1 | /*! |
2 | Defines an abstract syntax for regular expressions. |
3 | */ |
4 | |
5 | use core::cmp::Ordering; |
6 | |
7 | use alloc::{boxed::Box, string::String, vec, vec::Vec}; |
8 | |
9 | pub use crate::ast::visitor::{visit, Visitor}; |
10 | |
11 | pub mod parse; |
12 | pub mod print; |
13 | mod visitor; |
14 | |
15 | /// An error that occurred while parsing a regular expression into an abstract |
16 | /// syntax tree. |
17 | /// |
18 | /// Note that not all ASTs represents a valid regular expression. For example, |
19 | /// an AST is constructed without error for `\p{Quux}`, but `Quux` is not a |
20 | /// valid Unicode property name. That particular error is reported when |
21 | /// translating an AST to the high-level intermediate representation (`HIR`). |
22 | #[derive (Clone, Debug, Eq, PartialEq)] |
23 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
24 | pub struct Error { |
25 | /// The kind of error. |
26 | kind: ErrorKind, |
27 | /// The original pattern that the parser generated the error from. Every |
28 | /// span in an error is a valid range into this string. |
29 | pattern: String, |
30 | /// The span of this error. |
31 | span: Span, |
32 | } |
33 | |
34 | impl Error { |
35 | /// Return the type of this error. |
36 | pub fn kind(&self) -> &ErrorKind { |
37 | &self.kind |
38 | } |
39 | |
40 | /// The original pattern string in which this error occurred. |
41 | /// |
42 | /// Every span reported by this error is reported in terms of this string. |
43 | pub fn pattern(&self) -> &str { |
44 | &self.pattern |
45 | } |
46 | |
47 | /// Return the span at which this error occurred. |
48 | pub fn span(&self) -> &Span { |
49 | &self.span |
50 | } |
51 | |
52 | /// Return an auxiliary span. This span exists only for some errors that |
53 | /// benefit from being able to point to two locations in the original |
54 | /// regular expression. For example, "duplicate" errors will have the |
55 | /// main error position set to the duplicate occurrence while its |
56 | /// auxiliary span will be set to the initial occurrence. |
57 | pub fn auxiliary_span(&self) -> Option<&Span> { |
58 | use self::ErrorKind::*; |
59 | match self.kind { |
60 | FlagDuplicate { ref original } => Some(original), |
61 | FlagRepeatedNegation { ref original, .. } => Some(original), |
62 | GroupNameDuplicate { ref original, .. } => Some(original), |
63 | _ => None, |
64 | } |
65 | } |
66 | } |
67 | |
68 | /// The type of an error that occurred while building an AST. |
69 | /// |
70 | /// This error type is marked as `non_exhaustive`. This means that adding a |
71 | /// new variant is not considered a breaking change. |
72 | #[non_exhaustive ] |
73 | #[derive (Clone, Debug, Eq, PartialEq)] |
74 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
75 | pub enum ErrorKind { |
76 | /// The capturing group limit was exceeded. |
77 | /// |
78 | /// Note that this represents a limit on the total number of capturing |
79 | /// groups in a regex and not necessarily the number of nested capturing |
80 | /// groups. That is, the nest limit can be low and it is still possible for |
81 | /// this error to occur. |
82 | CaptureLimitExceeded, |
83 | /// An invalid escape sequence was found in a character class set. |
84 | ClassEscapeInvalid, |
85 | /// An invalid character class range was found. An invalid range is any |
86 | /// range where the start is greater than the end. |
87 | ClassRangeInvalid, |
88 | /// An invalid range boundary was found in a character class. Range |
89 | /// boundaries must be a single literal codepoint, but this error indicates |
90 | /// that something else was found, such as a nested class. |
91 | ClassRangeLiteral, |
92 | /// An opening `[` was found with no corresponding closing `]`. |
93 | ClassUnclosed, |
94 | /// Note that this error variant is no longer used. Namely, a decimal |
95 | /// number can only appear as a repetition quantifier. When the number |
96 | /// in a repetition quantifier is empty, then it gets its own specialized |
97 | /// error, `RepetitionCountDecimalEmpty`. |
98 | DecimalEmpty, |
99 | /// An invalid decimal number was given where one was expected. |
100 | DecimalInvalid, |
101 | /// A bracketed hex literal was empty. |
102 | EscapeHexEmpty, |
103 | /// A bracketed hex literal did not correspond to a Unicode scalar value. |
104 | EscapeHexInvalid, |
105 | /// An invalid hexadecimal digit was found. |
106 | EscapeHexInvalidDigit, |
107 | /// EOF was found before an escape sequence was completed. |
108 | EscapeUnexpectedEof, |
109 | /// An unrecognized escape sequence. |
110 | EscapeUnrecognized, |
111 | /// A dangling negation was used when setting flags, e.g., `i-`. |
112 | FlagDanglingNegation, |
113 | /// A flag was used twice, e.g., `i-i`. |
114 | FlagDuplicate { |
115 | /// The position of the original flag. The error position |
116 | /// points to the duplicate flag. |
117 | original: Span, |
118 | }, |
119 | /// The negation operator was used twice, e.g., `-i-s`. |
120 | FlagRepeatedNegation { |
121 | /// The position of the original negation operator. The error position |
122 | /// points to the duplicate negation operator. |
123 | original: Span, |
124 | }, |
125 | /// Expected a flag but got EOF, e.g., `(?`. |
126 | FlagUnexpectedEof, |
127 | /// Unrecognized flag, e.g., `a`. |
128 | FlagUnrecognized, |
129 | /// A duplicate capture name was found. |
130 | GroupNameDuplicate { |
131 | /// The position of the initial occurrence of the capture name. The |
132 | /// error position itself points to the duplicate occurrence. |
133 | original: Span, |
134 | }, |
135 | /// A capture group name is empty, e.g., `(?P<>abc)`. |
136 | GroupNameEmpty, |
137 | /// An invalid character was seen for a capture group name. This includes |
138 | /// errors where the first character is a digit (even though subsequent |
139 | /// characters are allowed to be digits). |
140 | GroupNameInvalid, |
141 | /// A closing `>` could not be found for a capture group name. |
142 | GroupNameUnexpectedEof, |
143 | /// An unclosed group, e.g., `(ab`. |
144 | /// |
145 | /// The span of this error corresponds to the unclosed parenthesis. |
146 | GroupUnclosed, |
147 | /// An unopened group, e.g., `ab)`. |
148 | GroupUnopened, |
149 | /// The nest limit was exceeded. The limit stored here is the limit |
150 | /// configured in the parser. |
151 | NestLimitExceeded(u32), |
152 | /// The range provided in a counted repetition operator is invalid. The |
153 | /// range is invalid if the start is greater than the end. |
154 | RepetitionCountInvalid, |
155 | /// An opening `{` was not followed by a valid decimal value. |
156 | /// For example, `x{}` or `x{]}` would fail. |
157 | RepetitionCountDecimalEmpty, |
158 | /// An opening `{` was found with no corresponding closing `}`. |
159 | RepetitionCountUnclosed, |
160 | /// A repetition operator was applied to a missing sub-expression. This |
161 | /// occurs, for example, in the regex consisting of just a `*` or even |
162 | /// `(?i)*`. It is, however, possible to create a repetition operating on |
163 | /// an empty sub-expression. For example, `()*` is still considered valid. |
164 | RepetitionMissing, |
165 | /// The special word boundary syntax, `\b{something}`, was used, but |
166 | /// either EOF without `}` was seen, or an invalid character in the |
167 | /// braces was seen. |
168 | SpecialWordBoundaryUnclosed, |
169 | /// The special word boundary syntax, `\b{something}`, was used, but |
170 | /// `something` was not recognized as a valid word boundary kind. |
171 | SpecialWordBoundaryUnrecognized, |
172 | /// The syntax `\b{` was observed, but afterwards the end of the pattern |
173 | /// was observed without being able to tell whether it was meant to be a |
174 | /// bounded repetition on the `\b` or the beginning of a special word |
175 | /// boundary assertion. |
176 | SpecialWordOrRepetitionUnexpectedEof, |
177 | /// The Unicode class is not valid. This typically occurs when a `\p` is |
178 | /// followed by something other than a `{`. |
179 | UnicodeClassInvalid, |
180 | /// When octal support is disabled, this error is produced when an octal |
