1 | /*! |
2 | Defines an abstract syntax for regular expressions. |
3 | */ |
4 | |
5 | use core::cmp::Ordering; |
6 | |
7 | use alloc::{boxed::Box, string::String, vec, vec::Vec}; |
8 | |
9 | pub use crate::ast::visitor::{visit, Visitor}; |
10 | |
11 | pub mod parse; |
12 | pub mod print; |
13 | mod visitor; |
14 | |
15 | /// An error that occurred while parsing a regular expression into an abstract |
16 | /// syntax tree. |
17 | /// |
18 | /// Note that not all ASTs represents a valid regular expression. For example, |
19 | /// an AST is constructed without error for `\p{Quux}`, but `Quux` is not a |
20 | /// valid Unicode property name. That particular error is reported when |
21 | /// translating an AST to the high-level intermediate representation (`HIR`). |
22 | #[derive (Clone, Debug, Eq, PartialEq)] |
23 | pub struct Error { |
24 | /// The kind of error. |
25 | kind: ErrorKind, |
26 | /// The original pattern that the parser generated the error from. Every |
27 | /// span in an error is a valid range into this string. |
28 | pattern: String, |
29 | /// The span of this error. |
30 | span: Span, |
31 | } |
32 | |
33 | impl Error { |
34 | /// Return the type of this error. |
35 | pub fn kind(&self) -> &ErrorKind { |
36 | &self.kind |
37 | } |
38 | |
39 | /// The original pattern string in which this error occurred. |
40 | /// |
41 | /// Every span reported by this error is reported in terms of this string. |
42 | pub fn pattern(&self) -> &str { |
43 | &self.pattern |
44 | } |
45 | |
46 | /// Return the span at which this error occurred. |
47 | pub fn span(&self) -> &Span { |
48 | &self.span |
49 | } |
50 | |
51 | /// Return an auxiliary span. This span exists only for some errors that |
52 | /// benefit from being able to point to two locations in the original |
53 | /// regular expression. For example, "duplicate" errors will have the |
54 | /// main error position set to the duplicate occurrence while its |
55 | /// auxiliary span will be set to the initial occurrence. |
56 | pub fn auxiliary_span(&self) -> Option<&Span> { |
57 | use self::ErrorKind::*; |
58 | match self.kind { |
59 | FlagDuplicate { ref original } => Some(original), |
60 | FlagRepeatedNegation { ref original, .. } => Some(original), |
61 | GroupNameDuplicate { ref original, .. } => Some(original), |
62 | _ => None, |
63 | } |
64 | } |
65 | } |
66 | |
67 | /// The type of an error that occurred while building an AST. |
68 | /// |
69 | /// This error type is marked as `non_exhaustive`. This means that adding a |
70 | /// new variant is not considered a breaking change. |
71 | #[non_exhaustive ] |
72 | #[derive (Clone, Debug, Eq, PartialEq)] |
73 | pub enum ErrorKind { |
74 | /// The capturing group limit was exceeded. |
75 | /// |
76 | /// Note that this represents a limit on the total number of capturing |
77 | /// groups in a regex and not necessarily the number of nested capturing |
78 | /// groups. That is, the nest limit can be low and it is still possible for |
79 | /// this error to occur. |
80 | CaptureLimitExceeded, |
81 | /// An invalid escape sequence was found in a character class set. |
82 | ClassEscapeInvalid, |
83 | /// An invalid character class range was found. An invalid range is any |
84 | /// range where the start is greater than the end. |
85 | ClassRangeInvalid, |
86 | /// An invalid range boundary was found in a character class. Range |
87 | /// boundaries must be a single literal codepoint, but this error indicates |
88 | /// that something else was found, such as a nested class. |
89 | ClassRangeLiteral, |
90 | /// An opening `[` was found with no corresponding closing `]`. |
91 | ClassUnclosed, |
92 | /// Note that this error variant is no longer used. Namely, a decimal |
93 | /// number can only appear as a repetition quantifier. When the number |
94 | /// in a repetition quantifier is empty, then it gets its own specialized |
95 | /// error, `RepetitionCountDecimalEmpty`. |
96 | DecimalEmpty, |
97 | /// An invalid decimal number was given where one was expected. |
98 | DecimalInvalid, |
99 | /// A bracketed hex literal was empty. |
100 | EscapeHexEmpty, |
101 | /// A bracketed hex literal did not correspond to a Unicode scalar value. |
102 | EscapeHexInvalid, |
103 | /// An invalid hexadecimal digit was found. |
104 | EscapeHexInvalidDigit, |
105 | /// EOF was found before an escape sequence was completed. |
106 | EscapeUnexpectedEof, |
107 | /// An unrecognized escape sequence. |
108 | EscapeUnrecognized, |
109 | /// A dangling negation was used when setting flags, e.g., `i-`. |
110 | FlagDanglingNegation, |
111 | /// A flag was used twice, e.g., `i-i`. |
112 | FlagDuplicate { |
113 | /// The position of the original flag. The error position |
114 | /// points to the duplicate flag. |
115 | original: Span, |
116 | }, |
117 | /// The negation operator was used twice, e.g., `-i-s`. |
118 | FlagRepeatedNegation { |
119 | /// The position of the original negation operator. The error position |
120 | /// points to the duplicate negation operator. |
121 | original: Span, |
122 | }, |
123 | /// Expected a flag but got EOF, e.g., `(?`. |
124 | FlagUnexpectedEof, |
125 | /// Unrecognized flag, e.g., `a`. |
126 | FlagUnrecognized, |
127 | /// A duplicate capture name was found. |
128 | GroupNameDuplicate { |
129 | /// The position of the initial occurrence of the capture name. The |
130 | /// error position itself points to the duplicate occurrence. |
131 | original: Span, |
132 | }, |
133 | /// A capture group name is empty, e.g., `(?P<>abc)`. |
134 | GroupNameEmpty, |
135 | /// An invalid character was seen for a capture group name. This includes |
136 | /// errors where the first character is a digit (even though subsequent |
137 | /// characters are allowed to be digits). |
138 | GroupNameInvalid, |
139 | /// A closing `>` could not be found for a capture group name. |
140 | GroupNameUnexpectedEof, |
141 | /// An unclosed group, e.g., `(ab`. |
142 | /// |
143 | /// The span of this error corresponds to the unclosed parenthesis. |
144 | GroupUnclosed, |
145 | /// An unopened group, e.g., `ab)`. |
146 | GroupUnopened, |
147 | /// The nest limit was exceeded. The limit stored here is the limit |
148 | /// configured in the parser. |
149 | NestLimitExceeded(u32), |
150 | /// The range provided in a counted repetition operator is invalid. The |
151 | /// range is invalid if the start is greater than the end. |
152 | RepetitionCountInvalid, |
153 | /// An opening `{` was not followed by a valid decimal value. |
154 | /// For example, `x{}` or `x{]}` would fail. |
155 | RepetitionCountDecimalEmpty, |
156 | /// An opening `{` was found with no corresponding closing `}`. |
