /// |
1924 | /// Panics within parallel iterators are always propagated to the caller, |
1925 | /// but they don't always halt the rest of the iterator right away, due to |
1926 | /// the internal semantics of [`join`]. This adaptor makes a greater effort |
1927 | /// to stop processing other items sooner, with the cost of additional |
1928 | /// synchronization overhead, which may also inhibit some optimizations. |
1929 | /// |
1930 | /// [`join`]: ../fn.join.html#panics |
1931 | /// |
1932 | /// # Examples |
1933 | /// |
1934 | /// If this code didn't use `panic_fuse()`, it would continue processing |
1935 | /// many more items in other threads (with long sleep delays) before the |
1936 | /// panic is finally propagated. |
1937 | /// |
1938 | /// ```should_panic |
1939 | /// use rayon::prelude::*; |
1940 | /// use std::{thread, time}; |
1941 | /// |
1942 | /// (0..1_000_000) |
1943 | /// .into_par_iter() |
1944 | /// .panic_fuse() |
1945 | /// .for_each(|i| { |
1946 | /// // simulate some work |
1947 | /// thread::sleep(time::Duration::from_secs(1)); |
1948 | /// assert!(i > 0); // oops! |
1949 | /// }); |
1950 | /// ``` |
1951 | fn panic_fuse(self) -> PanicFuse<Self> { |
1952 | PanicFuse::new(self) |
1953 | } |
1954 | |
1955 | /// Creates a fresh collection containing all the elements produced |
1956 | /// by this parallel iterator. |
1957 | /// |
1958 | /// You may prefer [`collect_into_vec()`] implemented on |
1959 | /// [`IndexedParallelIterator`], if your underlying iterator also implements |
1960 | /// it. [`collect_into_vec()`] allocates efficiently with precise knowledge |
1961 | /// of how many elements the iterator contains, and even allows you to reuse |
1962 | /// an existing vector's backing store rather than allocating a fresh vector. |
1963 | /// |
1964 | /// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html |
1965 | /// [`collect_into_vec()`]: |
1966 | /// trait.IndexedParallelIterator.html#method.collect_into_vec |
1967 | /// |
1968 | /// # Examples |
1969 | /// |
1970 | /// ``` |
1971 | /// use rayon::prelude::*; |
1972 | /// |
1973 | /// let sync_vec: Vec<_> = (0..100).into_iter().collect(); |
1974 | /// |
1975 | /// let async_vec: Vec<_> = (0..100).into_par_iter().collect(); |
1976 | /// |
1977 | /// assert_eq!(sync_vec, async_vec); |
1978 | /// ``` |
1979 | /// |
1980 | /// You can collect a pair of collections like [`unzip`](#method.unzip) |
1981 | /// for paired items: |
1982 | /// |
1983 | /// ``` |
1984 | /// use rayon::prelude::*; |
1985 | /// |
1986 | /// let a = [(0, 1), (1, 2), (2, 3), (3, 4)]; |
1987 | /// let (first, second): (Vec<_>, Vec<_>) = a.into_par_iter().collect(); |
1988 | /// |
1989 | /// assert_eq!(first, [0, 1, 2, 3]); |
1990 | /// assert_eq!(second, [1, 2, 3, 4]); |
1991 | /// ``` |
1992 | /// |
1993 | /// Or like [`partition_map`](#method.partition_map) for `Either` items: |
1994 | /// |
1995 | /// ``` |
1996 | /// use rayon::prelude::*; |
1997 | /// use rayon::iter::Either; |
1998 | /// |
1999 | /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter().map(|x| { |
2000 | /// if x % 2 == 0 { |
2001 | /// Either::Left(x * 4) |
2002 | /// } else { |
2003 | /// Either::Right(x * 3) |
2004 | /// } |
2005 | /// }).collect(); |
2006 | /// |
2007 | /// assert_eq!(left, [0, 8, 16, 24]); |
2008 | /// assert_eq!(right, [3, 9, 15, 21]); |
2009 | /// ``` |
2010 | /// |
2011 | /// You can even collect an arbitrarily-nested combination of pairs and `Either`: |
2012 | /// |
2013 | /// ``` |
2014 | /// use rayon::prelude::*; |
2015 | /// use rayon::iter::Either; |
2016 | /// |
2017 | /// let (first, (left, right)): (Vec<_>, (Vec<_>, Vec<_>)) |
2018 | /// = (0..8).into_par_iter().map(|x| { |
2019 | /// if x % 2 == 0 { |
2020 | /// (x, Either::Left(x * 4)) |
2021 | /// } else { |
2022 | /// (-x, Either::Right(x * 3)) |
2023 | /// } |
2024 | /// }).collect(); |
2025 | /// |
2026 | /// assert_eq!(first, [0, -1, 2, -3, 4, -5, 6, -7]); |
2027 | /// assert_eq!(left, [0, 8, 16, 24]); |
2028 | /// assert_eq!(right, [3, 9, 15, 21]); |
2029 | /// ``` |
2030 | /// |
2031 | /// All of that can _also_ be combined with short-circuiting collection of |
2032 | /// `Result` or `Option` types: |
2033 | /// |
2034 | /// ``` |
2035 | /// use rayon::prelude::*; |
2036 | /// use rayon::iter::Either; |
2037 | /// |
2038 | /// let result: Result<(Vec<_>, (Vec<_>, Vec<_>)), _> |
2039 | /// = (0..8).into_par_iter().map(|x| { |
2040 | /// if x > 5 { |
2041 | /// Err(x) |
2042 | /// } else if x % 2 == 0 { |
2043 | /// Ok((x, Either::Left(x * 4))) |
2044 | /// } else { |
2045 | /// Ok((-x, Either::Right(x * 3))) |
2046 | /// } |
2047 | /// }).collect(); |
2048 | /// |
2049 | /// let error = result.unwrap_err(); |
2050 | /// assert!(error == 6 || error == 7); |
2051 | /// ``` |
2052 | fn collect<C>(self) -> C |
2053 | where |
2054 | C: FromParallelIterator<Self::Item>, |
2055 | { |
2056 | C::from_par_iter(self) |
2057 | } |
2058 | |
2059 | /// Unzips the items of a parallel iterator into a pair of arbitrary |
2060 | /// `ParallelExtend` containers. |
2061 | /// |
2062 | /// You may prefer to use `unzip_into_vecs()`, which allocates more |
2063 | /// efficiently with precise knowledge of how many elements the |
2064 | /// iterator contains, and even allows you to reuse existing |
2065 | /// vectors' backing stores rather than allocating fresh vectors. |
2066 | /// |
2067 | /// # Examples |
2068 | /// |
2069 | /// ``` |
2070 | /// use rayon::prelude::*; |
2071 | /// |
2072 | /// let a = [(0, 1), (1, 2), (2, 3), (3, 4)]; |
2073 | /// |
2074 | /// let (left, right): (Vec<_>, Vec<_>) = a.par_iter().cloned().unzip(); |
2075 | /// |
2076 | /// assert_eq!(left, [0, 1, 2, 3]); |
2077 | /// assert_eq!(right, [1, 2, 3, 4]); |
2078 | /// ``` |
2079 | /// |
2080 | /// Nested pairs can be unzipped too. |
2081 | /// |
2082 | /// ``` |
2083 | /// use rayon::prelude::*; |
2084 | /// |
2085 | /// let (values, (squares, cubes)): (Vec<_>, (Vec<_>, Vec<_>)) = (0..4).into_par_iter() |
2086 | /// .map(|i| (i, (i * i, i * i * i))) |
2087 | /// .unzip(); |
2088 | /// |
2089 | /// assert_eq!(values, [0, 1, 2, 3]); |
2090 | /// assert_eq!(squares, [0, 1, 4, 9]); |
2091 | /// assert_eq!(cubes, [0, 1, 8, 27]); |
2092 | /// ``` |
2093 | fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB) |
2094 | where |
2095 | Self: ParallelIterator<Item = (A, B)>, |
2096 | FromA: Default + Send + ParallelExtend<A>, |
2097 | FromB: Default + Send + ParallelExtend<B>, |
2098 | A: Send, |
2099 | B: Send, |
2100 | { |
2101 | unzip::unzip(self) |
2102 | } |
2103 | |
2104 | /// Partitions the items of a parallel iterator into a pair of arbitrary |
2105 | /// `ParallelExtend` containers. Items for which the `predicate` returns |
2106 | /// true go into the first container, and the rest go into the second. |
2107 | /// |
2108 | /// Note: unlike the standard `Iterator::partition`, this allows distinct |
2109 | /// collection types for the left and right items. This is more flexible, |
2110 | /// but may require new type annotations when converting sequential code |
2111 | /// that used type inference assuming the two were the same. |
2112 | /// |
2113 | /// # Examples |
2114 | /// |
2115 | /// ``` |
2116 | /// use rayon::prelude::*; |
2117 | /// |
2118 | /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter().partition(|x| x % 2 == 0); |
2119 | /// |
2120 | /// assert_eq!(left, [0, 2, 4, 6]); |
