| 1 | use core::{ |
| 2 | borrow::Borrow, |
| 3 | panic::{RefUnwindSafe, UnwindSafe}, |
| 4 | }; |
| 5 | |
| 6 | use alloc::{boxed::Box, sync::Arc, vec, vec::Vec}; |
| 7 | |
| 8 | use regex_syntax::{ |
| 9 | ast, |
| 10 | hir::{self, Hir}, |
| 11 | }; |
| 12 | |
| 13 | use crate::{ |
| 14 | meta::{ |
| 15 | error::BuildError, |
| 16 | strategy::{self, Strategy}, |
| 17 | wrappers, |
| 18 | }, |
| 19 | nfa::thompson::WhichCaptures, |
| 20 | util::{ |
| 21 | captures::{Captures, GroupInfo}, |
| 22 | iter, |
| 23 | pool::{Pool, PoolGuard}, |
| 24 | prefilter::Prefilter, |
| 25 | primitives::{NonMaxUsize, PatternID}, |
| 26 | search::{HalfMatch, Input, Match, MatchKind, PatternSet, Span}, |
| 27 | }, |
| 28 | }; |
| 29 | |
| 30 | /// A type alias for our pool of meta::Cache that fixes the type parameters to |
| 31 | /// what we use for the meta regex below. |
| 32 | type CachePool = Pool<Cache, CachePoolFn>; |
| 33 | |
| 34 | /// Same as above, but for the guard returned by a pool. |
| 35 | type CachePoolGuard<'a> = PoolGuard<'a, Cache, CachePoolFn>; |
| 36 | |
| 37 | /// The type of the closure we use to create new caches. We need to spell out |
| 38 | /// all of the marker traits or else we risk leaking !MARKER impls. |
| 39 | type CachePoolFn = |
| 40 | Box<dyn Fn() -> Cache + Send + Sync + UnwindSafe + RefUnwindSafe>; |
| 41 | |
| 42 | /// A regex matcher that works by composing several other regex matchers |
| 43 | /// automatically. |
| 44 | /// |
| 45 | /// In effect, a meta regex papers over a lot of the quirks or performance |
| 46 | /// problems in each of the regex engines in this crate. Its goal is to provide |
| 47 | /// an infallible and simple API that "just does the right thing" in the common |
| 48 | /// case. |
| 49 | /// |
| 50 | /// A meta regex is the implementation of a `Regex` in the `regex` crate. |
| 51 | /// Indeed, the `regex` crate API is essentially just a light wrapper over |
| 52 | /// this type. This includes the `regex` crate's `RegexSet` API! |
| 53 | /// |
| 54 | /// # Composition |
| 55 | /// |
| 56 | /// This is called a "meta" matcher precisely because it uses other regex |
| 57 | /// matchers to provide a convenient high level regex API. Here are some |
| 58 | /// examples of how other regex matchers are composed: |
| 59 | /// |
| 60 | /// * When calling [`Regex::captures`], instead of immediately |
| 61 | /// running a slower but more capable regex engine like the |
| 62 | /// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM), the meta regex engine |
| 63 | /// will usually first look for the bounds of a match with a higher throughput |
| 64 | /// regex engine like a [lazy DFA](crate::hybrid). Only when a match is found |
| 65 | /// is a slower engine like `PikeVM` used to find the matching span for each |
| 66 | /// capture group. |
| 67 | /// * While higher throughout engines like the lazy DFA cannot handle |
| 68 | /// Unicode word boundaries in general, they can still be used on pure ASCII |
| 69 | /// haystacks by pretending that Unicode word boundaries are just plain ASCII |
| 70 | /// word boundaries. However, if a haystack is not ASCII, the meta regex engine |
| 71 | /// will automatically switch to a (possibly slower) regex engine that supports |
| 72 | /// Unicode word boundaries in general. |
| 73 | /// * In some cases where a regex pattern is just a simple literal or a small |
| 74 | /// set of literals, an actual regex engine won't be used at all. Instead, |
| 75 | /// substring or multi-substring search algorithms will be employed. |
| 76 | /// |
| 77 | /// There are many other forms of composition happening too, but the above |
| 78 | /// should give a general idea. In particular, it may perhaps be surprising |
| 79 | /// that *multiple* regex engines might get executed for a single search. That |
| 80 | /// is, the decision of what regex engine to use is not _just_ based on the |
| 81 | /// pattern, but also based on the dynamic execution of the search itself. |
| 82 | /// |
| 83 | /// The primary reason for this composition is performance. The fundamental |
| 84 | /// tension is that the faster engines tend to be less capable, and the more |
| 85 | /// capable engines tend to be slower. |
| 86 | /// |
| 87 | /// Note that the forms of composition that are allowed are determined by |
| 88 | /// compile time crate features and configuration. For example, if the `hybrid` |
| 89 | /// feature isn't enabled, or if [`Config::hybrid`] has been disabled, then the |
| 90 | /// meta regex engine will never use a lazy DFA. |
| 91 | /// |
| 92 | /// # Synchronization and cloning |
| 93 | /// |
| 94 | /// Most of the regex engines in this crate require some kind of mutable |
| 95 | /// "scratch" space to read and write from while performing a search. Since |
| 96 | /// a meta regex composes these regex engines, a meta regex also requires |
| 97 | /// mutable scratch space. This scratch space is called a [`Cache`]. |
| 98 | /// |
| 99 | /// Most regex engines _also_ usually have a read-only component, typically |
| 100 | /// a [Thompson `NFA`](crate::nfa::thompson::NFA). |
| 101 | /// |
| 102 | /// In order to make the `Regex` API convenient, most of the routines hide |
| 103 | /// the fact that a `Cache` is needed at all. To achieve this, a [memory |
| 104 | /// pool](crate::util::pool::Pool) is used internally to retrieve `Cache` |
| 105 | /// values in a thread safe way that also permits reuse. This in turn implies |
| 106 | /// that every such search call requires some form of synchronization. Usually |
| 107 | /// this synchronization is fast enough to not notice, but in some cases, it |
| 108 | /// can be a bottleneck. This typically occurs when all of the following are |
| 109 | /// true: |
| 110 | /// |
| 111 | /// * The same `Regex` is shared across multiple threads simultaneously, |
| 112 | /// usually via a [`util::lazy::Lazy`](crate::util::lazy::Lazy) or something |
| 113 | /// similar from the `once_cell` or `lazy_static` crates. |
| 114 | /// * The primary unit of work in each thread is a regex search. |
| 115 | /// * Searches are run on very short haystacks. |
| 116 | /// |
| 117 | /// This particular case can lead to high contention on the pool used by a |
| 118 | /// `Regex` internally, which can in turn increase latency to a noticeable |
| 119 | /// effect. This cost can be mitigated in one of the following ways: |
| 120 | /// |
| 121 | /// * Use a distinct copy of a `Regex` in each thread, usually by cloning it. |
| 122 | /// Cloning a `Regex` _does not_ do a deep copy of its read-only component. |
| 123 | /// But it does lead to each `Regex` having its own memory pool, which in |
| 124 | /// turn eliminates the problem of contention. In general, this technique should |
| 125 | /// not result in any additional memory usage when compared to sharing the same |
| 126 | /// `Regex` across multiple threads simultaneously. |
| 127 | /// * Use lower level APIs, like [`Regex::search_with`], which permit passing |
| 128 | /// a `Cache` explicitly. In this case, it is up to you to determine how best |
| 129 | /// to provide a `Cache`. For example, you might put a `Cache` in thread-local |
| 130 | /// storage if your use case allows for it. |
| 131 | /// |
| 132 | /// Overall, this is an issue that happens rarely in practice, but it can |
| 133 | /// happen. |
| 134 | /// |
| 135 | /// # Warning: spin-locks may be used in alloc-only mode |
| 136 | /// |
| 137 | /// When this crate is built without the `std` feature and the high level APIs |
| 138 | /// on a `Regex` are used, then a spin-lock will be used to synchronize access |
| 139 | /// to an internal pool of `Cache` values. This may be undesirable because |
| 140 | /// a spin-lock is [effectively impossible to implement correctly in user |
| 141 | /// space][spinlocks-are-bad]. That is, more concretely, the spin-lock could |
| 142 | /// result in a deadlock. |
| 143 | /// |
| 144 | /// [spinlocks-are-bad]: https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html |
| 145 | /// |
| 146 | /// If one wants to avoid the use of spin-locks when the `std` feature is |
| 147 | /// disabled, then you must use APIs that accept a `Cache` value explicitly. |
| 148 | /// For example, [`Regex::search_with`]. |
| 149 | /// |
| 150 | /// # Example |
| 151 | /// |
| 152 | /// ``` |
| 153 | /// use regex_automata::meta::Regex; |
| 154 | /// |
| 155 | /// let re = Regex::new(r"^[0-9]{4}-[0-9]{2}-[0-9]{2}$" )?; |
| 156 | /// assert!(re.is_match("2010-03-14" )); |
| 157 | /// |
| 158 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 159 | /// ``` |
| 160 | /// |
| 161 | /// # Example: anchored search |
| 162 | /// |
| 163 | /// This example shows how to use [`Input::anchored`] to run an anchored |
| 164 | /// search, even when the regex pattern itself isn't anchored. An anchored |
| 165 | /// search guarantees that if a match is found, then the start offset of the |
| 166 | /// match corresponds to the offset at which the search was started. |
| 167 | /// |
| 168 | /// ``` |
| 169 | /// use regex_automata::{meta::Regex, Anchored, Input, Match}; |
| 170 | /// |
| 171 | /// let re = Regex::new(r"\bfoo\b" )?; |
| 172 | /// let input = Input::new("xx foo xx" ).range(3..).anchored(Anchored::Yes); |
| 173 | /// // The offsets are in terms of the original haystack. |
| 174 | /// assert_eq!(Some(Match::must(0, 3..6)), re.find(input)); |
| 175 | /// |
| 176 | /// // Notice that no match occurs here, because \b still takes the |
| 177 | /// // surrounding context into account, even if it means looking back |
| 178 | /// // before the start of your search. |
| 179 | /// let hay = "xxfoo xx" ; |
| 180 | /// let input = Input::new(hay).range(2..).anchored(Anchored::Yes); |
| 181 | /// assert_eq!(None, re.find(input)); |
| 182 | /// // Indeed, you cannot achieve the above by simply slicing the |
| 183 | /// // haystack itself, since the regex engine can't see the |
| 184 | /// // surrounding context. This is why 'Input' permits setting |
| 185 | /// // the bounds of a search! |
| 186 | /// let input = Input::new(&hay[2..]).anchored(Anchored::Yes); |
| 187 | /// // WRONG! |
| 188 | /// assert_eq!(Some(Match::must(0, 0..3)), re.find(input)); |
| 189 | /// |
| 190 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 191 | /// ``` |
| 192 | /// |
| 193 | /// # Example: earliest search |
| 194 | /// |
| 195 | /// This example shows how to use [`Input::earliest`] to run a search that |
| 196 | /// might stop before finding the typical leftmost match. |
| 197 | /// |
| 198 | /// ``` |
| 199 | /// use regex_automata::{meta::Regex, Anchored, Input, Match}; |
| 200 | /// |
| 201 | /// let re = Regex::new(r"[a-z]{3}|b" )?; |
| 202 | /// let input = Input::new("abc" ).earliest(true); |
| 203 | /// assert_eq!(Some(Match::must(0, 1..2)), re.find(input)); |
| 204 | /// |
| 205 | /// // Note that "earliest" isn't really a match semantic unto itself. |
| 206 | /// // Instead, it is merely an instruction to whatever regex engine |
| 207 | /// // gets used internally to quit as soon as it can. For example, |
| 208 | /// // this regex uses a different search technique, and winds up |
| 209 | /// // producing a different (but valid) match! |
| 210 | /// let re = Regex::new(r"abc|b" )?; |
| 211 | /// let input = Input::new("abc" ).earliest(true); |
| 212 | /// assert_eq!(Some(Match::must(0, 0..3)), re.find(input)); |
| 213 | /// |
| 214 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 215 | /// ``` |
| 216 | /// |
| 217 | /// # Example: change the line terminator |
| 218 | /// |
| 219 | /// This example shows how to enable multi-line mode by default and change |
| 220 | /// the line terminator to the NUL byte: |
| 221 | /// |
| 222 | /// ``` |
| 223 | /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| 224 | /// |
| 225 | /// let re = Regex::builder() |
| 226 | /// .syntax(syntax::Config::new().multi_line(true)) |
| 227 | /// .configure(Regex::config().line_terminator(b' \x00' )) |
| 228 | /// .build(r"^foo$" )?; |
| 229 | /// let hay = " \x00foo \x00" ; |
| 230 | /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay)); |
| 231 | /// |
| 232 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 233 | /// ``` |
| 234 | #[derive (Debug)] |
| 235 | pub struct Regex { |
| 236 | /// The actual regex implementation. |
| 237 | imp: Arc<RegexI>, |
| 238 | /// A thread safe pool of caches. |
| 239 | /// |
| 240 | /// For the higher level search APIs, a `Cache` is automatically plucked |
| 241 | /// from this pool before running a search. The lower level `with` methods |
| 242 | /// permit the caller to provide their own cache, thereby bypassing |
| 243 | /// accesses to this pool. |
| 244 | /// |
| 245 | /// Note that we put this outside the `Arc` so that cloning a `Regex` |
| 246 | /// results in creating a fresh `CachePool`. This in turn permits callers |
| 247 | /// to clone regexes into separate threads where each such regex gets |
| 248 | /// the pool's "thread owner" optimization. Otherwise, if one shares the |
| 249 | /// `Regex` directly, then the pool will go through a slower mutex path for |
| 250 | /// all threads except for the "owner." |
| 251 | pool: CachePool, |
| 252 | } |
| 253 | |
| 254 | /// The internal implementation of `Regex`, split out so that it can be wrapped |
| 255 | /// in an `Arc`. |
| 256 | #[derive (Debug)] |
| 257 | struct RegexI { |
| 258 | /// The core matching engine. |
| 259 | /// |
| 260 | /// Why is this reference counted when RegexI is already wrapped in an Arc? |
| 261 | /// Well, we need to capture this in a closure to our `Pool` below in order |
| 262 | /// to create new `Cache` values when needed. So since it needs to be in |
| 263 | /// two places, we make it reference counted. |
| 264 | /// |
| 265 | /// We make `RegexI` itself reference counted too so that `Regex` itself |
| 266 | /// stays extremely small and very cheap to clone. |
| 267 | strat: Arc<dyn Strategy>, |
| 268 | /// Metadata about the regexes driving the strategy. The metadata is also |
| 269 | /// usually stored inside the strategy too, but we put it here as well |
| 270 | /// so that we can get quick access to it (without virtual calls) before |
| 271 | /// executing the regex engine. For example, we use this metadata to |
| 272 | /// detect a subset of cases where we know a match is impossible, and can |
| 273 | /// thus avoid calling into the strategy at all. |
| 274 | /// |
| 275 | /// Since `RegexInfo` is stored in multiple places, it is also reference |
| 276 | /// counted. |
| 277 | info: RegexInfo, |
| 278 | } |
| 279 | |
| 280 | /// Convenience constructors for a `Regex` using the default configuration. |
| 281 | impl Regex { |
| 282 | /// Builds a `Regex` from a single pattern string using the default |
| 283 | /// configuration. |
| 284 | /// |
| 285 | /// If there was a problem parsing the pattern or a problem turning it into |
| 286 | /// a regex matcher, then an error is returned. |
| 287 | /// |
| 288 | /// If you want to change the configuration of a `Regex`, use a [`Builder`] |
| 289 | /// with a [`Config`]. |
| 290 | /// |
| 291 | /// # Example |
| 292 | /// |
| 293 | /// ``` |
| 294 | /// use regex_automata::{meta::Regex, Match}; |
| 295 | /// |
| 296 | /// let re = Regex::new(r"(?Rm)^foo$" )?; |
| 297 | /// let hay = " \r\nfoo \r\n" ; |
| 298 | /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay)); |
| 299 | /// |
| 300 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 301 | /// ``` |
| 302 | pub fn new(pattern: &str) -> Result<Regex, BuildError> { |
| 303 | Regex::builder().build(pattern) |
| 304 | } |
| 305 | |
| 306 | /// Builds a `Regex` from many pattern strings using the default |
| 307 | /// configuration. |
| 308 | /// |
| 309 | /// If there was a problem parsing any of the patterns or a problem turning |
| 310 | /// them into a regex matcher, then an error is returned. |
| 311 | /// |
| 312 | /// If you want to change the configuration of a `Regex`, use a [`Builder`] |
| 313 | /// with a [`Config`]. |
| 314 | /// |
| 315 | /// # Example: simple lexer |
| 316 | /// |
| 317 | /// This simplistic example leverages the multi-pattern support to build a |
| 318 | /// simple little lexer. The pattern ID in the match tells you which regex |
| 319 | /// matched, which in turn might be used to map back to the "type" of the |
| 320 | /// token returned by the lexer. |
| 321 | /// |
| 322 | /// ``` |
| 323 | /// use regex_automata::{meta::Regex, Match}; |
| 324 | /// |
| 325 | /// let re = Regex::new_many(&[ |
| 326 | /// r"[[:space:]]" , |
| 327 | /// r"[A-Za-z0-9][A-Za-z0-9_]+" , |
| 328 | /// r"->" , |
| 329 | /// r"." , |
| 330 | /// ])?; |
| 331 | /// let haystack = "fn is_boss(bruce: i32, springsteen: String) -> bool;" ; |
| 332 | /// let matches: Vec<Match> = re.find_iter(haystack).collect(); |
| 333 | /// assert_eq!(matches, vec![ |
| 334 | /// Match::must(1, 0..2), // 'fn' |
| 335 | /// Match::must(0, 2..3), // ' ' |
| 336 | /// Match::must(1, 3..10), // 'is_boss' |
| 337 | /// Match::must(3, 10..11), // '(' |
| 338 | /// Match::must(1, 11..16), // 'bruce' |
| 339 | /// Match::must(3, 16..17), // ':' |
| 340 | /// Match::must(0, 17..18), // ' ' |
| 341 | /// Match::must(1, 18..21), // 'i32' |
| 342 | /// Match::must(3, 21..22), // ',' |
| 343 | /// Match::must(0, 22..23), // ' ' |
| 344 | /// Match::must(1, 23..34), // 'springsteen' |
| 345 | /// Match::must(3, 34..35), // ':' |
| 346 | /// Match::must(0, 35..36), // ' ' |
| 347 | /// Match::must(1, 36..42), // 'String' |
| 348 | /// Match::must(3, 42..43), // ')' |
| 349 | /// Match::must(0, 43..44), // ' ' |
| 350 | /// Match::must(2, 44..46), // '->' |
| 351 | /// Match::must(0, 46..47), // ' ' |
| 352 | /// Match::must(1, 47..51), // 'bool' |
| 353 | /// Match::must(3, 51..52), // ';' |
| 354 | /// ]); |
| 355 | /// |
| 356 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 357 | /// ``` |
| 358 | /// |
| 359 | /// One can write a lexer like the above using a regex like |
| 360 | /// `(?P<space>[[:space:]])|(?P<ident>[A-Za-z0-9][A-Za-z0-9_]+)|...`, |
| 361 | /// but then you need to ask whether capture group matched to determine |
| 362 | /// which branch in the regex matched, and thus, which token the match |
| 363 | /// corresponds to. In contrast, the above example includes the pattern ID |
| 364 | /// in the match. There's no need to use capture groups at all. |
| 365 | /// |
| 366 | /// # Example: finding the pattern that caused an error |
| 367 | /// |
| 368 | /// When a syntax error occurs, it is possible to ask which pattern |
| 369 | /// caused the syntax error. |
| 370 | /// |
| 371 | /// ``` |
| 372 | /// use regex_automata::{meta::Regex, PatternID}; |
| 373 | /// |
| 374 | /// let err = Regex::new_many(&["a" , "b" , r"\p{Foo}" , "c" ]).unwrap_err(); |
| 375 | /// assert_eq!(Some(PatternID::must(2)), err.pattern()); |
| 376 | /// ``` |
| 377 | /// |
| 378 | /// # Example: zero patterns is valid |
| 379 | /// |
| 380 | /// Building a regex with zero patterns results in a regex that never |
| 381 | /// matches anything. Because this routine is generic, passing an empty |
| 382 | /// slice usually requires a turbo-fish (or something else to help type |
| 383 | /// inference). |
| 384 | /// |
| 385 | /// ``` |
| 386 | /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| 387 | /// |
| 388 | /// let re = Regex::new_many::<&str>(&[])?; |
| 389 | /// assert_eq!(None, re.find("" )); |
| 390 | /// |
| 391 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 392 | /// ``` |
| 393 | pub fn new_many<P: AsRef<str>>( |
| 394 | patterns: &[P], |
| 395 | ) -> Result<Regex, BuildError> { |
| 396 | Regex::builder().build_many(patterns) |
| 397 | } |
| 398 | |
| 399 | /// Return a default configuration for a `Regex`. |
| 400 | /// |
| 401 | /// This is a convenience routine to avoid needing to import the [`Config`] |
| 402 | /// type when customizing the construction of a `Regex`. |
| 403 | /// |
| 404 | /// # Example: lower the NFA size limit |
| 405 | /// |
| 406 | /// In some cases, the default size limit might be too big. The size limit |
| 407 | /// can be lowered, which will prevent large regex patterns from compiling. |
| 408 | /// |
| 409 | /// ``` |
| 410 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 411 | /// use regex_automata::meta::Regex; |
| 412 | /// |
| 413 | /// let result = Regex::builder() |
