| 1 | use alloc::string::String; |
| 2 | |
| 3 | use regex_automata::{meta, Input, PatternID, PatternSet, PatternSetIter}; |
| 4 | |
| 5 | use crate::{Error, RegexSetBuilder}; |
| 6 | |
| 7 | /// Match multiple, possibly overlapping, regexes in a single search. |
| 8 | /// |
| 9 | /// A regex set corresponds to the union of zero or more regular expressions. |
| 10 | /// That is, a regex set will match a haystack when at least one of its |
| 11 | /// constituent regexes matches. A regex set as its formulated here provides a |
| 12 | /// touch more power: it will also report *which* regular expressions in the |
| 13 | /// set match. Indeed, this is the key difference between regex sets and a |
| 14 | /// single `Regex` with many alternates, since only one alternate can match at |
| 15 | /// a time. |
| 16 | /// |
| 17 | /// For example, consider regular expressions to match email addresses and |
| 18 | /// domains: `[a-z]+@[a-z]+\.(com|org|net)` and `[a-z]+\.(com|org|net)`. If a |
| 19 | /// regex set is constructed from those regexes, then searching the haystack |
| 20 | /// `foo@example.com` will report both regexes as matching. Of course, one |
| 21 | /// could accomplish this by compiling each regex on its own and doing two |
| 22 | /// searches over the haystack. The key advantage of using a regex set is |
| 23 | /// that it will report the matching regexes using a *single pass through the |
| 24 | /// haystack*. If one has hundreds or thousands of regexes to match repeatedly |
| 25 | /// (like a URL router for a complex web application or a user agent matcher), |
| 26 | /// then a regex set *can* realize huge performance gains. |
| 27 | /// |
| 28 | /// # Limitations |
| 29 | /// |
| 30 | /// Regex sets are limited to answering the following two questions: |
| 31 | /// |
| 32 | /// 1. Does any regex in the set match? |
| 33 | /// 2. If so, which regexes in the set match? |
| 34 | /// |
| 35 | /// As with the main [`Regex`][crate::Regex] type, it is cheaper to ask (1) |
| 36 | /// instead of (2) since the matching engines can stop after the first match |
| 37 | /// is found. |
| 38 | /// |
| 39 | /// You cannot directly extract [`Match`][crate::Match] or |
| 40 | /// [`Captures`][crate::Captures] objects from a regex set. If you need these |
| 41 | /// operations, the recommended approach is to compile each pattern in the set |
| 42 | /// independently and scan the exact same haystack a second time with those |
| 43 | /// independently compiled patterns: |
| 44 | /// |
| 45 | /// ``` |
| 46 | /// use regex::{Regex, RegexSet}; |
| 47 | /// |
| 48 | /// let patterns = ["foo" , "bar" ]; |
| 49 | /// // Both patterns will match different ranges of this string. |
| 50 | /// let hay = "barfoo" ; |
| 51 | /// |
| 52 | /// // Compile a set matching any of our patterns. |
| 53 | /// let set = RegexSet::new(patterns).unwrap(); |
| 54 | /// // Compile each pattern independently. |
| 55 | /// let regexes: Vec<_> = set |
| 56 | /// .patterns() |
| 57 | /// .iter() |
| 58 | /// .map(|pat| Regex::new(pat).unwrap()) |
| 59 | /// .collect(); |
| 60 | /// |
| 61 | /// // Match against the whole set first and identify the individual |
| 62 | /// // matching patterns. |
| 63 | /// let matches: Vec<&str> = set |
| 64 | /// .matches(hay) |
| 65 | /// .into_iter() |
| 66 | /// // Dereference the match index to get the corresponding |
| 67 | /// // compiled pattern. |
| 68 | /// .map(|index| ®exes[index]) |
| 69 | /// // To get match locations or any other info, we then have to search the |
| 70 | /// // exact same haystack again, using our separately-compiled pattern. |