2121 | /// assert_eq!(right, [1, 3, 5, 7]); |
2122 | /// ``` |
2123 | fn partition<A, B, P>(self, predicate: P) -> (A, B) |
2124 | where |
2125 | A: Default + Send + ParallelExtend<Self::Item>, |
2126 | B: Default + Send + ParallelExtend<Self::Item>, |
2127 | P: Fn(&Self::Item) -> bool + Sync + Send, |
2128 | { |
2129 | unzip::partition(self, predicate) |
2130 | } |
2131 | |
2132 | /// Partitions and maps the items of a parallel iterator into a pair of |
2133 | /// arbitrary `ParallelExtend` containers. `Either::Left` items go into |
2134 | /// the first container, and `Either::Right` items go into the second. |
2135 | /// |
2136 | /// # Examples |
2137 | /// |
2138 | /// ``` |
2139 | /// use rayon::prelude::*; |
2140 | /// use rayon::iter::Either; |
2141 | /// |
2142 | /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter() |
2143 | /// .partition_map(|x| { |
2144 | /// if x % 2 == 0 { |
2145 | /// Either::Left(x * 4) |
2146 | /// } else { |
2147 | /// Either::Right(x * 3) |
2148 | /// } |
2149 | /// }); |
2150 | /// |
2151 | /// assert_eq!(left, [0, 8, 16, 24]); |
2152 | /// assert_eq!(right, [3, 9, 15, 21]); |
2153 | /// ``` |
2154 | /// |
2155 | /// Nested `Either` enums can be split as well. |
2156 | /// |
2157 | /// ``` |
2158 | /// use rayon::prelude::*; |
2159 | /// use rayon::iter::Either::*; |
2160 | /// |
2161 | /// let ((fizzbuzz, fizz), (buzz, other)): ((Vec<_>, Vec<_>), (Vec<_>, Vec<_>)) = (1..20) |
2162 | /// .into_par_iter() |
2163 | /// .partition_map(|x| match (x % 3, x % 5) { |
2164 | /// (0, 0) => Left(Left(x)), |
2165 | /// (0, _) => Left(Right(x)), |
2166 | /// (_, 0) => Right(Left(x)), |
2167 | /// (_, _) => Right(Right(x)), |
2168 | /// }); |
2169 | /// |
2170 | /// assert_eq!(fizzbuzz, [15]); |
2171 | /// assert_eq!(fizz, [3, 6, 9, 12, 18]); |
2172 | /// assert_eq!(buzz, [5, 10]); |
2173 | /// assert_eq!(other, [1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19]); |
2174 | /// ``` |
2175 | fn partition_map<A, B, P, L, R>(self, predicate: P) -> (A, B) |
2176 | where |
2177 | A: Default + Send + ParallelExtend<L>, |
2178 | B: Default + Send + ParallelExtend<R>, |
2179 | P: Fn(Self::Item) -> Either<L, R> + Sync + Send, |
2180 | L: Send, |
2181 | R: Send, |
2182 | { |
2183 | unzip::partition_map(self, predicate) |
2184 | } |
2185 | |
2186 | /// Intersperses clones of an element between items of this iterator. |
2187 | /// |
2188 | /// # Examples |
2189 | /// |
2190 | /// ``` |
2191 | /// use rayon::prelude::*; |
2192 | /// |
2193 | /// let x = vec![1, 2, 3]; |
2194 | /// let r: Vec<_> = x.into_par_iter().intersperse(-1).collect(); |
2195 | /// |
2196 | /// assert_eq!(r, vec![1, -1, 2, -1, 3]); |
2197 | /// ``` |
2198 | fn intersperse(self, element: Self::Item) -> Intersperse<Self> |
2199 | where |
2200 | Self::Item: Clone, |
2201 | { |
2202 | Intersperse::new(self, element) |
2203 | } |
2204 | |
2205 | /// Creates an iterator that yields `n` elements from *anywhere* in the original iterator. |
2206 | /// |
2207 | /// This is similar to [`IndexedParallelIterator::take`] without being |
2208 | /// constrained to the "first" `n` of the original iterator order. The |
2209 | /// taken items will still maintain their relative order where that is |
2210 | /// visible in `collect`, `reduce`, and similar outputs. |
2211 | /// |
2212 | /// # Examples |
2213 | /// |
2214 | /// ``` |
2215 | /// use rayon::prelude::*; |
2216 | /// |
2217 | /// let result: Vec<_> = (0..100) |
2218 | /// .into_par_iter() |
2219 | /// .filter(|&x| x % 2 == 0) |
2220 | /// .take_any(5) |
2221 | /// .collect(); |
2222 | /// |
2223 | /// assert_eq!(result.len(), 5); |
2224 | /// assert!(result.windows(2).all(|w| w[0] < w[1])); |
2225 | /// ``` |
2226 | fn take_any(self, n: usize) -> TakeAny<Self> { |
2227 | TakeAny::new(self, n) |
2228 | } |
2229 | |
2230 | /// Creates an iterator that skips `n` elements from *anywhere* in the original iterator. |
2231 | /// |
2232 | /// This is similar to [`IndexedParallelIterator::skip`] without being |
2233 | /// constrained to the "first" `n` of the original iterator order. The |
2234 | /// remaining items will still maintain their relative order where that is |
2235 | /// visible in `collect`, `reduce`, and similar outputs. |
2236 | /// |
2237 | /// # Examples |
2238 | /// |
2239 | /// ``` |
2240 | /// use rayon::prelude::*; |
2241 | /// |
2242 | /// let result: Vec<_> = (0..100) |
2243 | /// .into_par_iter() |
2244 | /// .filter(|&x| x % 2 == 0) |
2245 | /// .skip_any(5) |
2246 | /// .collect(); |
2247 | /// |
2248 | /// assert_eq!(result.len(), 45); |
2249 | /// assert!(result.windows(2).all(|w| w[0] < w[1])); |
2250 | /// ``` |
2251 | fn skip_any(self, n: usize) -> SkipAny<Self> { |
2252 | SkipAny::new(self, n) |
2253 | } |
2254 | |
2255 | /// Creates an iterator that takes elements from *anywhere* in the original iterator |
2256 | /// until the given `predicate` returns `false`. |
2257 | /// |
2258 | /// The `predicate` may be anything -- e.g. it could be checking a fact about the item, a |
2259 | /// global condition unrelated to the item itself, or some combination thereof. |
2260 | /// |
2261 | /// If parallel calls to the `predicate` race and give different results, then the |
2262 | /// `true` results will still take those particular items, while respecting the `false` |
2263 | /// result from elsewhere to skip any further items. |
2264 | /// |
2265 | /// This is similar to [`Iterator::take_while`] without being constrained to the original |
2266 | /// iterator order. The taken items will still maintain their relative order where that is |
2267 | /// visible in `collect`, `reduce`, and similar outputs. |
2268 | /// |
2269 | /// # Examples |
2270 | /// |
2271 | /// ``` |
2272 | /// use rayon::prelude::*; |
2273 | /// |
2274 | /// let result: Vec<_> = (0..100) |
2275 | /// .into_par_iter() |
2276 | /// .take_any_while(|x| *x < 50) |
2277 | /// .collect(); |
2278 | /// |
2279 | /// assert!(result.len() <= 50); |
2280 | /// assert!(result.windows(2).all(|w| w[0] < w[1])); |
2281 | /// ``` |
2282 | /// |
2283 | /// ``` |
2284 | /// use rayon::prelude::*; |
2285 | /// use std::sync::atomic::AtomicUsize; |
2286 | /// use std::sync::atomic::Ordering::Relaxed; |
2287 | /// |
2288 | /// // Collect any group of items that sum <= 1000 |
2289 | /// let quota = AtomicUsize::new(1000); |
2290 | /// let result: Vec<_> = (0_usize..100) |
2291 | /// .into_par_iter() |
2292 | /// .take_any_while(|&x| { |
2293 | /// quota.fetch_update(Relaxed, Relaxed, |q| q.checked_sub(x)) |
2294 | /// .is_ok() |
2295 | /// }) |
2296 | /// .collect(); |
2297 | /// |
2298 | /// let sum = result.iter().sum::<usize>(); |
2299 | /// assert!(matches!(sum, 902..=1000)); |
2300 | /// ``` |
2301 | fn take_any_while<P>(self, predicate: P) -> TakeAnyWhile<Self, P> |
2302 | where |
2303 | P: Fn(&Self::Item) -> bool + Sync + Send, |
2304 | { |
2305 | TakeAnyWhile::new(self, predicate) |
2306 | } |
2307 | |
2308 | /// Creates an iterator that skips elements from *anywhere* in the original iterator |
2309 | /// until the given `predicate` returns `false`. |
2310 | /// |
2311 | /// The `predicate` may be anything -- e.g. it could be checking a fact about the item, a |
2312 | /// global condition unrelated to the item itself, or some combination thereof. |
2313 | /// |
2314 | /// If parallel calls to the `predicate` race and give different results, then the |