181 | /// escape is used. The octal escape is assumed to be an invocation of |
182 | /// a backreference, which is the common case. |
183 | UnsupportedBackreference, |
184 | /// When syntax similar to PCRE's look-around is used, this error is |
185 | /// returned. Some example syntaxes that are rejected include, but are |
186 | /// not necessarily limited to, `(?=re)`, `(?!re)`, `(?<=re)` and |
187 | /// `(?<!re)`. Note that all of these syntaxes are otherwise invalid; this |
188 | /// error is used to improve the user experience. |
189 | UnsupportedLookAround, |
190 | } |
191 | |
192 | #[cfg (feature = "std" )] |
193 | impl std::error::Error for Error {} |
194 | |
195 | impl core::fmt::Display for Error { |
196 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
197 | crate::error::Formatter::from(self).fmt(f) |
198 | } |
199 | } |
200 | |
201 | impl core::fmt::Display for ErrorKind { |
202 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
203 | use self::ErrorKind::*; |
204 | match *self { |
205 | CaptureLimitExceeded => write!( |
206 | f, |
207 | "exceeded the maximum number of \ |
208 | capturing groups ( {})" , |
209 | u32::MAX |
210 | ), |
211 | ClassEscapeInvalid => { |
212 | write!(f, "invalid escape sequence found in character class" ) |
213 | } |
214 | ClassRangeInvalid => write!( |
215 | f, |
216 | "invalid character class range, \ |
217 | the start must be <= the end" |
218 | ), |
219 | ClassRangeLiteral => { |
220 | write!(f, "invalid range boundary, must be a literal" ) |
221 | } |
222 | ClassUnclosed => write!(f, "unclosed character class" ), |
223 | DecimalEmpty => write!(f, "decimal literal empty" ), |
224 | DecimalInvalid => write!(f, "decimal literal invalid" ), |
225 | EscapeHexEmpty => write!(f, "hexadecimal literal empty" ), |
226 | EscapeHexInvalid => { |
227 | write!(f, "hexadecimal literal is not a Unicode scalar value" ) |
228 | } |
229 | EscapeHexInvalidDigit => write!(f, "invalid hexadecimal digit" ), |
230 | EscapeUnexpectedEof => write!( |
231 | f, |
232 | "incomplete escape sequence, \ |
233 | reached end of pattern prematurely" |
234 | ), |
235 | EscapeUnrecognized => write!(f, "unrecognized escape sequence" ), |
236 | FlagDanglingNegation => { |
237 | write!(f, "dangling flag negation operator" ) |
238 | } |
239 | FlagDuplicate { .. } => write!(f, "duplicate flag" ), |
240 | FlagRepeatedNegation { .. } => { |
241 | write!(f, "flag negation operator repeated" ) |
242 | } |
243 | FlagUnexpectedEof => { |
244 | write!(f, "expected flag but got end of regex" ) |
245 | } |
246 | FlagUnrecognized => write!(f, "unrecognized flag" ), |
247 | GroupNameDuplicate { .. } => { |
248 | write!(f, "duplicate capture group name" ) |
249 | } |
250 | GroupNameEmpty => write!(f, "empty capture group name" ), |
251 | GroupNameInvalid => write!(f, "invalid capture group character" ), |
252 | GroupNameUnexpectedEof => write!(f, "unclosed capture group name" ), |
253 | GroupUnclosed => write!(f, "unclosed group" ), |
254 | GroupUnopened => write!(f, "unopened group" ), |
255 | NestLimitExceeded(limit) => write!( |
256 | f, |
257 | "exceed the maximum number of \ |
258 | nested parentheses/brackets ( {})" , |
259 | limit |
260 | ), |
261 | RepetitionCountInvalid => write!( |
262 | f, |
263 | "invalid repetition count range, \ |
264 | the start must be <= the end" |
265 | ), |
266 | RepetitionCountDecimalEmpty => { |
267 | write!(f, "repetition quantifier expects a valid decimal" ) |
268 | } |
269 | RepetitionCountUnclosed => { |
270 | write!(f, "unclosed counted repetition" ) |
271 | } |
272 | RepetitionMissing => { |
273 | write!(f, "repetition operator missing expression" ) |
274 | } |
275 | SpecialWordBoundaryUnclosed => { |
276 | write!( |
277 | f, |
278 | "special word boundary assertion is either \ |
279 | unclosed or contains an invalid character" , |
280 | ) |
281 | } |
282 | SpecialWordBoundaryUnrecognized => { |
283 | write!( |
284 | f, |
285 | "unrecognized special word boundary assertion, \ |
286 | valid choices are: start, end, start-half \ |
287 | or end-half" , |
288 | ) |
289 | } |
290 | SpecialWordOrRepetitionUnexpectedEof => { |
291 | write!( |
292 | f, |
293 | "found either the beginning of a special word \ |
294 | boundary or a bounded repetition on a \\b with \ |
295 | an opening brace, but no closing brace" , |
296 | ) |
297 | } |
298 | UnicodeClassInvalid => { |
299 | write!(f, "invalid Unicode character class" ) |
300 | } |
301 | UnsupportedBackreference => { |
302 | write!(f, "backreferences are not supported" ) |
303 | } |
304 | UnsupportedLookAround => write!( |
305 | f, |
306 | "look-around, including look-ahead and look-behind, \ |
307 | is not supported" |
308 | ), |
309 | } |
310 | } |
311 | } |
312 | |
313 | /// Span represents the position information of a single AST item. |
314 | /// |
315 | /// All span positions are absolute byte offsets that can be used on the |
316 | /// original regular expression that was parsed. |
317 | #[derive (Clone, Copy, Eq, PartialEq)] |
318 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
319 | pub struct Span { |
320 | /// The start byte offset. |
321 | pub start: Position, |
322 | /// The end byte offset. |
323 | pub end: Position, |
324 | } |
325 | |
326 | impl core::fmt::Debug for Span { |
327 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
328 | write!(f, "Span( {:?}, {:?})" , self.start, self.end) |
329 | } |
330 | } |
331 | |
332 | impl Ord for Span { |
333 | fn cmp(&self, other: &Span) -> Ordering { |
334 | (&self.start, &self.end).cmp(&(&other.start, &other.end)) |
335 | } |
336 | } |
337 | |
338 | impl PartialOrd for Span { |
339 | fn partial_cmp(&self, other: &Span) -> Option<Ordering> { |
340 | Some(self.cmp(other)) |
341 | } |
342 | } |
343 | |
344 | /// A single position in a regular expression. |
345 | /// |
346 | /// A position encodes one half of a span, and include the byte offset, line |
347 | /// number and column number. |
348 | #[derive (Clone, Copy, Eq, PartialEq)] |
349 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
350 | pub struct Position { |
351 | /// The absolute offset of this position, starting at `0` from the |
352 | /// beginning of the regular expression pattern string. |
353 | pub offset: usize, |
354 | /// The line number, starting at `1`. |
355 | pub line: usize, |
356 | /// The approximate column number, starting at `1`. |
357 | pub column: usize, |
358 | } |
359 | |
360 | impl core::fmt::Debug for Position { |
361 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
362 | write!( |
363 | f, |
364 | "Position(o: {:?}, l: {:?}, c: {:?})" , |
365 | self.offset, self.line, self.column |
366 | ) |
367 | } |
368 | } |
369 | |
370 | impl Ord for Position { |
371 | fn cmp(&self, other: &Position) -> Ordering { |
372 | self.offset.cmp(&other.offset) |
373 | } |
374 | } |
375 | |
376 | impl PartialOrd for Position { |
377 | fn partial_cmp(&self, other: &Position) -> Option<Ordering> { |
378 | Some(self.cmp(other)) |
379 | } |
380 | } |
381 | |
382 | impl Span { |
383 | /// Create a new span with the given positions. |
384 | pub fn new(start: Position, end: Position) -> Span { |
385 | Span { start, end } |
386 | } |
387 | |
388 | /// Create a new span using the given position as the start and end. |
389 | pub fn splat(pos: Position) -> Span { |
390 | Span::new(pos, pos) |
391 | } |
392 | |
393 | /// Create a new span by replacing the starting the position with the one |
394 | /// given. |
395 | pub fn with_start(self, pos: Position) -> Span { |
396 | Span { start: pos, ..self } |
397 | } |
398 | |
399 | /// Create a new span by replacing the ending the position with the one |
400 | /// given. |
401 | pub fn with_end(self, pos: Position) -> Span { |
402 | Span { end: pos, ..self } |
403 | } |
404 | |
405 | /// Returns true if and only if this span occurs on a single line. |
406 | pub fn is_one_line(&self) -> bool { |
407 | self.start.line == self.end.line |
408 | } |
409 | |
410 | /// Returns true if and only if this span is empty. That is, it points to |
411 | /// a single position in the concrete syntax of a regular expression. |
