1 | /*! |
2 | Converts ranges of Unicode scalar values to equivalent ranges of UTF-8 bytes. |
3 | |
4 | This is sub-module is useful for constructing byte based automatons that need |
5 | to embed UTF-8 decoding. The most common use of this module is in conjunction |
6 | with the [`hir::ClassUnicodeRange`](../hir/struct.ClassUnicodeRange.html) type. |
7 | |
8 | See the documentation on the `Utf8Sequences` iterator for more details and |
9 | an example. |
10 | |
11 | # Wait, what is this? |
12 | |
13 | This is simplest to explain with an example. Let's say you wanted to test |
14 | whether a particular byte sequence was a Cyrillic character. One possible |
15 | scalar value range is `[0400-04FF]`. The set of allowed bytes for this |
16 | range can be expressed as a sequence of byte ranges: |
17 | |
18 | ```text |
19 | [D0-D3][80-BF] |
20 | ``` |
21 | |
22 | This is simple enough: simply encode the boundaries, `0400` encodes to |
23 | `D0 80` and `04FF` encodes to `D3 BF`, and create ranges from each |
24 | corresponding pair of bytes: `D0` to `D3` and `80` to `BF`. |
25 | |
26 | However, what if you wanted to add the Cyrillic Supplementary characters to |
27 | your range? Your range might then become `[0400-052F]`. The same procedure |
28 | as above doesn't quite work because `052F` encodes to `D4 AF`. The byte ranges |
29 | you'd get from the previous transformation would be `[D0-D4][80-AF]`. However, |
30 | this isn't quite correct because this range doesn't capture many characters, |
31 | for example, `04FF` (because its last byte, `BF` isn't in the range `80-AF`). |
32 | |
33 | Instead, you need multiple sequences of byte ranges: |
34 | |
35 | ```text |
36 | [D0-D3][80-BF] # matches codepoints 0400-04FF |
37 | [D4][80-AF] # matches codepoints 0500-052F |
38 | ``` |
39 | |
40 | This gets even more complicated if you want bigger ranges, particularly if |
41 | they naively contain surrogate codepoints. For example, the sequence of byte |
42 | ranges for the basic multilingual plane (`[0000-FFFF]`) look like this: |
43 | |
44 | ```text |
45 | [0-7F] |
46 | [C2-DF][80-BF] |
47 | [E0][A0-BF][80-BF] |
48 | [E1-EC][80-BF][80-BF] |
49 | [ED][80-9F][80-BF] |
50 | [EE-EF][80-BF][80-BF] |
51 | ``` |
52 | |
53 | Note that the byte ranges above will *not* match any erroneous encoding of |
54 | UTF-8, including encodings of surrogate codepoints. |
55 | |
56 | And, of course, for all of Unicode (`[000000-10FFFF]`): |
57 | |
58 | ```text |
59 | [0-7F] |
60 | [C2-DF][80-BF] |
61 | [E0][A0-BF][80-BF] |
62 | [E1-EC][80-BF][80-BF] |
63 | [ED][80-9F][80-BF] |
64 | [EE-EF][80-BF][80-BF] |
65 | [F0][90-BF][80-BF][80-BF] |
66 | [F1-F3][80-BF][80-BF][80-BF] |
67 | [F4][80-8F][80-BF][80-BF] |
68 | ``` |
69 | |
70 | This module automates the process of creating these byte ranges from ranges of |
71 | Unicode scalar values. |
72 | |
73 | # Lineage |
74 | |
75 | I got the idea and general implementation strategy from Russ Cox in his |
76 | [article on regexps](https://web.archive.org/web/20160404141123/https://swtch.com/~rsc/regexp/regexp3.html) and RE2. |
77 | Russ Cox got it from Ken Thompson's `grep` (no source, folk lore?). |
78 | I also got the idea from |
79 | [Lucene](https://github.com/apache/lucene-solr/blob/ae93f4e7ac6a3908046391de35d4f50a0d3c59ca/lucene/core/src/java/org/apache/lucene/util/automaton/UTF32ToUTF8.java), |