| 414 | /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10)))) |
| 415 | /// // Not even 20KB is enough to build a single large Unicode class! |
| 416 | /// .build(r"\pL" ); |
| 417 | /// assert!(result.is_err()); |
| 418 | /// |
| 419 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 420 | /// ``` |
| 421 | pub fn config() -> Config { |
| 422 | Config::new() |
| 423 | } |
| 424 | |
| 425 | /// Return a builder for configuring the construction of a `Regex`. |
| 426 | /// |
| 427 | /// This is a convenience routine to avoid needing to import the |
| 428 | /// [`Builder`] type in common cases. |
| 429 | /// |
| 430 | /// # Example: change the line terminator |
| 431 | /// |
| 432 | /// This example shows how to enable multi-line mode by default and change |
| 433 | /// the line terminator to the NUL byte: |
| 434 | /// |
| 435 | /// ``` |
| 436 | /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| 437 | /// |
| 438 | /// let re = Regex::builder() |
| 439 | /// .syntax(syntax::Config::new().multi_line(true)) |
| 440 | /// .configure(Regex::config().line_terminator(b' \x00' )) |
| 441 | /// .build(r"^foo$" )?; |
| 442 | /// let hay = " \x00foo \x00" ; |
| 443 | /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay)); |
| 444 | /// |
| 445 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 446 | /// ``` |
| 447 | pub fn builder() -> Builder { |
| 448 | Builder::new() |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | /// High level convenience routines for using a regex to search a haystack. |
| 453 | impl Regex { |
| 454 | /// Returns true if and only if this regex matches the given haystack. |
| 455 | /// |
| 456 | /// This routine may short circuit if it knows that scanning future input |
| 457 | /// will never lead to a different result. (Consider how this might make |
| 458 | /// a difference given the regex `a+` on the haystack `aaaaaaaaaaaaaaa`. |
| 459 | /// This routine _may_ stop after it sees the first `a`, but routines like |
| 460 | /// `find` need to continue searching because `+` is greedy by default.) |
| 461 | /// |
| 462 | /// # Example |
| 463 | /// |
| 464 | /// ``` |
| 465 | /// use regex_automata::meta::Regex; |
| 466 | /// |
| 467 | /// let re = Regex::new("foo[0-9]+bar" )?; |
| 468 | /// |
| 469 | /// assert!(re.is_match("foo12345bar" )); |
| 470 | /// assert!(!re.is_match("foobar" )); |
| 471 | /// |
| 472 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 473 | /// ``` |
| 474 | /// |
| 475 | /// # Example: consistency with search APIs |
| 476 | /// |
| 477 | /// `is_match` is guaranteed to return `true` whenever `find` returns a |
| 478 | /// match. This includes searches that are executed entirely within a |
| 479 | /// codepoint: |
| 480 | /// |
| 481 | /// ``` |
| 482 | /// use regex_automata::{meta::Regex, Input}; |
| 483 | /// |
| 484 | /// let re = Regex::new("a*" )?; |
| 485 | /// |
| 486 | /// // This doesn't match because the default configuration bans empty |
| 487 | /// // matches from splitting a codepoint. |
| 488 | /// assert!(!re.is_match(Input::new("☃" ).span(1..2))); |
| 489 | /// assert_eq!(None, re.find(Input::new("☃" ).span(1..2))); |
| 490 | /// |
| 491 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 492 | /// ``` |
| 493 | /// |
| 494 | /// Notice that when UTF-8 mode is disabled, then the above reports a |
| 495 | /// match because the restriction against zero-width matches that split a |
| 496 | /// codepoint has been lifted: |
| 497 | /// |
| 498 | /// ``` |
| 499 | /// use regex_automata::{meta::Regex, Input, Match}; |
| 500 | /// |
| 501 | /// let re = Regex::builder() |
| 502 | /// .configure(Regex::config().utf8_empty(false)) |
| 503 | /// .build("a*" )?; |
| 504 | /// |
| 505 | /// assert!(re.is_match(Input::new("☃" ).span(1..2))); |
| 506 | /// assert_eq!( |
| 507 | /// Some(Match::must(0, 1..1)), |
| 508 | /// re.find(Input::new("☃" ).span(1..2)), |
| 509 | /// ); |
| 510 | /// |
| 511 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 512 | /// ``` |
| 513 | /// |
| 514 | /// A similar idea applies when using line anchors with CRLF mode enabled, |
| 515 | /// which prevents them from matching between a `\r` and a `\n`. |
| 516 | /// |
| 517 | /// ``` |
| 518 | /// use regex_automata::{meta::Regex, Input, Match}; |
| 519 | /// |
| 520 | /// let re = Regex::new(r"(?Rm:$)" )?; |
| 521 | /// assert!(!re.is_match(Input::new(" \r\n" ).span(1..1))); |
| 522 | /// // A regular line anchor, which only considers \n as a |
| 523 | /// // line terminator, will match. |
| 524 | /// let re = Regex::new(r"(?m:$)" )?; |
| 525 | /// assert!(re.is_match(Input::new(" \r\n" ).span(1..1))); |
| 526 | /// |
| 527 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 528 | /// ``` |
| 529 | #[inline ] |
| 530 | pub fn is_match<'h, I: Into<Input<'h>>>(&self, input: I) -> bool { |
| 531 | let input = input.into().earliest(true); |
| 532 | if self.imp.info.is_impossible(&input) { |
| 533 | return false; |
| 534 | } |
| 535 | let mut guard = self.pool.get(); |
| 536 | let result = self.imp.strat.is_match(&mut guard, &input); |
| 537 | // See 'Regex::search' for why we put the guard back explicitly. |
| 538 | PoolGuard::put(guard); |
| 539 | result |
| 540 | } |
| 541 | |
| 542 | /// Executes a leftmost search and returns the first match that is found, |
| 543 | /// if one exists. |
| 544 | /// |
| 545 | /// # Example |
| 546 | /// |
| 547 | /// ``` |
| 548 | /// use regex_automata::{meta::Regex, Match}; |
| 549 | /// |
| 550 | /// let re = Regex::new("foo[0-9]+" )?; |
| 551 | /// assert_eq!(Some(Match::must(0, 0..8)), re.find("foo12345" )); |
| 552 | /// |
| 553 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 554 | /// ``` |
| 555 | #[inline ] |
| 556 | pub fn find<'h, I: Into<Input<'h>>>(&self, input: I) -> Option<Match> { |
| 557 | self.search(&input.into()) |
| 558 | } |
| 559 | |
| 560 | /// Executes a leftmost forward search and writes the spans of capturing |
| 561 | /// groups that participated in a match into the provided [`Captures`] |
| 562 | /// value. If no match was found, then [`Captures::is_match`] is guaranteed |
| 563 | /// to return `false`. |
| 564 | /// |
| 565 | /// # Example |
| 566 | /// |
| 567 | /// ``` |
| 568 | /// use regex_automata::{meta::Regex, Span}; |
| 569 | /// |
| 570 | /// let re = Regex::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$" )?; |
| 571 | /// let mut caps = re.create_captures(); |
| 572 | /// |
| 573 | /// re.captures("2010-03-14" , &mut caps); |
| 574 | /// assert!(caps.is_match()); |
| 575 | /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1)); |
| 576 | /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2)); |
| 577 | /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3)); |
| 578 | /// |
| 579 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 580 | /// ``` |
| 581 | #[inline ] |
| 582 | pub fn captures<'h, I: Into<Input<'h>>>( |
| 583 | &self, |
| 584 | input: I, |
| 585 | caps: &mut Captures, |
| 586 | ) { |
| 587 | self.search_captures(&input.into(), caps) |
| 588 | } |
| 589 | |
| 590 | /// Returns an iterator over all non-overlapping leftmost matches in |
| 591 | /// the given haystack. If no match exists, then the iterator yields no |
| 592 | /// elements. |
| 593 | /// |
| 594 | /// # Example |
| 595 | /// |
| 596 | /// ``` |
| 597 | /// use regex_automata::{meta::Regex, Match}; |
| 598 | /// |
| 599 | /// let re = Regex::new("foo[0-9]+" )?; |
| 600 | /// let haystack = "foo1 foo12 foo123" ; |
| 601 | /// let matches: Vec<Match> = re.find_iter(haystack).collect(); |
| 602 | /// assert_eq!(matches, vec![ |
| 603 | /// Match::must(0, 0..4), |
| 604 | /// Match::must(0, 5..10), |
| 605 | /// Match::must(0, 11..17), |
| 606 | /// ]); |
| 607 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 608 | /// ``` |
| 609 | #[inline ] |
| 610 | pub fn find_iter<'r, 'h, I: Into<Input<'h>>>( |
| 611 | &'r self, |
| 612 | input: I, |
| 613 | ) -> FindMatches<'r, 'h> { |
| 614 | let cache = self.pool.get(); |
| 615 | let it = iter::Searcher::new(input.into()); |
| 616 | FindMatches { re: self, cache, it } |
| 617 | } |
| 618 | |
| 619 | /// Returns an iterator over all non-overlapping `Captures` values. If no |
| 620 | /// match exists, then the iterator yields no elements. |
| 621 | /// |
| 622 | /// This yields the same matches as [`Regex::find_iter`], but it includes |
| 623 | /// the spans of all capturing groups that participate in each match. |
| 624 | /// |
| 625 | /// **Tip:** See [`util::iter::Searcher`](crate::util::iter::Searcher) for |
| 626 | /// how to correctly iterate over all matches in a haystack while avoiding |
| 627 | /// the creation of a new `Captures` value for every match. (Which you are |
| 628 | /// forced to do with an `Iterator`.) |
| 629 | /// |
| 630 | /// # Example |
| 631 | /// |
| 632 | /// ``` |
| 633 | /// use regex_automata::{meta::Regex, Span}; |
| 634 | /// |
| 635 | /// let re = Regex::new("foo(?P<numbers>[0-9]+)" )?; |
| 636 | /// |
| 637 | /// let haystack = "foo1 foo12 foo123" ; |
| 638 | /// let matches: Vec<Span> = re |
| 639 | /// .captures_iter(haystack) |
| 640 | /// // The unwrap is OK since 'numbers' matches if the pattern matches. |
| 641 | /// .map(|caps| caps.get_group_by_name("numbers" ).unwrap()) |
| 642 | /// .collect(); |
| 643 | /// assert_eq!(matches, vec![ |
| 644 | /// Span::from(3..4), |
| 645 | /// Span::from(8..10), |
| 646 | /// Span::from(14..17), |
| 647 | /// ]); |
| 648 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 649 | /// ``` |
| 650 | #[inline ] |
| 651 | pub fn captures_iter<'r, 'h, I: Into<Input<'h>>>( |
| 652 | &'r self, |
| 653 | input: I, |
| 654 | ) -> CapturesMatches<'r, 'h> { |
| 655 | let cache = self.pool.get(); |
| 656 | let caps = self.create_captures(); |
| 657 | let it = iter::Searcher::new(input.into()); |
| 658 | CapturesMatches { re: self, cache, caps, it } |
| 659 | } |
| 660 | |
| 661 | /// Returns an iterator of spans of the haystack given, delimited by a |
| 662 | /// match of the regex. Namely, each element of the iterator corresponds to |
| 663 | /// a part of the haystack that *isn't* matched by the regular expression. |
| 664 | /// |
| 665 | /// # Example |
| 666 | /// |
| 667 | /// To split a string delimited by arbitrary amounts of spaces or tabs: |
| 668 | /// |
| 669 | /// ``` |
| 670 | /// use regex_automata::meta::Regex; |
| 671 | /// |
| 672 | /// let re = Regex::new(r"[ \t]+" )?; |
| 673 | /// let hay = "a b \t c \td e" ; |
| 674 | /// let fields: Vec<&str> = re.split(hay).map(|span| &hay[span]).collect(); |
| 675 | /// assert_eq!(fields, vec!["a" , "b" , "c" , "d" , "e" ]); |
| 676 | /// |
| 677 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 678 | /// ``` |
| 679 | /// |
| 680 | /// # Example: more cases |
| 681 | /// |
| 682 | /// Basic usage: |
| 683 | /// |
| 684 | /// ``` |
| 685 | /// use regex_automata::meta::Regex; |
| 686 | /// |
| 687 | /// let re = Regex::new(r" " )?; |
| 688 | /// let hay = "Mary had a little lamb" ; |
| 689 | /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| 690 | /// assert_eq!(got, vec!["Mary" , "had" , "a" , "little" , "lamb" ]); |
| 691 | /// |
| 692 | /// let re = Regex::new(r"X" )?; |
| 693 | /// let hay = "" ; |
| 694 | /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| 695 | /// assert_eq!(got, vec!["" ]); |
| 696 | /// |
| 697 | /// let re = Regex::new(r"X" )?; |
| 698 | /// let hay = "lionXXtigerXleopard" ; |
| 699 | /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| 700 | /// assert_eq!(got, vec!["lion" , "" , "tiger" , "leopard" ]); |
| 701 | /// |
| 702 | /// let re = Regex::new(r"::" )?; |
| 703 | /// let hay = "lion::tiger::leopard" ; |
| 704 | /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| 705 | /// assert_eq!(got, vec!["lion" , "tiger" , "leopard" ]); |
| 706 | /// |
| 707 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 708 | /// ``` |
| 709 | /// |
| 710 | /// If a haystack contains multiple contiguous matches, you will end up |
| 711 | /// with empty spans yielded by the iterator: |
| 712 | /// |
| 713 | /// ``` |
| 714 | /// use regex_automata::meta::Regex; |
| 715 | /// |
| 716 | /// let re = Regex::new(r"X" )?; |
| 717 | /// let hay = "XXXXaXXbXc" ; |
| 718 | /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| 719 | /// assert_eq!(got, vec!["" , "" , "" , "" , "a" , "" , "b" , "c" ]); |
| 720 | /// |
| 721 | /// let re = Regex::new(r"/" )?; |
| 722 | /// let hay = "(///)" ; |
| 723 | /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| 724 | /// assert_eq!(got, vec!["(" , "" , "" , ")" ]); |
| 725 | /// |
| 726 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 727 | /// ``` |
| 728 | /// |
| 729 | /// Separators at the start or end of a haystack are neighbored by empty |
| 730 | /// spans. |
| 731 | /// |
| 732 | /// ``` |
| 733 | /// use regex_automata::meta::Regex; |
| 734 | /// |
| 735 | /// let re = Regex::new(r"0" )?; |
| 736 | /// let hay = "010" ; |
| 737 | /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| 738 | /// assert_eq!(got, vec!["" , "1" , "" ]); |
| 739 | /// |
| 740 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 741 | /// ``` |
| 742 | /// |
| 743 | /// When the empty string is used as a regex, it splits at every valid |
| 744 | /// UTF-8 boundary by default (which includes the beginning and end of the |
| 745 | /// haystack): |
| 746 | /// |
| 747 | /// ``` |
| 748 | /// use regex_automata::meta::Regex; |
| 749 | /// |
| 750 | /// let re = Regex::new(r"" )?; |
| 751 | /// let hay = "rust" ; |
| 752 | /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| 753 | /// assert_eq!(got, vec!["" , "r" , "u" , "s" , "t" , "" ]); |
| 754 | /// |
| 755 | /// // Splitting by an empty string is UTF-8 aware by default! |
| 756 | /// let re = Regex::new(r"" )?; |
| 757 | /// let hay = "☃" ; |
| 758 | /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| 759 | /// assert_eq!(got, vec!["" , "☃" , "" ]); |
| 760 | /// |
| 761 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 762 | /// ``` |
| 763 | /// |
| 764 | /// But note that UTF-8 mode for empty strings can be disabled, which will |
| 765 | /// then result in a match at every byte offset in the haystack, |
| 766 | /// including between every UTF-8 code unit. |
| 767 | /// |
| 768 | /// ``` |
| 769 | /// use regex_automata::meta::Regex; |
| 770 | /// |
| 771 | /// let re = Regex::builder() |
| 772 | /// .configure(Regex::config().utf8_empty(false)) |
| 773 | /// .build(r"" )?; |
| 774 | /// let hay = "☃" .as_bytes(); |
| 775 | /// let got: Vec<&[u8]> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| 776 | /// assert_eq!(got, vec![ |
| 777 | /// // Writing byte string slices is just brutal. The problem is that |
| 778 | /// // b"foo" has type &[u8; 3] instead of &[u8]. |
| 779 | /// &[][..], &[b' \xE2' ][..], &[b' \x98' ][..], &[b' \x83' ][..], &[][..], |
| 780 | /// ]); |
| 781 | /// |
| 782 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 783 | /// ``` |
| 784 | /// |
| 785 | /// Contiguous separators (commonly shows up with whitespace), can lead to |
| 786 | /// possibly surprising behavior. For example, this code is correct: |
| 787 | /// |
| 788 | /// ``` |
| 789 | /// use regex_automata::meta::Regex; |
| 790 | /// |
| 791 | /// let re = Regex::new(r" " )?; |
| 792 | /// let hay = " a b c" ; |
| 793 | /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| 794 | /// assert_eq!(got, vec!["" , "" , "" , "" , "a" , "" , "b" , "c" ]); |
| 795 | /// |
| 796 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 797 | /// ``` |
| 798 | /// |
| 799 | /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want |
| 800 | /// to match contiguous space characters: |
| 801 | /// |
| 802 | /// ``` |
| 803 | /// use regex_automata::meta::Regex; |
| 804 | /// |
| 805 | /// let re = Regex::new(r" +" )?; |
| 806 | /// let hay = " a b c" ; |
| 807 | /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect(); |
| 808 | /// // N.B. This does still include a leading empty span because ' +' |
| 809 | /// // matches at the beginning of the haystack. |
| 810 | /// assert_eq!(got, vec!["" , "a" , "b" , "c" ]); |
| 811 | /// |
| 812 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 813 | /// ``` |
| 814 | #[inline ] |
| 815 | pub fn split<'r, 'h, I: Into<Input<'h>>>( |
| 816 | &'r self, |
| 817 | input: I, |
| 818 | ) -> Split<'r, 'h> { |
| 819 | Split { finder: self.find_iter(input), last: 0 } |
| 820 | } |
| 821 | |
| 822 | /// Returns an iterator of at most `limit` spans of the haystack given, |
| 823 | /// delimited by a match of the regex. (A `limit` of `0` will return no |
| 824 | /// spans.) Namely, each element of the iterator corresponds to a part |
| 825 | /// of the haystack that *isn't* matched by the regular expression. The |
| 826 | /// remainder of the haystack that is not split will be the last element in |
| 827 | /// the iterator. |
| 828 | /// |
| 829 | /// # Example |
| 830 | /// |
| 831 | /// Get the first two words in some haystack: |
| 832 | /// |
| 833 | /// ``` |
| 834 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 835 | /// use regex_automata::meta::Regex; |
| 836 | /// |
| 837 | /// let re = Regex::new(r"\W+" ).unwrap(); |
| 838 | /// let hay = "Hey! How are you?" ; |
| 839 | /// let fields: Vec<&str> = |
| 840 | /// re.splitn(hay, 3).map(|span| &hay[span]).collect(); |
| 841 | /// assert_eq!(fields, vec!["Hey" , "How" , "are you?" ]); |
| 842 | /// |
| 843 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 844 | /// ``` |
| 845 | /// |
| 846 | /// # Examples: more cases |
| 847 | /// |
| 848 | /// ``` |
| 849 | /// use regex_automata::meta::Regex; |
| 850 | /// |
| 851 | /// let re = Regex::new(r" " )?; |
| 852 | /// let hay = "Mary had a little lamb" ; |
| 853 | /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect(); |
| 854 | /// assert_eq!(got, vec!["Mary" , "had" , "a little lamb" ]); |
| 855 | /// |
| 856 | /// let re = Regex::new(r"X" )?; |
| 857 | /// let hay = "" ; |
| 858 | /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect(); |
| 859 | /// assert_eq!(got, vec!["" ]); |
| 860 | /// |
| 861 | /// let re = Regex::new(r"X" )?; |
| 862 | /// let hay = "lionXXtigerXleopard" ; |
| 863 | /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect(); |
| 864 | /// assert_eq!(got, vec!["lion" , "" , "tigerXleopard" ]); |
| 865 | /// |
| 866 | /// let re = Regex::new(r"::" )?; |
| 867 | /// let hay = "lion::tiger::leopard" ; |
| 868 | /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect(); |
| 869 | /// assert_eq!(got, vec!["lion" , "tiger::leopard" ]); |
| 870 | /// |
| 871 | /// let re = Regex::new(r"X" )?; |
| 872 | /// let hay = "abcXdef" ; |
| 873 | /// let got: Vec<&str> = re.splitn(hay, 1).map(|sp| &hay[sp]).collect(); |
| 874 | /// assert_eq!(got, vec!["abcXdef" ]); |
| 875 | /// |
| 876 | /// let re = Regex::new(r"X" )?; |
| 877 | /// let hay = "abcdef" ; |
| 878 | /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect(); |
| 879 | /// assert_eq!(got, vec!["abcdef" ]); |
| 880 | /// |
| 881 | /// let re = Regex::new(r"X" )?; |
| 882 | /// let hay = "abcXdef" ; |
| 883 | /// let got: Vec<&str> = re.splitn(hay, 0).map(|sp| &hay[sp]).collect(); |
| 884 | /// assert!(got.is_empty()); |
| 885 | /// |
| 886 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 887 | /// ``` |
| 888 | pub fn splitn<'r, 'h, I: Into<Input<'h>>>( |
| 889 | &'r self, |
| 890 | input: I, |
| 891 | limit: usize, |
| 892 | ) -> SplitN<'r, 'h> { |
| 893 | SplitN { splits: self.split(input), limit } |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | /// Lower level search routines that give more control. |
| 898 | impl Regex { |
| 899 | /// Returns the start and end offset of the leftmost match. If no match |
| 900 | /// exists, then `None` is returned. |
| 901 | /// |
| 902 | /// This is like [`Regex::find`] but, but it accepts a concrete `&Input` |
| 903 | /// instead of an `Into<Input>`. |
| 904 | /// |
| 905 | /// # Example |
| 906 | /// |
| 907 | /// ``` |
| 908 | /// use regex_automata::{meta::Regex, Input, Match}; |
| 909 | /// |
| 910 | /// let re = Regex::new(r"Samwise|Sam" )?; |
| 911 | /// let input = Input::new( |
| 912 | /// "one of the chief characters, Samwise the Brave" , |
| 913 | /// ); |
| 914 | /// assert_eq!(Some(Match::must(0, 29..36)), re.search(&input)); |
| 915 | /// |