| 71 | /// .map(|re| re.find(hay).unwrap().as_str()) |
| 72 | /// .collect(); |
| 73 | /// |
| 74 | /// // Matches arrive in the order the constituent patterns were declared, |
| 75 | /// // not the order they appear in the haystack. |
| 76 | /// assert_eq!(vec!["foo" , "bar" ], matches); |
| 77 | /// ``` |
| 78 | /// |
| 79 | /// # Performance |
| 80 | /// |
| 81 | /// A `RegexSet` has the same performance characteristics as `Regex`. Namely, |
| 82 | /// search takes `O(m * n)` time, where `m` is proportional to the size of the |
| 83 | /// regex set and `n` is proportional to the length of the haystack. |
| 84 | /// |
| 85 | /// # Trait implementations |
| 86 | /// |
| 87 | /// The `Default` trait is implemented for `RegexSet`. The default value |
| 88 | /// is an empty set. An empty set can also be explicitly constructed via |
| 89 | /// [`RegexSet::empty`]. |
| 90 | /// |
| 91 | /// # Example |
| 92 | /// |
| 93 | /// This shows how the above two regexes (for matching email addresses and |
| 94 | /// domains) might work: |
| 95 | /// |
| 96 | /// ``` |
| 97 | /// use regex::RegexSet; |
| 98 | /// |
| 99 | /// let set = RegexSet::new(&[ |
| 100 | /// r"[a-z]+@[a-z]+\.(com|org|net)" , |
| 101 | /// r"[a-z]+\.(com|org|net)" , |
| 102 | /// ]).unwrap(); |
| 103 | /// |
| 104 | /// // Ask whether any regexes in the set match. |
| 105 | /// assert!(set.is_match("foo@example.com" )); |
| 106 | /// |
| 107 | /// // Identify which regexes in the set match. |
| 108 | /// let matches: Vec<_> = set.matches("foo@example.com" ).into_iter().collect(); |
| 109 | /// assert_eq!(vec![0, 1], matches); |
| 110 | /// |
| 111 | /// // Try again, but with a haystack that only matches one of the regexes. |
| 112 | /// let matches: Vec<_> = set.matches("example.com" ).into_iter().collect(); |
| 113 | /// assert_eq!(vec![1], matches); |
| 114 | /// |
| 115 | /// // Try again, but with a haystack that doesn't match any regex in the set. |
| 116 | /// let matches: Vec<_> = set.matches("example" ).into_iter().collect(); |
| 117 | /// assert!(matches.is_empty()); |
| 118 | /// ``` |
| 119 | /// |
| 120 | /// Note that it would be possible to adapt the above example to using `Regex` |
| 121 | /// with an expression like: |
| 122 | /// |
| 123 | /// ```text |
| 124 | /// (?P<email>[a-z]+@(?P<email_domain>[a-z]+[.](com|org|net)))|(?P<domain>[a-z]+[.](com|org|net)) |
| 125 | /// ``` |
| 126 | /// |
| 127 | /// After a match, one could then inspect the capture groups to figure out |
| 128 | /// which alternates matched. The problem is that it is hard to make this |
| 129 | /// approach scale when there are many regexes since the overlap between each |
| 130 | /// alternate isn't always obvious to reason about. |
| 131 | #[derive (Clone)] |
| 132 | pub struct RegexSet { |
| 133 | pub(crate) meta: meta::Regex, |
| 134 | pub(crate) patterns: alloc::sync::Arc<[String]>, |
| 135 | } |
| 136 | |
| 137 | impl RegexSet { |
| 138 | /// Create a new regex set with the given regular expressions. |
| 139 | /// |
| 140 | /// This takes an iterator of `S`, where `S` is something that can produce |
| 141 | /// a `&str`. If any of the strings in the iterator are not valid regular |
| 142 | /// expressions, then an error is returned. |
| 143 | /// |
| 144 | /// # Example |
| 145 | /// |
| 146 | /// Create a new regex set from an iterator of strings: |
| 147 | /// |
| 148 | /// ``` |
| 149 | /// use regex::RegexSet; |
| 150 | /// |
| 151 | /// let set = RegexSet::new([r"\w+" , r"\d+" ]).unwrap(); |
| 152 | /// assert!(set.is_match("foo" )); |