412 | pub fn is_empty(&self) -> bool { |
413 | self.start.offset == self.end.offset |
414 | } |
415 | } |
416 | |
417 | impl Position { |
418 | /// Create a new position with the given information. |
419 | /// |
420 | /// `offset` is the absolute offset of the position, starting at `0` from |
421 | /// the beginning of the regular expression pattern string. |
422 | /// |
423 | /// `line` is the line number, starting at `1`. |
424 | /// |
425 | /// `column` is the approximate column number, starting at `1`. |
426 | pub fn new(offset: usize, line: usize, column: usize) -> Position { |
427 | Position { offset, line, column } |
428 | } |
429 | } |
430 | |
431 | /// An abstract syntax tree for a singular expression along with comments |
432 | /// found. |
433 | /// |
434 | /// Comments are not stored in the tree itself to avoid complexity. Each |
435 | /// comment contains a span of precisely where it occurred in the original |
436 | /// regular expression. |
437 | #[derive (Clone, Debug, Eq, PartialEq)] |
438 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
439 | pub struct WithComments { |
440 | /// The actual ast. |
441 | pub ast: Ast, |
442 | /// All comments found in the original regular expression. |
443 | pub comments: Vec<Comment>, |
444 | } |
445 | |
446 | /// A comment from a regular expression with an associated span. |
447 | /// |
448 | /// A regular expression can only contain comments when the `x` flag is |
449 | /// enabled. |
450 | #[derive (Clone, Debug, Eq, PartialEq)] |
451 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
452 | pub struct Comment { |
453 | /// The span of this comment, including the beginning `#` and ending `\n`. |
454 | pub span: Span, |
455 | /// The comment text, starting with the first character following the `#` |
456 | /// and ending with the last character preceding the `\n`. |
457 | pub comment: String, |
458 | } |
459 | |
460 | /// An abstract syntax tree for a single regular expression. |
461 | /// |
462 | /// An `Ast`'s `fmt::Display` implementation uses constant stack space and heap |
463 | /// space proportional to the size of the `Ast`. |
464 | /// |
465 | /// This type defines its own destructor that uses constant stack space and |
466 | /// heap space proportional to the size of the `Ast`. |
467 | #[derive (Clone, Debug, Eq, PartialEq)] |
468 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
469 | pub enum Ast { |
470 | /// An empty regex that matches everything. |
471 | Empty(Box<Span>), |
472 | /// A set of flags, e.g., `(?is)`. |
473 | Flags(Box<SetFlags>), |
474 | /// A single character literal, which includes escape sequences. |
475 | Literal(Box<Literal>), |
476 | /// The "any character" class. |
477 | Dot(Box<Span>), |
478 | /// A single zero-width assertion. |
479 | Assertion(Box<Assertion>), |
480 | /// A single Unicode character class, e.g., `\pL` or `\p{Greek}`. |
481 | ClassUnicode(Box<ClassUnicode>), |
482 | /// A single perl character class, e.g., `\d` or `\W`. |
483 | ClassPerl(Box<ClassPerl>), |
484 | /// A single bracketed character class set, which may contain zero or more |
485 | /// character ranges and/or zero or more nested classes. e.g., |
486 | /// `[a-zA-Z\pL]`. |
487 | ClassBracketed(Box<ClassBracketed>), |
488 | /// A repetition operator applied to an arbitrary regular expression. |
489 | Repetition(Box<Repetition>), |
490 | /// A grouped regular expression. |
491 | Group(Box<Group>), |
492 | /// An alternation of regular expressions. |
493 | Alternation(Box<Alternation>), |
494 | /// A concatenation of regular expressions. |
495 | Concat(Box<Concat>), |
496 | } |
497 | |
498 | impl Ast { |
499 | /// Create an "empty" AST item. |
500 | pub fn empty(span: Span) -> Ast { |
501 | Ast::Empty(Box::new(span)) |
502 | } |
503 | |
504 | /// Create a "flags" AST item. |
505 | pub fn flags(e: SetFlags) -> Ast { |
506 | Ast::Flags(Box::new(e)) |
507 | } |
508 | |
509 | /// Create a "literal" AST item. |
510 | pub fn literal(e: Literal) -> Ast { |
511 | Ast::Literal(Box::new(e)) |
512 | } |
513 | |
514 | /// Create a "dot" AST item. |
515 | pub fn dot(span: Span) -> Ast { |
516 | Ast::Dot(Box::new(span)) |
517 | } |
518 | |
519 | /// Create a "assertion" AST item. |
520 | pub fn assertion(e: Assertion) -> Ast { |
521 | Ast::Assertion(Box::new(e)) |
522 | } |
523 | |
524 | /// Create a "Unicode class" AST item. |
525 | pub fn class_unicode(e: ClassUnicode) -> Ast { |
526 | Ast::ClassUnicode(Box::new(e)) |
527 | } |
528 | |
529 | /// Create a "Perl class" AST item. |
530 | pub fn class_perl(e: ClassPerl) -> Ast { |
531 | Ast::ClassPerl(Box::new(e)) |
532 | } |
533 | |
534 | /// Create a "bracketed class" AST item. |
535 | pub fn class_bracketed(e: ClassBracketed) -> Ast { |
536 | Ast::ClassBracketed(Box::new(e)) |
537 | } |
538 | |
539 | /// Create a "repetition" AST item. |
540 | pub fn repetition(e: Repetition) -> Ast { |
541 | Ast::Repetition(Box::new(e)) |
542 | } |
543 | |
544 | /// Create a "group" AST item. |
545 | pub fn group(e: Group) -> Ast { |
546 | Ast::Group(Box::new(e)) |
547 | } |
548 | |
549 | /// Create a "alternation" AST item. |
550 | pub fn alternation(e: Alternation) -> Ast { |
551 | Ast::Alternation(Box::new(e)) |
552 | } |
553 | |
554 | /// Create a "concat" AST item. |
555 | pub fn concat(e: Concat) -> Ast { |
556 | Ast::Concat(Box::new(e)) |
557 | } |
558 | |
559 | /// Return the span of this abstract syntax tree. |
560 | pub fn span(&self) -> &Span { |
561 | match *self { |
562 | Ast::Empty(ref span) => span, |
563 | Ast::Flags(ref x) => &x.span, |
564 | Ast::Literal(ref x) => &x.span, |
565 | Ast::Dot(ref span) => span, |
566 | Ast::Assertion(ref x) => &x.span, |
567 | Ast::ClassUnicode(ref x) => &x.span, |
568 | Ast::ClassPerl(ref x) => &x.span, |
569 | Ast::ClassBracketed(ref x) => &x.span, |
570 | Ast::Repetition(ref x) => &x.span, |
571 | Ast::Group(ref x) => &x.span, |
572 | Ast::Alternation(ref x) => &x.span, |
573 | Ast::Concat(ref x) => &x.span, |
574 | } |
575 | } |
576 | |
577 | /// Return true if and only if this Ast is empty. |
578 | pub fn is_empty(&self) -> bool { |
579 | match *self { |
580 | Ast::Empty(_) => true, |
581 | _ => false, |
582 | } |
583 | } |
584 | |
585 | /// Returns true if and only if this AST has any (including possibly empty) |
586 | /// subexpressions. |
587 | fn has_subexprs(&self) -> bool { |
588 | match *self { |
589 | Ast::Empty(_) |
590 | | Ast::Flags(_) |
591 | | Ast::Literal(_) |
592 | | Ast::Dot(_) |
593 | | Ast::Assertion(_) |
594 | | Ast::ClassUnicode(_) |
595 | | Ast::ClassPerl(_) => false, |
596 | Ast::ClassBracketed(_) |
597 | | Ast::Repetition(_) |
598 | | Ast::Group(_) |
599 | | Ast::Alternation(_) |
600 | | Ast::Concat(_) => true, |
601 | } |
602 | } |
603 | } |
604 | |
605 | /// Print a display representation of this Ast. |
606 | /// |
607 | /// This does not preserve any of the original whitespace formatting that may |
608 | /// have originally been present in the concrete syntax from which this Ast |
609 | /// was generated. |
610 | /// |
611 | /// This implementation uses constant stack space and heap space proportional |
612 | /// to the size of the `Ast`. |
613 | impl core::fmt::Display for Ast { |
614 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
615 | use crate::ast::print::Printer; |
616 | Printer::new().print(self, wtr:f) |
617 | } |
618 | } |
619 | |
620 | /// An alternation of regular expressions. |
621 | #[derive (Clone, Debug, Eq, PartialEq)] |
622 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
623 | pub struct Alternation { |
624 | /// The span of this alternation. |
625 | pub span: Span, |
626 | /// The alternate regular expressions. |
627 | pub asts: Vec<Ast>, |
628 | } |
629 | |
630 | impl Alternation { |
631 | /// Return this alternation as an AST. |
632 | /// |
633 | /// If this alternation contains zero ASTs, then `Ast::empty` is returned. |
634 | /// If this alternation contains exactly 1 AST, then the corresponding AST |
635 | /// is returned. Otherwise, `Ast::alternation` is returned. |
636 | pub fn into_ast(mut self) -> Ast { |
637 | match self.asts.len() { |