2315 | /// `true` results will still skip those particular items, while respecting the `false` |
2316 | /// result from elsewhere to skip any further items. |
2317 | /// |
2318 | /// This is similar to [`Iterator::skip_while`] without being constrained to the original |
2319 | /// iterator order. The remaining items will still maintain their relative order where that is |
2320 | /// visible in `collect`, `reduce`, and similar outputs. |
2321 | /// |
2322 | /// # Examples |
2323 | /// |
2324 | /// ``` |
2325 | /// use rayon::prelude::*; |
2326 | /// |
2327 | /// let result: Vec<_> = (0..100) |
2328 | /// .into_par_iter() |
2329 | /// .skip_any_while(|x| *x < 50) |
2330 | /// .collect(); |
2331 | /// |
2332 | /// assert!(result.len() >= 50); |
2333 | /// assert!(result.windows(2).all(|w| w[0] < w[1])); |
2334 | /// ``` |
2335 | fn skip_any_while<P>(self, predicate: P) -> SkipAnyWhile<Self, P> |
2336 | where |
2337 | P: Fn(&Self::Item) -> bool + Sync + Send, |
2338 | { |
2339 | SkipAnyWhile::new(self, predicate) |
2340 | } |
2341 | |
2342 | /// Internal method used to define the behavior of this parallel |
2343 | /// iterator. You should not need to call this directly. |
2344 | /// |
2345 | /// This method causes the iterator `self` to start producing |
2346 | /// items and to feed them to the consumer `consumer` one by one. |
2347 | /// It may split the consumer before doing so to create the |
2348 | /// opportunity to produce in parallel. |
2349 | /// |
2350 | /// See the [README] for more details on the internals of parallel |
2351 | /// iterators. |
2352 | /// |
2353 | /// [README]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md |
2354 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
2355 | where |
2356 | C: UnindexedConsumer<Self::Item>; |
2357 | |
2358 | /// Internal method used to define the behavior of this parallel |
2359 | /// iterator. You should not need to call this directly. |
2360 | /// |
2361 | /// Returns the number of items produced by this iterator, if known |
2362 | /// statically. This can be used by consumers to trigger special fast |
2363 | /// paths. Therefore, if `Some(_)` is returned, this iterator must only |
2364 | /// use the (indexed) `Consumer` methods when driving a consumer, such |
2365 | /// as `split_at()`. Calling `UnindexedConsumer::split_off_left()` or |
2366 | /// other `UnindexedConsumer` methods -- or returning an inaccurate |
2367 | /// value -- may result in panics. |
2368 | /// |
2369 | /// This method is currently used to optimize `collect` for want |
2370 | /// of true Rust specialization; it may be removed when |
2371 | /// specialization is stable. |
2372 | fn opt_len(&self) -> Option<usize> { |
2373 | None |
2374 | } |
2375 | } |
2376 | |
2377 | impl<T: ParallelIterator> IntoParallelIterator for T { |
2378 | type Iter = T; |
2379 | type Item = T::Item; |
2380 | |
2381 | fn into_par_iter(self) -> T { |
2382 | self |
2383 | } |
2384 | } |
2385 | |
2386 | /// An iterator that supports "random access" to its data, meaning |
2387 | /// that you can split it at arbitrary indices and draw data from |
2388 | /// those points. |
2389 | /// |
2390 | /// **Note:** Not implemented for `u64`, `i64`, `u128`, or `i128` ranges |
2391 | // Waiting for `ExactSizeIterator::is_empty` to be stabilized. See rust-lang/rust#35428 |
2392 | #[allow (clippy::len_without_is_empty)] |
2393 | pub trait IndexedParallelIterator: ParallelIterator { |
2394 | /// Collects the results of the iterator into the specified |
2395 | /// vector. The vector is always cleared before execution |
2396 | /// begins. If possible, reusing the vector across calls can lead |
2397 | /// to better performance since it reuses the same backing buffer. |
2398 | /// |
2399 | /// # Examples |
2400 | /// |
2401 | /// ``` |
2402 | /// use rayon::prelude::*; |
2403 | /// |
2404 | /// // any prior data will be cleared |
2405 | /// let mut vec = vec![-1, -2, -3]; |
2406 | /// |
2407 | /// (0..5).into_par_iter() |
2408 | /// .collect_into_vec(&mut vec); |
2409 | /// |
2410 | /// assert_eq!(vec, [0, 1, 2, 3, 4]); |
2411 | /// ``` |
2412 | fn collect_into_vec(self, target: &mut Vec<Self::Item>) { |
2413 | collect::collect_into_vec(self, target); |
2414 | } |
2415 | |
2416 | /// Unzips the results of the iterator into the specified |
2417 | /// vectors. The vectors are always cleared before execution |
2418 | /// begins. If possible, reusing the vectors across calls can lead |
2419 | /// to better performance since they reuse the same backing buffer. |
2420 | /// |
2421 | /// # Examples |
2422 | /// |
2423 | /// ``` |
2424 | /// use rayon::prelude::*; |
2425 | /// |
2426 | /// // any prior data will be cleared |
2427 | /// let mut left = vec![42; 10]; |
2428 | /// let mut right = vec![-1; 10]; |
2429 | /// |
2430 | /// (10..15).into_par_iter() |
2431 | /// .enumerate() |
2432 | /// .unzip_into_vecs(&mut left, &mut right); |
2433 | /// |
2434 | /// assert_eq!(left, [0, 1, 2, 3, 4]); |
2435 | /// assert_eq!(right, [10, 11, 12, 13, 14]); |
2436 | /// ``` |
2437 | fn unzip_into_vecs<A, B>(self, left: &mut Vec<A>, right: &mut Vec<B>) |
2438 | where |
2439 | Self: IndexedParallelIterator<Item = (A, B)>, |
2440 | A: Send, |
2441 | B: Send, |
2442 | { |
2443 | collect::unzip_into_vecs(self, left, right); |
2444 | } |
2445 | |
2446 | /// Iterates over tuples `(A, B)`, where the items `A` are from |
2447 | /// this iterator and `B` are from the iterator given as argument. |
2448 | /// Like the `zip` method on ordinary iterators, if the two |
2449 | /// iterators are of unequal length, you only get the items they |
2450 | /// have in common. |
2451 | /// |
2452 | /// # Examples |
2453 | /// |
2454 | /// ``` |
2455 | /// use rayon::prelude::*; |
2456 | /// |
2457 | /// let result: Vec<_> = (1..4) |
2458 | /// .into_par_iter() |
2459 | /// .zip(vec!['a' , 'b' , 'c' ]) |
2460 | /// .collect(); |
2461 | /// |
2462 | /// assert_eq!(result, [(1, 'a' ), (2, 'b' ), (3, 'c' )]); |
2463 | /// ``` |
2464 | fn zip<Z>(self, zip_op: Z) -> Zip<Self, Z::Iter> |
2465 | where |
2466 | Z: IntoParallelIterator, |
2467 | Z::Iter: IndexedParallelIterator, |
2468 | { |
2469 | Zip::new(self, zip_op.into_par_iter()) |
2470 | } |
2471 | |
2472 | /// The same as `Zip`, but requires that both iterators have the same length. |
2473 | /// |
2474 | /// # Panics |
2475 | /// Will panic if `self` and `zip_op` are not the same length. |
2476 | /// |
2477 | /// ```should_panic |
2478 | /// use rayon::prelude::*; |
2479 | /// |
2480 | /// let one = [1u8]; |
2481 | /// let two = [2u8, 2]; |
2482 | /// let one_iter = one.par_iter(); |
2483 | /// let two_iter = two.par_iter(); |
2484 | /// |
2485 | /// // this will panic |
2486 | /// let zipped: Vec<(&u8, &u8)> = one_iter.zip_eq(two_iter).collect(); |
2487 | /// |
2488 | /// // we should never get here |
2489 | /// assert_eq!(1, zipped.len()); |
2490 | /// ``` |
2491 | #[track_caller ] |
2492 | fn zip_eq<Z>(self, zip_op: Z) -> ZipEq<Self, Z::Iter> |
2493 | where |
2494 | Z: IntoParallelIterator, |
2495 | Z::Iter: IndexedParallelIterator, |
2496 | { |
2497 | let zip_op_iter = zip_op.into_par_iter(); |
2498 | assert_eq!( |
2499 | self.len(), |
2500 | zip_op_iter.len(), |
2501 | "iterators must have the same length" |
2502 | ); |
2503 | ZipEq::new(self, zip_op_iter) |
2504 | } |
2505 | |
2506 | /// Interleaves elements of this iterator and the other given |