80 | which uses it for executing automata on their term index. |
81 | */ |
82 | |
83 | #![deny (missing_docs)] |
84 | |
85 | use std::char; |
86 | use std::fmt; |
87 | use std::iter::FusedIterator; |
88 | use std::slice; |
89 | |
90 | const MAX_UTF8_BYTES: usize = 4; |
91 | |
92 | /// Utf8Sequence represents a sequence of byte ranges. |
93 | /// |
94 | /// To match a Utf8Sequence, a candidate byte sequence must match each |
95 | /// successive range. |
96 | /// |
97 | /// For example, if there are two ranges, `[C2-DF][80-BF]`, then the byte |
98 | /// sequence `\xDD\x61` would not match because `0x61 < 0x80`. |
99 | #[derive (Copy, Clone, Eq, PartialEq, PartialOrd, Ord)] |
100 | pub enum Utf8Sequence { |
101 | /// One byte range. |
102 | One(Utf8Range), |
103 | /// Two successive byte ranges. |
104 | Two([Utf8Range; 2]), |
105 | /// Three successive byte ranges. |
106 | Three([Utf8Range; 3]), |
107 | /// Four successive byte ranges. |
108 | Four([Utf8Range; 4]), |
109 | } |
110 | |
111 | impl Utf8Sequence { |
112 | /// Creates a new UTF-8 sequence from the encoded bytes of a scalar value |
113 | /// range. |
114 | /// |
115 | /// This assumes that `start` and `end` have the same length. |
116 | fn from_encoded_range(start: &[u8], end: &[u8]) -> Self { |
117 | assert_eq!(start.len(), end.len()); |
118 | match start.len() { |
119 | 2 => Utf8Sequence::Two([ |
120 | Utf8Range::new(start[0], end[0]), |
121 | Utf8Range::new(start[1], end[1]), |
122 | ]), |
123 | 3 => Utf8Sequence::Three([ |
124 | Utf8Range::new(start[0], end[0]), |
125 | Utf8Range::new(start[1], end[1]), |
126 | Utf8Range::new(start[2], end[2]), |
127 | ]), |
128 | 4 => Utf8Sequence::Four([ |
129 | Utf8Range::new(start[0], end[0]), |
130 | Utf8Range::new(start[1], end[1]), |
131 | Utf8Range::new(start[2], end[2]), |
132 | Utf8Range::new(start[3], end[3]), |
133 | ]), |
134 | n => unreachable!("invalid encoded length: {}" , n), |
135 | } |
136 | } |
137 | |
138 | /// Returns the underlying sequence of byte ranges as a slice. |
139 | pub fn as_slice(&self) -> &[Utf8Range] { |
140 | use self::Utf8Sequence::*; |
141 | match *self { |
142 | One(ref r) => slice::from_ref(r), |
143 | Two(ref r) => &r[..], |
144 | Three(ref r) => &r[..], |
145 | Four(ref r) => &r[..], |
146 | } |
147 | } |
148 | |
149 | /// Returns the number of byte ranges in this sequence. |
150 | /// |
151 | /// The length is guaranteed to be in the closed interval `[1, 4]`. |
152 | pub fn len(&self) -> usize { |
153 | self.as_slice().len() |
154 | } |
155 | |
156 | /// Reverses the ranges in this sequence. |
157 | /// |
158 | /// For example, if this corresponds to the following sequence: |
159 | /// |
160 | /// ```text |
161 | /// [D0-D3][80-BF] |
162 | /// ``` |
163 | /// |
164 | /// Then after reversal, it will be |
165 | /// |
166 | /// ```text |
167 | /// [80-BF][D0-D3] |
168 | /// ``` |
169 | /// |
170 | /// This is useful when one is constructing a UTF-8 automaton to match |
171 | /// character classes in reverse. |
172 | pub fn reverse(&mut self) { |
173 | match *self { |
174 | Utf8Sequence::One(_) => {} |
175 | Utf8Sequence::Two(ref mut x) => x.reverse(), |
176 | Utf8Sequence::Three(ref mut x) => x.reverse(), |