638 | 0 => Ast::empty(self.span), |
639 | 1 => self.asts.pop().unwrap(), |
640 | _ => Ast::alternation(self), |
641 | } |
642 | } |
643 | } |
644 | |
645 | /// A concatenation of regular expressions. |
646 | #[derive (Clone, Debug, Eq, PartialEq)] |
647 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
648 | pub struct Concat { |
649 | /// The span of this concatenation. |
650 | pub span: Span, |
651 | /// The concatenation regular expressions. |
652 | pub asts: Vec<Ast>, |
653 | } |
654 | |
655 | impl Concat { |
656 | /// Return this concatenation as an AST. |
657 | /// |
658 | /// If this alternation contains zero ASTs, then `Ast::empty` is returned. |
659 | /// If this alternation contains exactly 1 AST, then the corresponding AST |
660 | /// is returned. Otherwise, `Ast::concat` is returned. |
661 | pub fn into_ast(mut self) -> Ast { |
662 | match self.asts.len() { |
663 | 0 => Ast::empty(self.span), |
664 | 1 => self.asts.pop().unwrap(), |
665 | _ => Ast::concat(self), |
666 | } |
667 | } |
668 | } |
669 | |
670 | /// A single literal expression. |
671 | /// |
672 | /// A literal corresponds to a single Unicode scalar value. Literals may be |
673 | /// represented in their literal form, e.g., `a` or in their escaped form, |
674 | /// e.g., `\x61`. |
675 | #[derive (Clone, Debug, Eq, PartialEq)] |
676 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
677 | pub struct Literal { |
678 | /// The span of this literal. |
679 | pub span: Span, |
680 | /// The kind of this literal. |
681 | pub kind: LiteralKind, |
682 | /// The Unicode scalar value corresponding to this literal. |
683 | pub c: char, |
684 | } |
685 | |
686 | impl Literal { |
687 | /// If this literal was written as a `\x` hex escape, then this returns |
688 | /// the corresponding byte value. Otherwise, this returns `None`. |
689 | pub fn byte(&self) -> Option<u8> { |
690 | match self.kind { |
691 | LiteralKind::HexFixed(HexLiteralKind::X) => { |
692 | u8::try_from(self.c).ok() |
693 | } |
694 | _ => None, |
695 | } |
696 | } |
697 | } |
698 | |
699 | /// The kind of a single literal expression. |
700 | #[derive (Clone, Debug, Eq, PartialEq)] |
701 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
702 | pub enum LiteralKind { |
703 | /// The literal is written verbatim, e.g., `a` or `☃`. |
704 | Verbatim, |
705 | /// The literal is written as an escape because it is otherwise a special |
706 | /// regex meta character, e.g., `\*` or `\[`. |
707 | Meta, |
708 | /// The literal is written as an escape despite the fact that the escape is |
709 | /// unnecessary, e.g., `\%` or `\/`. |
710 | Superfluous, |
711 | /// The literal is written as an octal escape, e.g., `\141`. |
712 | Octal, |
713 | /// The literal is written as a hex code with a fixed number of digits |
714 | /// depending on the type of the escape, e.g., `\x61` or or `\u0061` or |
715 | /// `\U00000061`. |
716 | HexFixed(HexLiteralKind), |
717 | /// The literal is written as a hex code with a bracketed number of |
718 | /// digits. The only restriction is that the bracketed hex code must refer |
719 | /// to a valid Unicode scalar value. |
720 | HexBrace(HexLiteralKind), |
721 | /// The literal is written as a specially recognized escape, e.g., `\f` |
722 | /// or `\n`. |
723 | Special(SpecialLiteralKind), |
724 | } |
725 | |
726 | /// The type of a special literal. |
727 | /// |
728 | /// A special literal is a special escape sequence recognized by the regex |
729 | /// parser, e.g., `\f` or `\n`. |
730 | #[derive (Clone, Debug, Eq, PartialEq)] |
731 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
732 | pub enum SpecialLiteralKind { |
733 | /// Bell, spelled `\a` (`\x07`). |
734 | Bell, |
735 | /// Form feed, spelled `\f` (`\x0C`). |
736 | FormFeed, |
737 | /// Tab, spelled `\t` (`\x09`). |
738 | Tab, |
739 | /// Line feed, spelled `\n` (`\x0A`). |
740 | LineFeed, |
741 | /// Carriage return, spelled `\r` (`\x0D`). |
742 | CarriageReturn, |
743 | /// Vertical tab, spelled `\v` (`\x0B`). |
744 | VerticalTab, |
745 | /// Space, spelled `\ ` (`\x20`). Note that this can only appear when |
746 | /// parsing in verbose mode. |
747 | Space, |
748 | } |
749 | |
750 | /// The type of a Unicode hex literal. |
751 | /// |
752 | /// Note that all variants behave the same when used with brackets. They only |
753 | /// differ when used without brackets in the number of hex digits that must |
754 | /// follow. |
755 | #[derive (Clone, Debug, Eq, PartialEq)] |
756 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
757 | pub enum HexLiteralKind { |
758 | /// A `\x` prefix. When used without brackets, this form is limited to |
759 | /// two digits. |
760 | X, |
761 | /// A `\u` prefix. When used without brackets, this form is limited to |
762 | /// four digits. |
763 | UnicodeShort, |
764 | /// A `\U` prefix. When used without brackets, this form is limited to |
765 | /// eight digits. |
766 | UnicodeLong, |
767 | } |
768 | |
769 | impl HexLiteralKind { |
770 | /// The number of digits that must be used with this literal form when |
771 | /// used without brackets. When used with brackets, there is no |
772 | /// restriction on the number of digits. |
773 | pub fn digits(&self) -> u32 { |
774 | match *self { |
775 | HexLiteralKind::X => 2, |
776 | HexLiteralKind::UnicodeShort => 4, |
777 | HexLiteralKind::UnicodeLong => 8, |
778 | } |
779 | } |
780 | } |
781 | |
782 | /// A Perl character class. |
783 | #[derive (Clone, Debug, Eq, PartialEq)] |
784 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
785 | pub struct ClassPerl { |
786 | /// The span of this class. |
787 | pub span: Span, |
788 | /// The kind of Perl class. |
789 | pub kind: ClassPerlKind, |
790 | /// Whether the class is negated or not. e.g., `\d` is not negated but |
791 | /// `\D` is. |
792 | pub negated: bool, |
793 | } |
794 | |
795 | /// The available Perl character classes. |
796 | #[derive (Clone, Debug, Eq, PartialEq)] |
797 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
798 | pub enum ClassPerlKind { |
799 | /// Decimal numbers. |
800 | Digit, |
801 | /// Whitespace. |
802 | Space, |
803 | /// Word characters. |
804 | Word, |
805 | } |
806 | |
807 | /// An ASCII character class. |
808 | #[derive (Clone, Debug, Eq, PartialEq)] |
809 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
810 | pub struct ClassAscii { |
811 | /// The span of this class. |
812 | pub span: Span, |
813 | /// The kind of ASCII class. |
814 | pub kind: ClassAsciiKind, |
815 | /// Whether the class is negated or not. e.g., `[[:alpha:]]` is not negated |
816 | /// but `[[:^alpha:]]` is. |
817 | pub negated: bool, |
818 | } |
819 | |
820 | /// The available ASCII character classes. |
821 | #[derive (Clone, Debug, Eq, PartialEq)] |
822 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
823 | pub enum ClassAsciiKind { |
824 | /// `[0-9A-Za-z]` |
825 | Alnum, |
826 | /// `[A-Za-z]` |
827 | Alpha, |
828 | /// `[\x00-\x7F]` |
829 | Ascii, |
830 | /// `[ \t]` |
831 | Blank, |
832 | /// `[\x00-\x1F\x7F]` |
833 | Cntrl, |
834 | /// `[0-9]` |
835 | Digit, |
836 | /// `[!-~]` |
837 | Graph, |
838 | /// `[a-z]` |
839 | Lower, |
840 | /// `[ -~]` |
841 | Print, |
842 | /// `[!-/:-@\[-`{-~]` |
843 | Punct, |
844 | /// `[\t\n\v\f\r ]` |
845 | Space, |
846 | /// `[A-Z]` |
847 | Upper, |
848 | /// `[0-9A-Za-z_]` |
849 | Word, |
850 | /// `[0-9A-Fa-f]` |
851 | Xdigit, |
852 | } |
853 | |
854 | impl ClassAsciiKind { |
855 | /// Return the corresponding ClassAsciiKind variant for the given name. |
856 | /// |
857 | /// The name given should correspond to the lowercase version of the |
858 | /// variant name. e.g., `cntrl` is the name for `ClassAsciiKind::Cntrl`. |
859 | /// |
860 | /// If no variant with the corresponding name exists, then `None` is |
861 | /// returned. |
862 | pub fn from_name(name: &str) -> Option<ClassAsciiKind> { |
863 | use self::ClassAsciiKind::*; |
864 | match name { |
865 | "alnum" => Some(Alnum), |
866 | "alpha" => Some(Alpha), |
867 | "ascii" => Some(Ascii), |
868 | "blank" => Some(Blank), |
869 | "cntrl" => Some(Cntrl), |
870 | "digit" => Some(Digit), |
871 | "graph" => Some(Graph), |