| 916 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 917 | /// ``` |
| 918 | #[inline ] |
| 919 | pub fn search(&self, input: &Input<'_>) -> Option<Match> { |
| 920 | if self.imp.info.is_impossible(input) { |
| 921 | return None; |
| 922 | } |
| 923 | let mut guard = self.pool.get(); |
| 924 | let result = self.imp.strat.search(&mut guard, input); |
| 925 | // We do this dance with the guard and explicitly put it back in the |
| 926 | // pool because it seems to result in better codegen. If we let the |
| 927 | // guard's Drop impl put it back in the pool, then functions like |
| 928 | // ptr::drop_in_place get called and they *don't* get inlined. This |
| 929 | // isn't usually a big deal, but in latency sensitive benchmarks the |
| 930 | // extra function call can matter. |
| 931 | // |
| 932 | // I used `rebar measure -f '^grep/every-line$' -e meta` to measure |
| 933 | // the effects here. |
| 934 | // |
| 935 | // Note that this doesn't eliminate the latency effects of using the |
| 936 | // pool. There is still some (minor) cost for the "thread owner" of the |
| 937 | // pool. (i.e., The thread that first calls a regex search routine.) |
| 938 | // However, for other threads using the regex, the pool access can be |
| 939 | // quite expensive as it goes through a mutex. Callers can avoid this |
| 940 | // by either cloning the Regex (which creates a distinct copy of the |
| 941 | // pool), or callers can use the lower level APIs that accept a 'Cache' |
| 942 | // directly and do their own handling. |
| 943 | PoolGuard::put(guard); |
| 944 | result |
| 945 | } |
| 946 | |
| 947 | /// Returns the end offset of the leftmost match. If no match exists, then |
| 948 | /// `None` is returned. |
| 949 | /// |
| 950 | /// This is distinct from [`Regex::search`] in that it only returns the end |
| 951 | /// of a match and not the start of the match. Depending on a variety of |
| 952 | /// implementation details, this _may_ permit the regex engine to do less |
| 953 | /// overall work. For example, if a DFA is being used to execute a search, |
| 954 | /// then the start of a match usually requires running a separate DFA in |
| 955 | /// reverse to the find the start of a match. If one only needs the end of |
| 956 | /// a match, then the separate reverse scan to find the start of a match |
| 957 | /// can be skipped. (Note that the reverse scan is avoided even when using |
| 958 | /// `Regex::search` when possible, for example, in the case of an anchored |
| 959 | /// search.) |
| 960 | /// |
| 961 | /// # Example |
| 962 | /// |
| 963 | /// ``` |
| 964 | /// use regex_automata::{meta::Regex, Input, HalfMatch}; |
| 965 | /// |
| 966 | /// let re = Regex::new(r"Samwise|Sam" )?; |
| 967 | /// let input = Input::new( |
| 968 | /// "one of the chief characters, Samwise the Brave" , |
| 969 | /// ); |
| 970 | /// assert_eq!(Some(HalfMatch::must(0, 36)), re.search_half(&input)); |
| 971 | /// |
| 972 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 973 | /// ``` |
| 974 | #[inline ] |
| 975 | pub fn search_half(&self, input: &Input<'_>) -> Option<HalfMatch> { |
| 976 | if self.imp.info.is_impossible(input) { |
| 977 | return None; |
| 978 | } |
| 979 | let mut guard = self.pool.get(); |
| 980 | let result = self.imp.strat.search_half(&mut guard, input); |
| 981 | // See 'Regex::search' for why we put the guard back explicitly. |
| 982 | PoolGuard::put(guard); |
| 983 | result |
| 984 | } |
| 985 | |
| 986 | /// Executes a leftmost forward search and writes the spans of capturing |
| 987 | /// groups that participated in a match into the provided [`Captures`] |
| 988 | /// value. If no match was found, then [`Captures::is_match`] is guaranteed |
| 989 | /// to return `false`. |
| 990 | /// |
| 991 | /// This is like [`Regex::captures`], but it accepts a concrete `&Input` |
| 992 | /// instead of an `Into<Input>`. |
| 993 | /// |
| 994 | /// # Example: specific pattern search |
| 995 | /// |
| 996 | /// This example shows how to build a multi-pattern `Regex` that permits |
| 997 | /// searching for specific patterns. |
| 998 | /// |
| 999 | /// ``` |
| 1000 | /// use regex_automata::{ |
| 1001 | /// meta::Regex, |
| 1002 | /// Anchored, Match, PatternID, Input, |
| 1003 | /// }; |
| 1004 | /// |
| 1005 | /// let re = Regex::new_many(&["[a-z0-9]{6}" , "[a-z][a-z0-9]{5}" ])?; |
| 1006 | /// let mut caps = re.create_captures(); |
| 1007 | /// let haystack = "foo123" ; |
| 1008 | /// |
| 1009 | /// // Since we are using the default leftmost-first match and both |
| 1010 | /// // patterns match at the same starting position, only the first pattern |
| 1011 | /// // will be returned in this case when doing a search for any of the |
| 1012 | /// // patterns. |
| 1013 | /// let expected = Some(Match::must(0, 0..6)); |
| 1014 | /// re.search_captures(&Input::new(haystack), &mut caps); |
| 1015 | /// assert_eq!(expected, caps.get_match()); |
| 1016 | /// |
| 1017 | /// // But if we want to check whether some other pattern matches, then we |
| 1018 | /// // can provide its pattern ID. |
| 1019 | /// let expected = Some(Match::must(1, 0..6)); |
| 1020 | /// let input = Input::new(haystack) |
| 1021 | /// .anchored(Anchored::Pattern(PatternID::must(1))); |
| 1022 | /// re.search_captures(&input, &mut caps); |
| 1023 | /// assert_eq!(expected, caps.get_match()); |
| 1024 | /// |
| 1025 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1026 | /// ``` |
| 1027 | /// |
| 1028 | /// # Example: specifying the bounds of a search |
| 1029 | /// |
| 1030 | /// This example shows how providing the bounds of a search can produce |
| 1031 | /// different results than simply sub-slicing the haystack. |
| 1032 | /// |
| 1033 | /// ``` |
| 1034 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 1035 | /// use regex_automata::{meta::Regex, Match, Input}; |
| 1036 | /// |
| 1037 | /// let re = Regex::new(r"\b[0-9]{3}\b" )?; |
| 1038 | /// let mut caps = re.create_captures(); |
| 1039 | /// let haystack = "foo123bar" ; |
| 1040 | /// |
| 1041 | /// // Since we sub-slice the haystack, the search doesn't know about |
| 1042 | /// // the larger context and assumes that `123` is surrounded by word |
| 1043 | /// // boundaries. And of course, the match position is reported relative |
| 1044 | /// // to the sub-slice as well, which means we get `0..3` instead of |
| 1045 | /// // `3..6`. |
| 1046 | /// let expected = Some(Match::must(0, 0..3)); |
| 1047 | /// let input = Input::new(&haystack[3..6]); |
| 1048 | /// re.search_captures(&input, &mut caps); |
| 1049 | /// assert_eq!(expected, caps.get_match()); |
| 1050 | /// |
| 1051 | /// // But if we provide the bounds of the search within the context of the |
| 1052 | /// // entire haystack, then the search can take the surrounding context |
| 1053 | /// // into account. (And if we did find a match, it would be reported |
| 1054 | /// // as a valid offset into `haystack` instead of its sub-slice.) |
| 1055 | /// let expected = None; |
| 1056 | /// let input = Input::new(haystack).range(3..6); |
| 1057 | /// re.search_captures(&input, &mut caps); |
| 1058 | /// assert_eq!(expected, caps.get_match()); |
| 1059 | /// |
| 1060 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1061 | /// ``` |
| 1062 | #[inline ] |
| 1063 | pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) { |
| 1064 | caps.set_pattern(None); |
| 1065 | let pid = self.search_slots(input, caps.slots_mut()); |
| 1066 | caps.set_pattern(pid); |
| 1067 | } |
| 1068 | |
| 1069 | /// Executes a leftmost forward search and writes the spans of capturing |
| 1070 | /// groups that participated in a match into the provided `slots`, and |
| 1071 | /// returns the matching pattern ID. The contents of the slots for patterns |
| 1072 | /// other than the matching pattern are unspecified. If no match was found, |
| 1073 | /// then `None` is returned and the contents of `slots` is unspecified. |
| 1074 | /// |
| 1075 | /// This is like [`Regex::search`], but it accepts a raw slots slice |
| 1076 | /// instead of a `Captures` value. This is useful in contexts where you |
| 1077 | /// don't want or need to allocate a `Captures`. |
| 1078 | /// |
| 1079 | /// It is legal to pass _any_ number of slots to this routine. If the regex |
| 1080 | /// engine would otherwise write a slot offset that doesn't fit in the |
| 1081 | /// provided slice, then it is simply skipped. In general though, there are |
| 1082 | /// usually three slice lengths you might want to use: |
| 1083 | /// |
| 1084 | /// * An empty slice, if you only care about which pattern matched. |
| 1085 | /// * A slice with [`pattern_len() * 2`](Regex::pattern_len) slots, if you |
| 1086 | /// only care about the overall match spans for each matching pattern. |
| 1087 | /// * A slice with |
| 1088 | /// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which |
| 1089 | /// permits recording match offsets for every capturing group in every |
| 1090 | /// pattern. |
| 1091 | /// |
| 1092 | /// # Example |
| 1093 | /// |
| 1094 | /// This example shows how to find the overall match offsets in a |
| 1095 | /// multi-pattern search without allocating a `Captures` value. Indeed, we |
| 1096 | /// can put our slots right on the stack. |
| 1097 | /// |
| 1098 | /// ``` |
| 1099 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 1100 | /// use regex_automata::{meta::Regex, PatternID, Input}; |
| 1101 | /// |
| 1102 | /// let re = Regex::new_many(&[ |
| 1103 | /// r"\pL+" , |
| 1104 | /// r"\d+" , |
| 1105 | /// ])?; |
| 1106 | /// let input = Input::new("!@#123" ); |
| 1107 | /// |
| 1108 | /// // We only care about the overall match offsets here, so we just |
| 1109 | /// // allocate two slots for each pattern. Each slot records the start |
| 1110 | /// // and end of the match. |
| 1111 | /// let mut slots = [None; 4]; |
| 1112 | /// let pid = re.search_slots(&input, &mut slots); |
| 1113 | /// assert_eq!(Some(PatternID::must(1)), pid); |
| 1114 | /// |
| 1115 | /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'. |
| 1116 | /// // See 'GroupInfo' for more details on the mapping between groups and |
| 1117 | /// // slot indices. |
| 1118 | /// let slot_start = pid.unwrap().as_usize() * 2; |
| 1119 | /// let slot_end = slot_start + 1; |
| 1120 | /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get())); |
| 1121 | /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get())); |
| 1122 | /// |
| 1123 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1124 | /// ``` |
| 1125 | #[inline ] |
| 1126 | pub fn search_slots( |
| 1127 | &self, |
| 1128 | input: &Input<'_>, |
| 1129 | slots: &mut [Option<NonMaxUsize>], |
| 1130 | ) -> Option<PatternID> { |
| 1131 | if self.imp.info.is_impossible(input) { |
| 1132 | return None; |
| 1133 | } |
| 1134 | let mut guard = self.pool.get(); |
| 1135 | let result = self.imp.strat.search_slots(&mut guard, input, slots); |
| 1136 | // See 'Regex::search' for why we put the guard back explicitly. |
| 1137 | PoolGuard::put(guard); |
| 1138 | result |
| 1139 | } |
| 1140 | |
| 1141 | /// Writes the set of patterns that match anywhere in the given search |
| 1142 | /// configuration to `patset`. If multiple patterns match at the same |
| 1143 | /// position and this `Regex` was configured with [`MatchKind::All`] |
| 1144 | /// semantics, then all matching patterns are written to the given set. |
| 1145 | /// |
| 1146 | /// Unless all of the patterns in this `Regex` are anchored, then generally |
| 1147 | /// speaking, this will scan the entire haystack. |
| 1148 | /// |
| 1149 | /// This search routine *does not* clear the pattern set. This gives some |
| 1150 | /// flexibility to the caller (e.g., running multiple searches with the |
| 1151 | /// same pattern set), but does make the API bug-prone if you're reusing |
| 1152 | /// the same pattern set for multiple searches but intended them to be |
| 1153 | /// independent. |
| 1154 | /// |
| 1155 | /// If a pattern ID matched but the given `PatternSet` does not have |
| 1156 | /// sufficient capacity to store it, then it is not inserted and silently |
| 1157 | /// dropped. |
| 1158 | /// |
| 1159 | /// # Example |
| 1160 | /// |
| 1161 | /// This example shows how to find all matching patterns in a haystack, |
| 1162 | /// even when some patterns match at the same position as other patterns. |
| 1163 | /// It is important that we configure the `Regex` with [`MatchKind::All`] |
| 1164 | /// semantics here, or else overlapping matches will not be reported. |
| 1165 | /// |
| 1166 | /// ``` |
| 1167 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 1168 | /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet}; |
| 1169 | /// |
| 1170 | /// let patterns = &[ |
| 1171 | /// r"\w+" , r"\d+" , r"\pL+" , r"foo" , r"bar" , r"barfoo" , r"foobar" , |
| 1172 | /// ]; |
| 1173 | /// let re = Regex::builder() |
| 1174 | /// .configure(Regex::config().match_kind(MatchKind::All)) |
| 1175 | /// .build_many(patterns)?; |
| 1176 | /// |
| 1177 | /// let input = Input::new("foobar" ); |
| 1178 | /// let mut patset = PatternSet::new(re.pattern_len()); |
| 1179 | /// re.which_overlapping_matches(&input, &mut patset); |
| 1180 | /// let expected = vec![0, 2, 3, 4, 6]; |
| 1181 | /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect(); |
| 1182 | /// assert_eq!(expected, got); |
| 1183 | /// |
| 1184 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1185 | /// ``` |
| 1186 | #[inline ] |
| 1187 | pub fn which_overlapping_matches( |
| 1188 | &self, |
| 1189 | input: &Input<'_>, |
| 1190 | patset: &mut PatternSet, |
| 1191 | ) { |
| 1192 | if self.imp.info.is_impossible(input) { |
| 1193 | return; |
| 1194 | } |
| 1195 | let mut guard = self.pool.get(); |
| 1196 | let result = self |
| 1197 | .imp |
| 1198 | .strat |
| 1199 | .which_overlapping_matches(&mut guard, input, patset); |
| 1200 | // See 'Regex::search' for why we put the guard back explicitly. |
| 1201 | PoolGuard::put(guard); |
| 1202 | result |
| 1203 | } |
| 1204 | } |
| 1205 | |
| 1206 | /// Lower level search routines that give more control, and require the caller |
| 1207 | /// to provide an explicit [`Cache`] parameter. |
| 1208 | impl Regex { |
| 1209 | /// This is like [`Regex::search`], but requires the caller to |
| 1210 | /// explicitly pass a [`Cache`]. |
| 1211 | /// |
| 1212 | /// # Why pass a `Cache` explicitly? |
| 1213 | /// |
| 1214 | /// Passing a `Cache` explicitly will bypass the use of an internal memory |
| 1215 | /// pool used by `Regex` to get a `Cache` for a search. The use of this |
| 1216 | /// pool can be slower in some cases when a `Regex` is used from multiple |
| 1217 | /// threads simultaneously. Typically, performance only becomes an issue |
| 1218 | /// when there is heavy contention, which in turn usually only occurs |
| 1219 | /// when each thread's primary unit of work is a regex search on a small |
| 1220 | /// haystack. |
| 1221 | /// |
| 1222 | /// # Example |
| 1223 | /// |
| 1224 | /// ``` |
| 1225 | /// use regex_automata::{meta::Regex, Input, Match}; |
| 1226 | /// |
| 1227 | /// let re = Regex::new(r"Samwise|Sam" )?; |
| 1228 | /// let mut cache = re.create_cache(); |
| 1229 | /// let input = Input::new( |
| 1230 | /// "one of the chief characters, Samwise the Brave" , |
| 1231 | /// ); |
| 1232 | /// assert_eq!( |
| 1233 | /// Some(Match::must(0, 29..36)), |
| 1234 | /// re.search_with(&mut cache, &input), |
| 1235 | /// ); |
| 1236 | /// |
| 1237 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1238 | /// ``` |
| 1239 | #[inline ] |
| 1240 | pub fn search_with( |
| 1241 | &self, |
| 1242 | cache: &mut Cache, |
| 1243 | input: &Input<'_>, |
| 1244 | ) -> Option<Match> { |
| 1245 | if self.imp.info.is_impossible(input) { |
| 1246 | return None; |
| 1247 | } |
| 1248 | self.imp.strat.search(cache, input) |
| 1249 | } |
| 1250 | |
| 1251 | /// This is like [`Regex::search_half`], but requires the caller to |
| 1252 | /// explicitly pass a [`Cache`]. |
| 1253 | /// |
| 1254 | /// # Why pass a `Cache` explicitly? |
| 1255 | /// |
| 1256 | /// Passing a `Cache` explicitly will bypass the use of an internal memory |
| 1257 | /// pool used by `Regex` to get a `Cache` for a search. The use of this |
| 1258 | /// pool can be slower in some cases when a `Regex` is used from multiple |
| 1259 | /// threads simultaneously. Typically, performance only becomes an issue |
| 1260 | /// when there is heavy contention, which in turn usually only occurs |
| 1261 | /// when each thread's primary unit of work is a regex search on a small |
| 1262 | /// haystack. |
| 1263 | /// |
| 1264 | /// # Example |
| 1265 | /// |
| 1266 | /// ``` |
| 1267 | /// use regex_automata::{meta::Regex, Input, HalfMatch}; |
| 1268 | /// |
| 1269 | /// let re = Regex::new(r"Samwise|Sam" )?; |
| 1270 | /// let mut cache = re.create_cache(); |
| 1271 | /// let input = Input::new( |
| 1272 | /// "one of the chief characters, Samwise the Brave" , |
| 1273 | /// ); |
| 1274 | /// assert_eq!( |
| 1275 | /// Some(HalfMatch::must(0, 36)), |
| 1276 | /// re.search_half_with(&mut cache, &input), |
| 1277 | /// ); |
| 1278 | /// |
| 1279 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1280 | /// ``` |
| 1281 | #[inline ] |
| 1282 | pub fn search_half_with( |
| 1283 | &self, |
| 1284 | cache: &mut Cache, |
| 1285 | input: &Input<'_>, |
| 1286 | ) -> Option<HalfMatch> { |
| 1287 | if self.imp.info.is_impossible(input) { |
| 1288 | return None; |
| 1289 | } |
| 1290 | self.imp.strat.search_half(cache, input) |
| 1291 | } |
| 1292 | |
| 1293 | /// This is like [`Regex::search_captures`], but requires the caller to |
| 1294 | /// explicitly pass a [`Cache`]. |
| 1295 | /// |
| 1296 | /// # Why pass a `Cache` explicitly? |
| 1297 | /// |
| 1298 | /// Passing a `Cache` explicitly will bypass the use of an internal memory |
| 1299 | /// pool used by `Regex` to get a `Cache` for a search. The use of this |
| 1300 | /// pool can be slower in some cases when a `Regex` is used from multiple |
| 1301 | /// threads simultaneously. Typically, performance only becomes an issue |
| 1302 | /// when there is heavy contention, which in turn usually only occurs |
| 1303 | /// when each thread's primary unit of work is a regex search on a small |
| 1304 | /// haystack. |
| 1305 | /// |
| 1306 | /// # Example: specific pattern search |
| 1307 | /// |
| 1308 | /// This example shows how to build a multi-pattern `Regex` that permits |
| 1309 | /// searching for specific patterns. |
| 1310 | /// |
| 1311 | /// ``` |
| 1312 | /// use regex_automata::{ |
| 1313 | /// meta::Regex, |
| 1314 | /// Anchored, Match, PatternID, Input, |
| 1315 | /// }; |
| 1316 | /// |
| 1317 | /// let re = Regex::new_many(&["[a-z0-9]{6}" , "[a-z][a-z0-9]{5}" ])?; |
| 1318 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| 1319 | /// let haystack = "foo123" ; |
| 1320 | /// |
| 1321 | /// // Since we are using the default leftmost-first match and both |
| 1322 | /// // patterns match at the same starting position, only the first pattern |
| 1323 | /// // will be returned in this case when doing a search for any of the |
| 1324 | /// // patterns. |
| 1325 | /// let expected = Some(Match::must(0, 0..6)); |
| 1326 | /// re.search_captures_with(&mut cache, &Input::new(haystack), &mut caps); |
| 1327 | /// assert_eq!(expected, caps.get_match()); |
| 1328 | /// |
| 1329 | /// // But if we want to check whether some other pattern matches, then we |
| 1330 | /// // can provide its pattern ID. |
| 1331 | /// let expected = Some(Match::must(1, 0..6)); |
| 1332 | /// let input = Input::new(haystack) |
| 1333 | /// .anchored(Anchored::Pattern(PatternID::must(1))); |
| 1334 | /// re.search_captures_with(&mut cache, &input, &mut caps); |
| 1335 | /// assert_eq!(expected, caps.get_match()); |
| 1336 | /// |
| 1337 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1338 | /// ``` |
| 1339 | /// |
| 1340 | /// # Example: specifying the bounds of a search |
| 1341 | /// |
| 1342 | /// This example shows how providing the bounds of a search can produce |
| 1343 | /// different results than simply sub-slicing the haystack. |
| 1344 | /// |
| 1345 | /// ``` |
| 1346 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 1347 | /// use regex_automata::{meta::Regex, Match, Input}; |
| 1348 | /// |
| 1349 | /// let re = Regex::new(r"\b[0-9]{3}\b" )?; |
| 1350 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| 1351 | /// let haystack = "foo123bar" ; |