177 | Utf8Sequence::Four(ref mut x) => x.reverse(), |
178 | } |
179 | } |
180 | |
181 | /// Returns true if and only if a prefix of `bytes` matches this sequence |
182 | /// of byte ranges. |
183 | pub fn matches(&self, bytes: &[u8]) -> bool { |
184 | if bytes.len() < self.len() { |
185 | return false; |
186 | } |
187 | for (&b, r) in bytes.iter().zip(self) { |
188 | if !r.matches(b) { |
189 | return false; |
190 | } |
191 | } |
192 | true |
193 | } |
194 | } |
195 | |
196 | impl<'a> IntoIterator for &'a Utf8Sequence { |
197 | type IntoIter = slice::Iter<'a, Utf8Range>; |
198 | type Item = &'a Utf8Range; |
199 | |
200 | fn into_iter(self) -> Self::IntoIter { |
201 | self.as_slice().iter() |
202 | } |
203 | } |
204 | |
205 | impl fmt::Debug for Utf8Sequence { |
206 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
207 | use self::Utf8Sequence::*; |
208 | match *self { |
209 | One(ref r: &Utf8Range) => write!(f, " {:?}" , r), |
210 | Two(ref r: &[Utf8Range; 2]) => write!(f, " {:?}{:?}" , r[0], r[1]), |
211 | Three(ref r: &[Utf8Range; 3]) => write!(f, " {:?}{:?}{:?}" , r[0], r[1], r[2]), |
212 | Four(ref r: &[Utf8Range; 4]) => { |
213 | write!(f, " {:?}{:?}{:?}{:?}" , r[0], r[1], r[2], r[3]) |
214 | } |
215 | } |
216 | } |
217 | } |
218 | |
219 | /// A single inclusive range of UTF-8 bytes. |
220 | #[derive (Clone, Copy, Eq, PartialEq, PartialOrd, Ord)] |
221 | pub struct Utf8Range { |
222 | /// Start of byte range (inclusive). |
223 | pub start: u8, |
224 | /// End of byte range (inclusive). |
225 | pub end: u8, |
226 | } |
227 | |
228 | impl Utf8Range { |
229 | fn new(start: u8, end: u8) -> Self { |
230 | Utf8Range { start, end } |
231 | } |
232 | |
233 | /// Returns true if and only if the given byte is in this range. |
234 | pub fn matches(&self, b: u8) -> bool { |
235 | self.start <= b && b <= self.end |
236 | } |
237 | } |
238 | |
239 | impl fmt::Debug for Utf8Range { |
240 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
241 | if self.start == self.end { |
242 | write!(f, "[ {:X}]" , self.start) |
243 | } else { |
244 | write!(f, "[ {:X}- {:X}]" , self.start, self.end) |
245 | } |
246 | } |
247 | } |
248 | |
249 | /// An iterator over ranges of matching UTF-8 byte sequences. |
250 | /// |
251 | /// The iteration represents an alternation of comprehensive byte sequences |
252 | /// that match precisely the set of UTF-8 encoded scalar values. |
253 | /// |
254 | /// A byte sequence corresponds to one of the scalar values in the range given |
255 | /// if and only if it completely matches exactly one of the sequences of byte |
256 | /// ranges produced by this iterator. |
257 | /// |
258 | /// Each sequence of byte ranges matches a unique set of bytes. That is, no two |
259 | /// sequences will match the same bytes. |
260 | /// |
261 | /// # Example |
262 | /// |
263 | /// This shows how to match an arbitrary byte sequence against a range of |
264 | /// scalar values. |
265 | /// |
266 | /// ```rust |
267 | /// use regex_syntax::utf8::{Utf8Sequences, Utf8Sequence}; |
268 | /// |
269 | /// fn matches(seqs: &[Utf8Sequence], bytes: &[u8]) -> bool { |
270 | /// for range in seqs { |
271 | /// if range.matches(bytes) { |
272 | /// return true; |
273 | /// } |
274 | /// } |
275 | /// false |
276 | /// } |
277 | /// |