2507 | /// iterator. Alternately yields elements from this iterator and |
2508 | /// the given iterator, until both are exhausted. If one iterator |
2509 | /// is exhausted before the other, the last elements are provided |
2510 | /// from the other. |
2511 | /// |
2512 | /// # Examples |
2513 | /// |
2514 | /// ``` |
2515 | /// use rayon::prelude::*; |
2516 | /// let (x, y) = (vec![1, 2], vec![3, 4, 5, 6]); |
2517 | /// let r: Vec<i32> = x.into_par_iter().interleave(y).collect(); |
2518 | /// assert_eq!(r, vec![1, 3, 2, 4, 5, 6]); |
2519 | /// ``` |
2520 | fn interleave<I>(self, other: I) -> Interleave<Self, I::Iter> |
2521 | where |
2522 | I: IntoParallelIterator<Item = Self::Item>, |
2523 | I::Iter: IndexedParallelIterator<Item = Self::Item>, |
2524 | { |
2525 | Interleave::new(self, other.into_par_iter()) |
2526 | } |
2527 | |
2528 | /// Interleaves elements of this iterator and the other given |
2529 | /// iterator, until one is exhausted. |
2530 | /// |
2531 | /// # Examples |
2532 | /// |
2533 | /// ``` |
2534 | /// use rayon::prelude::*; |
2535 | /// let (x, y) = (vec![1, 2, 3, 4], vec![5, 6]); |
2536 | /// let r: Vec<i32> = x.into_par_iter().interleave_shortest(y).collect(); |
2537 | /// assert_eq!(r, vec![1, 5, 2, 6, 3]); |
2538 | /// ``` |
2539 | fn interleave_shortest<I>(self, other: I) -> InterleaveShortest<Self, I::Iter> |
2540 | where |
2541 | I: IntoParallelIterator<Item = Self::Item>, |
2542 | I::Iter: IndexedParallelIterator<Item = Self::Item>, |
2543 | { |
2544 | InterleaveShortest::new(self, other.into_par_iter()) |
2545 | } |
2546 | |
2547 | /// Splits an iterator up into fixed-size chunks. |
2548 | /// |
2549 | /// Returns an iterator that returns `Vec`s of the given number of elements. |
2550 | /// If the number of elements in the iterator is not divisible by `chunk_size`, |
2551 | /// the last chunk may be shorter than `chunk_size`. |
2552 | /// |
2553 | /// See also [`par_chunks()`] and [`par_chunks_mut()`] for similar behavior on |
2554 | /// slices, without having to allocate intermediate `Vec`s for the chunks. |
2555 | /// |
2556 | /// [`par_chunks()`]: ../slice/trait.ParallelSlice.html#method.par_chunks |
2557 | /// [`par_chunks_mut()`]: ../slice/trait.ParallelSliceMut.html#method.par_chunks_mut |
2558 | /// |
2559 | /// # Examples |
2560 | /// |
2561 | /// ``` |
2562 | /// use rayon::prelude::*; |
2563 | /// let a = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
2564 | /// let r: Vec<Vec<i32>> = a.into_par_iter().chunks(3).collect(); |
2565 | /// assert_eq!(r, vec![vec![1,2,3], vec![4,5,6], vec![7,8,9], vec![10]]); |
2566 | /// ``` |
2567 | #[track_caller ] |
2568 | fn chunks(self, chunk_size: usize) -> Chunks<Self> { |
2569 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
2570 | Chunks::new(self, chunk_size) |
2571 | } |
2572 | |
2573 | /// Splits an iterator into fixed-size chunks, performing a sequential [`fold()`] on |
2574 | /// each chunk. |
2575 | /// |
2576 | /// Returns an iterator that produces a folded result for each chunk of items |
2577 | /// produced by this iterator. |
2578 | /// |
2579 | /// This works essentially like: |
2580 | /// |
2581 | /// ```text |
2582 | /// iter.chunks(chunk_size) |
2583 | /// .map(|chunk| |
2584 | /// chunk.into_iter() |
2585 | /// .fold(identity, fold_op) |
2586 | /// ) |
2587 | /// ``` |
2588 | /// |
2589 | /// except there is no per-chunk allocation overhead. |
2590 | /// |
2591 | /// [`fold()`]: std::iter::Iterator#method.fold |
2592 | /// |
2593 | /// **Panics** if `chunk_size` is 0. |
2594 | /// |
2595 | /// # Examples |
2596 | /// |
2597 | /// ``` |
2598 | /// use rayon::prelude::*; |
2599 | /// let nums = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
2600 | /// let chunk_sums = nums.into_par_iter().fold_chunks(2, || 0, |a, n| a + n).collect::<Vec<_>>(); |
2601 | /// assert_eq!(chunk_sums, vec![3, 7, 11, 15, 19]); |
2602 | /// ``` |
2603 | #[track_caller ] |
2604 | fn fold_chunks<T, ID, F>( |
2605 | self, |
2606 | chunk_size: usize, |
2607 | identity: ID, |
2608 | fold_op: F, |
2609 | ) -> FoldChunks<Self, ID, F> |
2610 | where |
2611 | ID: Fn() -> T + Send + Sync, |
2612 | F: Fn(T, Self::Item) -> T + Send + Sync, |
2613 | T: Send, |
2614 | { |
2615 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
2616 | FoldChunks::new(self, chunk_size, identity, fold_op) |
2617 | } |
2618 | |
2619 | /// Splits an iterator into fixed-size chunks, performing a sequential [`fold()`] on |
2620 | /// each chunk. |
2621 | /// |
2622 | /// Returns an iterator that produces a folded result for each chunk of items |
2623 | /// produced by this iterator. |
2624 | /// |
2625 | /// This works essentially like `fold_chunks(chunk_size, || init.clone(), fold_op)`, |
2626 | /// except it doesn't require the `init` type to be `Sync`, nor any other form of |
2627 | /// added synchronization. |
2628 | /// |
2629 | /// [`fold()`]: std::iter::Iterator#method.fold |
2630 | /// |
2631 | /// **Panics** if `chunk_size` is 0. |
2632 | /// |
2633 | /// # Examples |
2634 | /// |
2635 | /// ``` |
2636 | /// use rayon::prelude::*; |
2637 | /// let nums = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
2638 | /// let chunk_sums = nums.into_par_iter().fold_chunks_with(2, 0, |a, n| a + n).collect::<Vec<_>>(); |
2639 | /// assert_eq!(chunk_sums, vec![3, 7, 11, 15, 19]); |
2640 | /// ``` |
2641 | #[track_caller ] |
2642 | fn fold_chunks_with<T, F>( |
2643 | self, |
2644 | chunk_size: usize, |
2645 | init: T, |
2646 | fold_op: F, |
2647 | ) -> FoldChunksWith<Self, T, F> |
2648 | where |
2649 | T: Send + Clone, |
2650 | F: Fn(T, Self::Item) -> T + Send + Sync, |
2651 | { |
2652 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
2653 | FoldChunksWith::new(self, chunk_size, init, fold_op) |
2654 | } |
2655 | |
2656 | /// Lexicographically compares the elements of this `ParallelIterator` with those of |
2657 | /// another. |
2658 | /// |
2659 | /// # Examples |
2660 | /// |
2661 | /// ``` |
2662 | /// use rayon::prelude::*; |
2663 | /// use std::cmp::Ordering::*; |
2664 | /// |
2665 | /// let x = vec![1, 2, 3]; |
2666 | /// assert_eq!(x.par_iter().cmp(&vec![1, 3, 0]), Less); |
2667 | /// assert_eq!(x.par_iter().cmp(&vec![1, 2, 3]), Equal); |
2668 | /// assert_eq!(x.par_iter().cmp(&vec![1, 2]), Greater); |
2669 | /// ``` |
2670 | fn cmp<I>(self, other: I) -> Ordering |
2671 | where |
2672 | I: IntoParallelIterator<Item = Self::Item>, |
2673 | I::Iter: IndexedParallelIterator, |
2674 | Self::Item: Ord, |
2675 | { |
2676 | #[inline ] |
2677 | fn ordering<T: Ord>((x, y): (T, T)) -> Ordering { |
2678 | Ord::cmp(&x, &y) |
2679 | } |
2680 | |
2681 | #[inline ] |
2682 | fn inequal(&ord: &Ordering) -> bool { |
2683 | ord != Ordering::Equal |
2684 | } |
2685 | |
2686 | let other = other.into_par_iter(); |
2687 | let ord_len = self.len().cmp(&other.len()); |
2688 | self.zip(other) |
2689 | .map(ordering) |
2690 | .find_first(inequal) |
2691 | .unwrap_or(ord_len) |
2692 | } |
2693 | |
2694 | /// Lexicographically compares the elements of this `ParallelIterator` with those of |
2695 | /// another. |
2696 | /// |
2697 | /// # Examples |
2698 | /// |
2699 | /// ``` |
2700 | /// use rayon::prelude::*; |
2701 | /// use std::cmp::Ordering::*; |
2702 | /// use std::f64::NAN; |
2703 | /// |
2704 | /// let x = vec![1.0, 2.0, 3.0]; |
2705 | /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 3.0, 0.0]), Some(Less)); |