| 153 | /// ``` |
| 154 | pub fn new<I, S>(exprs: I) -> Result<RegexSet, Error> |
| 155 | where |
| 156 | S: AsRef<str>, |
| 157 | I: IntoIterator<Item = S>, |
| 158 | { |
| 159 | RegexSetBuilder::new(exprs).build() |
| 160 | } |
| 161 | |
| 162 | /// Create a new empty regex set. |
| 163 | /// |
| 164 | /// An empty regex never matches anything. |
| 165 | /// |
| 166 | /// This is a convenience function for `RegexSet::new([])`, but doesn't |
| 167 | /// require one to specify the type of the input. |
| 168 | /// |
| 169 | /// # Example |
| 170 | /// |
| 171 | /// ``` |
| 172 | /// use regex::RegexSet; |
| 173 | /// |
| 174 | /// let set = RegexSet::empty(); |
| 175 | /// assert!(set.is_empty()); |
| 176 | /// // an empty set matches nothing |
| 177 | /// assert!(!set.is_match("" )); |
| 178 | /// ``` |
| 179 | pub fn empty() -> RegexSet { |
| 180 | let empty: [&str; 0] = []; |
| 181 | RegexSetBuilder::new(empty).build().unwrap() |
| 182 | } |
| 183 | |
| 184 | /// Returns true if and only if one of the regexes in this set matches |
| 185 | /// the haystack given. |
| 186 | /// |
| 187 | /// This method should be preferred if you only need to test whether any |
| 188 | /// of the regexes in the set should match, but don't care about *which* |
| 189 | /// regexes matched. This is because the underlying matching engine will |
| 190 | /// quit immediately after seeing the first match instead of continuing to |
| 191 | /// find all matches. |
| 192 | /// |
| 193 | /// Note that as with searches using [`Regex`](crate::Regex), the |
| 194 | /// expression is unanchored by default. That is, if the regex does not |
| 195 | /// start with `^` or `\A`, or end with `$` or `\z`, then it is permitted |
| 196 | /// to match anywhere in the haystack. |
| 197 | /// |
| 198 | /// # Example |
| 199 | /// |
| 200 | /// Tests whether a set matches somewhere in a haystack: |
| 201 | /// |
| 202 | /// ``` |
| 203 | /// use regex::RegexSet; |
| 204 | /// |
| 205 | /// let set = RegexSet::new([r"\w+" , r"\d+" ]).unwrap(); |
| 206 | /// assert!(set.is_match("foo" )); |
| 207 | /// assert!(!set.is_match("☃" )); |
| 208 | /// ``` |
| 209 | #[inline ] |
| 210 | pub fn is_match(&self, haystack: &str) -> bool { |
| 211 | self.is_match_at(haystack, 0) |
| 212 | } |
| 213 | |
| 214 | /// Returns true if and only if one of the regexes in this set matches the |
| 215 | /// haystack given, with the search starting at the offset given. |
| 216 | /// |
| 217 | /// The significance of the starting point is that it takes the surrounding |
| 218 | /// context into consideration. For example, the `\A` anchor can only |
| 219 | /// match when `start == 0`. |
| 220 | /// |
| 221 | /// # Panics |
| 222 | /// |
| 223 | /// This panics when `start >= haystack.len() + 1`. |
| 224 | /// |
| 225 | /// # Example |
| 226 | /// |
| 227 | /// This example shows the significance of `start`. Namely, consider a |
| 228 | /// haystack `foobar` and a desire to execute a search starting at offset |
| 229 | /// `3`. You could search a substring explicitly, but then the look-around |
| 230 | /// assertions won't work correctly. Instead, you can use this method to |
| 231 | /// specify the start position of a search. |
| 232 | /// |
| 233 | /// ``` |
| 234 | /// use regex::RegexSet; |
| 235 | /// |
| 236 | /// let set = RegexSet::new([r"\bbar\b" , r"(?m)^bar$" ]).unwrap(); |
| 237 | /// let hay = "foobar" ; |
| 238 | /// // We get a match here, but it's probably not intended. |
| 239 | /// assert!(set.is_match(&hay[3..])); |
| 240 | /// // No match because the assertions take the context into account. |