278 | /// // Test the basic multilingual plane. |
279 | /// let seqs: Vec<_> = Utf8Sequences::new(' \u{0}' , ' \u{FFFF}' ).collect(); |
280 | /// |
281 | /// // UTF-8 encoding of 'a'. |
282 | /// assert!(matches(&seqs, &[0x61])); |
283 | /// // UTF-8 encoding of '☃' (`\u{2603}`). |
284 | /// assert!(matches(&seqs, &[0xE2, 0x98, 0x83])); |
285 | /// // UTF-8 encoding of `\u{10348}` (outside the BMP). |
286 | /// assert!(!matches(&seqs, &[0xF0, 0x90, 0x8D, 0x88])); |
287 | /// // Tries to match against a UTF-8 encoding of a surrogate codepoint, |
288 | /// // which is invalid UTF-8, and therefore fails, despite the fact that |
289 | /// // the corresponding codepoint (0xD800) falls in the range given. |
290 | /// assert!(!matches(&seqs, &[0xED, 0xA0, 0x80])); |
291 | /// // And fails against plain old invalid UTF-8. |
292 | /// assert!(!matches(&seqs, &[0xFF, 0xFF])); |
293 | /// ``` |
294 | /// |
295 | /// If this example seems circuitous, that's because it is! It's meant to be |
296 | /// illustrative. In practice, you could just try to decode your byte sequence |
297 | /// and compare it with the scalar value range directly. However, this is not |
298 | /// always possible (for example, in a byte based automaton). |
299 | #[derive (Debug)] |
300 | pub struct Utf8Sequences { |
301 | range_stack: Vec<ScalarRange>, |
302 | } |
303 | |
304 | impl Utf8Sequences { |
305 | /// Create a new iterator over UTF-8 byte ranges for the scalar value range |
306 | /// given. |
307 | pub fn new(start: char, end: char) -> Self { |
308 | let mut it: Utf8Sequences = Utf8Sequences { range_stack: vec![] }; |
309 | it.push(start as u32, end as u32); |
310 | it |
311 | } |
312 | |
313 | /// reset resets the scalar value range. |
314 | /// Any existing state is cleared, but resources may be reused. |
315 | /// |
316 | /// N.B. Benchmarks say that this method is dubious. |
317 | #[doc (hidden)] |
318 | pub fn reset(&mut self, start: char, end: char) { |
319 | self.range_stack.clear(); |
320 | self.push(start as u32, end as u32); |
321 | } |
322 | |
323 | fn push(&mut self, start: u32, end: u32) { |
324 | self.range_stack.push(ScalarRange { start, end }); |
325 | } |
326 | } |
327 | |
328 | struct ScalarRange { |
329 | start: u32, |
330 | end: u32, |
331 | } |
332 | |
333 | impl fmt::Debug for ScalarRange { |
334 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
335 | write!(f, "ScalarRange( {:X}, {:X})" , self.start, self.end) |
336 | } |
337 | } |
338 | |
339 | impl Iterator for Utf8Sequences { |
340 | type Item = Utf8Sequence; |
341 | |
342 | fn next(&mut self) -> Option<Self::Item> { |
343 | 'TOP: while let Some(mut r) = self.range_stack.pop() { |
344 | 'INNER: loop { |
345 | if let Some((r1, r2)) = r.split() { |
346 | self.push(r2.start, r2.end); |
347 | r.start = r1.start; |
348 | r.end = r1.end; |
349 | continue 'INNER; |
350 | } |
351 | if !r.is_valid() { |
352 | continue 'TOP; |
353 | } |
354 | for i in 1..MAX_UTF8_BYTES { |
355 | let max = max_scalar_value(i); |
356 | if r.start <= max && max < r.end { |
357 | self.push(max + 1, r.end); |
358 | r.end = max; |
359 | continue 'INNER; |
360 | } |
361 | } |
362 | if let Some(ascii_range) = r.as_ascii() { |
363 | return Some(Utf8Sequence::One(ascii_range)); |
364 | } |
365 | for i in 1..MAX_UTF8_BYTES { |