2706 | /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 2.0, 3.0]), Some(Equal)); |
2707 | /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 2.0]), Some(Greater)); |
2708 | /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, NAN]), None); |
2709 | /// ``` |
2710 | fn partial_cmp<I>(self, other: I) -> Option<Ordering> |
2711 | where |
2712 | I: IntoParallelIterator, |
2713 | I::Iter: IndexedParallelIterator, |
2714 | Self::Item: PartialOrd<I::Item>, |
2715 | { |
2716 | #[inline ] |
2717 | fn ordering<T: PartialOrd<U>, U>((x, y): (T, U)) -> Option<Ordering> { |
2718 | PartialOrd::partial_cmp(&x, &y) |
2719 | } |
2720 | |
2721 | #[inline ] |
2722 | fn inequal(&ord: &Option<Ordering>) -> bool { |
2723 | ord != Some(Ordering::Equal) |
2724 | } |
2725 | |
2726 | let other = other.into_par_iter(); |
2727 | let ord_len = self.len().cmp(&other.len()); |
2728 | self.zip(other) |
2729 | .map(ordering) |
2730 | .find_first(inequal) |
2731 | .unwrap_or(Some(ord_len)) |
2732 | } |
2733 | |
2734 | /// Determines if the elements of this `ParallelIterator` |
2735 | /// are equal to those of another |
2736 | fn eq<I>(self, other: I) -> bool |
2737 | where |
2738 | I: IntoParallelIterator, |
2739 | I::Iter: IndexedParallelIterator, |
2740 | Self::Item: PartialEq<I::Item>, |
2741 | { |
2742 | #[inline ] |
2743 | fn eq<T: PartialEq<U>, U>((x, y): (T, U)) -> bool { |
2744 | PartialEq::eq(&x, &y) |
2745 | } |
2746 | |
2747 | let other = other.into_par_iter(); |
2748 | self.len() == other.len() && self.zip(other).all(eq) |
2749 | } |
2750 | |
2751 | /// Determines if the elements of this `ParallelIterator` |
2752 | /// are unequal to those of another |
2753 | fn ne<I>(self, other: I) -> bool |
2754 | where |
2755 | I: IntoParallelIterator, |
2756 | I::Iter: IndexedParallelIterator, |
2757 | Self::Item: PartialEq<I::Item>, |
2758 | { |
2759 | !self.eq(other) |
2760 | } |
2761 | |
2762 | /// Determines if the elements of this `ParallelIterator` |
2763 | /// are lexicographically less than those of another. |
2764 | fn lt<I>(self, other: I) -> bool |
2765 | where |
2766 | I: IntoParallelIterator, |
2767 | I::Iter: IndexedParallelIterator, |
2768 | Self::Item: PartialOrd<I::Item>, |
2769 | { |
2770 | self.partial_cmp(other) == Some(Ordering::Less) |
2771 | } |
2772 | |
2773 | /// Determines if the elements of this `ParallelIterator` |
2774 | /// are less or equal to those of another. |
2775 | fn le<I>(self, other: I) -> bool |
2776 | where |
2777 | I: IntoParallelIterator, |
2778 | I::Iter: IndexedParallelIterator, |
2779 | Self::Item: PartialOrd<I::Item>, |
2780 | { |
2781 | let ord = self.partial_cmp(other); |
2782 | ord == Some(Ordering::Equal) || ord == Some(Ordering::Less) |
2783 | } |
2784 | |
2785 | /// Determines if the elements of this `ParallelIterator` |
2786 | /// are lexicographically greater than those of another. |
2787 | fn gt<I>(self, other: I) -> bool |
2788 | where |
2789 | I: IntoParallelIterator, |
2790 | I::Iter: IndexedParallelIterator, |
2791 | Self::Item: PartialOrd<I::Item>, |
2792 | { |
2793 | self.partial_cmp(other) == Some(Ordering::Greater) |
2794 | } |
2795 | |
2796 | /// Determines if the elements of this `ParallelIterator` |
2797 | /// are less or equal to those of another. |
2798 | fn ge<I>(self, other: I) -> bool |
2799 | where |
2800 | I: IntoParallelIterator, |
2801 | I::Iter: IndexedParallelIterator, |
2802 | Self::Item: PartialOrd<I::Item>, |
2803 | { |
2804 | let ord = self.partial_cmp(other); |
2805 | ord == Some(Ordering::Equal) || ord == Some(Ordering::Greater) |
2806 | } |
2807 | |
2808 | /// Yields an index along with each item. |
2809 | /// |
2810 | /// # Examples |
2811 | /// |
2812 | /// ``` |
2813 | /// use rayon::prelude::*; |
2814 | /// |
2815 | /// let chars = vec!['a' , 'b' , 'c' ]; |
2816 | /// let result: Vec<_> = chars |
2817 | /// .into_par_iter() |
2818 | /// .enumerate() |
2819 | /// .collect(); |
2820 | /// |
2821 | /// assert_eq!(result, [(0, 'a' ), (1, 'b' ), (2, 'c' )]); |
2822 | /// ``` |
2823 | fn enumerate(self) -> Enumerate<Self> { |
2824 | Enumerate::new(self) |
2825 | } |
2826 | |
2827 | /// Creates an iterator that steps by the given amount |
2828 | /// |
2829 | /// # Examples |
2830 | /// |
2831 | /// ``` |
2832 | ///use rayon::prelude::*; |
2833 | /// |
2834 | /// let range = (3..10); |
2835 | /// let result: Vec<i32> = range |
2836 | /// .into_par_iter() |
2837 | /// .step_by(3) |
2838 | /// .collect(); |
2839 | /// |
2840 | /// assert_eq!(result, [3, 6, 9]) |
2841 | /// ``` |
2842 | fn step_by(self, step: usize) -> StepBy<Self> { |
2843 | StepBy::new(self, step) |
2844 | } |
2845 | |
2846 | /// Creates an iterator that skips the first `n` elements. |
2847 | /// |
2848 | /// # Examples |
2849 | /// |
2850 | /// ``` |
2851 | /// use rayon::prelude::*; |
2852 | /// |
2853 | /// let result: Vec<_> = (0..100) |
2854 | /// .into_par_iter() |
2855 | /// .skip(95) |
2856 | /// .collect(); |
2857 | /// |
2858 | /// assert_eq!(result, [95, 96, 97, 98, 99]); |
2859 | /// ``` |
2860 | fn skip(self, n: usize) -> Skip<Self> { |
2861 | Skip::new(self, n) |
2862 | } |
2863 | |
2864 | /// Creates an iterator that yields the first `n` elements. |
2865 | /// |
2866 | /// # Examples |
2867 | /// |
2868 | /// ``` |
2869 | /// use rayon::prelude::*; |
2870 | /// |
2871 | /// let result: Vec<_> = (0..100) |
2872 | /// .into_par_iter() |
2873 | /// .take(5) |
2874 | /// .collect(); |
2875 | /// |
2876 | /// assert_eq!(result, [0, 1, 2, 3, 4]); |
2877 | /// ``` |
2878 | fn take(self, n: usize) -> Take<Self> { |
2879 | Take::new(self, n) |
2880 | } |
2881 | |
2882 | /// Searches for **some** item in the parallel iterator that |
2883 | /// matches the given predicate, and returns its index. Like |
2884 | /// `ParallelIterator::find_any`, the parallel search will not |
2885 | /// necessarily find the **first** match, and once a match is |
2886 | /// found we'll attempt to stop processing any more. |
2887 | /// |
2888 | /// # Examples |
2889 | /// |
2890 | /// ``` |
2891 | /// use rayon::prelude::*; |
2892 | /// |
2893 | /// let a = [1, 2, 3, 3]; |
2894 | /// |
2895 | /// let i = a.par_iter().position_any(|&x| x == 3).expect("found" ); |
2896 | /// assert!(i == 2 || i == 3); |
2897 | /// |
2898 | /// assert_eq!(a.par_iter().position_any(|&x| x == 100), None); |
2899 | /// ``` |
2900 | fn position_any<P>(self, predicate: P) -> Option<usize> |
2901 | where |
2902 | P: Fn(Self::Item) -> bool + Sync + Send, |
2903 | { |
2904 | #[inline ] |
2905 | fn check(&(_, p): &(usize, bool)) -> bool { |
2906 | p |
2907 | } |
2908 | |
2909 | let (i, _) = self.map(predicate).enumerate().find_any(check)?; |
2910 | Some(i) |
2911 | } |
2912 | |
2913 | /// Searches for the sequentially **first** item in the parallel iterator |
2914 | /// that matches the given predicate, and returns its index. |
2915 | /// |
2916 | /// Like `ParallelIterator::find_first`, once a match is found, |
2917 | /// all attempts to the right of the match will be stopped, while |
2918 | /// attempts to the left must continue in case an earlier match |
2919 | /// is found. |
2920 | /// |
2921 | /// Note that not all parallel iterators have a useful order, much like |
2922 | /// sequential `HashMap` iteration, so "first" may be nebulous. If you |
2923 | /// just want the first match that discovered anywhere in the iterator, |
2924 | /// `position_any` is a better choice. |