| 241 | /// assert!(!set.is_match_at(hay, 3)); |
| 242 | /// ``` |
| 243 | #[inline ] |
| 244 | pub fn is_match_at(&self, haystack: &str, start: usize) -> bool { |
| 245 | self.meta.is_match(Input::new(haystack).span(start..haystack.len())) |
| 246 | } |
| 247 | |
| 248 | /// Returns the set of regexes that match in the given haystack. |
| 249 | /// |
| 250 | /// The set returned contains the index of each regex that matches in |
| 251 | /// the given haystack. The index is in correspondence with the order of |
| 252 | /// regular expressions given to `RegexSet`'s constructor. |
| 253 | /// |
| 254 | /// The set can also be used to iterate over the matched indices. The order |
| 255 | /// of iteration is always ascending with respect to the matching indices. |
| 256 | /// |
| 257 | /// Note that as with searches using [`Regex`](crate::Regex), the |
| 258 | /// expression is unanchored by default. That is, if the regex does not |
| 259 | /// start with `^` or `\A`, or end with `$` or `\z`, then it is permitted |
| 260 | /// to match anywhere in the haystack. |
| 261 | /// |
| 262 | /// # Example |
| 263 | /// |
| 264 | /// Tests which regular expressions match the given haystack: |
| 265 | /// |
| 266 | /// ``` |
| 267 | /// use regex::RegexSet; |
| 268 | /// |
| 269 | /// let set = RegexSet::new([ |
| 270 | /// r"\w+" , |
| 271 | /// r"\d+" , |
| 272 | /// r"\pL+" , |
| 273 | /// r"foo" , |
| 274 | /// r"bar" , |
| 275 | /// r"barfoo" , |
| 276 | /// r"foobar" , |
| 277 | /// ]).unwrap(); |
| 278 | /// let matches: Vec<_> = set.matches("foobar" ).into_iter().collect(); |
| 279 | /// assert_eq!(matches, vec![0, 2, 3, 4, 6]); |
| 280 | /// |
| 281 | /// // You can also test whether a particular regex matched: |
| 282 | /// let matches = set.matches("foobar" ); |
| 283 | /// assert!(!matches.matched(5)); |
| 284 | /// assert!(matches.matched(6)); |
| 285 | /// ``` |
| 286 | #[inline ] |
| 287 | pub fn matches(&self, haystack: &str) -> SetMatches { |
| 288 | self.matches_at(haystack, 0) |
| 289 | } |
| 290 | |
| 291 | /// Returns the set of regexes that match in the given haystack. |
| 292 | /// |
| 293 | /// The set returned contains the index of each regex that matches in |
| 294 | /// the given haystack. The index is in correspondence with the order of |
| 295 | /// regular expressions given to `RegexSet`'s constructor. |
| 296 | /// |
| 297 | /// The set can also be used to iterate over the matched indices. The order |
| 298 | /// of iteration is always ascending with respect to the matching indices. |
| 299 | /// |
| 300 | /// The significance of the starting point is that it takes the surrounding |
| 301 | /// context into consideration. For example, the `\A` anchor can only |
| 302 | /// match when `start == 0`. |
| 303 | /// |
| 304 | /// # Panics |
| 305 | /// |
| 306 | /// This panics when `start >= haystack.len() + 1`. |
| 307 | /// |
| 308 | /// # Example |
| 309 | /// |
| 310 | /// Tests which regular expressions match the given haystack: |
| 311 | /// |
| 312 | /// ``` |
| 313 | /// use regex::RegexSet; |
| 314 | /// |
| 315 | /// let set = RegexSet::new([r"\bbar\b" , r"(?m)^bar$" ]).unwrap(); |
| 316 | /// let hay = "foobar" ; |
| 317 | /// // We get matches here, but it's probably not intended. |
| 318 | /// let matches: Vec<_> = set.matches(&hay[3..]).into_iter().collect(); |
| 319 | /// assert_eq!(matches, vec![0, 1]); |
| 320 | /// // No matches because the assertions take the context into account. |
| 321 | /// let matches: Vec<_> = set.matches_at(hay, 3).into_iter().collect(); |