| 1352 | /// |
| 1353 | /// // Since we sub-slice the haystack, the search doesn't know about |
| 1354 | /// // the larger context and assumes that `123` is surrounded by word |
| 1355 | /// // boundaries. And of course, the match position is reported relative |
| 1356 | /// // to the sub-slice as well, which means we get `0..3` instead of |
| 1357 | /// // `3..6`. |
| 1358 | /// let expected = Some(Match::must(0, 0..3)); |
| 1359 | /// let input = Input::new(&haystack[3..6]); |
| 1360 | /// re.search_captures_with(&mut cache, &input, &mut caps); |
| 1361 | /// assert_eq!(expected, caps.get_match()); |
| 1362 | /// |
| 1363 | /// // But if we provide the bounds of the search within the context of the |
| 1364 | /// // entire haystack, then the search can take the surrounding context |
| 1365 | /// // into account. (And if we did find a match, it would be reported |
| 1366 | /// // as a valid offset into `haystack` instead of its sub-slice.) |
| 1367 | /// let expected = None; |
| 1368 | /// let input = Input::new(haystack).range(3..6); |
| 1369 | /// re.search_captures_with(&mut cache, &input, &mut caps); |
| 1370 | /// assert_eq!(expected, caps.get_match()); |
| 1371 | /// |
| 1372 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1373 | /// ``` |
| 1374 | #[inline ] |
| 1375 | pub fn search_captures_with( |
| 1376 | &self, |
| 1377 | cache: &mut Cache, |
| 1378 | input: &Input<'_>, |
| 1379 | caps: &mut Captures, |
| 1380 | ) { |
| 1381 | caps.set_pattern(None); |
| 1382 | let pid = self.search_slots_with(cache, input, caps.slots_mut()); |
| 1383 | caps.set_pattern(pid); |
| 1384 | } |
| 1385 | |
| 1386 | /// This is like [`Regex::search_slots`], but requires the caller to |
| 1387 | /// explicitly pass a [`Cache`]. |
| 1388 | /// |
| 1389 | /// # Why pass a `Cache` explicitly? |
| 1390 | /// |
| 1391 | /// Passing a `Cache` explicitly will bypass the use of an internal memory |
| 1392 | /// pool used by `Regex` to get a `Cache` for a search. The use of this |
| 1393 | /// pool can be slower in some cases when a `Regex` is used from multiple |
| 1394 | /// threads simultaneously. Typically, performance only becomes an issue |
| 1395 | /// when there is heavy contention, which in turn usually only occurs |
| 1396 | /// when each thread's primary unit of work is a regex search on a small |
| 1397 | /// haystack. |
| 1398 | /// |
| 1399 | /// # Example |
| 1400 | /// |
| 1401 | /// This example shows how to find the overall match offsets in a |
| 1402 | /// multi-pattern search without allocating a `Captures` value. Indeed, we |
| 1403 | /// can put our slots right on the stack. |
| 1404 | /// |
| 1405 | /// ``` |
| 1406 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 1407 | /// use regex_automata::{meta::Regex, PatternID, Input}; |
| 1408 | /// |
| 1409 | /// let re = Regex::new_many(&[ |
| 1410 | /// r"\pL+" , |
| 1411 | /// r"\d+" , |
| 1412 | /// ])?; |
| 1413 | /// let mut cache = re.create_cache(); |
| 1414 | /// let input = Input::new("!@#123" ); |
| 1415 | /// |
| 1416 | /// // We only care about the overall match offsets here, so we just |
| 1417 | /// // allocate two slots for each pattern. Each slot records the start |
| 1418 | /// // and end of the match. |
| 1419 | /// let mut slots = [None; 4]; |
| 1420 | /// let pid = re.search_slots_with(&mut cache, &input, &mut slots); |
| 1421 | /// assert_eq!(Some(PatternID::must(1)), pid); |
| 1422 | /// |
| 1423 | /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'. |
| 1424 | /// // See 'GroupInfo' for more details on the mapping between groups and |
| 1425 | /// // slot indices. |
| 1426 | /// let slot_start = pid.unwrap().as_usize() * 2; |
| 1427 | /// let slot_end = slot_start + 1; |
| 1428 | /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get())); |
| 1429 | /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get())); |
| 1430 | /// |
| 1431 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1432 | /// ``` |
| 1433 | #[inline ] |
| 1434 | pub fn search_slots_with( |
| 1435 | &self, |
| 1436 | cache: &mut Cache, |
| 1437 | input: &Input<'_>, |
| 1438 | slots: &mut [Option<NonMaxUsize>], |
| 1439 | ) -> Option<PatternID> { |
| 1440 | if self.imp.info.is_impossible(input) { |
| 1441 | return None; |
| 1442 | } |
| 1443 | self.imp.strat.search_slots(cache, input, slots) |
| 1444 | } |
| 1445 | |
| 1446 | /// This is like [`Regex::which_overlapping_matches`], but requires the |
| 1447 | /// caller to explicitly pass a [`Cache`]. |
| 1448 | /// |
| 1449 | /// Passing a `Cache` explicitly will bypass the use of an internal memory |
| 1450 | /// pool used by `Regex` to get a `Cache` for a search. The use of this |
| 1451 | /// pool can be slower in some cases when a `Regex` is used from multiple |
| 1452 | /// threads simultaneously. Typically, performance only becomes an issue |
| 1453 | /// when there is heavy contention, which in turn usually only occurs |
| 1454 | /// when each thread's primary unit of work is a regex search on a small |
| 1455 | /// haystack. |
| 1456 | /// |
| 1457 | /// # Why pass a `Cache` explicitly? |
| 1458 | /// |
| 1459 | /// # Example |
| 1460 | /// |
| 1461 | /// ``` |
| 1462 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 1463 | /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet}; |
| 1464 | /// |
| 1465 | /// let patterns = &[ |
| 1466 | /// r"\w+" , r"\d+" , r"\pL+" , r"foo" , r"bar" , r"barfoo" , r"foobar" , |
| 1467 | /// ]; |
| 1468 | /// let re = Regex::builder() |
| 1469 | /// .configure(Regex::config().match_kind(MatchKind::All)) |
| 1470 | /// .build_many(patterns)?; |
| 1471 | /// let mut cache = re.create_cache(); |
| 1472 | /// |
| 1473 | /// let input = Input::new("foobar" ); |
| 1474 | /// let mut patset = PatternSet::new(re.pattern_len()); |
| 1475 | /// re.which_overlapping_matches_with(&mut cache, &input, &mut patset); |
| 1476 | /// let expected = vec![0, 2, 3, 4, 6]; |
| 1477 | /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect(); |
| 1478 | /// assert_eq!(expected, got); |
| 1479 | /// |
| 1480 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1481 | /// ``` |
| 1482 | #[inline ] |
| 1483 | pub fn which_overlapping_matches_with( |
| 1484 | &self, |
| 1485 | cache: &mut Cache, |
| 1486 | input: &Input<'_>, |
| 1487 | patset: &mut PatternSet, |
| 1488 | ) { |
| 1489 | if self.imp.info.is_impossible(input) { |
| 1490 | return; |
| 1491 | } |
| 1492 | self.imp.strat.which_overlapping_matches(cache, input, patset) |
| 1493 | } |
| 1494 | } |
| 1495 | |
| 1496 | /// Various non-search routines for querying properties of a `Regex` and |
| 1497 | /// convenience routines for creating [`Captures`] and [`Cache`] values. |
| 1498 | impl Regex { |
| 1499 | /// Creates a new object for recording capture group offsets. This is used |
| 1500 | /// in search APIs like [`Regex::captures`] and [`Regex::search_captures`]. |
| 1501 | /// |
| 1502 | /// This is a convenience routine for |
| 1503 | /// `Captures::all(re.group_info().clone())`. Callers may build other types |
| 1504 | /// of `Captures` values that record less information (and thus require |
| 1505 | /// less work from the regex engine) using [`Captures::matches`] and |
| 1506 | /// [`Captures::empty`]. |
| 1507 | /// |
| 1508 | /// # Example |
| 1509 | /// |
| 1510 | /// This shows some alternatives to [`Regex::create_captures`]: |
| 1511 | /// |
| 1512 | /// ``` |
| 1513 | /// use regex_automata::{ |
| 1514 | /// meta::Regex, |
| 1515 | /// util::captures::Captures, |
| 1516 | /// Match, PatternID, Span, |
| 1517 | /// }; |
| 1518 | /// |
| 1519 | /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)" )?; |
| 1520 | /// |
| 1521 | /// // This is equivalent to Regex::create_captures. It stores matching |
| 1522 | /// // offsets for all groups in the regex. |
| 1523 | /// let mut all = Captures::all(re.group_info().clone()); |
| 1524 | /// re.captures("Bruce Springsteen" , &mut all); |
| 1525 | /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match()); |
| 1526 | /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first" )); |
| 1527 | /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last" )); |
| 1528 | /// |
| 1529 | /// // In this version, we only care about the implicit groups, which |
| 1530 | /// // means offsets for the explicit groups will be unavailable. It can |
| 1531 | /// // sometimes be faster to ask for fewer groups, since the underlying |
| 1532 | /// // regex engine needs to do less work to keep track of them. |
| 1533 | /// let mut matches = Captures::matches(re.group_info().clone()); |
| 1534 | /// re.captures("Bruce Springsteen" , &mut matches); |
| 1535 | /// // We still get the overall match info. |
| 1536 | /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match()); |
| 1537 | /// // But now the explicit groups are unavailable. |
| 1538 | /// assert_eq!(None, matches.get_group_by_name("first" )); |
| 1539 | /// assert_eq!(None, matches.get_group_by_name("last" )); |
| 1540 | /// |
| 1541 | /// // Finally, in this version, we don't ask to keep track of offsets for |
| 1542 | /// // *any* groups. All we get back is whether a match occurred, and if |
| 1543 | /// // so, the ID of the pattern that matched. |
| 1544 | /// let mut empty = Captures::empty(re.group_info().clone()); |
| 1545 | /// re.captures("Bruce Springsteen" , &mut empty); |
| 1546 | /// // it's a match! |
| 1547 | /// assert!(empty.is_match()); |
| 1548 | /// // for pattern ID 0 |
| 1549 | /// assert_eq!(Some(PatternID::ZERO), empty.pattern()); |
| 1550 | /// // Match offsets are unavailable. |
| 1551 | /// assert_eq!(None, empty.get_match()); |
| 1552 | /// // And of course, explicit groups are unavailable too. |
| 1553 | /// assert_eq!(None, empty.get_group_by_name("first" )); |
| 1554 | /// assert_eq!(None, empty.get_group_by_name("last" )); |
| 1555 | /// |
| 1556 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1557 | /// ``` |
| 1558 | pub fn create_captures(&self) -> Captures { |
| 1559 | Captures::all(self.group_info().clone()) |
| 1560 | } |
| 1561 | |
| 1562 | /// Creates a new cache for use with lower level search APIs like |
| 1563 | /// [`Regex::search_with`]. |
| 1564 | /// |
| 1565 | /// The cache returned should only be used for searches for this `Regex`. |
| 1566 | /// If you want to reuse the cache for another `Regex`, then you must call |
| 1567 | /// [`Cache::reset`] with that `Regex`. |
| 1568 | /// |
| 1569 | /// This is a convenience routine for [`Cache::new`]. |
| 1570 | /// |
| 1571 | /// # Example |
| 1572 | /// |
| 1573 | /// ``` |
| 1574 | /// use regex_automata::{meta::Regex, Input, Match}; |
| 1575 | /// |
| 1576 | /// let re = Regex::new(r"(?-u)m\w+\s+m\w+" )?; |
| 1577 | /// let mut cache = re.create_cache(); |
| 1578 | /// let input = Input::new("crazy janey and her mission man" ); |
| 1579 | /// assert_eq!( |
| 1580 | /// Some(Match::must(0, 20..31)), |
| 1581 | /// re.search_with(&mut cache, &input), |
| 1582 | /// ); |
| 1583 | /// |
| 1584 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1585 | /// ``` |
| 1586 | pub fn create_cache(&self) -> Cache { |
| 1587 | self.imp.strat.create_cache() |
| 1588 | } |
| 1589 | |
| 1590 | /// Returns the total number of patterns in this regex. |
| 1591 | /// |
| 1592 | /// The standard [`Regex::new`] constructor always results in a `Regex` |
| 1593 | /// with a single pattern, but [`Regex::new_many`] permits building a |
| 1594 | /// multi-pattern regex. |
| 1595 | /// |
| 1596 | /// A `Regex` guarantees that the maximum possible `PatternID` returned in |
| 1597 | /// any match is `Regex::pattern_len() - 1`. In the case where the number |
| 1598 | /// of patterns is `0`, a match is impossible. |
| 1599 | /// |
| 1600 | /// # Example |
| 1601 | /// |
| 1602 | /// ``` |
| 1603 | /// use regex_automata::meta::Regex; |
| 1604 | /// |
| 1605 | /// let re = Regex::new(r"(?m)^[a-z]$" )?; |
| 1606 | /// assert_eq!(1, re.pattern_len()); |
| 1607 | /// |
| 1608 | /// let re = Regex::new_many::<&str>(&[])?; |
| 1609 | /// assert_eq!(0, re.pattern_len()); |
| 1610 | /// |
| 1611 | /// let re = Regex::new_many(&["a" , "b" , "c" ])?; |
| 1612 | /// assert_eq!(3, re.pattern_len()); |
| 1613 | /// |
| 1614 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1615 | /// ``` |
| 1616 | pub fn pattern_len(&self) -> usize { |
| 1617 | self.imp.info.pattern_len() |
| 1618 | } |
| 1619 | |
| 1620 | /// Returns the total number of capturing groups. |
| 1621 | /// |
| 1622 | /// This includes the implicit capturing group corresponding to the |
| 1623 | /// entire match. Therefore, the minimum value returned is `1`. |
| 1624 | /// |
| 1625 | /// # Example |
| 1626 | /// |
| 1627 | /// This shows a few patterns and how many capture groups they have. |
| 1628 | /// |
| 1629 | /// ``` |
| 1630 | /// use regex_automata::meta::Regex; |
| 1631 | /// |
| 1632 | /// let len = |pattern| { |
| 1633 | /// Regex::new(pattern).map(|re| re.captures_len()) |
| 1634 | /// }; |
| 1635 | /// |
| 1636 | /// assert_eq!(1, len("a" )?); |
| 1637 | /// assert_eq!(2, len("(a)" )?); |
| 1638 | /// assert_eq!(3, len("(a)|(b)" )?); |
| 1639 | /// assert_eq!(5, len("(a)(b)|(c)(d)" )?); |
| 1640 | /// assert_eq!(2, len("(a)|b" )?); |
| 1641 | /// assert_eq!(2, len("a|(b)" )?); |
| 1642 | /// assert_eq!(2, len("(b)*" )?); |
| 1643 | /// assert_eq!(2, len("(b)+" )?); |
| 1644 | /// |
| 1645 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1646 | /// ``` |
| 1647 | /// |
| 1648 | /// # Example: multiple patterns |
| 1649 | /// |
| 1650 | /// This routine also works for multiple patterns. The total number is |
| 1651 | /// the sum of the capture groups of each pattern. |
| 1652 | /// |
| 1653 | /// ``` |
| 1654 | /// use regex_automata::meta::Regex; |
| 1655 | /// |
| 1656 | /// let len = |patterns| { |
| 1657 | /// Regex::new_many(patterns).map(|re| re.captures_len()) |
| 1658 | /// }; |
| 1659 | /// |
| 1660 | /// assert_eq!(2, len(&["a" , "b" ])?); |
| 1661 | /// assert_eq!(4, len(&["(a)" , "(b)" ])?); |
| 1662 | /// assert_eq!(6, len(&["(a)|(b)" , "(c)|(d)" ])?); |
| 1663 | /// assert_eq!(8, len(&["(a)(b)|(c)(d)" , "(x)(y)" ])?); |
| 1664 | /// assert_eq!(3, len(&["(a)" , "b" ])?); |
| 1665 | /// assert_eq!(3, len(&["a" , "(b)" ])?); |
| 1666 | /// assert_eq!(4, len(&["(a)" , "(b)*" ])?); |
| 1667 | /// assert_eq!(4, len(&["(a)+" , "(b)+" ])?); |
| 1668 | /// |
| 1669 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1670 | /// ``` |
| 1671 | pub fn captures_len(&self) -> usize { |
| 1672 | self.imp |
| 1673 | .info |
| 1674 | .props_union() |
| 1675 | .explicit_captures_len() |
| 1676 | .saturating_add(self.pattern_len()) |
| 1677 | } |
| 1678 | |
| 1679 | /// Returns the total number of capturing groups that appear in every |
| 1680 | /// possible match. |
| 1681 | /// |
| 1682 | /// If the number of capture groups can vary depending on the match, then |
| 1683 | /// this returns `None`. That is, a value is only returned when the number |
| 1684 | /// of matching groups is invariant or "static." |
| 1685 | /// |
| 1686 | /// Note that like [`Regex::captures_len`], this **does** include the |
| 1687 | /// implicit capturing group corresponding to the entire match. Therefore, |
| 1688 | /// when a non-None value is returned, it is guaranteed to be at least `1`. |
| 1689 | /// Stated differently, a return value of `Some(0)` is impossible. |
| 1690 | /// |
| 1691 | /// # Example |
| 1692 | /// |
| 1693 | /// This shows a few cases where a static number of capture groups is |
| 1694 | /// available and a few cases where it is not. |
| 1695 | /// |
| 1696 | /// ``` |
| 1697 | /// use regex_automata::meta::Regex; |
| 1698 | /// |
| 1699 | /// let len = |pattern| { |
| 1700 | /// Regex::new(pattern).map(|re| re.static_captures_len()) |
| 1701 | /// }; |
| 1702 | /// |
| 1703 | /// assert_eq!(Some(1), len("a" )?); |
| 1704 | /// assert_eq!(Some(2), len("(a)" )?); |
| 1705 | /// assert_eq!(Some(2), len("(a)|(b)" )?); |
| 1706 | /// assert_eq!(Some(3), len("(a)(b)|(c)(d)" )?); |
| 1707 | /// assert_eq!(None, len("(a)|b" )?); |
| 1708 | /// assert_eq!(None, len("a|(b)" )?); |
| 1709 | /// assert_eq!(None, len("(b)*" )?); |
| 1710 | /// assert_eq!(Some(2), len("(b)+" )?); |
| 1711 | /// |
| 1712 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1713 | /// ``` |
| 1714 | /// |
| 1715 | /// # Example: multiple patterns |
| 1716 | /// |
| 1717 | /// This property extends to regexes with multiple patterns as well. In |
| 1718 | /// order for their to be a static number of capture groups in this case, |
| 1719 | /// every pattern must have the same static number. |
| 1720 | /// |
| 1721 | /// ``` |
| 1722 | /// use regex_automata::meta::Regex; |
| 1723 | /// |
| 1724 | /// let len = |patterns| { |
| 1725 | /// Regex::new_many(patterns).map(|re| re.static_captures_len()) |
| 1726 | /// }; |
| 1727 | /// |
| 1728 | /// assert_eq!(Some(1), len(&["a" , "b" ])?); |
| 1729 | /// assert_eq!(Some(2), len(&["(a)" , "(b)" ])?); |
| 1730 | /// assert_eq!(Some(2), len(&["(a)|(b)" , "(c)|(d)" ])?); |
| 1731 | /// assert_eq!(Some(3), len(&["(a)(b)|(c)(d)" , "(x)(y)" ])?); |
| 1732 | /// assert_eq!(None, len(&["(a)" , "b" ])?); |
| 1733 | /// assert_eq!(None, len(&["a" , "(b)" ])?); |
| 1734 | /// assert_eq!(None, len(&["(a)" , "(b)*" ])?); |
| 1735 | /// assert_eq!(Some(2), len(&["(a)+" , "(b)+" ])?); |
| 1736 | /// |
| 1737 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1738 | /// ``` |
| 1739 | #[inline ] |
| 1740 | pub fn static_captures_len(&self) -> Option<usize> { |
| 1741 | self.imp |
| 1742 | .info |
| 1743 | .props_union() |
| 1744 | .static_explicit_captures_len() |
| 1745 | .map(|len| len.saturating_add(1)) |
| 1746 | } |
| 1747 | |
| 1748 | /// Return information about the capture groups in this `Regex`. |
| 1749 | /// |
| 1750 | /// A `GroupInfo` is an immutable object that can be cheaply cloned. It |
| 1751 | /// is responsible for maintaining a mapping between the capture groups |
| 1752 | /// in the concrete syntax of zero or more regex patterns and their |
| 1753 | /// internal representation used by some of the regex matchers. It is also |
| 1754 | /// responsible for maintaining a mapping between the name of each group |
| 1755 | /// (if one exists) and its corresponding group index. |
| 1756 | /// |
| 1757 | /// A `GroupInfo` is ultimately what is used to build a [`Captures`] value, |
| 1758 | /// which is some mutable space where group offsets are stored as a result |
| 1759 | /// of a search. |
| 1760 | /// |
| 1761 | /// # Example |
| 1762 | /// |
| 1763 | /// This shows some alternatives to [`Regex::create_captures`]: |
| 1764 | /// |
| 1765 | /// ``` |
| 1766 | /// use regex_automata::{ |
| 1767 | /// meta::Regex, |
| 1768 | /// util::captures::Captures, |
| 1769 | /// Match, PatternID, Span, |
| 1770 | /// }; |
| 1771 | /// |
| 1772 | /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)" )?; |
| 1773 | /// |
| 1774 | /// // This is equivalent to Regex::create_captures. It stores matching |
| 1775 | /// // offsets for all groups in the regex. |
| 1776 | /// let mut all = Captures::all(re.group_info().clone()); |
| 1777 | /// re.captures("Bruce Springsteen" , &mut all); |
| 1778 | /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match()); |
| 1779 | /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first" )); |
| 1780 | /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last" )); |
| 1781 | /// |
| 1782 | /// // In this version, we only care about the implicit groups, which |
| 1783 | /// // means offsets for the explicit groups will be unavailable. It can |
| 1784 | /// // sometimes be faster to ask for fewer groups, since the underlying |
| 1785 | /// // regex engine needs to do less work to keep track of them. |
| 1786 | /// let mut matches = Captures::matches(re.group_info().clone()); |
| 1787 | /// re.captures("Bruce Springsteen" , &mut matches); |
| 1788 | /// // We still get the overall match info. |
| 1789 | /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match()); |
| 1790 | /// // But now the explicit groups are unavailable. |
| 1791 | /// assert_eq!(None, matches.get_group_by_name("first" )); |
| 1792 | /// assert_eq!(None, matches.get_group_by_name("last" )); |
| 1793 | /// |
| 1794 | /// // Finally, in this version, we don't ask to keep track of offsets for |