366 | let m = (1 << (6 * i)) - 1; |
367 | if (r.start & !m) != (r.end & !m) { |
368 | if (r.start & m) != 0 { |
369 | self.push((r.start | m) + 1, r.end); |
370 | r.end = r.start | m; |
371 | continue 'INNER; |
372 | } |
373 | if (r.end & m) != m { |
374 | self.push(r.end & !m, r.end); |
375 | r.end = (r.end & !m) - 1; |
376 | continue 'INNER; |
377 | } |
378 | } |
379 | } |
380 | let mut start = [0; MAX_UTF8_BYTES]; |
381 | let mut end = [0; MAX_UTF8_BYTES]; |
382 | let n = r.encode(&mut start, &mut end); |
383 | return Some(Utf8Sequence::from_encoded_range( |
384 | &start[0..n], |
385 | &end[0..n], |
386 | )); |
387 | } |
388 | } |
389 | None |
390 | } |
391 | } |
392 | |
393 | impl FusedIterator for Utf8Sequences {} |
394 | |
395 | impl ScalarRange { |
396 | /// split splits this range if it overlaps with a surrogate codepoint. |
397 | /// |
398 | /// Either or both ranges may be invalid. |
399 | fn split(&self) -> Option<(ScalarRange, ScalarRange)> { |
400 | if self.start < 0xE000 && self.end > 0xD7FF { |
401 | Some(( |
402 | ScalarRange { start: self.start, end: 0xD7FF }, |
403 | ScalarRange { start: 0xE000, end: self.end }, |
404 | )) |
405 | } else { |
406 | None |
407 | } |
408 | } |
409 | |
410 | /// is_valid returns true if and only if start <= end. |
411 | fn is_valid(&self) -> bool { |
412 | self.start <= self.end |
413 | } |
414 | |
415 | /// as_ascii returns this range as a Utf8Range if and only if all scalar |
416 | /// values in this range can be encoded as a single byte. |
417 | fn as_ascii(&self) -> Option<Utf8Range> { |
418 | if self.is_ascii() { |
419 | Some(Utf8Range::new(self.start as u8, self.end as u8)) |
420 | } else { |
421 | None |
422 | } |
423 | } |
424 | |
425 | /// is_ascii returns true if the range is ASCII only (i.e., takes a single |
426 | /// byte to encode any scalar value). |
427 | fn is_ascii(&self) -> bool { |
428 | self.is_valid() && self.end <= 0x7f |
429 | } |
430 | |
431 | /// encode writes the UTF-8 encoding of the start and end of this range |
432 | /// to the corresponding destination slices, and returns the number of |
433 | /// bytes written. |
434 | /// |
435 | /// The slices should have room for at least `MAX_UTF8_BYTES`. |
436 | fn encode(&self, start: &mut [u8], end: &mut [u8]) -> usize { |
437 | let cs = char::from_u32(self.start).unwrap(); |
438 | let ce = char::from_u32(self.end).unwrap(); |
439 | let ss = cs.encode_utf8(start); |
440 | let se = ce.encode_utf8(end); |
441 | assert_eq!(ss.len(), se.len()); |
442 | ss.len() |
443 | } |
444 | } |
445 | |
446 | fn max_scalar_value(nbytes: usize) -> u32 { |
447 | match nbytes { |
448 | 1 => 0x007F, |
449 | 2 => 0x07FF, |
450 | 3 => 0xFFFF, |
451 | 4 => 0x0010_FFFF, |
452 | _ => unreachable!("invalid UTF-8 byte sequence size" ), |
453 | } |
454 | } |
455 | |
456 | #[cfg (test)] |
457 | mod tests { |
458 | use std::char; |
459 | |
460 | use crate::utf8::{Utf8Range, Utf8Sequences}; |
461 | |
462 | fn rutf8(s: u8, e: u8) -> Utf8Range { |
463 | Utf8Range::new(s, e) |
464 | } |
465 | |
466 | fn never_accepts_surrogate_codepoints(start: char, end: char) { |
467 | for cp in 0xD800..0xE000 { |
468 | let buf = encode_surrogate(cp); |
469 | for r in Utf8Sequences::new(start, end) { |
470 | if r.matches(&buf) { |
471 | panic!( |