2925 | /// |
2926 | /// # Examples |
2927 | /// |
2928 | /// ``` |
2929 | /// use rayon::prelude::*; |
2930 | /// |
2931 | /// let a = [1, 2, 3, 3]; |
2932 | /// |
2933 | /// assert_eq!(a.par_iter().position_first(|&x| x == 3), Some(2)); |
2934 | /// |
2935 | /// assert_eq!(a.par_iter().position_first(|&x| x == 100), None); |
2936 | /// ``` |
2937 | fn position_first<P>(self, predicate: P) -> Option<usize> |
2938 | where |
2939 | P: Fn(Self::Item) -> bool + Sync + Send, |
2940 | { |
2941 | #[inline ] |
2942 | fn check(&(_, p): &(usize, bool)) -> bool { |
2943 | p |
2944 | } |
2945 | |
2946 | let (i, _) = self.map(predicate).enumerate().find_first(check)?; |
2947 | Some(i) |
2948 | } |
2949 | |
2950 | /// Searches for the sequentially **last** item in the parallel iterator |
2951 | /// that matches the given predicate, and returns its index. |
2952 | /// |
2953 | /// Like `ParallelIterator::find_last`, once a match is found, |
2954 | /// all attempts to the left of the match will be stopped, while |
2955 | /// attempts to the right must continue in case a later match |
2956 | /// is found. |
2957 | /// |
2958 | /// Note that not all parallel iterators have a useful order, much like |
2959 | /// sequential `HashMap` iteration, so "last" may be nebulous. When the |
2960 | /// order doesn't actually matter to you, `position_any` is a better |
2961 | /// choice. |
2962 | /// |
2963 | /// # Examples |
2964 | /// |
2965 | /// ``` |
2966 | /// use rayon::prelude::*; |
2967 | /// |
2968 | /// let a = [1, 2, 3, 3]; |
2969 | /// |
2970 | /// assert_eq!(a.par_iter().position_last(|&x| x == 3), Some(3)); |
2971 | /// |
2972 | /// assert_eq!(a.par_iter().position_last(|&x| x == 100), None); |
2973 | /// ``` |
2974 | fn position_last<P>(self, predicate: P) -> Option<usize> |
2975 | where |
2976 | P: Fn(Self::Item) -> bool + Sync + Send, |
2977 | { |
2978 | #[inline ] |
2979 | fn check(&(_, p): &(usize, bool)) -> bool { |
2980 | p |
2981 | } |
2982 | |
2983 | let (i, _) = self.map(predicate).enumerate().find_last(check)?; |
2984 | Some(i) |
2985 | } |
2986 | |
2987 | #[doc (hidden)] |
2988 | #[deprecated ( |
2989 | note = "parallel `position` does not search in order -- use `position_any`, \\ |
2990 | `position_first`, or `position_last`" |
2991 | )] |
2992 | fn position<P>(self, predicate: P) -> Option<usize> |
2993 | where |
2994 | P: Fn(Self::Item) -> bool + Sync + Send, |
2995 | { |
2996 | self.position_any(predicate) |
2997 | } |
2998 | |
2999 | /// Searches for items in the parallel iterator that match the given |
3000 | /// predicate, and returns their indices. |
3001 | /// |
3002 | /// # Examples |
3003 | /// |
3004 | /// ``` |
3005 | /// use rayon::prelude::*; |
3006 | /// |
3007 | /// let primes = vec![2, 3, 5, 7, 11, 13, 17, 19, 23, 29]; |
3008 | /// |
3009 | /// // Find the positions of primes congruent to 1 modulo 6 |
3010 | /// let p1mod6: Vec<_> = primes.par_iter().positions(|&p| p % 6 == 1).collect(); |
3011 | /// assert_eq!(p1mod6, [3, 5, 7]); // primes 7, 13, and 19 |
3012 | /// |
3013 | /// // Find the positions of primes congruent to 5 modulo 6 |
3014 | /// let p5mod6: Vec<_> = primes.par_iter().positions(|&p| p % 6 == 5).collect(); |
3015 | /// assert_eq!(p5mod6, [2, 4, 6, 8, 9]); // primes 5, 11, 17, 23, and 29 |
3016 | /// ``` |
3017 | fn positions<P>(self, predicate: P) -> Positions<Self, P> |
3018 | where |
3019 | P: Fn(Self::Item) -> bool + Sync + Send, |
3020 | { |
3021 | Positions::new(self, predicate) |
3022 | } |
3023 | |
3024 | /// Produces a new iterator with the elements of this iterator in |
3025 | /// reverse order. |
3026 | /// |
3027 | /// # Examples |
3028 | /// |
3029 | /// ``` |
3030 | /// use rayon::prelude::*; |
3031 | /// |
3032 | /// let result: Vec<_> = (0..5) |
3033 | /// .into_par_iter() |
3034 | /// .rev() |
3035 | /// .collect(); |
3036 | /// |
3037 | /// assert_eq!(result, [4, 3, 2, 1, 0]); |
3038 | /// ``` |
3039 | fn rev(self) -> Rev<Self> { |
3040 | Rev::new(self) |
3041 | } |
3042 | |
3043 | /// Sets the minimum length of iterators desired to process in each |
3044 | /// rayon job. Rayon will not split any smaller than this length, but |
3045 | /// of course an iterator could already be smaller to begin with. |
3046 | /// |
3047 | /// Producers like `zip` and `interleave` will use greater of the two |
3048 | /// minimums. |
3049 | /// Chained iterators and iterators inside `flat_map` may each use |
3050 | /// their own minimum length. |
3051 | /// |
3052 | /// # Examples |
3053 | /// |
3054 | /// ``` |
3055 | /// use rayon::prelude::*; |
3056 | /// |
3057 | /// let min = (0..1_000_000) |
3058 | /// .into_par_iter() |
3059 | /// .with_min_len(1234) |
3060 | /// .fold(|| 0, |acc, _| acc + 1) // count how many are in this segment |
3061 | /// .min().unwrap(); |
3062 | /// |
3063 | /// assert!(min >= 1234); |
3064 | /// ``` |
3065 | fn with_min_len(self, min: usize) -> MinLen<Self> { |
3066 | MinLen::new(self, min) |
3067 | } |
3068 | |
3069 | /// Sets the maximum length of iterators desired to process in each |
3070 | /// rayon job. Rayon will try to split at least below this length, |
3071 | /// unless that would put it below the length from `with_min_len()`. |
3072 | /// For example, given min=10 and max=15, a length of 16 will not be |
3073 | /// split any further. |
3074 | /// |
3075 | /// Producers like `zip` and `interleave` will use lesser of the two |
3076 | /// maximums. |
3077 | /// Chained iterators and iterators inside `flat_map` may each use |
3078 | /// their own maximum length. |
3079 | /// |
3080 | /// # Examples |
3081 | /// |
3082 | /// ``` |
3083 | /// use rayon::prelude::*; |
3084 | /// |
3085 | /// let max = (0..1_000_000) |
3086 | /// .into_par_iter() |
3087 | /// .with_max_len(1234) |
3088 | /// .fold(|| 0, |acc, _| acc + 1) // count how many are in this segment |
3089 | /// .max().unwrap(); |
3090 | /// |
3091 | /// assert!(max <= 1234); |
3092 | /// ``` |
3093 | fn with_max_len(self, max: usize) -> MaxLen<Self> { |
3094 | MaxLen::new(self, max) |
3095 | } |
3096 | |
3097 | /// Produces an exact count of how many items this iterator will |
3098 | /// produce, presuming no panic occurs. |
3099 | /// |
3100 | /// # Examples |
3101 | /// |
3102 | /// ``` |
3103 | /// use rayon::prelude::*; |
3104 | /// |
3105 | /// let par_iter = (0..100).into_par_iter().zip(vec![0; 10]); |
3106 | /// assert_eq!(par_iter.len(), 10); |
3107 | /// |
3108 | /// let vec: Vec<_> = par_iter.collect(); |
3109 | /// assert_eq!(vec.len(), 10); |
3110 | /// ``` |
3111 | fn len(&self) -> usize; |
3112 | |
3113 | /// Internal method used to define the behavior of this parallel |
3114 | /// iterator. You should not need to call this directly. |
3115 | /// |
3116 | /// This method causes the iterator `self` to start producing |
3117 | /// items and to feed them to the consumer `consumer` one by one. |
3118 | /// It may split the consumer before doing so to create the |
3119 | /// opportunity to produce in parallel. If a split does happen, it |
3120 | /// will inform the consumer of the index where the split should |
3121 | /// occur (unlike `ParallelIterator::drive_unindexed()`). |
3122 | /// |
3123 | /// See the [README] for more details on the internals of parallel |
3124 | /// iterators. |
3125 | /// |
3126 | /// [README]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md |