157 | RepetitionCountUnclosed, |
158 | /// A repetition operator was applied to a missing sub-expression. This |
159 | /// occurs, for example, in the regex consisting of just a `*` or even |
160 | /// `(?i)*`. It is, however, possible to create a repetition operating on |
161 | /// an empty sub-expression. For example, `()*` is still considered valid. |
162 | RepetitionMissing, |
163 | /// The Unicode class is not valid. This typically occurs when a `\p` is |
164 | /// followed by something other than a `{`. |
165 | UnicodeClassInvalid, |
166 | /// When octal support is disabled, this error is produced when an octal |
167 | /// escape is used. The octal escape is assumed to be an invocation of |
168 | /// a backreference, which is the common case. |
169 | UnsupportedBackreference, |
170 | /// When syntax similar to PCRE's look-around is used, this error is |
171 | /// returned. Some example syntaxes that are rejected include, but are |
172 | /// not necessarily limited to, `(?=re)`, `(?!re)`, `(?<=re)` and |
173 | /// `(?<!re)`. Note that all of these syntaxes are otherwise invalid; this |
174 | /// error is used to improve the user experience. |
175 | UnsupportedLookAround, |
176 | } |
177 | |
178 | #[cfg (feature = "std" )] |
179 | impl std::error::Error for Error {} |
180 | |
181 | impl core::fmt::Display for Error { |
182 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
183 | crate::error::Formatter::from(self).fmt(f) |
184 | } |
185 | } |
186 | |
187 | impl core::fmt::Display for ErrorKind { |
188 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
189 | use self::ErrorKind::*; |
190 | match *self { |
191 | CaptureLimitExceeded => write!( |
192 | f, |
193 | "exceeded the maximum number of \ |
194 | capturing groups ( {})" , |
195 | u32::MAX |
196 | ), |
197 | ClassEscapeInvalid => { |
198 | write!(f, "invalid escape sequence found in character class" ) |
199 | } |
200 | ClassRangeInvalid => write!( |
201 | f, |
202 | "invalid character class range, \ |
203 | the start must be <= the end" |
204 | ), |
205 | ClassRangeLiteral => { |
206 | write!(f, "invalid range boundary, must be a literal" ) |
207 | } |
208 | ClassUnclosed => write!(f, "unclosed character class" ), |
209 | DecimalEmpty => write!(f, "decimal literal empty" ), |
210 | DecimalInvalid => write!(f, "decimal literal invalid" ), |
211 | EscapeHexEmpty => write!(f, "hexadecimal literal empty" ), |
212 | EscapeHexInvalid => { |
213 | write!(f, "hexadecimal literal is not a Unicode scalar value" ) |
214 | } |
215 | EscapeHexInvalidDigit => write!(f, "invalid hexadecimal digit" ), |
216 | EscapeUnexpectedEof => write!( |
217 | f, |
218 | "incomplete escape sequence, \ |
219 | reached end of pattern prematurely" |
220 | ), |
221 | EscapeUnrecognized => write!(f, "unrecognized escape sequence" ), |
222 | FlagDanglingNegation => { |
223 | write!(f, "dangling flag negation operator" ) |
224 | } |
225 | FlagDuplicate { .. } => write!(f, "duplicate flag" ), |
226 | FlagRepeatedNegation { .. } => { |
227 | write!(f, "flag negation operator repeated" ) |
228 | } |
229 | FlagUnexpectedEof => { |
230 | write!(f, "expected flag but got end of regex" ) |
231 | } |
232 | FlagUnrecognized => write!(f, "unrecognized flag" ), |
233 | GroupNameDuplicate { .. } => { |
234 | write!(f, "duplicate capture group name" ) |
235 | } |
236 | GroupNameEmpty => write!(f, "empty capture group name" ), |
237 | GroupNameInvalid => write!(f, "invalid capture group character" ), |
238 | GroupNameUnexpectedEof => write!(f, "unclosed capture group name" ), |
239 | GroupUnclosed => write!(f, "unclosed group" ), |
240 | GroupUnopened => write!(f, "unopened group" ), |
241 | NestLimitExceeded(limit) => write!( |
242 | f, |
243 | "exceed the maximum number of \ |
244 | nested parentheses/brackets ( {})" , |
245 | limit |
246 | ), |
247 | RepetitionCountInvalid => write!( |
248 | f, |
249 | "invalid repetition count range, \ |
250 | the start must be <= the end" |
251 | ), |
252 | RepetitionCountDecimalEmpty => { |
253 | write!(f, "repetition quantifier expects a valid decimal" ) |
254 | } |
255 | RepetitionCountUnclosed => { |
256 | write!(f, "unclosed counted repetition" ) |
257 | } |
258 | RepetitionMissing => { |
259 | write!(f, "repetition operator missing expression" ) |
260 | } |
261 | UnicodeClassInvalid => { |
262 | write!(f, "invalid Unicode character class" ) |
263 | } |
264 | UnsupportedBackreference => { |
265 | write!(f, "backreferences are not supported" ) |
266 | } |
267 | UnsupportedLookAround => write!( |
268 | f, |
269 | "look-around, including look-ahead and look-behind, \ |
270 | is not supported" |
271 | ), |
272 | } |
273 | } |
274 | } |
275 | |
276 | /// Span represents the position information of a single AST item. |
277 | /// |
278 | /// All span positions are absolute byte offsets that can be used on the |
279 | /// original regular expression that was parsed. |
280 | #[derive (Clone, Copy, Eq, PartialEq)] |
281 | pub struct Span { |
282 | /// The start byte offset. |
283 | pub start: Position, |
284 | /// The end byte offset. |
285 | pub end: Position, |
286 | } |
287 | |
288 | impl core::fmt::Debug for Span { |
289 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
290 | write!(f, "Span( {:?}, {:?})" , self.start, self.end) |
291 | } |
292 | } |
293 | |
294 | impl Ord for Span { |
295 | fn cmp(&self, other: &Span) -> Ordering { |
296 | (&self.start, &self.end).cmp(&(&other.start, &other.end)) |
297 | } |
298 | } |
299 | |
300 | impl PartialOrd for Span { |
301 | fn partial_cmp(&self, other: &Span) -> Option<Ordering> { |
302 | Some(self.cmp(other)) |
303 | } |
304 | } |
305 | |
306 | /// A single position in a regular expression. |
307 | /// |
308 | /// A position encodes one half of a span, and include the byte offset, line |
309 | /// number and column number. |
310 | #[derive (Clone, Copy, Eq, PartialEq)] |
311 | pub struct Position { |
312 | /// The absolute offset of this position, starting at `0` from the |
313 | /// beginning of the regular expression pattern string. |
314 | pub offset: usize, |
315 | /// The line number, starting at `1`. |
316 | pub line: usize, |
317 | /// The approximate column number, starting at `1`. |
318 | pub column: usize, |
319 | } |
320 | |
321 | impl core::fmt::Debug for Position { |
322 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
323 | write!( |
324 | f, |
325 | "Position(o: {:?}, l: {:?}, c: {:?})" , |
326 | self.offset, self.line, self.column |
327 | ) |
328 | } |
329 | } |
330 | |
331 | impl Ord for Position { |
332 | fn cmp(&self, other: &Position) -> Ordering { |
333 | self.offset.cmp(&other.offset) |
334 | } |
335 | } |
336 | |
337 | impl PartialOrd for Position { |