472 | "Sequence ( {:X}, {:X}) contains range {:?}, \ |
473 | which matches surrogate code point {:X} \ |
474 | with encoded bytes {:?}" , |
475 | start as u32, end as u32, r, cp, buf, |
476 | ); |
477 | } |
478 | } |
479 | } |
480 | } |
481 | |
482 | #[test ] |
483 | fn codepoints_no_surrogates() { |
484 | never_accepts_surrogate_codepoints(' \u{0}' , ' \u{FFFF}' ); |
485 | never_accepts_surrogate_codepoints(' \u{0}' , ' \u{10FFFF}' ); |
486 | never_accepts_surrogate_codepoints(' \u{0}' , ' \u{10FFFE}' ); |
487 | never_accepts_surrogate_codepoints(' \u{80}' , ' \u{10FFFF}' ); |
488 | never_accepts_surrogate_codepoints(' \u{D7FF}' , ' \u{E000}' ); |
489 | } |
490 | |
491 | #[test ] |
492 | fn single_codepoint_one_sequence() { |
493 | // Tests that every range of scalar values that contains a single |
494 | // scalar value is recognized by one sequence of byte ranges. |
495 | for i in 0x0..=0x0010_FFFF { |
496 | let c = match char::from_u32(i) { |
497 | None => continue, |
498 | Some(c) => c, |
499 | }; |
500 | let seqs: Vec<_> = Utf8Sequences::new(c, c).collect(); |
501 | assert_eq!(seqs.len(), 1); |
502 | } |
503 | } |
504 | |
505 | #[test ] |
506 | fn bmp() { |
507 | use crate::utf8::Utf8Sequence::*; |
508 | |
509 | let seqs = Utf8Sequences::new(' \u{0}' , ' \u{FFFF}' ).collect::<Vec<_>>(); |
510 | assert_eq!( |
511 | seqs, |
512 | vec![ |
513 | One(rutf8(0x0, 0x7F)), |
514 | Two([rutf8(0xC2, 0xDF), rutf8(0x80, 0xBF)]), |
515 | Three([ |
516 | rutf8(0xE0, 0xE0), |
517 | rutf8(0xA0, 0xBF), |
518 | rutf8(0x80, 0xBF) |
519 | ]), |
520 | Three([ |
521 | rutf8(0xE1, 0xEC), |
522 | rutf8(0x80, 0xBF), |
523 | rutf8(0x80, 0xBF) |
524 | ]), |
525 | Three([ |
526 | rutf8(0xED, 0xED), |
527 | rutf8(0x80, 0x9F), |
528 | rutf8(0x80, 0xBF) |
529 | ]), |
530 | Three([ |
531 | rutf8(0xEE, 0xEF), |
532 | rutf8(0x80, 0xBF), |
533 | rutf8(0x80, 0xBF) |
534 | ]), |
535 | ] |
536 | ); |
537 | } |
538 | |
539 | #[test ] |
540 | fn reverse() { |
541 | use crate::utf8::Utf8Sequence::*; |
542 | |
543 | let mut s = One(rutf8(0xA, 0xB)); |
544 | s.reverse(); |
545 | assert_eq!(s.as_slice(), &[rutf8(0xA, 0xB)]); |
546 | |
547 | let mut s = Two([rutf8(0xA, 0xB), rutf8(0xB, 0xC)]); |
548 | s.reverse(); |
549 | assert_eq!(s.as_slice(), &[rutf8(0xB, 0xC), rutf8(0xA, 0xB)]); |
550 | |
551 | let mut s = Three([rutf8(0xA, 0xB), rutf8(0xB, 0xC), rutf8(0xC, 0xD)]); |
552 | s.reverse(); |
553 | assert_eq!( |
554 | s.as_slice(), |
555 | &[rutf8(0xC, 0xD), rutf8(0xB, 0xC), rutf8(0xA, 0xB)] |
556 | ); |
557 | |
558 | let mut s = Four([ |
559 | rutf8(0xA, 0xB), |
560 | rutf8(0xB, 0xC), |
561 | rutf8(0xC, 0xD), |
562 | rutf8(0xD, 0xE), |
563 | ]); |
564 | s.reverse(); |
565 | assert_eq!( |
566 | s.as_slice(), |
567 | &[ |
568 | rutf8(0xD, 0xE), |
569 | rutf8(0xC, 0xD), |
570 | rutf8(0xB, 0xC), |
571 | rutf8(0xA, 0xB) |
572 | ] |
573 | ); |
574 | } |
575 | |
576 | fn encode_surrogate(cp: u32) -> [u8; 3] { |
577 | const TAG_CONT: u8 = 0b1000_0000; |
578 | const TAG_THREE_B: u8 = 0b1110_0000; |
579 | |
580 | assert!(0xD800 <= cp && cp < 0xE000); |
581 | let mut dst = [0; 3]; |
582 | dst[0] = (cp >> 12 & 0x0F) as u8 | TAG_THREE_B; |
583 | dst[1] = (cp >> 6 & 0x3F) as u8 | TAG_CONT; |
584 | dst[2] = (cp & 0x3F) as u8 | TAG_CONT; |
585 | dst |
586 | } |
587 | } |
588 | |