872 | "lower" => Some(Lower), |
873 | "print" => Some(Print), |
874 | "punct" => Some(Punct), |
875 | "space" => Some(Space), |
876 | "upper" => Some(Upper), |
877 | "word" => Some(Word), |
878 | "xdigit" => Some(Xdigit), |
879 | _ => None, |
880 | } |
881 | } |
882 | } |
883 | |
884 | /// A Unicode character class. |
885 | #[derive (Clone, Debug, Eq, PartialEq)] |
886 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
887 | pub struct ClassUnicode { |
888 | /// The span of this class. |
889 | pub span: Span, |
890 | /// Whether this class is negated or not. |
891 | /// |
892 | /// Note: be careful when using this attribute. This specifically refers |
893 | /// to whether the class is written as `\p` or `\P`, where the latter |
894 | /// is `negated = true`. However, it also possible to write something like |
895 | /// `\P{scx!=Katakana}` which is actually equivalent to |
896 | /// `\p{scx=Katakana}` and is therefore not actually negated even though |
897 | /// `negated = true` here. To test whether this class is truly negated |
898 | /// or not, use the `is_negated` method. |
899 | pub negated: bool, |
900 | /// The kind of Unicode class. |
901 | pub kind: ClassUnicodeKind, |
902 | } |
903 | |
904 | impl ClassUnicode { |
905 | /// Returns true if this class has been negated. |
906 | /// |
907 | /// Note that this takes the Unicode op into account, if it's present. |
908 | /// e.g., `is_negated` for `\P{scx!=Katakana}` will return `false`. |
909 | pub fn is_negated(&self) -> bool { |
910 | match self.kind { |
911 | ClassUnicodeKind::NamedValue { |
912 | op: ClassUnicodeOpKind::NotEqual, |
913 | .. |
914 | } => !self.negated, |
915 | _ => self.negated, |
916 | } |
917 | } |
918 | } |
919 | |
920 | /// The available forms of Unicode character classes. |
921 | #[derive (Clone, Debug, Eq, PartialEq)] |
922 | pub enum ClassUnicodeKind { |
923 | /// A one letter abbreviated class, e.g., `\pN`. |
924 | OneLetter(char), |
925 | /// A binary property, general category or script. The string may be |
926 | /// empty. |
927 | Named(String), |
928 | /// A property name and an associated value. |
929 | NamedValue { |
930 | /// The type of Unicode op used to associate `name` with `value`. |
931 | op: ClassUnicodeOpKind, |
932 | /// The property name (which may be empty). |
933 | name: String, |
934 | /// The property value (which may be empty). |
935 | value: String, |
936 | }, |
937 | } |
938 | |
939 | #[cfg (feature = "arbitrary" )] |
940 | impl arbitrary::Arbitrary<'_> for ClassUnicodeKind { |
941 | fn arbitrary( |
942 | u: &mut arbitrary::Unstructured, |
943 | ) -> arbitrary::Result<ClassUnicodeKind> { |
944 | #[cfg (any( |
945 | feature = "unicode-age" , |
946 | feature = "unicode-bool" , |
947 | feature = "unicode-gencat" , |
948 | feature = "unicode-perl" , |
949 | feature = "unicode-script" , |
950 | feature = "unicode-segment" , |
951 | ))] |
952 | { |
953 | use alloc::string::ToString; |
954 | |
955 | use super::unicode_tables::{ |
956 | property_names::PROPERTY_NAMES, |
957 | property_values::PROPERTY_VALUES, |
958 | }; |
959 | |
960 | match u.choose_index(3)? { |
961 | 0 => { |
962 | let all = PROPERTY_VALUES |
963 | .iter() |
964 | .flat_map(|e| e.1.iter()) |
965 | .filter(|(name, _)| name.len() == 1) |
966 | .count(); |
967 | let idx = u.choose_index(all)?; |
968 | let value = PROPERTY_VALUES |
969 | .iter() |
970 | .flat_map(|e| e.1.iter()) |
971 | .take(idx + 1) |
972 | .last() |
973 | .unwrap() |
974 | .0 |
975 | .chars() |
976 | .next() |
977 | .unwrap(); |
978 | Ok(ClassUnicodeKind::OneLetter(value)) |
979 | } |
980 | 1 => { |
981 | let all = PROPERTY_VALUES |
982 | .iter() |
983 | .map(|e| e.1.len()) |
984 | .sum::<usize>() |
985 | + PROPERTY_NAMES.len(); |
986 | let idx = u.choose_index(all)?; |
987 | let name = PROPERTY_VALUES |
988 | .iter() |
989 | .flat_map(|e| e.1.iter()) |
990 | .chain(PROPERTY_NAMES) |
991 | .map(|(_, e)| e) |
992 | .take(idx + 1) |
993 | .last() |
994 | .unwrap(); |
995 | Ok(ClassUnicodeKind::Named(name.to_string())) |
996 | } |
997 | 2 => { |
998 | let all = PROPERTY_VALUES |
999 | .iter() |
1000 | .map(|e| e.1.len()) |
1001 | .sum::<usize>(); |
1002 | let idx = u.choose_index(all)?; |
1003 | let (prop, value) = PROPERTY_VALUES |
1004 | .iter() |
1005 | .flat_map(|e| { |
1006 | e.1.iter().map(|(_, value)| (e.0, value)) |
1007 | }) |
1008 | .take(idx + 1) |
1009 | .last() |
1010 | .unwrap(); |
1011 | Ok(ClassUnicodeKind::NamedValue { |
1012 | op: u.arbitrary()?, |
1013 | name: prop.to_string(), |
1014 | value: value.to_string(), |
1015 | }) |
1016 | } |
1017 | _ => unreachable!("index chosen is impossible" ), |
1018 | } |
1019 | } |
1020 | #[cfg (not(any( |
1021 | feature = "unicode-age" , |
1022 | feature = "unicode-bool" , |
1023 | feature = "unicode-gencat" , |
1024 | feature = "unicode-perl" , |
1025 | feature = "unicode-script" , |
1026 | feature = "unicode-segment" , |
1027 | )))] |
1028 | { |
1029 | match u.choose_index(3)? { |
1030 | 0 => Ok(ClassUnicodeKind::OneLetter(u.arbitrary()?)), |
1031 | 1 => Ok(ClassUnicodeKind::Named(u.arbitrary()?)), |
1032 | 2 => Ok(ClassUnicodeKind::NamedValue { |
1033 | op: u.arbitrary()?, |
1034 | name: u.arbitrary()?, |
1035 | value: u.arbitrary()?, |
1036 | }), |
1037 | _ => unreachable!("index chosen is impossible" ), |
1038 | } |
1039 | } |
1040 | } |
1041 | |
1042 | fn size_hint(depth: usize) -> (usize, Option<usize>) { |
1043 | #[cfg (any( |
1044 | feature = "unicode-age" , |
1045 | feature = "unicode-bool" , |
1046 | feature = "unicode-gencat" , |
1047 | feature = "unicode-perl" , |
1048 | feature = "unicode-script" , |
1049 | feature = "unicode-segment" , |
1050 | ))] |
1051 | { |
1052 | arbitrary::size_hint::and_all(&[ |
1053 | usize::size_hint(depth), |
1054 | usize::size_hint(depth), |
1055 | arbitrary::size_hint::or( |
1056 | (0, Some(0)), |
1057 | ClassUnicodeOpKind::size_hint(depth), |
1058 | ), |
1059 | ]) |
1060 | } |
1061 | #[cfg (not(any( |
1062 | feature = "unicode-age" , |
1063 | feature = "unicode-bool" , |
1064 | feature = "unicode-gencat" , |
1065 | feature = "unicode-perl" , |
1066 | feature = "unicode-script" , |
1067 | feature = "unicode-segment" , |
1068 | )))] |
1069 | { |
1070 | arbitrary::size_hint::and( |
1071 | usize::size_hint(depth), |
1072 | arbitrary::size_hint::or_all(&[ |
1073 | char::size_hint(depth), |
1074 | String::size_hint(depth), |
1075 | arbitrary::size_hint::and_all(&[ |
1076 | String::size_hint(depth), |
1077 | String::size_hint(depth), |
1078 | ClassUnicodeOpKind::size_hint(depth), |
1079 | ]), |
1080 | ]), |
1081 | ) |
1082 | } |
1083 | } |
1084 | } |
1085 | |
1086 | /// The type of op used in a Unicode character class. |
1087 | #[derive (Clone, Debug, Eq, PartialEq)] |
1088 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1089 | pub enum ClassUnicodeOpKind { |
1090 | /// A property set to a specific value, e.g., `\p{scx=Katakana}`. |
1091 | Equal, |
1092 | /// A property set to a specific value using a colon, e.g., |
1093 | /// `\p{scx:Katakana}`. |
1094 | Colon, |
1095 | /// A property that isn't a particular value, e.g., `\p{scx!=Katakana}`. |
1096 | NotEqual, |
1097 | } |
1098 | |
1099 | impl ClassUnicodeOpKind { |
1100 | /// Whether the op is an equality op or not. |
1101 | pub fn is_equal(&self) -> bool { |
1102 | match *self { |
1103 | ClassUnicodeOpKind::Equal | ClassUnicodeOpKind::Colon => true, |
1104 | _ => false, |
1105 | } |
1106 | } |
1107 | } |
1108 | |
1109 | /// A bracketed character class, e.g., `[a-z0-9]`. |
1110 | #[derive (Clone, Debug, Eq, PartialEq)] |
1111 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1112 | pub struct ClassBracketed { |
1113 | /// The span of this class. |
1114 | pub span: Span, |
1115 | /// Whether this class is negated or not. e.g., `[a]` is not negated but |
1116 | /// `[^a]` is. |
1117 | pub negated: bool, |
1118 | /// The type of this set. A set is either a normal union of things, e.g., |
1119 | /// `[abc]` or a result of applying set operations, e.g., `[\pL--c]`. |
1120 | pub kind: ClassSet, |
1121 | } |
1122 | |
1123 | /// A character class set. |
1124 | /// |