| 322 | /// assert_eq!(matches, vec![]); |
| 323 | /// ``` |
| 324 | #[inline ] |
| 325 | pub fn matches_at(&self, haystack: &str, start: usize) -> SetMatches { |
| 326 | let input = Input::new(haystack).span(start..haystack.len()); |
| 327 | let mut patset = PatternSet::new(self.meta.pattern_len()); |
| 328 | self.meta.which_overlapping_matches(&input, &mut patset); |
| 329 | SetMatches(patset) |
| 330 | } |
| 331 | |
| 332 | /// Returns the same as matches, but starts the search at the given |
| 333 | /// offset and stores the matches into the slice given. |
| 334 | /// |
| 335 | /// The significance of the starting point is that it takes the surrounding |
| 336 | /// context into consideration. For example, the `\A` anchor can only |
| 337 | /// match when `start == 0`. |
| 338 | /// |
| 339 | /// `matches` must have a length that is at least the number of regexes |
| 340 | /// in this set. |
| 341 | /// |
| 342 | /// This method returns true if and only if at least one member of |
| 343 | /// `matches` is true after executing the set against `haystack`. |
| 344 | #[doc (hidden)] |
| 345 | #[inline ] |
| 346 | pub fn matches_read_at( |
| 347 | &self, |
| 348 | matches: &mut [bool], |
| 349 | haystack: &str, |
| 350 | start: usize, |
| 351 | ) -> bool { |
| 352 | // This is pretty dumb. We should try to fix this, but the |
| 353 | // regex-automata API doesn't provide a way to store matches in an |
| 354 | // arbitrary &mut [bool]. Thankfully, this API is doc(hidden) and |
| 355 | // thus not public... But regex-capi currently uses it. We should |
| 356 | // fix regex-capi to use a PatternSet, maybe? Not sure... PatternSet |
| 357 | // is in regex-automata, not regex. So maybe we should just accept a |
| 358 | // 'SetMatches', which is basically just a newtype around PatternSet. |
| 359 | let mut patset = PatternSet::new(self.meta.pattern_len()); |
| 360 | let mut input = Input::new(haystack); |
| 361 | input.set_start(start); |
| 362 | self.meta.which_overlapping_matches(&input, &mut patset); |
| 363 | for pid in patset.iter() { |
| 364 | matches[pid] = true; |
| 365 | } |
| 366 | !patset.is_empty() |
| 367 | } |
| 368 | |
| 369 | /// An alias for `matches_read_at` to preserve backward compatibility. |
| 370 | /// |
| 371 | /// The `regex-capi` crate used this method, so to avoid breaking that |
| 372 | /// crate, we continue to export it as an undocumented API. |
| 373 | #[doc (hidden)] |
| 374 | #[inline ] |
| 375 | pub fn read_matches_at( |
| 376 | &self, |
| 377 | matches: &mut [bool], |
| 378 | haystack: &str, |
| 379 | start: usize, |
| 380 | ) -> bool { |
| 381 | self.matches_read_at(matches, haystack, start) |
| 382 | } |
| 383 | |
| 384 | /// Returns the total number of regexes in this set. |
| 385 | /// |
| 386 | /// # Example |
| 387 | /// |
| 388 | /// ``` |
| 389 | /// use regex::RegexSet; |
| 390 | /// |
| 391 | /// assert_eq!(0, RegexSet::empty().len()); |
| 392 | /// assert_eq!(1, RegexSet::new([r"[0-9]" ]).unwrap().len()); |
| 393 | /// assert_eq!(2, RegexSet::new([r"[0-9]" , r"[a-z]" ]).unwrap().len()); |
| 394 | /// ``` |
| 395 | #[inline ] |
| 396 | pub fn len(&self) -> usize { |
| 397 | self.meta.pattern_len() |
| 398 | } |
| 399 | |
| 400 | /// Returns `true` if this set contains no regexes. |
| 401 | /// |
| 402 | /// # Example |
| 403 | /// |
| 404 | /// ``` |
| 405 | /// use regex::RegexSet; |
| 406 | /// |
| 407 | /// assert!(RegexSet::empty().is_empty()); |
| 408 | /// assert!(!RegexSet::new([r"[0-9]" ]).unwrap().is_empty()); |
| 409 | /// ``` |
| 410 | #[inline ] |
| 411 | pub fn is_empty(&self) -> bool { |