3127 | fn drive<C: Consumer<Self::Item>>(self, consumer: C) -> C::Result; |
3128 | |
3129 | /// Internal method used to define the behavior of this parallel |
3130 | /// iterator. You should not need to call this directly. |
3131 | /// |
3132 | /// This method converts the iterator into a producer P and then |
3133 | /// invokes `callback.callback()` with P. Note that the type of |
3134 | /// this producer is not defined as part of the API, since |
3135 | /// `callback` must be defined generically for all producers. This |
3136 | /// allows the producer type to contain references; it also means |
3137 | /// that parallel iterators can adjust that type without causing a |
3138 | /// breaking change. |
3139 | /// |
3140 | /// See the [README] for more details on the internals of parallel |
3141 | /// iterators. |
3142 | /// |
3143 | /// [README]: https://github.com/rayon-rs/rayon/blob/master/src/iter/plumbing/README.md |
3144 | fn with_producer<CB: ProducerCallback<Self::Item>>(self, callback: CB) -> CB::Output; |
3145 | } |
3146 | |
3147 | /// `FromParallelIterator` implements the creation of a collection |
3148 | /// from a [`ParallelIterator`]. By implementing |
3149 | /// `FromParallelIterator` for a given type, you define how it will be |
3150 | /// created from an iterator. |
3151 | /// |
3152 | /// `FromParallelIterator` is used through [`ParallelIterator`]'s [`collect()`] method. |
3153 | /// |
3154 | /// [`ParallelIterator`]: trait.ParallelIterator.html |
3155 | /// [`collect()`]: trait.ParallelIterator.html#method.collect |
3156 | /// |
3157 | /// # Examples |
3158 | /// |
3159 | /// Implementing `FromParallelIterator` for your type: |
3160 | /// |
3161 | /// ``` |
3162 | /// use rayon::prelude::*; |
3163 | /// use std::mem; |
3164 | /// |
3165 | /// struct BlackHole { |
3166 | /// mass: usize, |
3167 | /// } |
3168 | /// |
3169 | /// impl<T: Send> FromParallelIterator<T> for BlackHole { |
3170 | /// fn from_par_iter<I>(par_iter: I) -> Self |
3171 | /// where I: IntoParallelIterator<Item = T> |
3172 | /// { |
3173 | /// let par_iter = par_iter.into_par_iter(); |
3174 | /// BlackHole { |
3175 | /// mass: par_iter.count() * mem::size_of::<T>(), |
3176 | /// } |
3177 | /// } |
3178 | /// } |
3179 | /// |
3180 | /// let bh: BlackHole = (0i32..1000).into_par_iter().collect(); |
3181 | /// assert_eq!(bh.mass, 4000); |
3182 | /// ``` |
3183 | pub trait FromParallelIterator<T> |
3184 | where |
3185 | T: Send, |
3186 | { |
3187 | /// Creates an instance of the collection from the parallel iterator `par_iter`. |
3188 | /// |
3189 | /// If your collection is not naturally parallel, the easiest (and |
3190 | /// fastest) way to do this is often to collect `par_iter` into a |
3191 | /// [`LinkedList`] or other intermediate data structure and then |
3192 | /// sequentially extend your collection. However, a more 'native' |
3193 | /// technique is to use the [`par_iter.fold`] or |
3194 | /// [`par_iter.fold_with`] methods to create the collection. |
3195 | /// Alternatively, if your collection is 'natively' parallel, you |
3196 | /// can use `par_iter.for_each` to process each element in turn. |
3197 | /// |
3198 | /// [`LinkedList`]: https://doc.rust-lang.org/std/collections/struct.LinkedList.html |
3199 | /// [`par_iter.fold`]: trait.ParallelIterator.html#method.fold |
3200 | /// [`par_iter.fold_with`]: trait.ParallelIterator.html#method.fold_with |
3201 | /// [`par_iter.for_each`]: trait.ParallelIterator.html#method.for_each |
3202 | fn from_par_iter<I>(par_iter: I) -> Self |
3203 | where |
3204 | I: IntoParallelIterator<Item = T>; |
3205 | } |
3206 | |
3207 | /// `ParallelExtend` extends an existing collection with items from a [`ParallelIterator`]. |
3208 | /// |
3209 | /// [`ParallelIterator`]: trait.ParallelIterator.html |
3210 | /// |
3211 | /// # Examples |
3212 | /// |
3213 | /// Implementing `ParallelExtend` for your type: |
3214 | /// |
3215 | /// ``` |
3216 | /// use rayon::prelude::*; |
3217 | /// use std::mem; |
3218 | /// |
3219 | /// struct BlackHole { |
3220 | /// mass: usize, |
3221 | /// } |
3222 | /// |
3223 | /// impl<T: Send> ParallelExtend<T> for BlackHole { |
3224 | /// fn par_extend<I>(&mut self, par_iter: I) |
3225 | /// where I: IntoParallelIterator<Item = T> |
3226 | /// { |
3227 | /// let par_iter = par_iter.into_par_iter(); |
3228 | /// self.mass += par_iter.count() * mem::size_of::<T>(); |
3229 | /// } |
3230 | /// } |
3231 | /// |
3232 | /// let mut bh = BlackHole { mass: 0 }; |
3233 | /// bh.par_extend(0i32..1000); |
3234 | /// assert_eq!(bh.mass, 4000); |
3235 | /// bh.par_extend(0i64..10); |
3236 | /// assert_eq!(bh.mass, 4080); |
3237 | /// ``` |
3238 | pub trait ParallelExtend<T> |
3239 | where |
3240 | T: Send, |
3241 | { |
3242 | /// Extends an instance of the collection with the elements drawn |
3243 | /// from the parallel iterator `par_iter`. |
3244 | /// |
3245 | /// # Examples |
3246 | /// |
3247 | /// ``` |
3248 | /// use rayon::prelude::*; |
3249 | /// |
3250 | /// let mut vec = vec![]; |
3251 | /// vec.par_extend(0..5); |
3252 | /// vec.par_extend((0..5).into_par_iter().map(|i| i * i)); |
3253 | /// assert_eq!(vec, [0, 1, 2, 3, 4, 0, 1, 4, 9, 16]); |
3254 | /// ``` |
3255 | fn par_extend<I>(&mut self, par_iter: I) |
3256 | where |
3257 | I: IntoParallelIterator<Item = T>; |
3258 | } |
3259 | |
3260 | /// `ParallelDrainFull` creates a parallel iterator that moves all items |
3261 | /// from a collection while retaining the original capacity. |
3262 | /// |
3263 | /// Types which are indexable typically implement [`ParallelDrainRange`] |
3264 | /// instead, where you can drain fully with `par_drain(..)`. |
3265 | /// |
3266 | /// [`ParallelDrainRange`]: trait.ParallelDrainRange.html |
3267 | pub trait ParallelDrainFull { |
3268 | /// The draining parallel iterator type that will be created. |
3269 | type Iter: ParallelIterator<Item = Self::Item>; |
3270 | |
3271 | /// The type of item that the parallel iterator will produce. |
3272 | /// This is usually the same as `IntoParallelIterator::Item`. |
3273 | type Item: Send; |
3274 | |
3275 | /// Returns a draining parallel iterator over an entire collection. |
3276 | /// |
3277 | /// When the iterator is dropped, all items are removed, even if the |
3278 | /// iterator was not fully consumed. If the iterator is leaked, for example |
3279 | /// using `std::mem::forget`, it is unspecified how many items are removed. |
3280 | /// |
3281 | /// # Examples |
3282 | /// |
3283 | /// ``` |
3284 | /// use rayon::prelude::*; |
3285 | /// use std::collections::{BinaryHeap, HashSet}; |
3286 | /// |
3287 | /// let squares: HashSet<i32> = (0..10).map(|x| x * x).collect(); |
3288 | /// |
3289 | /// let mut heap: BinaryHeap<_> = squares.iter().copied().collect(); |
3290 | /// assert_eq!( |
3291 | /// // heaps are drained in arbitrary order |
3292 | /// heap.par_drain() |
3293 | /// .inspect(|x| assert!(squares.contains(x))) |
3294 | /// .count(), |
3295 | /// squares.len(), |
3296 | /// ); |
3297 | /// assert!(heap.is_empty()); |
3298 | /// assert!(heap.capacity() >= squares.len()); |
3299 | /// ``` |
3300 | fn par_drain(self) -> Self::Iter; |
3301 | } |
3302 | |
3303 | /// `ParallelDrainRange` creates a parallel iterator that moves a range of items |
3304 | /// from a collection while retaining the original capacity. |
3305 | /// |
3306 | /// Types which are not indexable may implement [`ParallelDrainFull`] instead. |