1125 | /// This type corresponds to the internal structure of a bracketed character |
1126 | /// class. That is, every bracketed character is one of two types: a union of |
1127 | /// items (literals, ranges, other bracketed classes) or a tree of binary set |
1128 | /// operations. |
1129 | #[derive (Clone, Debug, Eq, PartialEq)] |
1130 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1131 | pub enum ClassSet { |
1132 | /// An item, which can be a single literal, range, nested character class |
1133 | /// or a union of items. |
1134 | Item(ClassSetItem), |
1135 | /// A single binary operation (i.e., &&, -- or ~~). |
1136 | BinaryOp(ClassSetBinaryOp), |
1137 | } |
1138 | |
1139 | impl ClassSet { |
1140 | /// Build a set from a union. |
1141 | pub fn union(ast: ClassSetUnion) -> ClassSet { |
1142 | ClassSet::Item(ClassSetItem::Union(ast)) |
1143 | } |
1144 | |
1145 | /// Return the span of this character class set. |
1146 | pub fn span(&self) -> &Span { |
1147 | match *self { |
1148 | ClassSet::Item(ref x: &ClassSetItem) => x.span(), |
1149 | ClassSet::BinaryOp(ref x: &ClassSetBinaryOp) => &x.span, |
1150 | } |
1151 | } |
1152 | |
1153 | /// Return true if and only if this class set is empty. |
1154 | fn is_empty(&self) -> bool { |
1155 | match *self { |
1156 | ClassSet::Item(ClassSetItem::Empty(_)) => true, |
1157 | _ => false, |
1158 | } |
1159 | } |
1160 | } |
1161 | |
1162 | /// A single component of a character class set. |
1163 | #[derive (Clone, Debug, Eq, PartialEq)] |
1164 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1165 | pub enum ClassSetItem { |
1166 | /// An empty item. |
1167 | /// |
1168 | /// Note that a bracketed character class cannot contain a single empty |
1169 | /// item. Empty items can appear when using one of the binary operators. |
1170 | /// For example, `[&&]` is the intersection of two empty classes. |
1171 | Empty(Span), |
1172 | /// A single literal. |
1173 | Literal(Literal), |
1174 | /// A range between two literals. |
1175 | Range(ClassSetRange), |
1176 | /// An ASCII character class, e.g., `[:alnum:]` or `[:punct:]`. |
1177 | Ascii(ClassAscii), |
1178 | /// A Unicode character class, e.g., `\pL` or `\p{Greek}`. |
1179 | Unicode(ClassUnicode), |
1180 | /// A perl character class, e.g., `\d` or `\W`. |
1181 | Perl(ClassPerl), |
1182 | /// A bracketed character class set, which may contain zero or more |
1183 | /// character ranges and/or zero or more nested classes. e.g., |
1184 | /// `[a-zA-Z\pL]`. |
1185 | Bracketed(Box<ClassBracketed>), |
1186 | /// A union of items. |
1187 | Union(ClassSetUnion), |
1188 | } |
1189 | |
1190 | impl ClassSetItem { |
1191 | /// Return the span of this character class set item. |
1192 | pub fn span(&self) -> &Span { |
1193 | match *self { |
1194 | ClassSetItem::Empty(ref span: &Span) => span, |
1195 | ClassSetItem::Literal(ref x: &Literal) => &x.span, |
1196 | ClassSetItem::Range(ref x: &ClassSetRange) => &x.span, |
1197 | ClassSetItem::Ascii(ref x: &ClassAscii) => &x.span, |
1198 | ClassSetItem::Perl(ref x: &ClassPerl) => &x.span, |
1199 | ClassSetItem::Unicode(ref x: &ClassUnicode) => &x.span, |
1200 | ClassSetItem::Bracketed(ref x: &Box) => &x.span, |
1201 | ClassSetItem::Union(ref x: &ClassSetUnion) => &x.span, |
1202 | } |
1203 | } |
1204 | } |
1205 | |
1206 | /// A single character class range in a set. |
1207 | #[derive (Clone, Debug, Eq, PartialEq)] |
1208 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1209 | pub struct ClassSetRange { |
1210 | /// The span of this range. |
1211 | pub span: Span, |
1212 | /// The start of this range. |
1213 | pub start: Literal, |
1214 | /// The end of this range. |
1215 | pub end: Literal, |
1216 | } |
1217 | |
1218 | impl ClassSetRange { |
1219 | /// Returns true if and only if this character class range is valid. |
1220 | /// |
1221 | /// The only case where a range is invalid is if its start is greater than |
1222 | /// its end. |
1223 | pub fn is_valid(&self) -> bool { |
1224 | self.start.c <= self.end.c |
1225 | } |
1226 | } |
1227 | |
1228 | /// A union of items inside a character class set. |
1229 | #[derive (Clone, Debug, Eq, PartialEq)] |
1230 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1231 | pub struct ClassSetUnion { |
1232 | /// The span of the items in this operation. e.g., the `a-z0-9` in |
1233 | /// `[^a-z0-9]` |
1234 | pub span: Span, |
1235 | /// The sequence of items that make up this union. |
1236 | pub items: Vec<ClassSetItem>, |
1237 | } |
1238 | |
1239 | impl ClassSetUnion { |
1240 | /// Push a new item in this union. |
1241 | /// |
1242 | /// The ending position of this union's span is updated to the ending |
1243 | /// position of the span of the item given. If the union is empty, then |
1244 | /// the starting position of this union is set to the starting position |
1245 | /// of this item. |
1246 | /// |
1247 | /// In other words, if you only use this method to add items to a union |
1248 | /// and you set the spans on each item correctly, then you should never |
1249 | /// need to adjust the span of the union directly. |
1250 | pub fn push(&mut self, item: ClassSetItem) { |
1251 | if self.items.is_empty() { |
1252 | self.span.start = item.span().start; |
1253 | } |
1254 | self.span.end = item.span().end; |
1255 | self.items.push(item); |
1256 | } |
1257 | |
1258 | /// Return this union as a character class set item. |
1259 | /// |
1260 | /// If this union contains zero items, then an empty union is |
1261 | /// returned. If this concatenation contains exactly 1 item, then the |
1262 | /// corresponding item is returned. Otherwise, ClassSetItem::Union is |
1263 | /// returned. |
1264 | pub fn into_item(mut self) -> ClassSetItem { |
1265 | match self.items.len() { |
1266 | 0 => ClassSetItem::Empty(self.span), |
1267 | 1 => self.items.pop().unwrap(), |
1268 | _ => ClassSetItem::Union(self), |
1269 | } |
1270 | } |
1271 | } |
1272 | |
1273 | /// A Unicode character class set operation. |
1274 | #[derive (Clone, Debug, Eq, PartialEq)] |
1275 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1276 | pub struct ClassSetBinaryOp { |
1277 | /// The span of this operation. e.g., the `a-z--[h-p]` in `[a-z--h-p]`. |
1278 | pub span: Span, |
1279 | /// The type of this set operation. |
1280 | pub kind: ClassSetBinaryOpKind, |
1281 | /// The left hand side of the operation. |
1282 | pub lhs: Box<ClassSet>, |
1283 | /// The right hand side of the operation. |
1284 | pub rhs: Box<ClassSet>, |
1285 | } |
1286 | |
1287 | /// The type of a Unicode character class set operation. |
1288 | /// |
1289 | /// Note that this doesn't explicitly represent union since there is no |
1290 | /// explicit union operator. Concatenation inside a character class corresponds |
1291 | /// to the union operation. |
1292 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
1293 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1294 | pub enum ClassSetBinaryOpKind { |
1295 | /// The intersection of two sets, e.g., `\pN&&[a-z]`. |
1296 | Intersection, |
1297 | /// The difference of two sets, e.g., `\pN--[0-9]`. |
1298 | Difference, |
1299 | /// The symmetric difference of two sets. The symmetric difference is the |
1300 | /// set of elements belonging to one but not both sets. |
1301 | /// e.g., `[\pL~~[:ascii:]]`. |
1302 | SymmetricDifference, |
1303 | } |
1304 | |
1305 | /// A single zero-width assertion. |
1306 | #[derive (Clone, Debug, Eq, PartialEq)] |
1307 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1308 | pub struct Assertion { |
1309 | /// The span of this assertion. |
1310 | pub span: Span, |
1311 | /// The assertion kind, e.g., `\b` or `^`. |
1312 | pub kind: AssertionKind, |
1313 | } |
1314 | |
1315 | /// An assertion kind. |
1316 | #[derive (Clone, Debug, Eq, PartialEq)] |
1317 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1318 | pub enum AssertionKind { |
1319 | /// `^` |
1320 | StartLine, |
1321 | /// `$` |
1322 | EndLine, |
1323 | /// `\A` |
1324 | StartText, |
1325 | /// `\z` |
1326 | EndText, |
1327 | /// `\b` |
1328 | WordBoundary, |
1329 | /// `\B` |
1330 | NotWordBoundary, |
1331 | /// `\b{start}` |
1332 | WordBoundaryStart, |