| 412 | self.meta.pattern_len() == 0 |
| 413 | } |
| 414 | |
| 415 | /// Returns the regex patterns that this regex set was constructed from. |
| 416 | /// |
| 417 | /// This function can be used to determine the pattern for a match. The |
| 418 | /// slice returned has exactly as many patterns givens to this regex set, |
| 419 | /// and the order of the slice is the same as the order of the patterns |
| 420 | /// provided to the set. |
| 421 | /// |
| 422 | /// # Example |
| 423 | /// |
| 424 | /// ``` |
| 425 | /// use regex::RegexSet; |
| 426 | /// |
| 427 | /// let set = RegexSet::new(&[ |
| 428 | /// r"\w+" , |
| 429 | /// r"\d+" , |
| 430 | /// r"\pL+" , |
| 431 | /// r"foo" , |
| 432 | /// r"bar" , |
| 433 | /// r"barfoo" , |
| 434 | /// r"foobar" , |
| 435 | /// ]).unwrap(); |
| 436 | /// let matches: Vec<_> = set |
| 437 | /// .matches("foobar" ) |
| 438 | /// .into_iter() |
| 439 | /// .map(|index| &set.patterns()[index]) |
| 440 | /// .collect(); |
| 441 | /// assert_eq!(matches, vec![r"\w+" , r"\pL+" , r"foo" , r"bar" , r"foobar" ]); |
| 442 | /// ``` |
| 443 | #[inline ] |
| 444 | pub fn patterns(&self) -> &[String] { |
| 445 | &self.patterns |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | impl Default for RegexSet { |
| 450 | fn default() -> Self { |
| 451 | RegexSet::empty() |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | /// A set of matches returned by a regex set. |
| 456 | /// |
| 457 | /// Values of this type are constructed by [`RegexSet::matches`]. |
| 458 | #[derive (Clone, Debug)] |
| 459 | pub struct SetMatches(PatternSet); |
| 460 | |
| 461 | impl SetMatches { |
| 462 | /// Whether this set contains any matches. |
| 463 | /// |
| 464 | /// # Example |
| 465 | /// |
| 466 | /// ``` |
| 467 | /// use regex::RegexSet; |
| 468 | /// |
| 469 | /// let set = RegexSet::new(&[ |
| 470 | /// r"[a-z]+@[a-z]+\.(com|org|net)" , |
| 471 | /// r"[a-z]+\.(com|org|net)" , |
| 472 | /// ]).unwrap(); |
| 473 | /// let matches = set.matches("foo@example.com" ); |
| 474 | /// assert!(matches.matched_any()); |
| 475 | /// ``` |
| 476 | #[inline ] |
| 477 | pub fn matched_any(&self) -> bool { |
| 478 | !self.0.is_empty() |
| 479 | } |
| 480 | |
| 481 | /// Whether all patterns in this set matched. |
| 482 | /// |
| 483 | /// # Example |
| 484 | /// |
| 485 | /// ``` |
| 486 | /// use regex::RegexSet; |
| 487 | /// |
| 488 | /// let set = RegexSet::new(&[ |
| 489 | /// r"^foo" , |
| 490 | /// r"[a-z]+\.com" , |
| 491 | /// ]).unwrap(); |
| 492 | /// let matches = set.matches("foo.example.com" ); |
| 493 | /// assert!(matches.matched_all()); |
| 494 | /// ``` |
| 495 | pub fn matched_all(&self) -> bool { |
| 496 | self.0.is_full() |
| 497 | } |
| 498 | |
| 499 | /// Whether the regex at the given index matched. |
| 500 | /// |
| 501 | /// The index for a regex is determined by its insertion order upon the |
| 502 | /// initial construction of a `RegexSet`, starting at `0`. |
| 503 | /// |
| 504 | /// # Panics |
| 505 | /// |
| 506 | /// If `index` is greater than or equal to the number of regexes in the |
| 507 | /// original set that produced these matches. Equivalently, when `index` |
| 508 | /// is greater than or equal to [`SetMatches::len`]. |
| 509 | /// |
| 510 | /// # Example |
| 511 | /// |
| 512 | /// ``` |
| 513 | /// use regex::RegexSet; |
| 514 | /// |
| 515 | /// let set = RegexSet::new([ |
| 516 | /// r"[a-z]+@[a-z]+\.(com|org|net)" , |
| 517 | /// r"[a-z]+\.(com|org|net)" , |
| 518 | /// ]).unwrap(); |
| 519 | /// let matches = set.matches("example.com" ); |
| 520 | /// assert!(!matches.matched(0)); |