| 1795 | /// // *any* groups. All we get back is whether a match occurred, and if |
| 1796 | /// // so, the ID of the pattern that matched. |
| 1797 | /// let mut empty = Captures::empty(re.group_info().clone()); |
| 1798 | /// re.captures("Bruce Springsteen" , &mut empty); |
| 1799 | /// // it's a match! |
| 1800 | /// assert!(empty.is_match()); |
| 1801 | /// // for pattern ID 0 |
| 1802 | /// assert_eq!(Some(PatternID::ZERO), empty.pattern()); |
| 1803 | /// // Match offsets are unavailable. |
| 1804 | /// assert_eq!(None, empty.get_match()); |
| 1805 | /// // And of course, explicit groups are unavailable too. |
| 1806 | /// assert_eq!(None, empty.get_group_by_name("first" )); |
| 1807 | /// assert_eq!(None, empty.get_group_by_name("last" )); |
| 1808 | /// |
| 1809 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1810 | /// ``` |
| 1811 | #[inline ] |
| 1812 | pub fn group_info(&self) -> &GroupInfo { |
| 1813 | self.imp.strat.group_info() |
| 1814 | } |
| 1815 | |
| 1816 | /// Returns the configuration object used to build this `Regex`. |
| 1817 | /// |
| 1818 | /// If no configuration object was explicitly passed, then the |
| 1819 | /// configuration returned represents the default. |
| 1820 | #[inline ] |
| 1821 | pub fn get_config(&self) -> &Config { |
| 1822 | self.imp.info.config() |
| 1823 | } |
| 1824 | |
| 1825 | /// Returns true if this regex has a high chance of being "accelerated." |
| 1826 | /// |
| 1827 | /// The precise meaning of "accelerated" is specifically left unspecified, |
| 1828 | /// but the general meaning is that the search is a high likelihood of |
| 1829 | /// running faster than a character-at-a-time loop inside a standard |
| 1830 | /// regex engine. |
| 1831 | /// |
| 1832 | /// When a regex is accelerated, it is only a *probabilistic* claim. That |
| 1833 | /// is, just because the regex is believed to be accelerated, that doesn't |
| 1834 | /// mean it will definitely execute searches very fast. Similarly, if a |
| 1835 | /// regex is *not* accelerated, that is also a probabilistic claim. That |
| 1836 | /// is, a regex for which `is_accelerated` returns `false` could still run |
| 1837 | /// searches more quickly than a regex for which `is_accelerated` returns |
| 1838 | /// `true`. |
| 1839 | /// |
| 1840 | /// Whether a regex is marked as accelerated or not is dependent on |
| 1841 | /// implementations details that may change in a semver compatible release. |
| 1842 | /// That is, a regex that is accelerated in a `x.y.1` release might not be |
| 1843 | /// accelerated in a `x.y.2` release. |
| 1844 | /// |
| 1845 | /// Basically, the value of acceleration boils down to a hedge: a hodge |
| 1846 | /// podge of internal heuristics combine to make a probabilistic guess |
| 1847 | /// that this regex search may run "fast." The value in knowing this from |
| 1848 | /// a caller's perspective is that it may act as a signal that no further |
| 1849 | /// work should be done to accelerate a search. For example, a grep-like |
| 1850 | /// tool might try to do some extra work extracting literals from a regex |
| 1851 | /// to create its own heuristic acceleration strategies. But it might |
| 1852 | /// choose to defer to this crate's acceleration strategy if one exists. |
| 1853 | /// This routine permits querying whether such a strategy is active for a |
| 1854 | /// particular regex. |
| 1855 | /// |
| 1856 | /// # Example |
| 1857 | /// |
| 1858 | /// ``` |
| 1859 | /// use regex_automata::meta::Regex; |
| 1860 | /// |
| 1861 | /// // A simple literal is very likely to be accelerated. |
| 1862 | /// let re = Regex::new(r"foo" )?; |
| 1863 | /// assert!(re.is_accelerated()); |
| 1864 | /// |
| 1865 | /// // A regex with no literals is likely to not be accelerated. |
| 1866 | /// let re = Regex::new(r"\w" )?; |
| 1867 | /// assert!(!re.is_accelerated()); |
| 1868 | /// |
| 1869 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1870 | /// ``` |
| 1871 | #[inline ] |
| 1872 | pub fn is_accelerated(&self) -> bool { |
| 1873 | self.imp.strat.is_accelerated() |
| 1874 | } |
| 1875 | |
| 1876 | /// Return the total approximate heap memory, in bytes, used by this `Regex`. |
| 1877 | /// |
| 1878 | /// Note that currently, there is no high level configuration for setting |
| 1879 | /// a limit on the specific value returned by this routine. Instead, the |
| 1880 | /// following routines can be used to control heap memory at a bit of a |
| 1881 | /// lower level: |
| 1882 | /// |
| 1883 | /// * [`Config::nfa_size_limit`] controls how big _any_ of the NFAs are |
| 1884 | /// allowed to be. |
| 1885 | /// * [`Config::onepass_size_limit`] controls how big the one-pass DFA is |
| 1886 | /// allowed to be. |
| 1887 | /// * [`Config::hybrid_cache_capacity`] controls how much memory the lazy |
| 1888 | /// DFA is permitted to allocate to store its transition table. |
| 1889 | /// * [`Config::dfa_size_limit`] controls how big a fully compiled DFA is |
| 1890 | /// allowed to be. |
| 1891 | /// * [`Config::dfa_state_limit`] controls the conditions under which the |
| 1892 | /// meta regex engine will even attempt to build a fully compiled DFA. |
| 1893 | #[inline ] |
| 1894 | pub fn memory_usage(&self) -> usize { |
| 1895 | self.imp.strat.memory_usage() |
| 1896 | } |
| 1897 | } |
| 1898 | |
| 1899 | impl Clone for Regex { |
| 1900 | fn clone(&self) -> Regex { |
| 1901 | let imp: Arc = Arc::clone(&self.imp); |
| 1902 | let pool: Pool … + Send + Sync + UnwindSafe + RefUnwindSafe + 'static>> = { |
| 1903 | let strat: Arc = Arc::clone(&imp.strat); |
| 1904 | let create: CachePoolFn = Box::new(move || strat.create_cache()); |
| 1905 | Pool::new(create) |
| 1906 | }; |
| 1907 | Regex { imp, pool } |
| 1908 | } |
| 1909 | } |
| 1910 | |
| 1911 | #[derive (Clone, Debug)] |
| 1912 | pub(crate) struct RegexInfo(Arc<RegexInfoI>); |
| 1913 | |
| 1914 | #[derive (Clone, Debug)] |
| 1915 | struct RegexInfoI { |
| 1916 | config: Config, |
| 1917 | props: Vec<hir::Properties>, |
| 1918 | props_union: hir::Properties, |
| 1919 | } |
| 1920 | |
| 1921 | impl RegexInfo { |
| 1922 | fn new(config: Config, hirs: &[&Hir]) -> RegexInfo { |
| 1923 | // Collect all of the properties from each of the HIRs, and also |
| 1924 | // union them into one big set of properties representing all HIRs |
| 1925 | // as if they were in one big alternation. |
| 1926 | let mut props = vec![]; |
| 1927 | for hir in hirs.iter() { |
| 1928 | props.push(hir.properties().clone()); |
| 1929 | } |
| 1930 | let props_union = hir::Properties::union(&props); |
| 1931 | |
| 1932 | RegexInfo(Arc::new(RegexInfoI { config, props, props_union })) |
| 1933 | } |
| 1934 | |
| 1935 | pub(crate) fn config(&self) -> &Config { |
| 1936 | &self.0.config |
| 1937 | } |
| 1938 | |
| 1939 | pub(crate) fn props(&self) -> &[hir::Properties] { |
| 1940 | &self.0.props |
| 1941 | } |
| 1942 | |
| 1943 | pub(crate) fn props_union(&self) -> &hir::Properties { |
| 1944 | &self.0.props_union |
| 1945 | } |
| 1946 | |
| 1947 | pub(crate) fn pattern_len(&self) -> usize { |
| 1948 | self.props().len() |
| 1949 | } |
| 1950 | |
| 1951 | pub(crate) fn memory_usage(&self) -> usize { |
| 1952 | self.props().iter().map(|p| p.memory_usage()).sum::<usize>() |
| 1953 | + self.props_union().memory_usage() |
| 1954 | } |
| 1955 | |
| 1956 | /// Returns true when the search is guaranteed to be anchored. That is, |
| 1957 | /// when a match is reported, its offset is guaranteed to correspond to |
| 1958 | /// the start of the search. |
| 1959 | /// |
| 1960 | /// This includes returning true when `input` _isn't_ anchored but the |
| 1961 | /// underlying regex is. |
| 1962 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 1963 | pub(crate) fn is_anchored_start(&self, input: &Input<'_>) -> bool { |
| 1964 | input.get_anchored().is_anchored() || self.is_always_anchored_start() |
| 1965 | } |
| 1966 | |
| 1967 | /// Returns true when this regex is always anchored to the start of a |
| 1968 | /// search. And in particular, that regardless of an `Input` configuration, |
| 1969 | /// if any match is reported it must start at `0`. |
| 1970 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 1971 | pub(crate) fn is_always_anchored_start(&self) -> bool { |
| 1972 | use regex_syntax::hir::Look; |
| 1973 | self.props_union().look_set_prefix().contains(Look::Start) |
| 1974 | } |
| 1975 | |
| 1976 | /// Returns true when this regex is always anchored to the end of a |
| 1977 | /// search. And in particular, that regardless of an `Input` configuration, |
| 1978 | /// if any match is reported it must end at the end of the haystack. |
| 1979 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 1980 | pub(crate) fn is_always_anchored_end(&self) -> bool { |
| 1981 | use regex_syntax::hir::Look; |
| 1982 | self.props_union().look_set_suffix().contains(Look::End) |
| 1983 | } |
| 1984 | |
| 1985 | /// Returns true if and only if it is known that a match is impossible |
| 1986 | /// for the given input. This is useful for short-circuiting and avoiding |
| 1987 | /// running the regex engine if it's known no match can be reported. |
| 1988 | /// |
| 1989 | /// Note that this doesn't necessarily detect every possible case. For |
| 1990 | /// example, when `pattern_len() == 0`, a match is impossible, but that |
| 1991 | /// case is so rare that it's fine to be handled by the regex engine |
| 1992 | /// itself. That is, it's not worth the cost of adding it here in order to |
| 1993 | /// make it a little faster. The reason is that this is called for every |
| 1994 | /// search. so there is some cost to adding checks here. Arguably, some of |
| 1995 | /// the checks that are here already probably shouldn't be here... |
| 1996 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 1997 | fn is_impossible(&self, input: &Input<'_>) -> bool { |
| 1998 | // The underlying regex is anchored, so if we don't start the search |
| 1999 | // at position 0, a match is impossible, because the anchor can only |
| 2000 | // match at position 0. |
| 2001 | if input.start() > 0 && self.is_always_anchored_start() { |
| 2002 | return true; |
| 2003 | } |
| 2004 | // Same idea, but for the end anchor. |
| 2005 | if input.end() < input.haystack().len() |
| 2006 | && self.is_always_anchored_end() |
| 2007 | { |
| 2008 | return true; |
| 2009 | } |
| 2010 | // If the haystack is smaller than the minimum length required, then |
| 2011 | // we know there can be no match. |
| 2012 | let minlen = match self.props_union().minimum_len() { |
| 2013 | None => return false, |
| 2014 | Some(minlen) => minlen, |
| 2015 | }; |
| 2016 | if input.get_span().len() < minlen { |
| 2017 | return true; |
| 2018 | } |
| 2019 | // Same idea as minimum, but for maximum. This is trickier. We can |
| 2020 | // only apply the maximum when we know the entire span that we're |
| 2021 | // searching *has* to match according to the regex (and possibly the |
| 2022 | // input configuration). If we know there is too much for the regex |
| 2023 | // to match, we can bail early. |
| 2024 | // |
| 2025 | // I don't think we can apply the maximum otherwise unfortunately. |
| 2026 | if self.is_anchored_start(input) && self.is_always_anchored_end() { |
| 2027 | let maxlen = match self.props_union().maximum_len() { |
| 2028 | None => return false, |
| 2029 | Some(maxlen) => maxlen, |
| 2030 | }; |
| 2031 | if input.get_span().len() > maxlen { |
| 2032 | return true; |
| 2033 | } |
| 2034 | } |
| 2035 | false |
| 2036 | } |
| 2037 | } |
| 2038 | |
| 2039 | /// An iterator over all non-overlapping matches. |
| 2040 | /// |
| 2041 | /// The iterator yields a [`Match`] value until no more matches could be found. |
| 2042 | /// |
| 2043 | /// The lifetime parameters are as follows: |
| 2044 | /// |
| 2045 | /// * `'r` represents the lifetime of the `Regex` that produced this iterator. |
| 2046 | /// * `'h` represents the lifetime of the haystack being searched. |
| 2047 | /// |
| 2048 | /// This iterator can be created with the [`Regex::find_iter`] method. |
| 2049 | #[derive (Debug)] |
| 2050 | pub struct FindMatches<'r, 'h> { |
| 2051 | re: &'r Regex, |
| 2052 | cache: CachePoolGuard<'r>, |
| 2053 | it: iter::Searcher<'h>, |
| 2054 | } |
| 2055 | |
| 2056 | impl<'r, 'h> FindMatches<'r, 'h> { |
| 2057 | /// Returns the `Regex` value that created this iterator. |
| 2058 | #[inline ] |
| 2059 | pub fn regex(&self) -> &'r Regex { |
| 2060 | self.re |
| 2061 | } |
| 2062 | |
| 2063 | /// Returns the current `Input` associated with this iterator. |
| 2064 | /// |
| 2065 | /// The `start` position on the given `Input` may change during iteration, |
| 2066 | /// but all other values are guaranteed to remain invariant. |
| 2067 | #[inline ] |
| 2068 | pub fn input<'s>(&'s self) -> &'s Input<'h> { |
| 2069 | self.it.input() |
| 2070 | } |
| 2071 | } |
| 2072 | |
| 2073 | impl<'r, 'h> Iterator for FindMatches<'r, 'h> { |
| 2074 | type Item = Match; |
| 2075 | |
| 2076 | #[inline ] |
| 2077 | fn next(&mut self) -> Option<Match> { |
| 2078 | let FindMatches { re: &Regex, ref mut cache: &mut PoolGuard<'_, Cache, Box<…>>, ref mut it: &mut Searcher<'_> } = *self; |
| 2079 | it.advance(|input: &Input<'_>| Ok(re.search_with(cache, input))) |
| 2080 | } |
| 2081 | |
| 2082 | #[inline ] |
| 2083 | fn count(self) -> usize { |
| 2084 | // If all we care about is a count of matches, then we only need to |
| 2085 | // find the end position of each match. This can give us a 2x perf |
| 2086 | // boost in some cases, because it avoids needing to do a reverse scan |
| 2087 | // to find the start of a match. |
| 2088 | let FindMatches { re: &Regex, mut cache: PoolGuard<'_, Cache, Box<…>>, it: Searcher<'_> } = self; |
| 2089 | // This does the deref for PoolGuard once instead of every iter. |
| 2090 | let cache: &mut Cache = &mut *cache; |
| 2091 | itTryHalfMatchesIter<'_, impl FnMut(…) -> …>.into_half_matches_iter( |
| 2092 | |input: &Input<'_>| Ok(re.search_half_with(cache, input)), |
| 2093 | ) |
| 2094 | .count() |
| 2095 | } |
| 2096 | } |
| 2097 | |
| 2098 | impl<'r, 'h> core::iter::FusedIterator for FindMatches<'r, 'h> {} |
| 2099 | |
| 2100 | /// An iterator over all non-overlapping leftmost matches with their capturing |
| 2101 | /// groups. |
| 2102 | /// |
| 2103 | /// The iterator yields a [`Captures`] value until no more matches could be |
| 2104 | /// found. |
| 2105 | /// |
| 2106 | /// The lifetime parameters are as follows: |
| 2107 | /// |
| 2108 | /// * `'r` represents the lifetime of the `Regex` that produced this iterator. |
| 2109 | /// * `'h` represents the lifetime of the haystack being searched. |
| 2110 | /// |
| 2111 | /// This iterator can be created with the [`Regex::captures_iter`] method. |
| 2112 | #[derive (Debug)] |
| 2113 | pub struct CapturesMatches<'r, 'h> { |
| 2114 | re: &'r Regex, |
| 2115 | cache: CachePoolGuard<'r>, |
| 2116 | caps: Captures, |
| 2117 | it: iter::Searcher<'h>, |
| 2118 | } |
| 2119 | |
| 2120 | impl<'r, 'h> CapturesMatches<'r, 'h> { |
| 2121 | /// Returns the `Regex` value that created this iterator. |
| 2122 | #[inline ] |
| 2123 | pub fn regex(&self) -> &'r Regex { |
| 2124 | self.re |
| 2125 | } |
| 2126 | |
| 2127 | /// Returns the current `Input` associated with this iterator. |
| 2128 | /// |
| 2129 | /// The `start` position on the given `Input` may change during iteration, |
| 2130 | /// but all other values are guaranteed to remain invariant. |
| 2131 | #[inline ] |
| 2132 | pub fn input<'s>(&'s self) -> &'s Input<'h> { |
| 2133 | self.it.input() |
| 2134 | } |
| 2135 | } |
| 2136 | |
| 2137 | impl<'r, 'h> Iterator for CapturesMatches<'r, 'h> { |
| 2138 | type Item = Captures; |
| 2139 | |
| 2140 | #[inline ] |
| 2141 | fn next(&mut self) -> Option<Captures> { |
| 2142 | // Splitting 'self' apart seems necessary to appease borrowck. |
| 2143 | let CapturesMatches { re, ref mut cache, ref mut caps, ref mut it } = |
| 2144 | *self; |
| 2145 | let _ = it.advance(|input| { |
| 2146 | re.search_captures_with(cache, input, caps); |
| 2147 | Ok(caps.get_match()) |
| 2148 | }); |
| 2149 | if caps.is_match() { |
| 2150 | Some(caps.clone()) |
| 2151 | } else { |
| 2152 | None |
| 2153 | } |
| 2154 | } |
| 2155 | |
| 2156 | #[inline ] |
| 2157 | fn count(self) -> usize { |
| 2158 | let CapturesMatches { re, mut cache, it, .. } = self; |
| 2159 | // This does the deref for PoolGuard once instead of every iter. |
| 2160 | let cache = &mut *cache; |
| 2161 | it.into_half_matches_iter( |
| 2162 | |input| Ok(re.search_half_with(cache, input)), |
| 2163 | ) |
| 2164 | .count() |
| 2165 | } |
| 2166 | } |
| 2167 | |
| 2168 | impl<'r, 'h> core::iter::FusedIterator for CapturesMatches<'r, 'h> {} |
| 2169 | |
| 2170 | /// Yields all substrings delimited by a regular expression match. |
| 2171 | /// |
| 2172 | /// The spans correspond to the offsets between matches. |
| 2173 | /// |
| 2174 | /// The lifetime parameters are as follows: |
| 2175 | /// |
| 2176 | /// * `'r` represents the lifetime of the `Regex` that produced this iterator. |
| 2177 | /// * `'h` represents the lifetime of the haystack being searched. |
| 2178 | /// |
| 2179 | /// This iterator can be created with the [`Regex::split`] method. |
| 2180 | #[derive (Debug)] |
| 2181 | pub struct Split<'r, 'h> { |
| 2182 | finder: FindMatches<'r, 'h>, |
| 2183 | last: usize, |
| 2184 | } |
| 2185 | |
| 2186 | impl<'r, 'h> Split<'r, 'h> { |
| 2187 | /// Returns the current `Input` associated with this iterator. |
| 2188 | /// |
| 2189 | /// The `start` position on the given `Input` may change during iteration, |
| 2190 | /// but all other values are guaranteed to remain invariant. |
| 2191 | #[inline ] |
| 2192 | pub fn input<'s>(&'s self) -> &'s Input<'h> { |
| 2193 | self.finder.input() |
| 2194 | } |
| 2195 | } |
| 2196 | |
| 2197 | impl<'r, 'h> Iterator for Split<'r, 'h> { |
| 2198 | type Item = Span; |
| 2199 | |
| 2200 | fn next(&mut self) -> Option<Span> { |
| 2201 | match self.finder.next() { |
| 2202 | None => { |
| 2203 | let len: usize = self.finder.it.input().haystack().len(); |
| 2204 | if self.last > len { |
| 2205 | None |
| 2206 | } else { |
| 2207 | let span: Span = Span::from(self.last..len); |
| 2208 | self.last = len + 1; // Next call will return None |
| 2209 | Some(span) |
| 2210 | } |
| 2211 | } |
| 2212 | Some(m: Match) => { |
| 2213 | let span: Span = Span::from(self.last..m.start()); |
| 2214 | self.last = m.end(); |
| 2215 | Some(span) |
| 2216 | } |
| 2217 | } |
| 2218 | } |
| 2219 | } |
| 2220 | |
| 2221 | impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {} |
| 2222 | |
| 2223 | /// Yields at most `N` spans delimited by a regular expression match. |
| 2224 | /// |
| 2225 | /// The spans correspond to the offsets between matches. The last span will be |
| 2226 | /// whatever remains after splitting. |
| 2227 | /// |
| 2228 | /// The lifetime parameters are as follows: |
| 2229 | /// |
| 2230 | /// * `'r` represents the lifetime of the `Regex` that produced this iterator. |
| 2231 | /// * `'h` represents the lifetime of the haystack being searched. |
| 2232 | /// |
| 2233 | /// This iterator can be created with the [`Regex::splitn`] method. |
| 2234 | #[derive (Debug)] |
| 2235 | pub struct SplitN<'r, 'h> { |
| 2236 | splits: Split<'r, 'h>, |
| 2237 | limit: usize, |
| 2238 | } |
| 2239 | |
| 2240 | impl<'r, 'h> SplitN<'r, 'h> { |
| 2241 | /// Returns the current `Input` associated with this iterator. |
| 2242 | /// |
| 2243 | /// The `start` position on the given `Input` may change during iteration, |
| 2244 | /// but all other values are guaranteed to remain invariant. |
| 2245 | #[inline ] |
| 2246 | pub fn input<'s>(&'s self) -> &'s Input<'h> { |
| 2247 | self.splits.input() |
| 2248 | } |
| 2249 | } |
| 2250 | |
| 2251 | impl<'r, 'h> Iterator for SplitN<'r, 'h> { |
| 2252 | type Item = Span; |
| 2253 | |
| 2254 | fn next(&mut self) -> Option<Span> { |
| 2255 | if self.limit == 0 { |
| 2256 | return None; |
| 2257 | } |
| 2258 | |
| 2259 | self.limit -= 1; |
| 2260 | if self.limit > 0 { |
| 2261 | return self.splits.next(); |
| 2262 | } |
| 2263 | |
| 2264 | let len = self.splits.finder.it.input().haystack().len(); |
| 2265 | if self.splits.last > len { |
| 2266 | // We've already returned all substrings. |
| 2267 | None |
| 2268 | } else { |
| 2269 | // self.n == 0, so future calls will return None immediately |