1333 | /// `\b{end}` |
1334 | WordBoundaryEnd, |
1335 | /// `\<` (alias for `\b{start}`) |
1336 | WordBoundaryStartAngle, |
1337 | /// `\>` (alias for `\b{end}`) |
1338 | WordBoundaryEndAngle, |
1339 | /// `\b{start-half}` |
1340 | WordBoundaryStartHalf, |
1341 | /// `\b{end-half}` |
1342 | WordBoundaryEndHalf, |
1343 | } |
1344 | |
1345 | /// A repetition operation applied to a regular expression. |
1346 | #[derive (Clone, Debug, Eq, PartialEq)] |
1347 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1348 | pub struct Repetition { |
1349 | /// The span of this operation. |
1350 | pub span: Span, |
1351 | /// The actual operation. |
1352 | pub op: RepetitionOp, |
1353 | /// Whether this operation was applied greedily or not. |
1354 | pub greedy: bool, |
1355 | /// The regular expression under repetition. |
1356 | pub ast: Box<Ast>, |
1357 | } |
1358 | |
1359 | /// The repetition operator itself. |
1360 | #[derive (Clone, Debug, Eq, PartialEq)] |
1361 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1362 | pub struct RepetitionOp { |
1363 | /// The span of this operator. This includes things like `+`, `*?` and |
1364 | /// `{m,n}`. |
1365 | pub span: Span, |
1366 | /// The type of operation. |
1367 | pub kind: RepetitionKind, |
1368 | } |
1369 | |
1370 | /// The kind of a repetition operator. |
1371 | #[derive (Clone, Debug, Eq, PartialEq)] |
1372 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1373 | pub enum RepetitionKind { |
1374 | /// `?` |
1375 | ZeroOrOne, |
1376 | /// `*` |
1377 | ZeroOrMore, |
1378 | /// `+` |
1379 | OneOrMore, |
1380 | /// `{m,n}` |
1381 | Range(RepetitionRange), |
1382 | } |
1383 | |
1384 | /// A range repetition operator. |
1385 | #[derive (Clone, Debug, Eq, PartialEq)] |
1386 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1387 | pub enum RepetitionRange { |
1388 | /// `{m}` |
1389 | Exactly(u32), |
1390 | /// `{m,}` |
1391 | AtLeast(u32), |
1392 | /// `{m,n}` |
1393 | Bounded(u32, u32), |
1394 | } |
1395 | |
1396 | impl RepetitionRange { |
1397 | /// Returns true if and only if this repetition range is valid. |
1398 | /// |
1399 | /// The only case where a repetition range is invalid is if it is bounded |
1400 | /// and its start is greater than its end. |
1401 | pub fn is_valid(&self) -> bool { |
1402 | match *self { |
1403 | RepetitionRange::Bounded(s: u32, e: u32) if s > e => false, |
1404 | _ => true, |
1405 | } |
1406 | } |
1407 | } |
1408 | |
1409 | /// A grouped regular expression. |
1410 | /// |
1411 | /// This includes both capturing and non-capturing groups. This does **not** |
1412 | /// include flag-only groups like `(?is)`, but does contain any group that |
1413 | /// contains a sub-expression, e.g., `(a)`, `(?P<name>a)`, `(?:a)` and |
1414 | /// `(?is:a)`. |
1415 | #[derive (Clone, Debug, Eq, PartialEq)] |
1416 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1417 | pub struct Group { |
1418 | /// The span of this group. |
1419 | pub span: Span, |
1420 | /// The kind of this group. |
1421 | pub kind: GroupKind, |
1422 | /// The regular expression in this group. |
1423 | pub ast: Box<Ast>, |
1424 | } |
1425 | |
1426 | impl Group { |
1427 | /// If this group is non-capturing, then this returns the (possibly empty) |
1428 | /// set of flags. Otherwise, `None` is returned. |
1429 | pub fn flags(&self) -> Option<&Flags> { |
1430 | match self.kind { |
1431 | GroupKind::NonCapturing(ref flags) => Some(flags), |
1432 | _ => None, |
1433 | } |
1434 | } |
1435 | |
1436 | /// Returns true if and only if this group is capturing. |
1437 | pub fn is_capturing(&self) -> bool { |
1438 | match self.kind { |
1439 | GroupKind::CaptureIndex(_) | GroupKind::CaptureName { .. } => true, |
1440 | GroupKind::NonCapturing(_) => false, |
1441 | } |
1442 | } |
1443 | |
1444 | /// Returns the capture index of this group, if this is a capturing group. |
1445 | /// |
1446 | /// This returns a capture index precisely when `is_capturing` is `true`. |
1447 | pub fn capture_index(&self) -> Option<u32> { |
1448 | match self.kind { |
1449 | GroupKind::CaptureIndex(i) => Some(i), |
1450 | GroupKind::CaptureName { ref name, .. } => Some(name.index), |
1451 | GroupKind::NonCapturing(_) => None, |
1452 | } |
1453 | } |
1454 | } |
1455 | |
1456 | /// The kind of a group. |
1457 | #[derive (Clone, Debug, Eq, PartialEq)] |
1458 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1459 | pub enum GroupKind { |
1460 | /// `(a)` |
1461 | CaptureIndex(u32), |
1462 | /// `(?<name>a)` or `(?P<name>a)` |
1463 | CaptureName { |
1464 | /// True if the `?P<` syntax is used and false if the `?<` syntax is used. |
1465 | starts_with_p: bool, |
1466 | /// The capture name. |
1467 | name: CaptureName, |
1468 | }, |
1469 | /// `(?:a)` and `(?i:a)` |
1470 | NonCapturing(Flags), |
1471 | } |
1472 | |
1473 | /// A capture name. |
1474 | /// |
1475 | /// This corresponds to the name itself between the angle brackets in, e.g., |
1476 | /// `(?P<foo>expr)`. |
1477 | #[derive (Clone, Debug, Eq, PartialEq)] |
1478 | pub struct CaptureName { |
1479 | /// The span of this capture name. |
1480 | pub span: Span, |
1481 | /// The capture name. |
1482 | pub name: String, |
1483 | /// The capture index. |
1484 | pub index: u32, |
1485 | } |
1486 | |
1487 | #[cfg (feature = "arbitrary" )] |
1488 | impl arbitrary::Arbitrary<'_> for CaptureName { |
1489 | fn arbitrary( |
1490 | u: &mut arbitrary::Unstructured, |
1491 | ) -> arbitrary::Result<CaptureName> { |
1492 | let len = u.arbitrary_len::<char>()?; |
1493 | if len == 0 { |
1494 | return Err(arbitrary::Error::NotEnoughData); |
1495 | } |
1496 | let mut name: String = String::new(); |
1497 | for _ in 0..len { |
1498 | let ch: char = u.arbitrary()?; |
1499 | let cp = u32::from(ch); |
1500 | let ascii_letter_offset = u8::try_from(cp % 26).unwrap(); |
1501 | let ascii_letter = b'a' + ascii_letter_offset; |
1502 | name.push(char::from(ascii_letter)); |
1503 | } |
1504 | Ok(CaptureName { span: u.arbitrary()?, name, index: u.arbitrary()? }) |
1505 | } |
1506 | |
1507 | fn size_hint(depth: usize) -> (usize, Option<usize>) { |
1508 | arbitrary::size_hint::and_all(&[ |
1509 | Span::size_hint(depth), |
1510 | usize::size_hint(depth), |
1511 | u32::size_hint(depth), |
1512 | ]) |
1513 | } |
1514 | } |
1515 | |
1516 | /// A group of flags that is not applied to a particular regular expression. |
1517 | #[derive (Clone, Debug, Eq, PartialEq)] |
1518 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1519 | pub struct SetFlags { |
1520 | /// The span of these flags, including the grouping parentheses. |
1521 | pub span: Span, |
1522 | /// The actual sequence of flags. |
1523 | pub flags: Flags, |
1524 | } |
1525 | |
1526 | /// A group of flags. |
1527 | /// |
1528 | /// This corresponds only to the sequence of flags themselves, e.g., `is-u`. |
1529 | #[derive (Clone, Debug, Eq, PartialEq)] |
1530 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1531 | pub struct Flags { |
1532 | /// The span of this group of flags. |
1533 | pub span: Span, |
1534 | /// A sequence of flag items. Each item is either a flag or a negation |
1535 | /// operator. |
1536 | pub items: Vec<FlagsItem>, |
1537 | } |
1538 | |
1539 | impl Flags { |
1540 | /// Add the given item to this sequence of flags. |
1541 | /// |
1542 | /// If the item was added successfully, then `None` is returned. If the |
1543 | /// given item is a duplicate, then `Some(i)` is returned, where |
1544 | /// `items[i].kind == item.kind`. |
1545 | pub fn add_item(&mut self, item: FlagsItem) -> Option<usize> { |
1546 | for (i, x) in self.items.iter().enumerate() { |
1547 | if x.kind == item.kind { |
1548 | return Some(i); |
1549 | } |
1550 | } |
1551 | self.items.push(item); |
1552 | None |
1553 | } |
1554 | |
1555 | /// Returns the state of the given flag in this set. |
1556 | /// |
1557 | /// If the given flag is in the set but is negated, then `Some(false)` is |
1558 | /// returned. |
1559 | /// |
1560 | /// If the given flag is in the set and is not negated, then `Some(true)` |
1561 | /// is returned. |
1562 | /// |
1563 | /// Otherwise, `None` is returned. |
1564 | pub fn flag_state(&self, flag: Flag) -> Option<bool> { |