338 | fn partial_cmp(&self, other: &Position) -> Option<Ordering> { |
339 | Some(self.cmp(other)) |
340 | } |
341 | } |
342 | |
343 | impl Span { |
344 | /// Create a new span with the given positions. |
345 | pub fn new(start: Position, end: Position) -> Span { |
346 | Span { start, end } |
347 | } |
348 | |
349 | /// Create a new span using the given position as the start and end. |
350 | pub fn splat(pos: Position) -> Span { |
351 | Span::new(pos, pos) |
352 | } |
353 | |
354 | /// Create a new span by replacing the starting the position with the one |
355 | /// given. |
356 | pub fn with_start(self, pos: Position) -> Span { |
357 | Span { start: pos, ..self } |
358 | } |
359 | |
360 | /// Create a new span by replacing the ending the position with the one |
361 | /// given. |
362 | pub fn with_end(self, pos: Position) -> Span { |
363 | Span { end: pos, ..self } |
364 | } |
365 | |
366 | /// Returns true if and only if this span occurs on a single line. |
367 | pub fn is_one_line(&self) -> bool { |
368 | self.start.line == self.end.line |
369 | } |
370 | |
371 | /// Returns true if and only if this span is empty. That is, it points to |
372 | /// a single position in the concrete syntax of a regular expression. |
373 | pub fn is_empty(&self) -> bool { |
374 | self.start.offset == self.end.offset |
375 | } |
376 | } |
377 | |
378 | impl Position { |
379 | /// Create a new position with the given information. |
380 | /// |
381 | /// `offset` is the absolute offset of the position, starting at `0` from |
382 | /// the beginning of the regular expression pattern string. |
383 | /// |
384 | /// `line` is the line number, starting at `1`. |
385 | /// |
386 | /// `column` is the approximate column number, starting at `1`. |
387 | pub fn new(offset: usize, line: usize, column: usize) -> Position { |
388 | Position { offset, line, column } |
389 | } |
390 | } |
391 | |
392 | /// An abstract syntax tree for a singular expression along with comments |
393 | /// found. |
394 | /// |
395 | /// Comments are not stored in the tree itself to avoid complexity. Each |
396 | /// comment contains a span of precisely where it occurred in the original |
397 | /// regular expression. |
398 | #[derive (Clone, Debug, Eq, PartialEq)] |
399 | pub struct WithComments { |
400 | /// The actual ast. |
401 | pub ast: Ast, |
402 | /// All comments found in the original regular expression. |
403 | pub comments: Vec<Comment>, |
404 | } |
405 | |
406 | /// A comment from a regular expression with an associated span. |
407 | /// |
408 | /// A regular expression can only contain comments when the `x` flag is |
409 | /// enabled. |
410 | #[derive (Clone, Debug, Eq, PartialEq)] |
411 | pub struct Comment { |
412 | /// The span of this comment, including the beginning `#` and ending `\n`. |
413 | pub span: Span, |
414 | /// The comment text, starting with the first character following the `#` |
415 | /// and ending with the last character preceding the `\n`. |
416 | pub comment: String, |
417 | } |
418 | |
419 | /// An abstract syntax tree for a single regular expression. |
420 | /// |
421 | /// An `Ast`'s `fmt::Display` implementation uses constant stack space and heap |
422 | /// space proportional to the size of the `Ast`. |
423 | /// |
424 | /// This type defines its own destructor that uses constant stack space and |
425 | /// heap space proportional to the size of the `Ast`. |
426 | #[derive (Clone, Debug, Eq, PartialEq)] |
427 | pub enum Ast { |
428 | /// An empty regex that matches everything. |
429 | Empty(Span), |
430 | /// A set of flags, e.g., `(?is)`. |
431 | Flags(SetFlags), |
432 | /// A single character literal, which includes escape sequences. |
433 | Literal(Literal), |
434 | /// The "any character" class. |
435 | Dot(Span), |
436 | /// A single zero-width assertion. |
437 | Assertion(Assertion), |
438 | /// A single character class. This includes all forms of character classes |
439 | /// except for `.`. e.g., `\d`, `\pN`, `[a-z]` and `[[:alpha:]]`. |
440 | Class(Class), |
441 | /// A repetition operator applied to an arbitrary regular expression. |
442 | Repetition(Repetition), |
443 | /// A grouped regular expression. |
444 | Group(Group), |
445 | /// An alternation of regular expressions. |
446 | Alternation(Alternation), |
447 | /// A concatenation of regular expressions. |
448 | Concat(Concat), |
449 | } |
450 | |
451 | impl Ast { |
452 | /// Return the span of this abstract syntax tree. |
453 | pub fn span(&self) -> &Span { |
454 | match *self { |
455 | Ast::Empty(ref span) => span, |
456 | Ast::Flags(ref x) => &x.span, |
457 | Ast::Literal(ref x) => &x.span, |
458 | Ast::Dot(ref span) => span, |
459 | Ast::Assertion(ref x) => &x.span, |
460 | Ast::Class(ref x) => x.span(), |
461 | Ast::Repetition(ref x) => &x.span, |
462 | Ast::Group(ref x) => &x.span, |
463 | Ast::Alternation(ref x) => &x.span, |
464 | Ast::Concat(ref x) => &x.span, |
465 | } |
466 | } |
467 | |
468 | /// Return true if and only if this Ast is empty. |
469 | pub fn is_empty(&self) -> bool { |
470 | match *self { |
471 | Ast::Empty(_) => true, |
472 | _ => false, |
473 | } |
474 | } |
475 | |
476 | /// Returns true if and only if this AST has any (including possibly empty) |
477 | /// subexpressions. |
478 | fn has_subexprs(&self) -> bool { |
479 | match *self { |
480 | Ast::Empty(_) |
481 | | Ast::Flags(_) |
482 | | Ast::Literal(_) |
483 | | Ast::Dot(_) |
484 | | Ast::Assertion(_) => false, |
485 | Ast::Class(_) |
486 | | Ast::Repetition(_) |
487 | | Ast::Group(_) |
488 | | Ast::Alternation(_) |
489 | | Ast::Concat(_) => true, |
490 | } |
491 | } |
492 | } |
493 | |
494 | /// Print a display representation of this Ast. |
495 | /// |
496 | /// This does not preserve any of the original whitespace formatting that may |
497 | /// have originally been present in the concrete syntax from which this Ast |
498 | /// was generated. |
499 | /// |
500 | /// This implementation uses constant stack space and heap space proportional |
501 | /// to the size of the `Ast`. |
502 | impl core::fmt::Display for Ast { |
503 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
504 | use crate::ast::print::Printer; |
505 | Printer::new().print(self, wtr:f) |
506 | } |
507 | } |
508 | |
509 | /// An alternation of regular expressions. |
510 | #[derive (Clone, Debug, Eq, PartialEq)] |
511 | pub struct Alternation { |
512 | /// The span of this alternation. |
513 | pub span: Span, |
514 | /// The alternate regular expressions. |
515 | pub asts: Vec<Ast>, |
516 | } |
517 | |
518 | impl Alternation { |
519 | /// Return this alternation as an AST. |
520 | /// |
521 | /// If this alternation contains zero ASTs, then Ast::Empty is |