| 521 | /// assert!(matches.matched(1)); |
| 522 | /// ``` |
| 523 | #[inline ] |
| 524 | pub fn matched(&self, index: usize) -> bool { |
| 525 | self.0.contains(PatternID::new_unchecked(index)) |
| 526 | } |
| 527 | |
| 528 | /// The total number of regexes in the set that created these matches. |
| 529 | /// |
| 530 | /// **WARNING:** This always returns the same value as [`RegexSet::len`]. |
| 531 | /// In particular, it does *not* return the number of elements yielded by |
| 532 | /// [`SetMatches::iter`]. The only way to determine the total number of |
| 533 | /// matched regexes is to iterate over them. |
| 534 | /// |
| 535 | /// # Example |
| 536 | /// |
| 537 | /// Notice that this method returns the total number of regexes in the |
| 538 | /// original set, and *not* the total number of regexes that matched. |
| 539 | /// |
| 540 | /// ``` |
| 541 | /// use regex::RegexSet; |
| 542 | /// |
| 543 | /// let set = RegexSet::new([ |
| 544 | /// r"[a-z]+@[a-z]+\.(com|org|net)" , |
| 545 | /// r"[a-z]+\.(com|org|net)" , |
| 546 | /// ]).unwrap(); |
| 547 | /// let matches = set.matches("example.com" ); |
| 548 | /// // Total number of patterns that matched. |
| 549 | /// assert_eq!(1, matches.iter().count()); |
| 550 | /// // Total number of patterns in the set. |
| 551 | /// assert_eq!(2, matches.len()); |
| 552 | /// ``` |
| 553 | #[inline ] |
| 554 | pub fn len(&self) -> usize { |
| 555 | self.0.capacity() |
| 556 | } |
| 557 | |
| 558 | /// Returns an iterator over the indices of the regexes that matched. |
| 559 | /// |
| 560 | /// This will always produces matches in ascending order, where the index |
| 561 | /// yielded corresponds to the index of the regex that matched with respect |
| 562 | /// to its position when initially building the set. |
| 563 | /// |
| 564 | /// # Example |
| 565 | /// |
| 566 | /// ``` |
| 567 | /// use regex::RegexSet; |
| 568 | /// |
| 569 | /// let set = RegexSet::new([ |
| 570 | /// r"[0-9]" , |
| 571 | /// r"[a-z]" , |
| 572 | /// r"[A-Z]" , |
| 573 | /// r"\p{Greek}" , |
| 574 | /// ]).unwrap(); |
| 575 | /// let hay = "βa1" ; |
| 576 | /// let matches: Vec<_> = set.matches(hay).iter().collect(); |
| 577 | /// assert_eq!(matches, vec![0, 1, 3]); |
| 578 | /// ``` |
| 579 | /// |
| 580 | /// Note that `SetMatches` also implemnets the `IntoIterator` trait, so |
| 581 | /// this method is not always needed. For example: |
| 582 | /// |
| 583 | /// ``` |
| 584 | /// use regex::RegexSet; |
| 585 | /// |
| 586 | /// let set = RegexSet::new([ |
| 587 | /// r"[0-9]" , |
| 588 | /// r"[a-z]" , |
| 589 | /// r"[A-Z]" , |
| 590 | /// r"\p{Greek}" , |
| 591 | /// ]).unwrap(); |
| 592 | /// let hay = "βa1" ; |
| 593 | /// let mut matches = vec![]; |
| 594 | /// for index in set.matches(hay) { |
| 595 | /// matches.push(index); |
| 596 | /// } |
| 597 | /// assert_eq!(matches, vec![0, 1, 3]); |
| 598 | /// ``` |
| 599 | #[inline ] |
| 600 | pub fn iter(&self) -> SetMatchesIter<'_> { |
| 601 | SetMatchesIter(self.0.iter()) |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | impl IntoIterator for SetMatches { |
| 606 | type IntoIter = SetMatchesIntoIter; |
| 607 | type Item = usize; |
| 608 | |
| 609 | fn into_iter(self) -> Self::IntoIter { |
| 610 | let it: Range = 0..self.0.capacity(); |
| 611 | SetMatchesIntoIter { patset: self.0, it } |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | impl<'a> IntoIterator for &'a SetMatches { |
| 616 | type IntoIter = SetMatchesIter<'a>; |
| 617 | type Item = usize; |
| 618 | |
| 619 | fn into_iter(self) -> Self::IntoIter { |