1565 | let mut negated = false; |
1566 | for x in &self.items { |
1567 | match x.kind { |
1568 | FlagsItemKind::Negation => { |
1569 | negated = true; |
1570 | } |
1571 | FlagsItemKind::Flag(ref xflag) if xflag == &flag => { |
1572 | return Some(!negated); |
1573 | } |
1574 | _ => {} |
1575 | } |
1576 | } |
1577 | None |
1578 | } |
1579 | } |
1580 | |
1581 | /// A single item in a group of flags. |
1582 | #[derive (Clone, Debug, Eq, PartialEq)] |
1583 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1584 | pub struct FlagsItem { |
1585 | /// The span of this item. |
1586 | pub span: Span, |
1587 | /// The kind of this item. |
1588 | pub kind: FlagsItemKind, |
1589 | } |
1590 | |
1591 | /// The kind of an item in a group of flags. |
1592 | #[derive (Clone, Debug, Eq, PartialEq)] |
1593 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1594 | pub enum FlagsItemKind { |
1595 | /// A negation operator applied to all subsequent flags in the enclosing |
1596 | /// group. |
1597 | Negation, |
1598 | /// A single flag in a group. |
1599 | Flag(Flag), |
1600 | } |
1601 | |
1602 | impl FlagsItemKind { |
1603 | /// Returns true if and only if this item is a negation operator. |
1604 | pub fn is_negation(&self) -> bool { |
1605 | match *self { |
1606 | FlagsItemKind::Negation => true, |
1607 | _ => false, |
1608 | } |
1609 | } |
1610 | } |
1611 | |
1612 | /// A single flag. |
1613 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
1614 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))] |
1615 | pub enum Flag { |
1616 | /// `i` |
1617 | CaseInsensitive, |
1618 | /// `m` |
1619 | MultiLine, |
1620 | /// `s` |
1621 | DotMatchesNewLine, |
1622 | /// `U` |
1623 | SwapGreed, |
1624 | /// `u` |
1625 | Unicode, |
1626 | /// `R` |
1627 | CRLF, |
1628 | /// `x` |
1629 | IgnoreWhitespace, |
1630 | } |
1631 | |
1632 | /// A custom `Drop` impl is used for `Ast` such that it uses constant stack |
1633 | /// space but heap space proportional to the depth of the `Ast`. |
1634 | impl Drop for Ast { |
1635 | fn drop(&mut self) { |
1636 | use core::mem; |
1637 | |
1638 | match *self { |
1639 | Ast::Empty(_) |
1640 | | Ast::Flags(_) |
1641 | | Ast::Literal(_) |
1642 | | Ast::Dot(_) |
1643 | | Ast::Assertion(_) |
1644 | | Ast::ClassUnicode(_) |
1645 | | Ast::ClassPerl(_) |
1646 | // Bracketed classes are recursive, they get their own Drop impl. |
1647 | | Ast::ClassBracketed(_) => return, |
1648 | Ast::Repetition(ref x) if !x.ast.has_subexprs() => return, |
1649 | Ast::Group(ref x) if !x.ast.has_subexprs() => return, |
1650 | Ast::Alternation(ref x) if x.asts.is_empty() => return, |
1651 | Ast::Concat(ref x) if x.asts.is_empty() => return, |
1652 | _ => {} |
1653 | } |
1654 | |
1655 | let empty_span = || Span::splat(Position::new(0, 0, 0)); |
1656 | let empty_ast = || Ast::empty(empty_span()); |
1657 | let mut stack = vec![mem::replace(self, empty_ast())]; |
1658 | while let Some(mut ast) = stack.pop() { |
1659 | match ast { |
1660 | Ast::Empty(_) |
1661 | | Ast::Flags(_) |
1662 | | Ast::Literal(_) |
1663 | | Ast::Dot(_) |
1664 | | Ast::Assertion(_) |
1665 | | Ast::ClassUnicode(_) |
1666 | | Ast::ClassPerl(_) |
1667 | // Bracketed classes are recursive, so they get their own Drop |
1668 | // impl. |
1669 | | Ast::ClassBracketed(_) => {} |
1670 | Ast::Repetition(ref mut x) => { |
1671 | stack.push(mem::replace(&mut x.ast, empty_ast())); |
1672 | } |
1673 | Ast::Group(ref mut x) => { |
1674 | stack.push(mem::replace(&mut x.ast, empty_ast())); |
1675 | } |
1676 | Ast::Alternation(ref mut x) => { |
1677 | stack.extend(x.asts.drain(..)); |
1678 | } |
1679 | Ast::Concat(ref mut x) => { |
1680 | stack.extend(x.asts.drain(..)); |
1681 | } |
1682 | } |
1683 | } |
1684 | } |
1685 | } |
1686 | |
1687 | /// A custom `Drop` impl is used for `ClassSet` such that it uses constant |
1688 | /// stack space but heap space proportional to the depth of the `ClassSet`. |
1689 | impl Drop for ClassSet { |
1690 | fn drop(&mut self) { |
1691 | use core::mem; |
1692 | |
1693 | match *self { |
1694 | ClassSet::Item(ref item) => match *item { |
1695 | ClassSetItem::Empty(_) |
1696 | | ClassSetItem::Literal(_) |
1697 | | ClassSetItem::Range(_) |
1698 | | ClassSetItem::Ascii(_) |
1699 | | ClassSetItem::Unicode(_) |
1700 | | ClassSetItem::Perl(_) => return, |
1701 | ClassSetItem::Bracketed(ref x) => { |
1702 | if x.kind.is_empty() { |
1703 | return; |
1704 | } |
1705 | } |
1706 | ClassSetItem::Union(ref x) => { |
1707 | if x.items.is_empty() { |
1708 | return; |
1709 | } |
1710 | } |
1711 | }, |
1712 | ClassSet::BinaryOp(ref op) => { |
1713 | if op.lhs.is_empty() && op.rhs.is_empty() { |
1714 | return; |
1715 | } |
1716 | } |
1717 | } |
1718 | |
1719 | let empty_span = || Span::splat(Position::new(0, 0, 0)); |
1720 | let empty_set = || ClassSet::Item(ClassSetItem::Empty(empty_span())); |
1721 | let mut stack = vec![mem::replace(self, empty_set())]; |
1722 | while let Some(mut set) = stack.pop() { |
1723 | match set { |
1724 | ClassSet::Item(ref mut item) => match *item { |
1725 | ClassSetItem::Empty(_) |
1726 | | ClassSetItem::Literal(_) |
1727 | | ClassSetItem::Range(_) |
1728 | | ClassSetItem::Ascii(_) |
1729 | | ClassSetItem::Unicode(_) |
1730 | | ClassSetItem::Perl(_) => {} |
1731 | ClassSetItem::Bracketed(ref mut x) => { |
1732 | stack.push(mem::replace(&mut x.kind, empty_set())); |
1733 | } |
1734 | ClassSetItem::Union(ref mut x) => { |
1735 | stack.extend(x.items.drain(..).map(ClassSet::Item)); |
1736 | } |
1737 | }, |
1738 | ClassSet::BinaryOp(ref mut op) => { |
1739 | stack.push(mem::replace(&mut op.lhs, empty_set())); |
1740 | stack.push(mem::replace(&mut op.rhs, empty_set())); |
1741 | } |
1742 | } |
1743 | } |
1744 | } |
1745 | } |
1746 | |
1747 | #[cfg (test)] |
1748 | mod tests { |
1749 | use super::*; |
1750 | |
1751 | // We use a thread with an explicit stack size to test that our destructor |
1752 | // for Ast can handle arbitrarily sized expressions in constant stack |
1753 | // space. In case we run on a platform without threads (WASM?), we limit |
1754 | // this test to Windows/Unix. |
1755 | #[test ] |
1756 | #[cfg (any(unix, windows))] |
1757 | fn no_stack_overflow_on_drop() { |
1758 | use std::thread; |
1759 | |
1760 | let run = || { |
1761 | let span = || Span::splat(Position::new(0, 0, 0)); |
1762 | let mut ast = Ast::empty(span()); |
1763 | for i in 0..200 { |
1764 | ast = Ast::group(Group { |
1765 | span: span(), |
1766 | kind: GroupKind::CaptureIndex(i), |
1767 | ast: Box::new(ast), |
1768 | }); |
1769 | } |
1770 | assert!(!ast.is_empty()); |
1771 | }; |
1772 | |
1773 | // We run our test on a thread with a small stack size so we can |
1774 | // force the issue more easily. |
1775 | // |
1776 | // NOTE(2023-03-21): It turns out that some platforms (like FreeBSD) |
1777 | // will just barf with very small stack sizes. So we bump this up a bit |
1778 | // to give more room to breath. When I did this, I confirmed that if |
1779 | // I remove the custom `Drop` impl for `Ast`, then this test does |
1780 | // indeed still fail with a stack overflow. (At the time of writing, I |
1781 | // had to bump it all the way up to 32K before the test would pass even |
1782 | // without the custom `Drop` impl. So 16K seems like a safe number |
1783 | // here.) |
1784 | // |
1785 | // See: https://github.com/rust-lang/regex/issues/967 |
1786 | thread::Builder::new() |
1787 | .stack_size(16 << 10) |
1788 | .spawn(run) |
1789 | .unwrap() |
1790 | .join() |
1791 | .unwrap(); |
1792 | } |
1793 | |
1794 | // This tests that our `Ast` has a reasonable size. This isn't a hard rule |
1795 | // and it can be increased if given a good enough reason. But this test |
1796 | // exists because the size of `Ast` was at one point over 200 bytes on a |
1797 | // 64-bit target. Wow. |
1798 | #[test ] |
1799 | fn ast_size() { |
1800 | let max = 2 * core::mem::size_of::<usize>(); |
1801 | let size = core::mem::size_of::<Ast>(); |
1802 | assert!( |
1803 | size <= max, |
1804 | "Ast size of {} bytes is bigger than suggested max {}" , |
1805 | size, |
1806 | max |
1807 | ); |
1808 | } |
1809 | } |
1810 | |