522 | /// returned. If this alternation contains exactly 1 AST, then the |
523 | /// corresponding AST is returned. Otherwise, Ast::Alternation is returned. |
524 | pub fn into_ast(mut self) -> Ast { |
525 | match self.asts.len() { |
526 | 0 => Ast::Empty(self.span), |
527 | 1 => self.asts.pop().unwrap(), |
528 | _ => Ast::Alternation(self), |
529 | } |
530 | } |
531 | } |
532 | |
533 | /// A concatenation of regular expressions. |
534 | #[derive (Clone, Debug, Eq, PartialEq)] |
535 | pub struct Concat { |
536 | /// The span of this concatenation. |
537 | pub span: Span, |
538 | /// The concatenation regular expressions. |
539 | pub asts: Vec<Ast>, |
540 | } |
541 | |
542 | impl Concat { |
543 | /// Return this concatenation as an AST. |
544 | /// |
545 | /// If this concatenation contains zero ASTs, then Ast::Empty is |
546 | /// returned. If this concatenation contains exactly 1 AST, then the |
547 | /// corresponding AST is returned. Otherwise, Ast::Concat is returned. |
548 | pub fn into_ast(mut self) -> Ast { |
549 | match self.asts.len() { |
550 | 0 => Ast::Empty(self.span), |
551 | 1 => self.asts.pop().unwrap(), |
552 | _ => Ast::Concat(self), |
553 | } |
554 | } |
555 | } |
556 | |
557 | /// A single literal expression. |
558 | /// |
559 | /// A literal corresponds to a single Unicode scalar value. Literals may be |
560 | /// represented in their literal form, e.g., `a` or in their escaped form, |
561 | /// e.g., `\x61`. |
562 | #[derive (Clone, Debug, Eq, PartialEq)] |
563 | pub struct Literal { |
564 | /// The span of this literal. |
565 | pub span: Span, |
566 | /// The kind of this literal. |
567 | pub kind: LiteralKind, |
568 | /// The Unicode scalar value corresponding to this literal. |
569 | pub c: char, |
570 | } |
571 | |
572 | impl Literal { |
573 | /// If this literal was written as a `\x` hex escape, then this returns |
574 | /// the corresponding byte value. Otherwise, this returns `None`. |
575 | pub fn byte(&self) -> Option<u8> { |
576 | match self.kind { |
577 | LiteralKind::HexFixed(HexLiteralKind::X) => { |
578 | u8::try_from(self.c).ok() |
579 | } |
580 | _ => None, |
581 | } |
582 | } |
583 | } |
584 | |
585 | /// The kind of a single literal expression. |
586 | #[derive (Clone, Debug, Eq, PartialEq)] |
587 | pub enum LiteralKind { |
588 | /// The literal is written verbatim, e.g., `a` or `☃`. |
589 | Verbatim, |
590 | /// The literal is written as an escape because it is otherwise a special |
591 | /// regex meta character, e.g., `\*` or `\[`. |
592 | Meta, |
593 | /// The literal is written as an escape despite the fact that the escape is |
594 | /// unnecessary, e.g., `\%` or `\/`. |
595 | Superfluous, |
596 | /// The literal is written as an octal escape, e.g., `\141`. |
597 | Octal, |
598 | /// The literal is written as a hex code with a fixed number of digits |
599 | /// depending on the type of the escape, e.g., `\x61` or or `\u0061` or |
600 | /// `\U00000061`. |
601 | HexFixed(HexLiteralKind), |
602 | /// The literal is written as a hex code with a bracketed number of |
603 | /// digits. The only restriction is that the bracketed hex code must refer |
604 | /// to a valid Unicode scalar value. |
605 | HexBrace(HexLiteralKind), |
606 | /// The literal is written as a specially recognized escape, e.g., `\f` |
607 | /// or `\n`. |
608 | Special(SpecialLiteralKind), |
609 | } |
610 | |
611 | /// The type of a special literal. |
612 | /// |
613 | /// A special literal is a special escape sequence recognized by the regex |
614 | /// parser, e.g., `\f` or `\n`. |
615 | #[derive (Clone, Debug, Eq, PartialEq)] |
616 | pub enum SpecialLiteralKind { |
617 | /// Bell, spelled `\a` (`\x07`). |
618 | Bell, |
619 | /// Form feed, spelled `\f` (`\x0C`). |
620 | FormFeed, |
621 | /// Tab, spelled `\t` (`\x09`). |
622 | Tab, |
623 | /// Line feed, spelled `\n` (`\x0A`). |
624 | LineFeed, |
625 | /// Carriage return, spelled `\r` (`\x0D`). |
626 | CarriageReturn, |
627 | /// Vertical tab, spelled `\v` (`\x0B`). |
628 | VerticalTab, |
629 | /// Space, spelled `\ ` (`\x20`). Note that this can only appear when |
630 | /// parsing in verbose mode. |
631 | Space, |
632 | } |
633 | |
634 | /// The type of a Unicode hex literal. |
635 | /// |
636 | /// Note that all variants behave the same when used with brackets. They only |
637 | /// differ when used without brackets in the number of hex digits that must |
638 | /// follow. |
639 | #[derive (Clone, Debug, Eq, PartialEq)] |
640 | pub enum HexLiteralKind { |
641 | /// A `\x` prefix. When used without brackets, this form is limited to |
642 | /// two digits. |
643 | X, |
644 | /// A `\u` prefix. When used without brackets, this form is limited to |
645 | /// four digits. |
646 | UnicodeShort, |
647 | /// A `\U` prefix. When used without brackets, this form is limited to |
648 | /// eight digits. |
649 | UnicodeLong, |
650 | } |
651 | |
652 | impl HexLiteralKind { |
653 | /// The number of digits that must be used with this literal form when |
654 | /// used without brackets. When used with brackets, there is no |
655 | /// restriction on the number of digits. |
656 | pub fn digits(&self) -> u32 { |
657 | match *self { |
658 | HexLiteralKind::X => 2, |
659 | HexLiteralKind::UnicodeShort => 4, |
660 | HexLiteralKind::UnicodeLong => 8, |
661 | } |
662 | } |
663 | } |
664 | |
665 | /// A single character class expression. |
666 | #[derive (Clone, Debug, Eq, PartialEq)] |
667 | pub enum Class { |
668 | /// A Unicode character class, e.g., `\pL` or `\p{Greek}`. |
669 | Unicode(ClassUnicode), |
670 | /// A perl character class, e.g., `\d` or `\W`. |
671 | Perl(ClassPerl), |
672 | /// A bracketed character class set, which may contain zero or more |
673 | /// character ranges and/or zero or more nested classes. e.g., |
674 | /// `[a-zA-Z\pL]`. |
675 | Bracketed(ClassBracketed), |
676 | } |
677 | |
678 | impl Class { |
679 | /// Return the span of this character class. |
680 | pub fn span(&self) -> &Span { |
681 | match *self { |
682 | Class::Perl(ref x: &ClassPerl) => &x.span, |
683 | Class::Unicode(ref x: &ClassUnicode) => &x.span, |
684 | Class::Bracketed(ref x: &ClassBracketed) => &x.span, |
685 | } |
686 | } |
687 | } |
688 | |
689 | /// A Perl character class. |
690 | #[derive (Clone, Debug, Eq, PartialEq)] |
691 | pub struct ClassPerl { |
692 | /// The span of this class. |
693 | pub span: Span, |
694 | /// The kind of Perl class. |
695 | pub kind: ClassPerlKind, |
696 | /// Whether the class is negated or not. e.g., `\d` is not negated but |
697 | /// `\D` is. |
698 | pub negated: bool, |
699 | } |
700 | |
701 | /// The available Perl character classes. |
702 | #[derive (Clone, Debug, Eq, PartialEq)] |