| 2270 | Some(Span::from(self.splits.last..len)) |
| 2271 | } |
| 2272 | } |
| 2273 | |
| 2274 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 2275 | (0, Some(self.limit)) |
| 2276 | } |
| 2277 | } |
| 2278 | |
| 2279 | impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {} |
| 2280 | |
| 2281 | /// Represents mutable scratch space used by regex engines during a search. |
| 2282 | /// |
| 2283 | /// Most of the regex engines in this crate require some kind of |
| 2284 | /// mutable state in order to execute a search. This mutable state is |
| 2285 | /// explicitly separated from the core regex object (such as a |
| 2286 | /// [`thompson::NFA`](crate::nfa::thompson::NFA)) so that the read-only regex |
| 2287 | /// object can be shared across multiple threads simultaneously without any |
| 2288 | /// synchronization. Conversely, a `Cache` must either be duplicated if using |
| 2289 | /// the same `Regex` from multiple threads, or else there must be some kind of |
| 2290 | /// synchronization that guarantees exclusive access while it's in use by one |
| 2291 | /// thread. |
| 2292 | /// |
| 2293 | /// A `Regex` attempts to do this synchronization for you by using a thread |
| 2294 | /// pool internally. Its size scales roughly with the number of simultaneous |
| 2295 | /// regex searches. |
| 2296 | /// |
| 2297 | /// For cases where one does not want to rely on a `Regex`'s internal thread |
| 2298 | /// pool, lower level routines such as [`Regex::search_with`] are provided |
| 2299 | /// that permit callers to pass a `Cache` into the search routine explicitly. |
| 2300 | /// |
| 2301 | /// General advice is that the thread pool is often more than good enough. |
| 2302 | /// However, it may be possible to observe the effects of its latency, |
| 2303 | /// especially when searching many small haystacks from many threads |
| 2304 | /// simultaneously. |
| 2305 | /// |
| 2306 | /// Caches can be created from their corresponding `Regex` via |
| 2307 | /// [`Regex::create_cache`]. A cache can only be used with either the `Regex` |
| 2308 | /// that created it, or the `Regex` that was most recently used to reset it |
| 2309 | /// with [`Cache::reset`]. Using a cache with any other `Regex` may result in |
| 2310 | /// panics or incorrect results. |
| 2311 | /// |
| 2312 | /// # Example |
| 2313 | /// |
| 2314 | /// ``` |
| 2315 | /// use regex_automata::{meta::Regex, Input, Match}; |
| 2316 | /// |
| 2317 | /// let re = Regex::new(r"(?-u)m\w+\s+m\w+" )?; |
| 2318 | /// let mut cache = re.create_cache(); |
| 2319 | /// let input = Input::new("crazy janey and her mission man" ); |
| 2320 | /// assert_eq!( |
| 2321 | /// Some(Match::must(0, 20..31)), |
| 2322 | /// re.search_with(&mut cache, &input), |
| 2323 | /// ); |
| 2324 | /// |
| 2325 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2326 | /// ``` |
| 2327 | #[derive (Debug, Clone)] |
| 2328 | pub struct Cache { |
| 2329 | pub(crate) capmatches: Captures, |
| 2330 | pub(crate) pikevm: wrappers::PikeVMCache, |
| 2331 | pub(crate) backtrack: wrappers::BoundedBacktrackerCache, |
| 2332 | pub(crate) onepass: wrappers::OnePassCache, |
| 2333 | pub(crate) hybrid: wrappers::HybridCache, |
| 2334 | pub(crate) revhybrid: wrappers::ReverseHybridCache, |
| 2335 | } |
| 2336 | |
| 2337 | impl Cache { |
| 2338 | /// Creates a new `Cache` for use with this regex. |
| 2339 | /// |
| 2340 | /// The cache returned should only be used for searches for the given |
| 2341 | /// `Regex`. If you want to reuse the cache for another `Regex`, then you |
| 2342 | /// must call [`Cache::reset`] with that `Regex`. |
| 2343 | pub fn new(re: &Regex) -> Cache { |
| 2344 | re.create_cache() |
| 2345 | } |
| 2346 | |
| 2347 | /// Reset this cache such that it can be used for searching with the given |
| 2348 | /// `Regex` (and only that `Regex`). |
| 2349 | /// |
| 2350 | /// A cache reset permits potentially reusing memory already allocated in |
| 2351 | /// this cache with a different `Regex`. |
| 2352 | /// |
| 2353 | /// # Example |
| 2354 | /// |
| 2355 | /// This shows how to re-purpose a cache for use with a different `Regex`. |
| 2356 | /// |
| 2357 | /// ``` |
| 2358 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 2359 | /// use regex_automata::{meta::Regex, Match, Input}; |
| 2360 | /// |
| 2361 | /// let re1 = Regex::new(r"\w" )?; |
| 2362 | /// let re2 = Regex::new(r"\W" )?; |
| 2363 | /// |
| 2364 | /// let mut cache = re1.create_cache(); |
| 2365 | /// assert_eq!( |
| 2366 | /// Some(Match::must(0, 0..2)), |
| 2367 | /// re1.search_with(&mut cache, &Input::new("Δ" )), |
| 2368 | /// ); |
| 2369 | /// |
| 2370 | /// // Using 'cache' with re2 is not allowed. It may result in panics or |
| 2371 | /// // incorrect results. In order to re-purpose the cache, we must reset |
| 2372 | /// // it with the Regex we'd like to use it with. |
| 2373 | /// // |
| 2374 | /// // Similarly, after this reset, using the cache with 're1' is also not |
| 2375 | /// // allowed. |
| 2376 | /// cache.reset(&re2); |
| 2377 | /// assert_eq!( |
| 2378 | /// Some(Match::must(0, 0..3)), |
| 2379 | /// re2.search_with(&mut cache, &Input::new("☃" )), |
| 2380 | /// ); |
| 2381 | /// |
| 2382 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2383 | /// ``` |
| 2384 | pub fn reset(&mut self, re: &Regex) { |
| 2385 | re.imp.strat.reset_cache(self) |
| 2386 | } |
| 2387 | |
| 2388 | /// Returns the heap memory usage, in bytes, of this cache. |
| 2389 | /// |
| 2390 | /// This does **not** include the stack size used up by this cache. To |
| 2391 | /// compute that, use `std::mem::size_of::<Cache>()`. |
| 2392 | pub fn memory_usage(&self) -> usize { |
| 2393 | let mut bytes = 0; |
| 2394 | bytes += self.pikevm.memory_usage(); |
| 2395 | bytes += self.backtrack.memory_usage(); |
| 2396 | bytes += self.onepass.memory_usage(); |
| 2397 | bytes += self.hybrid.memory_usage(); |
| 2398 | bytes += self.revhybrid.memory_usage(); |
| 2399 | bytes |
| 2400 | } |
| 2401 | } |
| 2402 | |
| 2403 | /// An object describing the configuration of a `Regex`. |
| 2404 | /// |
| 2405 | /// This configuration only includes options for the |
| 2406 | /// non-syntax behavior of a `Regex`, and can be applied via the |
| 2407 | /// [`Builder::configure`] method. For configuring the syntax options, see |
| 2408 | /// [`util::syntax::Config`](crate::util::syntax::Config). |
| 2409 | /// |
| 2410 | /// # Example: lower the NFA size limit |
| 2411 | /// |
| 2412 | /// In some cases, the default size limit might be too big. The size limit can |
| 2413 | /// be lowered, which will prevent large regex patterns from compiling. |
| 2414 | /// |
| 2415 | /// ``` |
| 2416 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 2417 | /// use regex_automata::meta::Regex; |
| 2418 | /// |
| 2419 | /// let result = Regex::builder() |
| 2420 | /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10)))) |
| 2421 | /// // Not even 20KB is enough to build a single large Unicode class! |
| 2422 | /// .build(r"\pL" ); |
| 2423 | /// assert!(result.is_err()); |
| 2424 | /// |
| 2425 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2426 | /// ``` |
| 2427 | #[derive (Clone, Debug, Default)] |
| 2428 | pub struct Config { |
| 2429 | // As with other configuration types in this crate, we put all our knobs |
| 2430 | // in options so that we can distinguish between "default" and "not set." |
| 2431 | // This makes it possible to easily combine multiple configurations |
| 2432 | // without default values overwriting explicitly specified values. See the |
| 2433 | // 'overwrite' method. |
| 2434 | // |
| 2435 | // For docs on the fields below, see the corresponding method setters. |
| 2436 | match_kind: Option<MatchKind>, |
| 2437 | utf8_empty: Option<bool>, |
| 2438 | autopre: Option<bool>, |
| 2439 | pre: Option<Option<Prefilter>>, |
| 2440 | which_captures: Option<WhichCaptures>, |
| 2441 | nfa_size_limit: Option<Option<usize>>, |
| 2442 | onepass_size_limit: Option<Option<usize>>, |
| 2443 | hybrid_cache_capacity: Option<usize>, |
| 2444 | hybrid: Option<bool>, |
| 2445 | dfa: Option<bool>, |
| 2446 | dfa_size_limit: Option<Option<usize>>, |
| 2447 | dfa_state_limit: Option<Option<usize>>, |
| 2448 | onepass: Option<bool>, |
| 2449 | backtrack: Option<bool>, |
| 2450 | byte_classes: Option<bool>, |
| 2451 | line_terminator: Option<u8>, |
| 2452 | } |
| 2453 | |
| 2454 | impl Config { |
| 2455 | /// Create a new configuration object for a `Regex`. |
| 2456 | pub fn new() -> Config { |
| 2457 | Config::default() |
| 2458 | } |
| 2459 | |
| 2460 | /// Set the match semantics for a `Regex`. |
| 2461 | /// |
| 2462 | /// The default value is [`MatchKind::LeftmostFirst`]. |
| 2463 | /// |
| 2464 | /// # Example |
| 2465 | /// |
| 2466 | /// ``` |
| 2467 | /// use regex_automata::{meta::Regex, Match, MatchKind}; |
| 2468 | /// |
| 2469 | /// // By default, leftmost-first semantics are used, which |
| 2470 | /// // disambiguates matches at the same position by selecting |
| 2471 | /// // the one that corresponds earlier in the pattern. |
| 2472 | /// let re = Regex::new("sam|samwise" )?; |
| 2473 | /// assert_eq!(Some(Match::must(0, 0..3)), re.find("samwise" )); |
| 2474 | /// |
| 2475 | /// // But with 'all' semantics, match priority is ignored |
| 2476 | /// // and all match states are included. When coupled with |
| 2477 | /// // a leftmost search, the search will report the last |
| 2478 | /// // possible match. |
| 2479 | /// let re = Regex::builder() |
| 2480 | /// .configure(Regex::config().match_kind(MatchKind::All)) |
| 2481 | /// .build("sam|samwise" )?; |
| 2482 | /// assert_eq!(Some(Match::must(0, 0..7)), re.find("samwise" )); |
| 2483 | /// // Beware that this can lead to skipping matches! |
| 2484 | /// // Usually 'all' is used for anchored reverse searches |
| 2485 | /// // only, or for overlapping searches. |
| 2486 | /// assert_eq!(Some(Match::must(0, 4..11)), re.find("sam samwise" )); |
| 2487 | /// |
| 2488 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2489 | /// ``` |
| 2490 | pub fn match_kind(self, kind: MatchKind) -> Config { |
| 2491 | Config { match_kind: Some(kind), ..self } |
| 2492 | } |
| 2493 | |
| 2494 | /// Toggles whether empty matches are permitted to occur between the code |
| 2495 | /// units of a UTF-8 encoded codepoint. |
| 2496 | /// |
| 2497 | /// This should generally be enabled when search a `&str` or anything that |
| 2498 | /// you otherwise know is valid UTF-8. It should be disabled in all other |
| 2499 | /// cases. Namely, if the haystack is not valid UTF-8 and this is enabled, |
| 2500 | /// then behavior is unspecified. |
| 2501 | /// |
| 2502 | /// By default, this is enabled. |
| 2503 | /// |
| 2504 | /// # Example |
| 2505 | /// |
| 2506 | /// ``` |
| 2507 | /// use regex_automata::{meta::Regex, Match}; |
| 2508 | /// |
| 2509 | /// let re = Regex::new("" )?; |
| 2510 | /// let got: Vec<Match> = re.find_iter("☃" ).collect(); |
| 2511 | /// // Matches only occur at the beginning and end of the snowman. |
| 2512 | /// assert_eq!(got, vec![ |
| 2513 | /// Match::must(0, 0..0), |
| 2514 | /// Match::must(0, 3..3), |
| 2515 | /// ]); |
| 2516 | /// |
| 2517 | /// let re = Regex::builder() |
| 2518 | /// .configure(Regex::config().utf8_empty(false)) |
| 2519 | /// .build("" )?; |
| 2520 | /// let got: Vec<Match> = re.find_iter("☃" ).collect(); |
| 2521 | /// // Matches now occur at every position! |
| 2522 | /// assert_eq!(got, vec![ |
| 2523 | /// Match::must(0, 0..0), |
| 2524 | /// Match::must(0, 1..1), |
| 2525 | /// Match::must(0, 2..2), |
| 2526 | /// Match::must(0, 3..3), |
| 2527 | /// ]); |
| 2528 | /// |
| 2529 | /// Ok::<(), Box<dyn std::error::Error>>(()) |
| 2530 | /// ``` |
| 2531 | pub fn utf8_empty(self, yes: bool) -> Config { |
| 2532 | Config { utf8_empty: Some(yes), ..self } |
| 2533 | } |
| 2534 | |
| 2535 | /// Toggles whether automatic prefilter support is enabled. |
| 2536 | /// |
| 2537 | /// If this is disabled and [`Config::prefilter`] is not set, then the |
| 2538 | /// meta regex engine will not use any prefilters. This can sometimes |
| 2539 | /// be beneficial in cases where you know (or have measured) that the |
| 2540 | /// prefilter leads to overall worse search performance. |
| 2541 | /// |
| 2542 | /// By default, this is enabled. |
| 2543 | /// |
| 2544 | /// # Example |
| 2545 | /// |
| 2546 | /// ``` |
| 2547 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 2548 | /// use regex_automata::{meta::Regex, Match}; |
| 2549 | /// |
| 2550 | /// let re = Regex::builder() |
| 2551 | /// .configure(Regex::config().auto_prefilter(false)) |
| 2552 | /// .build(r"Bruce \w+" )?; |
| 2553 | /// let hay = "Hello Bruce Springsteen!" ; |
| 2554 | /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay)); |
| 2555 | /// |
| 2556 | /// Ok::<(), Box<dyn std::error::Error>>(()) |
| 2557 | /// ``` |
| 2558 | pub fn auto_prefilter(self, yes: bool) -> Config { |
| 2559 | Config { autopre: Some(yes), ..self } |
| 2560 | } |
| 2561 | |
| 2562 | /// Overrides and sets the prefilter to use inside a `Regex`. |
| 2563 | /// |
| 2564 | /// This permits one to forcefully set a prefilter in cases where the |
| 2565 | /// caller knows better than whatever the automatic prefilter logic is |
| 2566 | /// capable of. |
| 2567 | /// |
| 2568 | /// By default, this is set to `None` and an automatic prefilter will be |
| 2569 | /// used if one could be built. (Assuming [`Config::auto_prefilter`] is |
| 2570 | /// enabled, which it is by default.) |
| 2571 | /// |
| 2572 | /// # Example |
| 2573 | /// |
| 2574 | /// This example shows how to set your own prefilter. In the case of a |
| 2575 | /// pattern like `Bruce \w+`, the automatic prefilter is likely to be |
| 2576 | /// constructed in a way that it will look for occurrences of `Bruce `. |
| 2577 | /// In most cases, this is the best choice. But in some cases, it may be |
| 2578 | /// the case that running `memchr` on `B` is the best choice. One can |
| 2579 | /// achieve that behavior by overriding the automatic prefilter logic |
| 2580 | /// and providing a prefilter that just matches `B`. |
| 2581 | /// |
| 2582 | /// ``` |
| 2583 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 2584 | /// use regex_automata::{ |
| 2585 | /// meta::Regex, |
| 2586 | /// util::prefilter::Prefilter, |
| 2587 | /// Match, MatchKind, |
| 2588 | /// }; |
| 2589 | /// |
| 2590 | /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["B" ]) |
| 2591 | /// .expect("a prefilter" ); |
| 2592 | /// let re = Regex::builder() |
| 2593 | /// .configure(Regex::config().prefilter(Some(pre))) |
| 2594 | /// .build(r"Bruce \w+" )?; |
| 2595 | /// let hay = "Hello Bruce Springsteen!" ; |
| 2596 | /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay)); |
| 2597 | /// |
| 2598 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2599 | /// ``` |
| 2600 | /// |
| 2601 | /// # Example: incorrect prefilters can lead to incorrect results! |
| 2602 | /// |
| 2603 | /// Be warned that setting an incorrect prefilter can lead to missed |
| 2604 | /// matches. So if you use this option, ensure your prefilter can _never_ |
| 2605 | /// report false negatives. (A false positive is, on the other hand, quite |
| 2606 | /// okay and generally unavoidable.) |
| 2607 | /// |
| 2608 | /// ``` |
| 2609 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 2610 | /// use regex_automata::{ |
| 2611 | /// meta::Regex, |
| 2612 | /// util::prefilter::Prefilter, |
| 2613 | /// Match, MatchKind, |
| 2614 | /// }; |
| 2615 | /// |
| 2616 | /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["Z" ]) |
| 2617 | /// .expect("a prefilter" ); |
| 2618 | /// let re = Regex::builder() |
| 2619 | /// .configure(Regex::config().prefilter(Some(pre))) |
| 2620 | /// .build(r"Bruce \w+" )?; |
| 2621 | /// let hay = "Hello Bruce Springsteen!" ; |
| 2622 | /// // Oops! No match found, but there should be one! |
| 2623 | /// assert_eq!(None, re.find(hay)); |
| 2624 | /// |
| 2625 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2626 | /// ``` |
| 2627 | pub fn prefilter(self, pre: Option<Prefilter>) -> Config { |
| 2628 | Config { pre: Some(pre), ..self } |
| 2629 | } |
| 2630 | |
| 2631 | /// Configures what kinds of groups are compiled as "capturing" in the |
| 2632 | /// underlying regex engine. |
| 2633 | /// |
| 2634 | /// This is set to [`WhichCaptures::All`] by default. Callers may wish to |
| 2635 | /// use [`WhichCaptures::Implicit`] in cases where one wants avoid the |
| 2636 | /// overhead of capture states for explicit groups. |
| 2637 | /// |
| 2638 | /// Note that another approach to avoiding the overhead of capture groups |
| 2639 | /// is by using non-capturing groups in the regex pattern. That is, |
| 2640 | /// `(?:a)` instead of `(a)`. This option is useful when you can't control |
| 2641 | /// the concrete syntax but know that you don't need the underlying capture |
| 2642 | /// states. For example, using `WhichCaptures::Implicit` will behave as if |
| 2643 | /// all explicit capturing groups in the pattern were non-capturing. |
| 2644 | /// |
| 2645 | /// Setting this to `WhichCaptures::None` is usually not the right thing to |
| 2646 | /// do. When no capture states are compiled, some regex engines (such as |
| 2647 | /// the `PikeVM`) won't be able to report match offsets. This will manifest |
| 2648 | /// as no match being found. |
| 2649 | /// |
| 2650 | /// # Example |
| 2651 | /// |
| 2652 | /// This example demonstrates how the results of capture groups can change |
| 2653 | /// based on this option. First we show the default (all capture groups in |
| 2654 | /// the pattern are capturing): |
| 2655 | /// |
| 2656 | /// ``` |
| 2657 | /// use regex_automata::{meta::Regex, Match, Span}; |
| 2658 | /// |
| 2659 | /// let re = Regex::new(r"foo([0-9]+)bar" )?; |
| 2660 | /// let hay = "foo123bar" ; |
| 2661 | /// |
| 2662 | /// let mut caps = re.create_captures(); |
| 2663 | /// re.captures(hay, &mut caps); |
| 2664 | /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0)); |
| 2665 | /// assert_eq!(Some(Span::from(3..6)), caps.get_group(1)); |
| 2666 | /// |
| 2667 | /// Ok::<(), Box<dyn std::error::Error>>(()) |
| 2668 | /// ``` |
| 2669 | /// |
| 2670 | /// And now we show the behavior when we only include implicit capture |
| 2671 | /// groups. In this case, we can only find the overall match span, but the |
| 2672 | /// spans of any other explicit group don't exist because they are treated |
| 2673 | /// as non-capturing. (In effect, when `WhichCaptures::Implicit` is used, |
| 2674 | /// there is no real point in using [`Regex::captures`] since it will never |
| 2675 | /// be able to report more information than [`Regex::find`].) |
| 2676 | /// |
| 2677 | /// ``` |
| 2678 | /// use regex_automata::{ |
| 2679 | /// meta::Regex, |
| 2680 | /// nfa::thompson::WhichCaptures, |
| 2681 | /// Match, |
| 2682 | /// Span, |
| 2683 | /// }; |
| 2684 | /// |
| 2685 | /// let re = Regex::builder() |
| 2686 | /// .configure(Regex::config().which_captures(WhichCaptures::Implicit)) |
| 2687 | /// .build(r"foo([0-9]+)bar" )?; |
| 2688 | /// let hay = "foo123bar" ; |
| 2689 | /// |
| 2690 | /// let mut caps = re.create_captures(); |
| 2691 | /// re.captures(hay, &mut caps); |
| 2692 | /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0)); |
| 2693 | /// assert_eq!(None, caps.get_group(1)); |
| 2694 | /// |
| 2695 | /// Ok::<(), Box<dyn std::error::Error>>(()) |
| 2696 | /// ``` |
| 2697 | pub fn which_captures(mut self, which_captures: WhichCaptures) -> Config { |
| 2698 | self.which_captures = Some(which_captures); |
| 2699 | self |
| 2700 | } |
| 2701 | |
| 2702 | /// Sets the size limit, in bytes, to enforce on the construction of every |
| 2703 | /// NFA build by the meta regex engine. |
| 2704 | /// |
| 2705 | /// Setting it to `None` disables the limit. This is not recommended if |
| 2706 | /// you're compiling untrusted patterns. |
| 2707 | /// |
| 2708 | /// Note that this limit is applied to _each_ NFA built, and if any of |
| 2709 | /// them exceed the limit, then construction will fail. This limit does |
| 2710 | /// _not_ correspond to the total memory used by all NFAs in the meta regex |
| 2711 | /// engine. |
| 2712 | /// |
| 2713 | /// This defaults to some reasonable number that permits most reasonable |
| 2714 | /// patterns. |