| 620 | self.iter() |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | /// An owned iterator over the set of matches from a regex set. |
| 625 | /// |
| 626 | /// This will always produces matches in ascending order of index, where the |
| 627 | /// index corresponds to the index of the regex that matched with respect to |
| 628 | /// its position when initially building the set. |
| 629 | /// |
| 630 | /// This iterator is created by calling `SetMatches::into_iter` via the |
| 631 | /// `IntoIterator` trait. This is automatically done in `for` loops. |
| 632 | /// |
| 633 | /// # Example |
| 634 | /// |
| 635 | /// ``` |
| 636 | /// use regex::RegexSet; |
| 637 | /// |
| 638 | /// let set = RegexSet::new([ |
| 639 | /// r"[0-9]" , |
| 640 | /// r"[a-z]" , |
| 641 | /// r"[A-Z]" , |
| 642 | /// r"\p{Greek}" , |
| 643 | /// ]).unwrap(); |
| 644 | /// let hay = "βa1" ; |
| 645 | /// let mut matches = vec![]; |
| 646 | /// for index in set.matches(hay) { |
| 647 | /// matches.push(index); |
| 648 | /// } |
| 649 | /// assert_eq!(matches, vec![0, 1, 3]); |
| 650 | /// ``` |
| 651 | #[derive (Debug)] |
| 652 | pub struct SetMatchesIntoIter { |
| 653 | patset: PatternSet, |
| 654 | it: core::ops::Range<usize>, |
| 655 | } |
| 656 | |
| 657 | impl Iterator for SetMatchesIntoIter { |
| 658 | type Item = usize; |
| 659 | |
| 660 | fn next(&mut self) -> Option<usize> { |
| 661 | loop { |
| 662 | let id: usize = self.it.next()?; |
| 663 | if self.patset.contains(pid:PatternID::new_unchecked(id)) { |
| 664 | return Some(id); |
| 665 | } |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 670 | self.it.size_hint() |
| 671 | } |
| 672 | } |
| 673 | |
| 674 | impl DoubleEndedIterator for SetMatchesIntoIter { |
| 675 | fn next_back(&mut self) -> Option<usize> { |
| 676 | loop { |
| 677 | let id: usize = self.it.next_back()?; |
| 678 | if self.patset.contains(pid:PatternID::new_unchecked(id)) { |
| 679 | return Some(id); |
| 680 | } |
| 681 | } |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | impl core::iter::FusedIterator for SetMatchesIntoIter {} |
| 686 | |
| 687 | /// A borrowed iterator over the set of matches from a regex set. |
| 688 | /// |
| 689 | /// The lifetime `'a` refers to the lifetime of the [`SetMatches`] value that |
| 690 | /// created this iterator. |
| 691 | /// |
| 692 | /// This will always produces matches in ascending order, where the index |
| 693 | /// corresponds to the index of the regex that matched with respect to its |
| 694 | /// position when initially building the set. |
| 695 | /// |
| 696 | /// This iterator is created by the [`SetMatches::iter`] method. |
| 697 | #[derive (Clone, Debug)] |
| 698 | pub struct SetMatchesIter<'a>(PatternSetIter<'a>); |
| 699 | |
| 700 | impl<'a> Iterator for SetMatchesIter<'a> { |
| 701 | type Item = usize; |
| 702 | |
| 703 | fn next(&mut self) -> Option<usize> { |
| 704 | self.0.next().map(|pid: PatternID| pid.as_usize()) |
| 705 | } |
| 706 | |
| 707 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 708 | self.0.size_hint() |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | impl<'a> DoubleEndedIterator for SetMatchesIter<'a> { |
| 713 | fn next_back(&mut self) -> Option<usize> { |
| 714 | self.0.next_back().map(|pid: PatternID| pid.as_usize()) |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | impl<'a> core::iter::FusedIterator for SetMatchesIter<'a> {} |
| 719 | |
| 720 | impl core::fmt::Debug for RegexSet { |
| 721 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| 722 | write!(f, "RegexSet( {:?})" , self.patterns()) |
| 723 | } |
| 724 | } |
| 725 | |