703 | pub enum ClassPerlKind { |
704 | /// Decimal numbers. |
705 | Digit, |
706 | /// Whitespace. |
707 | Space, |
708 | /// Word characters. |
709 | Word, |
710 | } |
711 | |
712 | /// An ASCII character class. |
713 | #[derive (Clone, Debug, Eq, PartialEq)] |
714 | pub struct ClassAscii { |
715 | /// The span of this class. |
716 | pub span: Span, |
717 | /// The kind of ASCII class. |
718 | pub kind: ClassAsciiKind, |
719 | /// Whether the class is negated or not. e.g., `[[:alpha:]]` is not negated |
720 | /// but `[[:^alpha:]]` is. |
721 | pub negated: bool, |
722 | } |
723 | |
724 | /// The available ASCII character classes. |
725 | #[derive (Clone, Debug, Eq, PartialEq)] |
726 | pub enum ClassAsciiKind { |
727 | /// `[0-9A-Za-z]` |
728 | Alnum, |
729 | /// `[A-Za-z]` |
730 | Alpha, |
731 | /// `[\x00-\x7F]` |
732 | Ascii, |
733 | /// `[ \t]` |
734 | Blank, |
735 | /// `[\x00-\x1F\x7F]` |
736 | Cntrl, |
737 | /// `[0-9]` |
738 | Digit, |
739 | /// `[!-~]` |
740 | Graph, |
741 | /// `[a-z]` |
742 | Lower, |
743 | /// `[ -~]` |
744 | Print, |
745 | /// `[!-/:-@\[-`{-~]` |
746 | Punct, |
747 | /// `[\t\n\v\f\r ]` |
748 | Space, |
749 | /// `[A-Z]` |
750 | Upper, |
751 | /// `[0-9A-Za-z_]` |
752 | Word, |
753 | /// `[0-9A-Fa-f]` |
754 | Xdigit, |
755 | } |
756 | |
757 | impl ClassAsciiKind { |
758 | /// Return the corresponding ClassAsciiKind variant for the given name. |
759 | /// |
760 | /// The name given should correspond to the lowercase version of the |
761 | /// variant name. e.g., `cntrl` is the name for `ClassAsciiKind::Cntrl`. |
762 | /// |
763 | /// If no variant with the corresponding name exists, then `None` is |
764 | /// returned. |
765 | pub fn from_name(name: &str) -> Option<ClassAsciiKind> { |
766 | use self::ClassAsciiKind::*; |
767 | match name { |
768 | "alnum" => Some(Alnum), |
769 | "alpha" => Some(Alpha), |
770 | "ascii" => Some(Ascii), |
771 | "blank" => Some(Blank), |
772 | "cntrl" => Some(Cntrl), |
773 | "digit" => Some(Digit), |
774 | "graph" => Some(Graph), |
775 | "lower" => Some(Lower), |
776 | "print" => Some(Print), |
777 | "punct" => Some(Punct), |
778 | "space" => Some(Space), |
779 | "upper" => Some(Upper), |
780 | "word" => Some(Word), |
781 | "xdigit" => Some(Xdigit), |
782 | _ => None, |
783 | } |
784 | } |
785 | } |
786 | |
787 | /// A Unicode character class. |
788 | #[derive (Clone, Debug, Eq, PartialEq)] |
789 | pub struct ClassUnicode { |
790 | /// The span of this class. |
791 | pub span: Span, |
792 | /// Whether this class is negated or not. |
793 | /// |
794 | /// Note: be careful when using this attribute. This specifically refers |
795 | /// to whether the class is written as `\p` or `\P`, where the latter |
796 | /// is `negated = true`. However, it also possible to write something like |
797 | /// `\P{scx!=Katakana}` which is actually equivalent to |
798 | /// `\p{scx=Katakana}` and is therefore not actually negated even though |
799 | /// `negated = true` here. To test whether this class is truly negated |
800 | /// or not, use the `is_negated` method. |
801 | pub negated: bool, |
802 | /// The kind of Unicode class. |
803 | pub kind: ClassUnicodeKind, |
804 | } |
805 | |
806 | impl ClassUnicode { |
807 | /// Returns true if this class has been negated. |
808 | /// |
809 | /// Note that this takes the Unicode op into account, if it's present. |
810 | /// e.g., `is_negated` for `\P{scx!=Katakana}` will return `false`. |
811 | pub fn is_negated(&self) -> bool { |
812 | match self.kind { |
813 | ClassUnicodeKind::NamedValue { |
814 | op: ClassUnicodeOpKind::NotEqual, |
815 | .. |
816 | } => !self.negated, |
817 | _ => self.negated, |
818 | } |
819 | } |
820 | } |
821 | |
822 | /// The available forms of Unicode character classes. |
823 | #[derive (Clone, Debug, Eq, PartialEq)] |
824 | pub enum ClassUnicodeKind { |
825 | /// A one letter abbreviated class, e.g., `\pN`. |
826 | OneLetter(char), |
827 | /// A binary property, general category or script. The string may be |
828 | /// empty. |
829 | Named(String), |
830 | /// A property name and an associated value. |
831 | NamedValue { |
832 | /// The type of Unicode op used to associate `name` with `value`. |
833 | op: ClassUnicodeOpKind, |
834 | /// The property name (which may be empty). |
835 | name: String, |
836 | /// The property value (which may be empty). |
837 | value: String, |
838 | }, |
839 | } |
840 | |
841 | /// The type of op used in a Unicode character class. |
842 | #[derive (Clone, Debug, Eq, PartialEq)] |
843 | pub enum ClassUnicodeOpKind { |
844 | /// A property set to a specific value, e.g., `\p{scx=Katakana}`. |
845 | Equal, |
846 | /// A property set to a specific value using a colon, e.g., |
847 | /// `\p{scx:Katakana}`. |
848 | Colon, |
849 | /// A property that isn't a particular value, e.g., `\p{scx!=Katakana}`. |
850 | NotEqual, |
851 | } |
852 | |
853 | impl ClassUnicodeOpKind { |
854 | /// Whether the op is an equality op or not. |
855 | pub fn is_equal(&self) -> bool { |
856 | match *self { |
857 | ClassUnicodeOpKind::Equal | ClassUnicodeOpKind::Colon => true, |
858 | _ => false, |
859 | } |
860 | } |
861 | } |
862 | |
863 | /// A bracketed character class, e.g., `[a-z0-9]`. |
864 | #[derive (Clone, Debug, Eq, PartialEq)] |
865 | pub struct ClassBracketed { |
866 | /// The span of this class. |
867 | pub span: Span, |
868 | /// Whether this class is negated or not. e.g., `[a]` is not negated but |
869 | /// `[^a]` is. |
870 | pub negated: bool, |
871 | /// The type of this set. A set is either a normal union of things, e.g., |
872 | /// `[abc]` or a result of applying set operations, e.g., `[\pL--c]`. |
873 | pub kind: ClassSet, |
874 | } |
875 | |
876 | /// A character class set. |
877 | /// |
878 | /// This type corresponds to the internal structure of a bracketed character |
879 | /// class. That is, every bracketed character is one of two types: a union of |
880 | /// items (literals, ranges, other bracketed classes) or a tree of binary set |
881 | /// operations. |
882 | #[derive (Clone, Debug, Eq, PartialEq)] |
883 | pub enum ClassSet { |
884 | /// An item, which can be a single literal, range, nested character class |
885 | /// or a union of items. |
886 | Item(ClassSetItem), |
887 | /// A single binary operation (i.e., &&, -- or ~~). |
888 | BinaryOp(ClassSetBinaryOp), |
889 | } |
890 | |
891 | impl ClassSet { |
892 | /// Build a set from a union. |
893 | pub fn union(ast: ClassSetUnion) -> ClassSet { |
894 | ClassSet::Item(ClassSetItem::Union(ast)) |
895 | } |
896 | |
897 | /// Return the span of this character class set. |
898 | pub fn span(&self) -> &Span { |
899 | match *self { |
900 | ClassSet::Item(ref x: &ClassSetItem) => x.span(), |