| 2715 | /// |
| 2716 | /// # Example |
| 2717 | /// |
| 2718 | /// ``` |
| 2719 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 2720 | /// use regex_automata::meta::Regex; |
| 2721 | /// |
| 2722 | /// let result = Regex::builder() |
| 2723 | /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10)))) |
| 2724 | /// // Not even 20KB is enough to build a single large Unicode class! |
| 2725 | /// .build(r"\pL" ); |
| 2726 | /// assert!(result.is_err()); |
| 2727 | /// |
| 2728 | /// // But notice that building such a regex with the exact same limit |
| 2729 | /// // can succeed depending on other aspects of the configuration. For |
| 2730 | /// // example, a single *forward* NFA will (at time of writing) fit into |
| 2731 | /// // the 20KB limit, but a *reverse* NFA of the same pattern will not. |
| 2732 | /// // So if one configures a meta regex such that a reverse NFA is never |
| 2733 | /// // needed and thus never built, then the 20KB limit will be enough for |
| 2734 | /// // a pattern like \pL! |
| 2735 | /// let result = Regex::builder() |
| 2736 | /// .configure(Regex::config() |
| 2737 | /// .nfa_size_limit(Some(20 * (1<<10))) |
| 2738 | /// // The DFAs are the only thing that (currently) need a reverse |
| 2739 | /// // NFA. So if both are disabled, the meta regex engine will |
| 2740 | /// // skip building the reverse NFA. Note that this isn't an API |
| 2741 | /// // guarantee. A future semver compatible version may introduce |
| 2742 | /// // new use cases for a reverse NFA. |
| 2743 | /// .hybrid(false) |
| 2744 | /// .dfa(false) |
| 2745 | /// ) |
| 2746 | /// // Not even 20KB is enough to build a single large Unicode class! |
| 2747 | /// .build(r"\pL" ); |
| 2748 | /// assert!(result.is_ok()); |
| 2749 | /// |
| 2750 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2751 | /// ``` |
| 2752 | pub fn nfa_size_limit(self, limit: Option<usize>) -> Config { |
| 2753 | Config { nfa_size_limit: Some(limit), ..self } |
| 2754 | } |
| 2755 | |
| 2756 | /// Sets the size limit, in bytes, for the one-pass DFA. |
| 2757 | /// |
| 2758 | /// Setting it to `None` disables the limit. Disabling the limit is |
| 2759 | /// strongly discouraged when compiling untrusted patterns. Even if the |
| 2760 | /// patterns are trusted, it still may not be a good idea, since a one-pass |
| 2761 | /// DFA can use a lot of memory. With that said, as the size of a regex |
| 2762 | /// increases, the likelihood of it being one-pass likely decreases. |
| 2763 | /// |
| 2764 | /// This defaults to some reasonable number that permits most reasonable |
| 2765 | /// one-pass patterns. |
| 2766 | /// |
| 2767 | /// # Example |
| 2768 | /// |
| 2769 | /// This shows how to set the one-pass DFA size limit. Note that since |
| 2770 | /// a one-pass DFA is an optional component of the meta regex engine, |
| 2771 | /// this size limit only impacts what is built internally and will never |
| 2772 | /// determine whether a `Regex` itself fails to build. |
| 2773 | /// |
| 2774 | /// ``` |
| 2775 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 2776 | /// use regex_automata::meta::Regex; |
| 2777 | /// |
| 2778 | /// let result = Regex::builder() |
| 2779 | /// .configure(Regex::config().onepass_size_limit(Some(2 * (1<<20)))) |
| 2780 | /// .build(r"\pL{5}" ); |
| 2781 | /// assert!(result.is_ok()); |
| 2782 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2783 | /// ``` |
| 2784 | pub fn onepass_size_limit(self, limit: Option<usize>) -> Config { |
| 2785 | Config { onepass_size_limit: Some(limit), ..self } |
| 2786 | } |
| 2787 | |
| 2788 | /// Set the cache capacity, in bytes, for the lazy DFA. |
| 2789 | /// |
| 2790 | /// The cache capacity of the lazy DFA determines approximately how much |
| 2791 | /// heap memory it is allowed to use to store its state transitions. The |
| 2792 | /// state transitions are computed at search time, and if the cache fills |
| 2793 | /// up it, it is cleared. At this point, any previously generated state |
| 2794 | /// transitions are lost and are re-generated if they're needed again. |
| 2795 | /// |
| 2796 | /// This sort of cache filling and clearing works quite well _so long as |
| 2797 | /// cache clearing happens infrequently_. If it happens too often, then the |
| 2798 | /// meta regex engine will stop using the lazy DFA and switch over to a |
| 2799 | /// different regex engine. |
| 2800 | /// |
| 2801 | /// In cases where the cache is cleared too often, it may be possible to |
| 2802 | /// give the cache more space and reduce (or eliminate) how often it is |
| 2803 | /// cleared. Similarly, sometimes a regex is so big that the lazy DFA isn't |
| 2804 | /// used at all if its cache capacity isn't big enough. |
| 2805 | /// |
| 2806 | /// The capacity set here is a _limit_ on how much memory is used. The |
| 2807 | /// actual memory used is only allocated as it's needed. |
| 2808 | /// |
| 2809 | /// Determining the right value for this is a little tricky and will likely |
| 2810 | /// required some profiling. Enabling the `logging` feature and setting the |
| 2811 | /// log level to `trace` will also tell you how often the cache is being |
| 2812 | /// cleared. |
| 2813 | /// |
| 2814 | /// # Example |
| 2815 | /// |
| 2816 | /// ``` |
| 2817 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 2818 | /// use regex_automata::meta::Regex; |
| 2819 | /// |
| 2820 | /// let result = Regex::builder() |
| 2821 | /// .configure(Regex::config().hybrid_cache_capacity(20 * (1<<20))) |
| 2822 | /// .build(r"\pL{5}" ); |
| 2823 | /// assert!(result.is_ok()); |
| 2824 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2825 | /// ``` |
| 2826 | pub fn hybrid_cache_capacity(self, limit: usize) -> Config { |
| 2827 | Config { hybrid_cache_capacity: Some(limit), ..self } |
| 2828 | } |
| 2829 | |
| 2830 | /// Sets the size limit, in bytes, for heap memory used for a fully |
| 2831 | /// compiled DFA. |
| 2832 | /// |
| 2833 | /// **NOTE:** If you increase this, you'll likely also need to increase |
| 2834 | /// [`Config::dfa_state_limit`]. |
| 2835 | /// |
| 2836 | /// In contrast to the lazy DFA, building a full DFA requires computing |
| 2837 | /// all of its state transitions up front. This can be a very expensive |
| 2838 | /// process, and runs in worst case `2^n` time and space (where `n` is |
| 2839 | /// proportional to the size of the regex). However, a full DFA unlocks |
| 2840 | /// some additional optimization opportunities. |
| 2841 | /// |
| 2842 | /// Because full DFAs can be so expensive, the default limits for them are |
| 2843 | /// incredibly small. Generally speaking, if your regex is moderately big |
| 2844 | /// or if you're using Unicode features (`\w` is Unicode-aware by default |
| 2845 | /// for example), then you can expect that the meta regex engine won't even |
| 2846 | /// attempt to build a DFA for it. |
| 2847 | /// |
| 2848 | /// If this and [`Config::dfa_state_limit`] are set to `None`, then the |
| 2849 | /// meta regex will not use any sort of limits when deciding whether to |
| 2850 | /// build a DFA. This in turn makes construction of a `Regex` take |
| 2851 | /// worst case exponential time and space. Even short patterns can result |
| 2852 | /// in huge space blow ups. So it is strongly recommended to keep some kind |
| 2853 | /// of limit set! |
| 2854 | /// |
| 2855 | /// The default is set to a small number that permits some simple regexes |
| 2856 | /// to get compiled into DFAs in reasonable time. |
| 2857 | /// |
| 2858 | /// # Example |
| 2859 | /// |
| 2860 | /// ``` |
| 2861 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 2862 | /// use regex_automata::meta::Regex; |
| 2863 | /// |
| 2864 | /// let result = Regex::builder() |
| 2865 | /// // 100MB is much bigger than the default. |
| 2866 | /// .configure(Regex::config() |
| 2867 | /// .dfa_size_limit(Some(100 * (1<<20))) |
| 2868 | /// // We don't care about size too much here, so just |
| 2869 | /// // remove the NFA state limit altogether. |
| 2870 | /// .dfa_state_limit(None)) |
| 2871 | /// .build(r"\pL{5}" ); |
| 2872 | /// assert!(result.is_ok()); |
| 2873 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2874 | /// ``` |
| 2875 | pub fn dfa_size_limit(self, limit: Option<usize>) -> Config { |
| 2876 | Config { dfa_size_limit: Some(limit), ..self } |
| 2877 | } |
| 2878 | |
| 2879 | /// Sets a limit on the total number of NFA states, beyond which, a full |
| 2880 | /// DFA is not attempted to be compiled. |
| 2881 | /// |
| 2882 | /// This limit works in concert with [`Config::dfa_size_limit`]. Namely, |
| 2883 | /// where as `Config::dfa_size_limit` is applied by attempting to construct |
| 2884 | /// a DFA, this limit is used to avoid the attempt in the first place. This |
| 2885 | /// is useful to avoid hefty initialization costs associated with building |
| 2886 | /// a DFA for cases where it is obvious the DFA will ultimately be too big. |
| 2887 | /// |
| 2888 | /// By default, this is set to a very small number. |
| 2889 | /// |
| 2890 | /// # Example |
| 2891 | /// |
| 2892 | /// ``` |
| 2893 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 2894 | /// use regex_automata::meta::Regex; |
| 2895 | /// |
| 2896 | /// let result = Regex::builder() |
| 2897 | /// .configure(Regex::config() |
| 2898 | /// // Sometimes the default state limit rejects DFAs even |
| 2899 | /// // if they would fit in the size limit. Here, we disable |
| 2900 | /// // the check on the number of NFA states and just rely on |
| 2901 | /// // the size limit. |
| 2902 | /// .dfa_state_limit(None)) |
| 2903 | /// .build(r"(?-u)\w{30}" ); |
| 2904 | /// assert!(result.is_ok()); |
| 2905 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2906 | /// ``` |
| 2907 | pub fn dfa_state_limit(self, limit: Option<usize>) -> Config { |
| 2908 | Config { dfa_state_limit: Some(limit), ..self } |
| 2909 | } |
| 2910 | |
| 2911 | /// Whether to attempt to shrink the size of the alphabet for the regex |
| 2912 | /// pattern or not. When enabled, the alphabet is shrunk into a set of |
| 2913 | /// equivalence classes, where every byte in the same equivalence class |
| 2914 | /// cannot discriminate between a match or non-match. |
| 2915 | /// |
| 2916 | /// **WARNING:** This is only useful for debugging DFAs. Disabling this |
| 2917 | /// does not yield any speed advantages. Indeed, disabling it can result |
| 2918 | /// in much higher memory usage. Disabling byte classes is useful for |
| 2919 | /// debugging the actual generated transitions because it lets one see the |
| 2920 | /// transitions defined on actual bytes instead of the equivalence classes. |
| 2921 | /// |
| 2922 | /// This option is enabled by default and should never be disabled unless |
| 2923 | /// one is debugging the meta regex engine's internals. |
| 2924 | /// |
| 2925 | /// # Example |
| 2926 | /// |
| 2927 | /// ``` |
| 2928 | /// use regex_automata::{meta::Regex, Match}; |
| 2929 | /// |
| 2930 | /// let re = Regex::builder() |
| 2931 | /// .configure(Regex::config().byte_classes(false)) |
| 2932 | /// .build(r"[a-z]+" )?; |
| 2933 | /// let hay = "!!quux!!" ; |
| 2934 | /// assert_eq!(Some(Match::must(0, 2..6)), re.find(hay)); |
| 2935 | /// |
| 2936 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2937 | /// ``` |
| 2938 | pub fn byte_classes(self, yes: bool) -> Config { |
| 2939 | Config { byte_classes: Some(yes), ..self } |
| 2940 | } |
| 2941 | |
| 2942 | /// Set the line terminator to be used by the `^` and `$` anchors in |
| 2943 | /// multi-line mode. |
| 2944 | /// |
| 2945 | /// This option has no effect when CRLF mode is enabled. That is, |
| 2946 | /// regardless of this setting, `(?Rm:^)` and `(?Rm:$)` will always treat |
| 2947 | /// `\r` and `\n` as line terminators (and will never match between a `\r` |
| 2948 | /// and a `\n`). |
| 2949 | /// |
| 2950 | /// By default, `\n` is the line terminator. |
| 2951 | /// |
| 2952 | /// **Warning**: This does not change the behavior of `.`. To do that, |
| 2953 | /// you'll need to configure the syntax option |
| 2954 | /// [`syntax::Config::line_terminator`](crate::util::syntax::Config::line_terminator) |
| 2955 | /// in addition to this. Otherwise, `.` will continue to match any |
| 2956 | /// character other than `\n`. |
| 2957 | /// |
| 2958 | /// # Example |
| 2959 | /// |
| 2960 | /// ``` |
| 2961 | /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| 2962 | /// |
| 2963 | /// let re = Regex::builder() |
| 2964 | /// .syntax(syntax::Config::new().multi_line(true)) |
| 2965 | /// .configure(Regex::config().line_terminator(b' \x00' )) |
| 2966 | /// .build(r"^foo$" )?; |
| 2967 | /// let hay = " \x00foo \x00" ; |
| 2968 | /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay)); |
| 2969 | /// |
| 2970 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2971 | /// ``` |
| 2972 | pub fn line_terminator(self, byte: u8) -> Config { |
| 2973 | Config { line_terminator: Some(byte), ..self } |
| 2974 | } |
| 2975 | |
| 2976 | /// Toggle whether the hybrid NFA/DFA (also known as the "lazy DFA") should |
| 2977 | /// be available for use by the meta regex engine. |
| 2978 | /// |
| 2979 | /// Enabling this does not necessarily mean that the lazy DFA will |
| 2980 | /// definitely be used. It just means that it will be _available_ for use |
| 2981 | /// if the meta regex engine thinks it will be useful. |
| 2982 | /// |
| 2983 | /// When the `hybrid` crate feature is enabled, then this is enabled by |
| 2984 | /// default. Otherwise, if the crate feature is disabled, then this is |
| 2985 | /// always disabled, regardless of its setting by the caller. |
| 2986 | pub fn hybrid(self, yes: bool) -> Config { |
| 2987 | Config { hybrid: Some(yes), ..self } |
| 2988 | } |
| 2989 | |
| 2990 | /// Toggle whether a fully compiled DFA should be available for use by the |
| 2991 | /// meta regex engine. |
| 2992 | /// |
| 2993 | /// Enabling this does not necessarily mean that a DFA will definitely be |
| 2994 | /// used. It just means that it will be _available_ for use if the meta |
| 2995 | /// regex engine thinks it will be useful. |
| 2996 | /// |
| 2997 | /// When the `dfa-build` crate feature is enabled, then this is enabled by |
| 2998 | /// default. Otherwise, if the crate feature is disabled, then this is |
| 2999 | /// always disabled, regardless of its setting by the caller. |
| 3000 | pub fn dfa(self, yes: bool) -> Config { |
| 3001 | Config { dfa: Some(yes), ..self } |
| 3002 | } |
| 3003 | |
| 3004 | /// Toggle whether a one-pass DFA should be available for use by the meta |
| 3005 | /// regex engine. |
| 3006 | /// |
| 3007 | /// Enabling this does not necessarily mean that a one-pass DFA will |
| 3008 | /// definitely be used. It just means that it will be _available_ for |
| 3009 | /// use if the meta regex engine thinks it will be useful. (Indeed, a |
| 3010 | /// one-pass DFA can only be used when the regex is one-pass. See the |
| 3011 | /// [`dfa::onepass`](crate::dfa::onepass) module for more details.) |
| 3012 | /// |
| 3013 | /// When the `dfa-onepass` crate feature is enabled, then this is enabled |
| 3014 | /// by default. Otherwise, if the crate feature is disabled, then this is |
| 3015 | /// always disabled, regardless of its setting by the caller. |
| 3016 | pub fn onepass(self, yes: bool) -> Config { |
| 3017 | Config { onepass: Some(yes), ..self } |
| 3018 | } |
| 3019 | |
| 3020 | /// Toggle whether a bounded backtracking regex engine should be available |
| 3021 | /// for use by the meta regex engine. |
| 3022 | /// |
| 3023 | /// Enabling this does not necessarily mean that a bounded backtracker will |
| 3024 | /// definitely be used. It just means that it will be _available_ for use |
| 3025 | /// if the meta regex engine thinks it will be useful. |
| 3026 | /// |
| 3027 | /// When the `nfa-backtrack` crate feature is enabled, then this is enabled |
| 3028 | /// by default. Otherwise, if the crate feature is disabled, then this is |
| 3029 | /// always disabled, regardless of its setting by the caller. |
| 3030 | pub fn backtrack(self, yes: bool) -> Config { |
| 3031 | Config { backtrack: Some(yes), ..self } |
| 3032 | } |
| 3033 | |
| 3034 | /// Returns the match kind on this configuration, as set by |
| 3035 | /// [`Config::match_kind`]. |
| 3036 | /// |
| 3037 | /// If it was not explicitly set, then a default value is returned. |
| 3038 | pub fn get_match_kind(&self) -> MatchKind { |
| 3039 | self.match_kind.unwrap_or(MatchKind::LeftmostFirst) |
| 3040 | } |
| 3041 | |
| 3042 | /// Returns whether empty matches must fall on valid UTF-8 boundaries, as |
| 3043 | /// set by [`Config::utf8_empty`]. |
| 3044 | /// |
| 3045 | /// If it was not explicitly set, then a default value is returned. |
| 3046 | pub fn get_utf8_empty(&self) -> bool { |
| 3047 | self.utf8_empty.unwrap_or(true) |
| 3048 | } |
| 3049 | |
| 3050 | /// Returns whether automatic prefilters are enabled, as set by |
| 3051 | /// [`Config::auto_prefilter`]. |
| 3052 | /// |
| 3053 | /// If it was not explicitly set, then a default value is returned. |
| 3054 | pub fn get_auto_prefilter(&self) -> bool { |
| 3055 | self.autopre.unwrap_or(true) |
| 3056 | } |
| 3057 | |
| 3058 | /// Returns a manually set prefilter, if one was set by |
| 3059 | /// [`Config::prefilter`]. |
| 3060 | /// |
| 3061 | /// If it was not explicitly set, then a default value is returned. |
| 3062 | pub fn get_prefilter(&self) -> Option<&Prefilter> { |
| 3063 | self.pre.as_ref().unwrap_or(&None).as_ref() |
| 3064 | } |
| 3065 | |
| 3066 | /// Returns the capture configuration, as set by |
| 3067 | /// [`Config::which_captures`]. |
| 3068 | /// |
| 3069 | /// If it was not explicitly set, then a default value is returned. |
| 3070 | pub fn get_which_captures(&self) -> WhichCaptures { |
| 3071 | self.which_captures.unwrap_or(WhichCaptures::All) |
| 3072 | } |
| 3073 | |
| 3074 | /// Returns NFA size limit, as set by [`Config::nfa_size_limit`]. |
| 3075 | /// |
| 3076 | /// If it was not explicitly set, then a default value is returned. |
| 3077 | pub fn get_nfa_size_limit(&self) -> Option<usize> { |
| 3078 | self.nfa_size_limit.unwrap_or(Some(10 * (1 << 20))) |
| 3079 | } |
| 3080 | |
| 3081 | /// Returns one-pass DFA size limit, as set by |
| 3082 | /// [`Config::onepass_size_limit`]. |
| 3083 | /// |
| 3084 | /// If it was not explicitly set, then a default value is returned. |
| 3085 | pub fn get_onepass_size_limit(&self) -> Option<usize> { |
| 3086 | self.onepass_size_limit.unwrap_or(Some(1 * (1 << 20))) |
| 3087 | } |
| 3088 | |
| 3089 | /// Returns hybrid NFA/DFA cache capacity, as set by |
| 3090 | /// [`Config::hybrid_cache_capacity`]. |
| 3091 | /// |
| 3092 | /// If it was not explicitly set, then a default value is returned. |
| 3093 | pub fn get_hybrid_cache_capacity(&self) -> usize { |
| 3094 | self.hybrid_cache_capacity.unwrap_or(2 * (1 << 20)) |
| 3095 | } |
| 3096 | |
| 3097 | /// Returns DFA size limit, as set by [`Config::dfa_size_limit`]. |
| 3098 | /// |
| 3099 | /// If it was not explicitly set, then a default value is returned. |
| 3100 | pub fn get_dfa_size_limit(&self) -> Option<usize> { |
| 3101 | // The default for this is VERY small because building a full DFA is |
| 3102 | // ridiculously costly. But for regexes that are very small, it can be |
| 3103 | // beneficial to use a full DFA. In particular, a full DFA can enable |
| 3104 | // additional optimizations via something called "accelerated" states. |
| 3105 | // Namely, when there's a state with only a few outgoing transitions, |
| 3106 | // we can temporary suspend walking the transition table and use memchr |
| 3107 | // for just those outgoing transitions to skip ahead very quickly. |
| 3108 | // |
| 3109 | // Generally speaking, if Unicode is enabled in your regex and you're |
| 3110 | // using some kind of Unicode feature, then it's going to blow this |
| 3111 | // size limit. Moreover, Unicode tends to defeat the "accelerated" |
| 3112 | // state optimization too, so it's a double whammy. |
| 3113 | // |
| 3114 | // We also use a limit on the number of NFA states to avoid even |
| 3115 | // starting the DFA construction process. Namely, DFA construction |
| 3116 | // itself could make lots of initial allocs proportional to the size |
| 3117 | // of the NFA, and if the NFA is large, it doesn't make sense to pay |