3307 | /// |
3308 | /// [`ParallelDrainFull`]: trait.ParallelDrainFull.html |
3309 | pub trait ParallelDrainRange<Idx = usize> { |
3310 | /// The draining parallel iterator type that will be created. |
3311 | type Iter: ParallelIterator<Item = Self::Item>; |
3312 | |
3313 | /// The type of item that the parallel iterator will produce. |
3314 | /// This is usually the same as `IntoParallelIterator::Item`. |
3315 | type Item: Send; |
3316 | |
3317 | /// Returns a draining parallel iterator over a range of the collection. |
3318 | /// |
3319 | /// When the iterator is dropped, all items in the range are removed, even |
3320 | /// if the iterator was not fully consumed. If the iterator is leaked, for |
3321 | /// example using `std::mem::forget`, it is unspecified how many items are |
3322 | /// removed. |
3323 | /// |
3324 | /// # Examples |
3325 | /// |
3326 | /// ``` |
3327 | /// use rayon::prelude::*; |
3328 | /// |
3329 | /// let squares: Vec<i32> = (0..10).map(|x| x * x).collect(); |
3330 | /// |
3331 | /// println!("RangeFull" ); |
3332 | /// let mut vec = squares.clone(); |
3333 | /// assert!(vec.par_drain(..) |
3334 | /// .eq(squares.par_iter().copied())); |
3335 | /// assert!(vec.is_empty()); |
3336 | /// assert!(vec.capacity() >= squares.len()); |
3337 | /// |
3338 | /// println!("RangeFrom" ); |
3339 | /// let mut vec = squares.clone(); |
3340 | /// assert!(vec.par_drain(5..) |
3341 | /// .eq(squares[5..].par_iter().copied())); |
3342 | /// assert_eq!(&vec[..], &squares[..5]); |
3343 | /// assert!(vec.capacity() >= squares.len()); |
3344 | /// |
3345 | /// println!("RangeTo" ); |
3346 | /// let mut vec = squares.clone(); |
3347 | /// assert!(vec.par_drain(..5) |
3348 | /// .eq(squares[..5].par_iter().copied())); |
3349 | /// assert_eq!(&vec[..], &squares[5..]); |
3350 | /// assert!(vec.capacity() >= squares.len()); |
3351 | /// |
3352 | /// println!("RangeToInclusive" ); |
3353 | /// let mut vec = squares.clone(); |
3354 | /// assert!(vec.par_drain(..=5) |
3355 | /// .eq(squares[..=5].par_iter().copied())); |
3356 | /// assert_eq!(&vec[..], &squares[6..]); |
3357 | /// assert!(vec.capacity() >= squares.len()); |
3358 | /// |
3359 | /// println!("Range" ); |
3360 | /// let mut vec = squares.clone(); |
3361 | /// assert!(vec.par_drain(3..7) |
3362 | /// .eq(squares[3..7].par_iter().copied())); |
3363 | /// assert_eq!(&vec[..3], &squares[..3]); |
3364 | /// assert_eq!(&vec[3..], &squares[7..]); |
3365 | /// assert!(vec.capacity() >= squares.len()); |
3366 | /// |
3367 | /// println!("RangeInclusive" ); |
3368 | /// let mut vec = squares.clone(); |
3369 | /// assert!(vec.par_drain(3..=7) |
3370 | /// .eq(squares[3..=7].par_iter().copied())); |
3371 | /// assert_eq!(&vec[..3], &squares[..3]); |
3372 | /// assert_eq!(&vec[3..], &squares[8..]); |
3373 | /// assert!(vec.capacity() >= squares.len()); |
3374 | /// ``` |
3375 | fn par_drain<R: RangeBounds<Idx>>(self, range: R) -> Self::Iter; |
3376 | } |
3377 | |
3378 | /// We hide the `Try` trait in a private module, as it's only meant to be a |
3379 | /// stable clone of the standard library's `Try` trait, as yet unstable. |
3380 | mod private { |
3381 | use std::convert::Infallible; |
3382 | use std::ops::ControlFlow::{self, Break, Continue}; |
3383 | use std::task::Poll; |
3384 | |
3385 | /// Clone of `std::ops::Try`. |
3386 | /// |
3387 | /// Implementing this trait is not permitted outside of `rayon`. |
3388 | pub trait Try { |
3389 | private_decl! {} |
3390 | |
3391 | type Output; |
3392 | type Residual; |
3393 | |
3394 | fn from_output(output: Self::Output) -> Self; |
3395 | |
3396 | fn from_residual(residual: Self::Residual) -> Self; |
3397 | |
3398 | fn branch(self) -> ControlFlow<Self::Residual, Self::Output>; |
3399 | } |
3400 | |
3401 | impl<B, C> Try for ControlFlow<B, C> { |
3402 | private_impl! {} |
3403 | |
3404 | type Output = C; |
3405 | type Residual = ControlFlow<B, Infallible>; |
3406 | |
3407 | fn from_output(output: Self::Output) -> Self { |
3408 | Continue(output) |
3409 | } |
3410 | |
3411 | fn from_residual(residual: Self::Residual) -> Self { |
3412 | match residual { |
3413 | Break(b) => Break(b), |
3414 | Continue(_) => unreachable!(), |
3415 | } |
3416 | } |
3417 | |
3418 | fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { |
3419 | match self { |
3420 | Continue(c) => Continue(c), |
3421 | Break(b) => Break(Break(b)), |
3422 | } |
3423 | } |
3424 | } |
3425 | |
3426 | impl<T> Try for Option<T> { |
3427 | private_impl! {} |
3428 | |
3429 | type Output = T; |
3430 | type Residual = Option<Infallible>; |
3431 | |
3432 | fn from_output(output: Self::Output) -> Self { |
3433 | Some(output) |
3434 | } |
3435 | |
3436 | fn from_residual(residual: Self::Residual) -> Self { |
3437 | match residual { |
3438 | None => None, |
3439 | Some(_) => unreachable!(), |
3440 | } |
3441 | } |
3442 | |
3443 | fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { |
3444 | match self { |
3445 | Some(c) => Continue(c), |
3446 | None => Break(None), |
3447 | } |
3448 | } |
3449 | } |
3450 | |
3451 | impl<T, E> Try for Result<T, E> { |
3452 | private_impl! {} |
3453 | |
3454 | type Output = T; |
3455 | type Residual = Result<Infallible, E>; |
3456 | |
3457 | fn from_output(output: Self::Output) -> Self { |
3458 | Ok(output) |
3459 | } |
3460 | |
3461 | fn from_residual(residual: Self::Residual) -> Self { |
3462 | match residual { |
3463 | Err(e) => Err(e), |
3464 | Ok(_) => unreachable!(), |
3465 | } |
3466 | } |
3467 | |
3468 | fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { |
3469 | match self { |
3470 | Ok(c) => Continue(c), |
3471 | Err(e) => Break(Err(e)), |
3472 | } |
3473 | } |
3474 | } |
3475 | |
3476 | impl<T, E> Try for Poll<Result<T, E>> { |
3477 | private_impl! {} |
3478 | |
3479 | type Output = Poll<T>; |
3480 | type Residual = Result<Infallible, E>; |
3481 | |
3482 | fn from_output(output: Self::Output) -> Self { |
3483 | output.map(Ok) |
3484 | } |
3485 | |
3486 | fn from_residual(residual: Self::Residual) -> Self { |
3487 | match residual { |
3488 | Err(e) => Poll::Ready(Err(e)), |
3489 | Ok(_) => unreachable!(), |
3490 | } |
3491 | } |
3492 | |
3493 | fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { |
3494 | match self { |
3495 | Poll::Pending => Continue(Poll::Pending), |
3496 | Poll::Ready(Ok(c)) => Continue(Poll::Ready(c)), |
3497 | Poll::Ready(Err(e)) => Break(Err(e)), |
3498 | } |
3499 | } |
3500 | } |
3501 | |
3502 | impl<T, E> Try for Poll<Option<Result<T, E>>> { |
3503 | private_impl! {} |
3504 | |
3505 | type Output = Poll<Option<T>>; |
3506 | type Residual = Result<Infallible, E>; |
3507 | |
3508 | fn from_output(output: Self::Output) -> Self { |
3509 | match output { |
3510 | Poll::Ready(o) => Poll::Ready(o.map(Ok)), |
3511 | Poll::Pending => Poll::Pending, |
3512 | } |
3513 | } |
3514 | |
3515 | fn from_residual(residual: Self::Residual) -> Self { |
3516 | match residual { |
3517 | Err(e) => Poll::Ready(Some(Err(e))), |
3518 | Ok(_) => unreachable!(), |
3519 | } |
3520 | } |
3521 | |
3522 | fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { |
3523 | match self { |
3524 | Poll::Pending => Continue(Poll::Pending), |
3525 | Poll::Ready(None) => Continue(Poll::Ready(None)), |
3526 | Poll::Ready(Some(Ok(c))) => Continue(Poll::Ready(Some(c))), |
3527 | Poll::Ready(Some(Err(e))) => Break(Err(e)), |
3528 | } |
3529 | } |
3530 | } |
3531 | } |
3532 | |