901 | ClassSet::BinaryOp(ref x: &ClassSetBinaryOp) => &x.span, |
902 | } |
903 | } |
904 | |
905 | /// Return true if and only if this class set is empty. |
906 | fn is_empty(&self) -> bool { |
907 | match *self { |
908 | ClassSet::Item(ClassSetItem::Empty(_)) => true, |
909 | _ => false, |
910 | } |
911 | } |
912 | } |
913 | |
914 | /// A single component of a character class set. |
915 | #[derive (Clone, Debug, Eq, PartialEq)] |
916 | pub enum ClassSetItem { |
917 | /// An empty item. |
918 | /// |
919 | /// Note that a bracketed character class cannot contain a single empty |
920 | /// item. Empty items can appear when using one of the binary operators. |
921 | /// For example, `[&&]` is the intersection of two empty classes. |
922 | Empty(Span), |
923 | /// A single literal. |
924 | Literal(Literal), |
925 | /// A range between two literals. |
926 | Range(ClassSetRange), |
927 | /// An ASCII character class, e.g., `[:alnum:]` or `[:punct:]`. |
928 | Ascii(ClassAscii), |
929 | /// A Unicode character class, e.g., `\pL` or `\p{Greek}`. |
930 | Unicode(ClassUnicode), |
931 | /// A perl character class, e.g., `\d` or `\W`. |
932 | Perl(ClassPerl), |
933 | /// A bracketed character class set, which may contain zero or more |
934 | /// character ranges and/or zero or more nested classes. e.g., |
935 | /// `[a-zA-Z\pL]`. |
936 | Bracketed(Box<ClassBracketed>), |
937 | /// A union of items. |
938 | Union(ClassSetUnion), |
939 | } |
940 | |
941 | impl ClassSetItem { |
942 | /// Return the span of this character class set item. |
943 | pub fn span(&self) -> &Span { |
944 | match *self { |
945 | ClassSetItem::Empty(ref span: &Span) => span, |
946 | ClassSetItem::Literal(ref x: &Literal) => &x.span, |
947 | ClassSetItem::Range(ref x: &ClassSetRange) => &x.span, |
948 | ClassSetItem::Ascii(ref x: &ClassAscii) => &x.span, |
949 | ClassSetItem::Perl(ref x: &ClassPerl) => &x.span, |
950 | ClassSetItem::Unicode(ref x: &ClassUnicode) => &x.span, |
951 | ClassSetItem::Bracketed(ref x: &Box) => &x.span, |
952 | ClassSetItem::Union(ref x: &ClassSetUnion) => &x.span, |
953 | } |
954 | } |
955 | } |
956 | |
957 | /// A single character class range in a set. |
958 | #[derive (Clone, Debug, Eq, PartialEq)] |
959 | pub struct ClassSetRange { |
960 | /// The span of this range. |
961 | pub span: Span, |
962 | /// The start of this range. |
963 | pub start: Literal, |
964 | /// The end of this range. |
965 | pub end: Literal, |
966 | } |
967 | |
968 | impl ClassSetRange { |
969 | /// Returns true if and only if this character class range is valid. |
970 | /// |
971 | /// The only case where a range is invalid is if its start is greater than |
972 | /// its end. |
973 | pub fn is_valid(&self) -> bool { |
974 | self.start.c <= self.end.c |
975 | } |
976 | } |
977 | |
978 | /// A union of items inside a character class set. |
979 | #[derive (Clone, Debug, Eq, PartialEq)] |
980 | pub struct ClassSetUnion { |
981 | /// The span of the items in this operation. e.g., the `a-z0-9` in |
982 | /// `[^a-z0-9]` |
983 | pub span: Span, |
984 | /// The sequence of items that make up this union. |
985 | pub items: Vec<ClassSetItem>, |
986 | } |
987 | |
988 | impl ClassSetUnion { |
989 | /// Push a new item in this union. |
990 | /// |
991 | /// The ending position of this union's span is updated to the ending |
992 | /// position of the span of the item given. If the union is empty, then |
993 | /// the starting position of this union is set to the starting position |
994 | /// of this item. |
995 | /// |
996 | /// In other words, if you only use this method to add items to a union |
997 | /// and you set the spans on each item correctly, then you should never |
998 | /// need to adjust the span of the union directly. |
999 | pub fn push(&mut self, item: ClassSetItem) { |
1000 | if self.items.is_empty() { |
1001 | self.span.start = item.span().start; |
1002 | } |
1003 | self.span.end = item.span().end; |
1004 | self.items.push(item); |
1005 | } |
1006 | |
1007 | /// Return this union as a character class set item. |
1008 | /// |
1009 | /// If this union contains zero items, then an empty union is |
1010 | /// returned. If this concatenation contains exactly 1 item, then the |
1011 | /// corresponding item is returned. Otherwise, ClassSetItem::Union is |
1012 | /// returned. |
1013 | pub fn into_item(mut self) -> ClassSetItem { |
1014 | match self.items.len() { |
1015 | 0 => ClassSetItem::Empty(self.span), |
1016 | 1 => self.items.pop().unwrap(), |
1017 | _ => ClassSetItem::Union(self), |
1018 | } |
1019 | } |
1020 | } |
1021 | |
1022 | /// A Unicode character class set operation. |
1023 | #[derive (Clone, Debug, Eq, PartialEq)] |
1024 | pub struct ClassSetBinaryOp { |
1025 | /// The span of this operation. e.g., the `a-z--[h-p]` in `[a-z--h-p]`. |
1026 | pub span: Span, |
1027 | /// The type of this set operation. |
1028 | pub kind: ClassSetBinaryOpKind, |
1029 | /// The left hand side of the operation. |
1030 | pub lhs: Box<ClassSet>, |
1031 | /// The right hand side of the operation. |
1032 | pub rhs: Box<ClassSet>, |
1033 | } |
1034 | |
1035 | /// The type of a Unicode character class set operation. |
1036 | /// |
1037 | /// Note that this doesn't explicitly represent union since there is no |
1038 | /// explicit union operator. Concatenation inside a character class corresponds |
1039 | /// to the union operation. |
1040 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
1041 | pub enum ClassSetBinaryOpKind { |
1042 | /// The intersection of two sets, e.g., `\pN&&[a-z]`. |
1043 | Intersection, |
1044 | /// The difference of two sets, e.g., `\pN--[0-9]`. |
1045 | Difference, |
1046 | /// The symmetric difference of two sets. The symmetric difference is the |
1047 | /// set of elements belonging to one but not both sets. |
1048 | /// e.g., `[\pL~~[:ascii:]]`. |
1049 | SymmetricDifference, |
1050 | } |
1051 | |
1052 | /// A single zero-width assertion. |
1053 | #[derive (Clone, Debug, Eq, PartialEq)] |
1054 | pub struct Assertion { |
1055 | /// The span of this assertion. |
1056 | pub span: Span, |
1057 | /// The assertion kind, e.g., `\b` or `^`. |
1058 | pub kind: AssertionKind, |
1059 | } |
1060 | |
1061 | /// An assertion kind. |
1062 | #[derive (Clone, Debug, Eq, PartialEq)] |
1063 | pub enum AssertionKind { |
1064 | /// `^` |
1065 | StartLine, |
1066 | /// `$` |
1067 | EndLine, |
1068 | /// `\A` |
1069 | StartText, |
1070 | /// `\z` |
1071 | EndText, |
1072 | /// `\b` |
1073 | WordBoundary, |
1074 | /// `\B` |
1075 | NotWordBoundary, |
1076 | } |
1077 | |
1078 | /// A repetition operation applied to a regular expression. |
1079 | #[derive (Clone, Debug, Eq, PartialEq)] |
1080 | pub struct Repetition { |
1081 | /// The span of this operation. |
1082 | pub span: Span, |
1083 | /// The actual operation. |
1084 | pub op: RepetitionOp, |
1085 | /// Whether this operation was applied greedily or not. |
1086 | pub greedy: bool, |
1087 | /// The regular expression under repetition. |
1088 | pub ast: Box<Ast>, |
1089 | } |
1090 | |
1091 | /// The repetition operator itself. |
1092 | #[derive (Clone, Debug, Eq, PartialEq)] |
1093 | pub struct RepetitionOp { |
1094 | /// The span of this operator. This includes things like `+`, `*?` and |
1095 | /// `{m,n}`. |
1096 | pub span: Span, |
1097 | /// The type of operation. |
1098 | pub kind: RepetitionKind, |
1099 | } |
1100 | |
1101 | /// The kind of a repetition operator. |
1102 | #[derive (Clone, Debug, Eq, PartialEq)] |
1103 | pub enum RepetitionKind { |
1104 | /// `?` |
1105 | ZeroOrOne, |
1106 | /// `*` |
1107 | ZeroOrMore, |
1108 | /// `+` |
1109 | OneOrMore, |
1110 | /// `{m,n}` |
1111 | Range(RepetitionRange), |
1112 | } |
1113 | |
1114 | /// A range repetition operator. |
1115 | #[derive (Clone, Debug, Eq, PartialEq)] |
1116 | pub enum RepetitionRange { |
1117 | /// `{m}` |
1118 | Exactly(u32), |
1119 | /// `{m,}` |
1120 | AtLeast(u32), |
1121 | /// `{m,n}` |
1122 | Bounded(u32, u32), |
1123 | } |
1124 | |
1125 | impl RepetitionRange { |
1126 | /// Returns true if and only if this repetition range is valid. |
1127 | /// |
1128 | /// The only case where a repetition range is invalid is if it is bounded |
1129 | /// and its start is greater than its end. |
1130 | pub fn is_valid(&self) -> bool { |
1131 | match *self { |
1132 | RepetitionRange::Bounded(s: u32, e: u32) if s > e => false, |
1133 | _ => true, |
1134 | } |
1135 | } |
1136 | } |
1137 | |
1138 | /// A grouped regular expression. |
1139 | /// |
1140 | /// This includes both capturing and non-capturing groups. This does **not** |
1141 | /// include flag-only groups like `(?is)`, but does contain any group that |
1142 | /// contains a sub-expression, e.g., `(a)`, `(?P<name>a)`, `(?:a)` and |
1143 | /// `(?is:a)`. |
1144 | #[derive (Clone, Debug, Eq, PartialEq)] |
1145 | pub struct Group { |
1146 | /// The span of this group. |
1147 | pub span: Span, |
1148 | /// The kind of this group. |
1149 | pub kind: GroupKind, |
1150 | /// The regular expression in this group. |
1151 | pub ast: Box<Ast>, |
1152 | } |
1153 | |
1154 | impl Group { |
1155 | /// If this group is non-capturing, then this returns the (possibly empty) |
1156 | /// set of flags. Otherwise, `None` is returned. |
1157 | pub fn flags(&self) -> Option<&Flags> { |
1158 | match self.kind { |
1159 | GroupKind::NonCapturing(ref flags) => Some(flags), |
1160 | _ => None, |
1161 | } |
1162 | } |
1163 | |
1164 | /// Returns true if and only if this group is capturing. |
1165 | pub fn is_capturing(&self) -> bool { |
1166 | match self.kind { |
1167 | GroupKind::CaptureIndex(_) | GroupKind::CaptureName { .. } => true, |
1168 | GroupKind::NonCapturing(_) => false, |
1169 | } |
1170 | } |
1171 | |
1172 | /// Returns the capture index of this group, if this is a capturing group. |
1173 | /// |
1174 | /// This returns a capture index precisely when `is_capturing` is `true`. |
1175 | pub fn capture_index(&self) -> Option<u32> { |
1176 | match self.kind { |
1177 | GroupKind::CaptureIndex(i) => Some(i), |
1178 | GroupKind::CaptureName { ref name, .. } => Some(name.index), |
1179 | GroupKind::NonCapturing(_) => None, |
1180 | } |
1181 | } |
1182 | } |
1183 | |
1184 | /// The kind of a group. |
1185 | #[derive (Clone, Debug, Eq, PartialEq)] |
1186 | pub enum GroupKind { |
1187 | /// `(a)` |
1188 | CaptureIndex(u32), |
1189 | /// `(?<name>a)` or `(?P<name>a)` |
1190 | CaptureName { |
1191 | /// True if the `?P<` syntax is used and false if the `?<` syntax is used. |
1192 | starts_with_p: bool, |
1193 | /// The capture name. |
1194 | name: CaptureName, |
1195 | }, |
1196 | /// `(?:a)` and `(?i:a)` |
1197 | NonCapturing(Flags), |
1198 | } |
1199 | |
1200 | /// A capture name. |
1201 | /// |
1202 | /// This corresponds to the name itself between the angle brackets in, e.g., |
1203 | /// `(?P<foo>expr)`. |
1204 | #[derive (Clone, Debug, Eq, PartialEq)] |
1205 | pub struct CaptureName { |
1206 | /// The span of this capture name. |
1207 | pub span: Span, |
1208 | /// The capture name. |
1209 | pub name: String, |
1210 | /// The capture index. |
1211 | pub index: u32, |
1212 | } |
1213 | |
1214 | /// A group of flags that is not applied to a particular regular expression. |
1215 | #[derive (Clone, Debug, Eq, PartialEq)] |
1216 | pub struct SetFlags { |
1217 | /// The span of these flags, including the grouping parentheses. |
1218 | pub span: Span, |
1219 | /// The actual sequence of flags. |
1220 | pub flags: Flags, |
1221 | } |
1222 | |
1223 | /// A group of flags. |
1224 | /// |
1225 | /// This corresponds only to the sequence of flags themselves, e.g., `is-u`. |
1226 | #[derive (Clone, Debug, Eq, PartialEq)] |
1227 | pub struct Flags { |
1228 | /// The span of this group of flags. |
1229 | pub span: Span, |
1230 | /// A sequence of flag items. Each item is either a flag or a negation |
1231 | /// operator. |
1232 | pub items: Vec<FlagsItem>, |
1233 | } |
1234 | |
1235 | impl Flags { |
1236 | /// Add the given item to this sequence of flags. |
1237 | /// |
1238 | /// If the item was added successfully, then `None` is returned. If the |
1239 | /// given item is a duplicate, then `Some(i)` is returned, where |
1240 | /// `items[i].kind == item.kind`. |
1241 | pub fn add_item(&mut self, item: FlagsItem) -> Option<usize> { |
1242 | for (i, x) in self.items.iter().enumerate() { |
1243 | if x.kind == item.kind { |
1244 | return Some(i); |
1245 | } |
1246 | } |
1247 | self.items.push(item); |
1248 | None |
1249 | } |
1250 | |
1251 | /// Returns the state of the given flag in this set. |
1252 | /// |
1253 | /// If the given flag is in the set but is negated, then `Some(false)` is |
1254 | /// returned. |
1255 | /// |
1256 | /// If the given flag is in the set and is not negated, then `Some(true)` |
1257 | /// is returned. |
1258 | /// |
1259 | /// Otherwise, `None` is returned. |
1260 | pub fn flag_state(&self, flag: Flag) -> Option<bool> { |
1261 | let mut negated = false; |
1262 | for x in &self.items { |
1263 | match x.kind { |
1264 | FlagsItemKind::Negation => { |
1265 | negated = true; |
1266 | } |
1267 | FlagsItemKind::Flag(ref xflag) if xflag == &flag => { |
1268 | return Some(!negated); |
1269 | } |
1270 | _ => {} |
1271 | } |
1272 | } |
1273 | None |
1274 | } |
1275 | } |
1276 | |
1277 | /// A single item in a group of flags. |
1278 | #[derive (Clone, Debug, Eq, PartialEq)] |
1279 | pub struct FlagsItem { |
1280 | /// The span of this item. |
1281 | pub span: Span, |
1282 | /// The kind of this item. |
1283 | pub kind: FlagsItemKind, |
1284 | } |
1285 | |
1286 | /// The kind of an item in a group of flags. |
1287 | #[derive (Clone, Debug, Eq, PartialEq)] |
1288 | pub enum FlagsItemKind { |
1289 | /// A negation operator applied to all subsequent flags in the enclosing |
1290 | /// group. |
1291 | Negation, |
1292 | /// A single flag in a group. |
1293 | Flag(Flag), |
1294 | } |
1295 | |
1296 | impl FlagsItemKind { |
1297 | /// Returns true if and only if this item is a negation operator. |
1298 | pub fn is_negation(&self) -> bool { |
1299 | match *self { |
1300 | FlagsItemKind::Negation => true, |
1301 | _ => false, |
1302 | } |
1303 | } |
1304 | } |
1305 | |
1306 | /// A single flag. |
1307 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
1308 | pub enum Flag { |
1309 | /// `i` |
1310 | CaseInsensitive, |
1311 | /// `m` |
1312 | MultiLine, |
1313 | /// `s` |
1314 | DotMatchesNewLine, |
1315 | /// `U` |
1316 | SwapGreed, |
1317 | /// `u` |
1318 | Unicode, |
1319 | /// `R` |
1320 | CRLF, |
1321 | /// `x` |
1322 | IgnoreWhitespace, |
1323 | } |
1324 | |
1325 | /// A custom `Drop` impl is used for `Ast` such that it uses constant stack |
1326 | /// space but heap space proportional to the depth of the `Ast`. |
1327 | impl Drop for Ast { |
1328 | fn drop(&mut self) { |
1329 | use core::mem; |
1330 | |
1331 | match *self { |
1332 | Ast::Empty(_) |
1333 | | Ast::Flags(_) |
1334 | | Ast::Literal(_) |
1335 | | Ast::Dot(_) |
1336 | | Ast::Assertion(_) |
1337 | // Classes are recursive, so they get their own Drop impl. |
1338 | | Ast::Class(_) => return, |
1339 | Ast::Repetition(ref x) if !x.ast.has_subexprs() => return, |
1340 | Ast::Group(ref x) if !x.ast.has_subexprs() => return, |
1341 | Ast::Alternation(ref x) if x.asts.is_empty() => return, |
1342 | Ast::Concat(ref x) if x.asts.is_empty() => return, |
1343 | _ => {} |
1344 | } |
1345 | |
1346 | let empty_span = || Span::splat(Position::new(0, 0, 0)); |
1347 | let empty_ast = || Ast::Empty(empty_span()); |
1348 | let mut stack = vec![mem::replace(self, empty_ast())]; |
1349 | while let Some(mut ast) = stack.pop() { |
1350 | match ast { |
1351 | Ast::Empty(_) |
1352 | | Ast::Flags(_) |
1353 | | Ast::Literal(_) |
1354 | | Ast::Dot(_) |
1355 | | Ast::Assertion(_) |
1356 | // Classes are recursive, so they get their own Drop impl. |
1357 | | Ast::Class(_) => {} |
1358 | Ast::Repetition(ref mut x) => { |
1359 | stack.push(mem::replace(&mut x.ast, empty_ast())); |
1360 | } |
1361 | Ast::Group(ref mut x) => { |
1362 | stack.push(mem::replace(&mut x.ast, empty_ast())); |
1363 | } |
1364 | Ast::Alternation(ref mut x) => { |
1365 | stack.extend(x.asts.drain(..)); |
1366 | } |
1367 | Ast::Concat(ref mut x) => { |
1368 | stack.extend(x.asts.drain(..)); |
1369 | } |
1370 | } |
1371 | } |
1372 | } |
1373 | } |
1374 | |
1375 | /// A custom `Drop` impl is used for `ClassSet` such that it uses constant |
1376 | /// stack space but heap space proportional to the depth of the `ClassSet`. |
1377 | impl Drop for ClassSet { |
1378 | fn drop(&mut self) { |
1379 | use core::mem; |
1380 | |
1381 | match *self { |
1382 | ClassSet::Item(ref item) => match *item { |
1383 | ClassSetItem::Empty(_) |
1384 | | ClassSetItem::Literal(_) |
1385 | | ClassSetItem::Range(_) |
1386 | | ClassSetItem::Ascii(_) |
1387 | | ClassSetItem::Unicode(_) |
1388 | | ClassSetItem::Perl(_) => return, |
1389 | ClassSetItem::Bracketed(ref x) => { |
1390 | if x.kind.is_empty() { |
1391 | return; |
1392 | } |
1393 | } |
1394 | ClassSetItem::Union(ref x) => { |
1395 | if x.items.is_empty() { |
1396 | return; |
1397 | } |
1398 | } |
1399 | }, |
1400 | ClassSet::BinaryOp(ref op) => { |
1401 | if op.lhs.is_empty() && op.rhs.is_empty() { |
1402 | return; |
1403 | } |
1404 | } |
1405 | } |
1406 | |
1407 | let empty_span = || Span::splat(Position::new(0, 0, 0)); |
1408 | let empty_set = || ClassSet::Item(ClassSetItem::Empty(empty_span())); |
1409 | let mut stack = vec![mem::replace(self, empty_set())]; |
1410 | while let Some(mut set) = stack.pop() { |
1411 | match set { |
1412 | ClassSet::Item(ref mut item) => match *item { |
1413 | ClassSetItem::Empty(_) |
1414 | | ClassSetItem::Literal(_) |
1415 | | ClassSetItem::Range(_) |
1416 | | ClassSetItem::Ascii(_) |
1417 | | ClassSetItem::Unicode(_) |
1418 | | ClassSetItem::Perl(_) => {} |
1419 | ClassSetItem::Bracketed(ref mut x) => { |
1420 | stack.push(mem::replace(&mut x.kind, empty_set())); |
1421 | } |
1422 | ClassSetItem::Union(ref mut x) => { |
1423 | stack.extend(x.items.drain(..).map(ClassSet::Item)); |
1424 | } |
1425 | }, |
1426 | ClassSet::BinaryOp(ref mut op) => { |
1427 | stack.push(mem::replace(&mut op.lhs, empty_set())); |
1428 | stack.push(mem::replace(&mut op.rhs, empty_set())); |
1429 | } |
1430 | } |
1431 | } |
1432 | } |
1433 | } |
1434 | |
1435 | #[cfg (test)] |
1436 | mod tests { |
1437 | use super::*; |
1438 | |
1439 | // We use a thread with an explicit stack size to test that our destructor |
1440 | // for Ast can handle arbitrarily sized expressions in constant stack |
1441 | // space. In case we run on a platform without threads (WASM?), we limit |
1442 | // this test to Windows/Unix. |
1443 | #[test ] |
1444 | #[cfg (any(unix, windows))] |
1445 | fn no_stack_overflow_on_drop() { |
1446 | use std::thread; |
1447 | |
1448 | let run = || { |
1449 | let span = || Span::splat(Position::new(0, 0, 0)); |
1450 | let mut ast = Ast::Empty(span()); |
1451 | for i in 0..200 { |
1452 | ast = Ast::Group(Group { |
1453 | span: span(), |
1454 | kind: GroupKind::CaptureIndex(i), |
1455 | ast: Box::new(ast), |
1456 | }); |
1457 | } |
1458 | assert!(!ast.is_empty()); |
1459 | }; |
1460 | |
1461 | // We run our test on a thread with a small stack size so we can |
1462 | // force the issue more easily. |
1463 | // |
1464 | // NOTE(2023-03-21): It turns out that some platforms (like FreeBSD) |
1465 | // will just barf with very small stack sizes. So we bump this up a bit |
1466 | // to give more room to breath. When I did this, I confirmed that if |
1467 | // I remove the custom `Drop` impl for `Ast`, then this test does |
1468 | // indeed still fail with a stack overflow. (At the time of writing, I |
1469 | // had to bump it all the way up to 32K before the test would pass even |
1470 | // without the custom `Drop` impl. So 16K seems like a safe number |
1471 | // here.) |
1472 | // |
1473 | // See: https://github.com/rust-lang/regex/issues/967 |
1474 | thread::Builder::new() |
1475 | .stack_size(16 << 10) |
1476 | .spawn(run) |
1477 | .unwrap() |
1478 | .join() |
1479 | .unwrap(); |
1480 | } |
1481 | } |
1482 | |