| 3118 | // that cost if we know it's likely to be blown by a large margin. |
| 3119 | self.dfa_size_limit.unwrap_or(Some(40 * (1 << 10))) |
| 3120 | } |
| 3121 | |
| 3122 | /// Returns DFA size limit in terms of the number of states in the NFA, as |
| 3123 | /// set by [`Config::dfa_state_limit`]. |
| 3124 | /// |
| 3125 | /// If it was not explicitly set, then a default value is returned. |
| 3126 | pub fn get_dfa_state_limit(&self) -> Option<usize> { |
| 3127 | // Again, as with the size limit, we keep this very small. |
| 3128 | self.dfa_state_limit.unwrap_or(Some(30)) |
| 3129 | } |
| 3130 | |
| 3131 | /// Returns whether byte classes are enabled, as set by |
| 3132 | /// [`Config::byte_classes`]. |
| 3133 | /// |
| 3134 | /// If it was not explicitly set, then a default value is returned. |
| 3135 | pub fn get_byte_classes(&self) -> bool { |
| 3136 | self.byte_classes.unwrap_or(true) |
| 3137 | } |
| 3138 | |
| 3139 | /// Returns the line terminator for this configuration, as set by |
| 3140 | /// [`Config::line_terminator`]. |
| 3141 | /// |
| 3142 | /// If it was not explicitly set, then a default value is returned. |
| 3143 | pub fn get_line_terminator(&self) -> u8 { |
| 3144 | self.line_terminator.unwrap_or(b' \n' ) |
| 3145 | } |
| 3146 | |
| 3147 | /// Returns whether the hybrid NFA/DFA regex engine may be used, as set by |
| 3148 | /// [`Config::hybrid`]. |
| 3149 | /// |
| 3150 | /// If it was not explicitly set, then a default value is returned. |
| 3151 | pub fn get_hybrid(&self) -> bool { |
| 3152 | #[cfg (feature = "hybrid" )] |
| 3153 | { |
| 3154 | self.hybrid.unwrap_or(true) |
| 3155 | } |
| 3156 | #[cfg (not(feature = "hybrid" ))] |
| 3157 | { |
| 3158 | false |
| 3159 | } |
| 3160 | } |
| 3161 | |
| 3162 | /// Returns whether the DFA regex engine may be used, as set by |
| 3163 | /// [`Config::dfa`]. |
| 3164 | /// |
| 3165 | /// If it was not explicitly set, then a default value is returned. |
| 3166 | pub fn get_dfa(&self) -> bool { |
| 3167 | #[cfg (feature = "dfa-build" )] |
| 3168 | { |
| 3169 | self.dfa.unwrap_or(true) |
| 3170 | } |
| 3171 | #[cfg (not(feature = "dfa-build" ))] |
| 3172 | { |
| 3173 | false |
| 3174 | } |
| 3175 | } |
| 3176 | |
| 3177 | /// Returns whether the one-pass DFA regex engine may be used, as set by |
| 3178 | /// [`Config::onepass`]. |
| 3179 | /// |
| 3180 | /// If it was not explicitly set, then a default value is returned. |
| 3181 | pub fn get_onepass(&self) -> bool { |
| 3182 | #[cfg (feature = "dfa-onepass" )] |
| 3183 | { |
| 3184 | self.onepass.unwrap_or(true) |
| 3185 | } |
| 3186 | #[cfg (not(feature = "dfa-onepass" ))] |
| 3187 | { |
| 3188 | false |
| 3189 | } |
| 3190 | } |
| 3191 | |
| 3192 | /// Returns whether the bounded backtracking regex engine may be used, as |
| 3193 | /// set by [`Config::backtrack`]. |
| 3194 | /// |
| 3195 | /// If it was not explicitly set, then a default value is returned. |
| 3196 | pub fn get_backtrack(&self) -> bool { |
| 3197 | #[cfg (feature = "nfa-backtrack" )] |
| 3198 | { |
| 3199 | self.backtrack.unwrap_or(true) |
| 3200 | } |
| 3201 | #[cfg (not(feature = "nfa-backtrack" ))] |
| 3202 | { |
| 3203 | false |
| 3204 | } |
| 3205 | } |
| 3206 | |
| 3207 | /// Overwrite the default configuration such that the options in `o` are |
| 3208 | /// always used. If an option in `o` is not set, then the corresponding |
| 3209 | /// option in `self` is used. If it's not set in `self` either, then it |
| 3210 | /// remains not set. |
| 3211 | pub(crate) fn overwrite(&self, o: Config) -> Config { |
| 3212 | Config { |
| 3213 | match_kind: o.match_kind.or(self.match_kind), |
| 3214 | utf8_empty: o.utf8_empty.or(self.utf8_empty), |
| 3215 | autopre: o.autopre.or(self.autopre), |
| 3216 | pre: o.pre.or_else(|| self.pre.clone()), |
| 3217 | which_captures: o.which_captures.or(self.which_captures), |
| 3218 | nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit), |
| 3219 | onepass_size_limit: o |
| 3220 | .onepass_size_limit |
| 3221 | .or(self.onepass_size_limit), |
| 3222 | hybrid_cache_capacity: o |
| 3223 | .hybrid_cache_capacity |
| 3224 | .or(self.hybrid_cache_capacity), |
| 3225 | hybrid: o.hybrid.or(self.hybrid), |
| 3226 | dfa: o.dfa.or(self.dfa), |
| 3227 | dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit), |
| 3228 | dfa_state_limit: o.dfa_state_limit.or(self.dfa_state_limit), |
| 3229 | onepass: o.onepass.or(self.onepass), |
| 3230 | backtrack: o.backtrack.or(self.backtrack), |
| 3231 | byte_classes: o.byte_classes.or(self.byte_classes), |
| 3232 | line_terminator: o.line_terminator.or(self.line_terminator), |
| 3233 | } |
| 3234 | } |
| 3235 | } |
| 3236 | |
| 3237 | /// A builder for configuring and constructing a `Regex`. |
| 3238 | /// |
| 3239 | /// The builder permits configuring two different aspects of a `Regex`: |
| 3240 | /// |
| 3241 | /// * [`Builder::configure`] will set high-level configuration options as |
| 3242 | /// described by a [`Config`]. |
| 3243 | /// * [`Builder::syntax`] will set the syntax level configuration options |
| 3244 | /// as described by a [`util::syntax::Config`](crate::util::syntax::Config). |
| 3245 | /// This only applies when building a `Regex` from pattern strings. |
| 3246 | /// |
| 3247 | /// Once configured, the builder can then be used to construct a `Regex` from |
| 3248 | /// one of 4 different inputs: |
| 3249 | /// |
| 3250 | /// * [`Builder::build`] creates a regex from a single pattern string. |
| 3251 | /// * [`Builder::build_many`] creates a regex from many pattern strings. |
| 3252 | /// * [`Builder::build_from_hir`] creates a regex from a |
| 3253 | /// [`regex-syntax::Hir`](Hir) expression. |
| 3254 | /// * [`Builder::build_many_from_hir`] creates a regex from many |
| 3255 | /// [`regex-syntax::Hir`](Hir) expressions. |
| 3256 | /// |
| 3257 | /// The latter two methods in particular provide a way to construct a fully |
| 3258 | /// feature regular expression matcher directly from an `Hir` expression |
| 3259 | /// without having to first convert it to a string. (This is in contrast to the |
| 3260 | /// top-level `regex` crate which intentionally provides no such API in order |
| 3261 | /// to avoid making `regex-syntax` a public dependency.) |
| 3262 | /// |
| 3263 | /// As a convenience, this builder may be created via [`Regex::builder`], which |
| 3264 | /// may help avoid an extra import. |
| 3265 | /// |
| 3266 | /// # Example: change the line terminator |
| 3267 | /// |
| 3268 | /// This example shows how to enable multi-line mode by default and change the |
| 3269 | /// line terminator to the NUL byte: |
| 3270 | /// |
| 3271 | /// ``` |
| 3272 | /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| 3273 | /// |
| 3274 | /// let re = Regex::builder() |
| 3275 | /// .syntax(syntax::Config::new().multi_line(true)) |
| 3276 | /// .configure(Regex::config().line_terminator(b' \x00' )) |
| 3277 | /// .build(r"^foo$" )?; |
| 3278 | /// let hay = " \x00foo \x00" ; |
| 3279 | /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay)); |
| 3280 | /// |
| 3281 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3282 | /// ``` |
| 3283 | /// |
| 3284 | /// # Example: disable UTF-8 requirement |
| 3285 | /// |
| 3286 | /// By default, regex patterns are required to match UTF-8. This includes |
| 3287 | /// regex patterns that can produce matches of length zero. In the case of an |
| 3288 | /// empty match, by default, matches will not appear between the code units of |
| 3289 | /// a UTF-8 encoded codepoint. |
| 3290 | /// |
| 3291 | /// However, it can be useful to disable this requirement, particularly if |
| 3292 | /// you're searching things like `&[u8]` that are not known to be valid UTF-8. |
| 3293 | /// |
| 3294 | /// ``` |
| 3295 | /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| 3296 | /// |
| 3297 | /// let mut builder = Regex::builder(); |
| 3298 | /// // Disables the requirement that non-empty matches match UTF-8. |
| 3299 | /// builder.syntax(syntax::Config::new().utf8(false)); |
| 3300 | /// // Disables the requirement that empty matches match UTF-8 boundaries. |
| 3301 | /// builder.configure(Regex::config().utf8_empty(false)); |
| 3302 | /// |
| 3303 | /// // We can match raw bytes via \xZZ syntax, but we need to disable |
| 3304 | /// // Unicode mode to do that. We could disable it everywhere, or just |
| 3305 | /// // selectively, as shown here. |
| 3306 | /// let re = builder.build(r"(?-u:\xFF)foo(?-u:\xFF)" )?; |
| 3307 | /// let hay = b" \xFFfoo \xFF" ; |
| 3308 | /// assert_eq!(Some(Match::must(0, 0..5)), re.find(hay)); |
| 3309 | /// |
| 3310 | /// // We can also match between code units. |
| 3311 | /// let re = builder.build(r"" )?; |
| 3312 | /// let hay = "☃" ; |
| 3313 | /// assert_eq!(re.find_iter(hay).collect::<Vec<Match>>(), vec![ |
| 3314 | /// Match::must(0, 0..0), |
| 3315 | /// Match::must(0, 1..1), |
| 3316 | /// Match::must(0, 2..2), |
| 3317 | /// Match::must(0, 3..3), |
| 3318 | /// ]); |
| 3319 | /// |
| 3320 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3321 | /// ``` |
| 3322 | #[derive (Clone, Debug)] |
| 3323 | pub struct Builder { |
| 3324 | config: Config, |
| 3325 | ast: ast::parse::ParserBuilder, |
| 3326 | hir: hir::translate::TranslatorBuilder, |
| 3327 | } |
| 3328 | |
| 3329 | impl Builder { |
| 3330 | /// Creates a new builder for configuring and constructing a [`Regex`]. |
| 3331 | pub fn new() -> Builder { |
| 3332 | Builder { |
| 3333 | config: Config::default(), |
| 3334 | ast: ast::parse::ParserBuilder::new(), |
| 3335 | hir: hir::translate::TranslatorBuilder::new(), |
| 3336 | } |
| 3337 | } |
| 3338 | |
| 3339 | /// Builds a `Regex` from a single pattern string. |
| 3340 | /// |
| 3341 | /// If there was a problem parsing the pattern or a problem turning it into |
| 3342 | /// a regex matcher, then an error is returned. |
| 3343 | /// |
| 3344 | /// # Example |
| 3345 | /// |
| 3346 | /// This example shows how to configure syntax options. |
| 3347 | /// |
| 3348 | /// ``` |
| 3349 | /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| 3350 | /// |
| 3351 | /// let re = Regex::builder() |
| 3352 | /// .syntax(syntax::Config::new().crlf(true).multi_line(true)) |
| 3353 | /// .build(r"^foo$" )?; |
| 3354 | /// let hay = " \r\nfoo \r\n" ; |
| 3355 | /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay)); |
| 3356 | /// |
| 3357 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3358 | /// ``` |
| 3359 | pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> { |
| 3360 | self.build_many(&[pattern]) |
| 3361 | } |
| 3362 | |
| 3363 | /// Builds a `Regex` from many pattern strings. |
| 3364 | /// |
| 3365 | /// If there was a problem parsing any of the patterns or a problem turning |
| 3366 | /// them into a regex matcher, then an error is returned. |
| 3367 | /// |
| 3368 | /// # Example: finding the pattern that caused an error |
| 3369 | /// |
| 3370 | /// When a syntax error occurs, it is possible to ask which pattern |
| 3371 | /// caused the syntax error. |
| 3372 | /// |
| 3373 | /// ``` |
| 3374 | /// use regex_automata::{meta::Regex, PatternID}; |
| 3375 | /// |
| 3376 | /// let err = Regex::builder() |
| 3377 | /// .build_many(&["a" , "b" , r"\p{Foo}" , "c" ]) |
| 3378 | /// .unwrap_err(); |
| 3379 | /// assert_eq!(Some(PatternID::must(2)), err.pattern()); |
| 3380 | /// ``` |
| 3381 | /// |
| 3382 | /// # Example: zero patterns is valid |
| 3383 | /// |
| 3384 | /// Building a regex with zero patterns results in a regex that never |
| 3385 | /// matches anything. Because this routine is generic, passing an empty |
| 3386 | /// slice usually requires a turbo-fish (or something else to help type |
| 3387 | /// inference). |
| 3388 | /// |
| 3389 | /// ``` |
| 3390 | /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| 3391 | /// |
| 3392 | /// let re = Regex::builder() |
| 3393 | /// .build_many::<&str>(&[])?; |
| 3394 | /// assert_eq!(None, re.find("" )); |
| 3395 | /// |
| 3396 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3397 | /// ``` |
| 3398 | pub fn build_many<P: AsRef<str>>( |
| 3399 | &self, |
| 3400 | patterns: &[P], |
| 3401 | ) -> Result<Regex, BuildError> { |
| 3402 | use crate::util::primitives::IteratorIndexExt; |
| 3403 | log! { |
| 3404 | debug!("building meta regex with {} patterns:" , patterns.len()); |
| 3405 | for (pid, p) in patterns.iter().with_pattern_ids() { |
| 3406 | let p = p.as_ref(); |
| 3407 | // We might split a grapheme with this truncation logic, but |
| 3408 | // that's fine. We at least avoid splitting a codepoint. |
| 3409 | let maxoff = p |
| 3410 | .char_indices() |
| 3411 | .map(|(i, ch)| i + ch.len_utf8()) |
| 3412 | .take(1000) |
| 3413 | .last() |
| 3414 | .unwrap_or(0); |
| 3415 | if maxoff < p.len() { |
| 3416 | debug!("{:?}: {}[... snip ...]" , pid, &p[..maxoff]); |
| 3417 | } else { |
| 3418 | debug!("{:?}: {}" , pid, p); |
| 3419 | } |
| 3420 | } |
| 3421 | } |
| 3422 | let (mut asts, mut hirs) = (vec![], vec![]); |
| 3423 | for (pid, p) in patterns.iter().with_pattern_ids() { |
| 3424 | let ast = self |
| 3425 | .ast |
| 3426 | .build() |
| 3427 | .parse(p.as_ref()) |
| 3428 | .map_err(|err| BuildError::ast(pid, err))?; |
| 3429 | asts.push(ast); |
| 3430 | } |
| 3431 | for ((pid, p), ast) in |
| 3432 | patterns.iter().with_pattern_ids().zip(asts.iter()) |
| 3433 | { |
| 3434 | let hir = self |
| 3435 | .hir |
| 3436 | .build() |
| 3437 | .translate(p.as_ref(), ast) |
| 3438 | .map_err(|err| BuildError::hir(pid, err))?; |
| 3439 | hirs.push(hir); |
| 3440 | } |
| 3441 | self.build_many_from_hir(&hirs) |
| 3442 | } |
| 3443 | |
| 3444 | /// Builds a `Regex` directly from an `Hir` expression. |
| 3445 | /// |
| 3446 | /// This is useful if you needed to parse a pattern string into an `Hir` |
| 3447 | /// for other reasons (such as analysis or transformations). This routine |
| 3448 | /// permits building a `Regex` directly from the `Hir` expression instead |
| 3449 | /// of first converting the `Hir` back to a pattern string. |
| 3450 | /// |
| 3451 | /// When using this method, any options set via [`Builder::syntax`] are |
| 3452 | /// ignored. Namely, the syntax options only apply when parsing a pattern |
| 3453 | /// string, which isn't relevant here. |
| 3454 | /// |
| 3455 | /// If there was a problem building the underlying regex matcher for the |
| 3456 | /// given `Hir`, then an error is returned. |
| 3457 | /// |
| 3458 | /// # Example |
| 3459 | /// |
| 3460 | /// This example shows how one can hand-construct an `Hir` expression and |
| 3461 | /// build a regex from it without doing any parsing at all. |
| 3462 | /// |
| 3463 | /// ``` |
| 3464 | /// use { |
| 3465 | /// regex_automata::{meta::Regex, Match}, |
| 3466 | /// regex_syntax::hir::{Hir, Look}, |
| 3467 | /// }; |
| 3468 | /// |
| 3469 | /// // (?Rm)^foo$ |
| 3470 | /// let hir = Hir::concat(vec![ |
| 3471 | /// Hir::look(Look::StartCRLF), |
| 3472 | /// Hir::literal("foo" .as_bytes()), |
| 3473 | /// Hir::look(Look::EndCRLF), |
| 3474 | /// ]); |
| 3475 | /// let re = Regex::builder() |
| 3476 | /// .build_from_hir(&hir)?; |
| 3477 | /// let hay = " \r\nfoo \r\n" ; |
| 3478 | /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay)); |
| 3479 | /// |
| 3480 | /// Ok::<(), Box<dyn std::error::Error>>(()) |
| 3481 | /// ``` |
| 3482 | pub fn build_from_hir(&self, hir: &Hir) -> Result<Regex, BuildError> { |
| 3483 | self.build_many_from_hir(&[hir]) |
| 3484 | } |
| 3485 | |
| 3486 | /// Builds a `Regex` directly from many `Hir` expressions. |
| 3487 | /// |
| 3488 | /// This is useful if you needed to parse pattern strings into `Hir` |
| 3489 | /// expressions for other reasons (such as analysis or transformations). |
| 3490 | /// This routine permits building a `Regex` directly from the `Hir` |
| 3491 | /// expressions instead of first converting the `Hir` expressions back to |
| 3492 | /// pattern strings. |
| 3493 | /// |
| 3494 | /// When using this method, any options set via [`Builder::syntax`] are |
| 3495 | /// ignored. Namely, the syntax options only apply when parsing a pattern |
| 3496 | /// string, which isn't relevant here. |
| 3497 | /// |
| 3498 | /// If there was a problem building the underlying regex matcher for the |
| 3499 | /// given `Hir` expressions, then an error is returned. |
| 3500 | /// |
| 3501 | /// Note that unlike [`Builder::build_many`], this can only fail as a |
| 3502 | /// result of building the underlying matcher. In that case, there is |
| 3503 | /// no single `Hir` expression that can be isolated as a reason for the |
| 3504 | /// failure. So if this routine fails, it's not possible to determine which |
| 3505 | /// `Hir` expression caused the failure. |
| 3506 | /// |
| 3507 | /// # Example |
| 3508 | /// |
| 3509 | /// This example shows how one can hand-construct multiple `Hir` |
| 3510 | /// expressions and build a single regex from them without doing any |
| 3511 | /// parsing at all. |
| 3512 | /// |
| 3513 | /// ``` |
| 3514 | /// use { |
| 3515 | /// regex_automata::{meta::Regex, Match}, |
| 3516 | /// regex_syntax::hir::{Hir, Look}, |
| 3517 | /// }; |
| 3518 | /// |
| 3519 | /// // (?Rm)^foo$ |
| 3520 | /// let hir1 = Hir::concat(vec![ |
| 3521 | /// Hir::look(Look::StartCRLF), |
| 3522 | /// Hir::literal("foo" .as_bytes()), |
| 3523 | /// Hir::look(Look::EndCRLF), |
| 3524 | /// ]); |
| 3525 | /// // (?Rm)^bar$ |
| 3526 | /// let hir2 = Hir::concat(vec![ |
| 3527 | /// Hir::look(Look::StartCRLF), |
| 3528 | /// Hir::literal("bar" .as_bytes()), |
| 3529 | /// Hir::look(Look::EndCRLF), |
| 3530 | /// ]); |
| 3531 | /// let re = Regex::builder() |
| 3532 | /// .build_many_from_hir(&[&hir1, &hir2])?; |
| 3533 | /// let hay = " \r\nfoo \r\nbar" ; |
| 3534 | /// let got: Vec<Match> = re.find_iter(hay).collect(); |
| 3535 | /// let expected = vec![ |
| 3536 | /// Match::must(0, 2..5), |
| 3537 | /// Match::must(1, 7..10), |
| 3538 | /// ]; |
| 3539 | /// assert_eq!(expected, got); |
| 3540 | /// |
| 3541 | /// Ok::<(), Box<dyn std::error::Error>>(()) |
| 3542 | /// ``` |
| 3543 | pub fn build_many_from_hir<H: Borrow<Hir>>( |
| 3544 | &self, |
| 3545 | hirs: &[H], |
| 3546 | ) -> Result<Regex, BuildError> { |
| 3547 | let config = self.config.clone(); |
| 3548 | // We collect the HIRs into a vec so we can write internal routines |
| 3549 | // with '&[&Hir]'. i.e., Don't use generics everywhere to keep code |
| 3550 | // bloat down.. |
| 3551 | let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect(); |
| 3552 | let info = RegexInfo::new(config, &hirs); |
| 3553 | let strat = strategy::new(&info, &hirs)?; |
| 3554 | let pool = { |
| 3555 | let strat = Arc::clone(&strat); |
| 3556 | let create: CachePoolFn = Box::new(move || strat.create_cache()); |
| 3557 | Pool::new(create) |
| 3558 | }; |
| 3559 | Ok(Regex { imp: Arc::new(RegexI { strat, info }), pool }) |
| 3560 | } |
| 3561 | |
| 3562 | /// Configure the behavior of a `Regex`. |
| 3563 | /// |
| 3564 | /// This configuration controls non-syntax options related to the behavior |
| 3565 | /// of a `Regex`. This includes things like whether empty matches can split |
| 3566 | /// a codepoint, prefilters, line terminators and a long list of options |
| 3567 | /// for configuring which regex engines the meta regex engine will be able |
| 3568 | /// to use internally. |
| 3569 | /// |
| 3570 | /// # Example |
| 3571 | /// |
| 3572 | /// This example shows how to disable UTF-8 empty mode. This will permit |
| 3573 | /// empty matches to occur between the UTF-8 encoding of a codepoint. |
| 3574 | /// |
| 3575 | /// ``` |
| 3576 | /// use regex_automata::{meta::Regex, Match}; |
| 3577 | /// |
| 3578 | /// let re = Regex::new("" )?; |
| 3579 | /// let got: Vec<Match> = re.find_iter("☃" ).collect(); |
| 3580 | /// // Matches only occur at the beginning and end of the snowman. |
| 3581 | /// assert_eq!(got, vec![ |
| 3582 | /// Match::must(0, 0..0), |
| 3583 | /// Match::must(0, 3..3), |
| 3584 | /// ]); |
| 3585 | /// |
| 3586 | /// let re = Regex::builder() |
| 3587 | /// .configure(Regex::config().utf8_empty(false)) |
| 3588 | /// .build("" )?; |
| 3589 | /// let got: Vec<Match> = re.find_iter("☃" ).collect(); |
| 3590 | /// // Matches now occur at every position! |
| 3591 | /// assert_eq!(got, vec![ |
| 3592 | /// Match::must(0, 0..0), |
| 3593 | /// Match::must(0, 1..1), |
| 3594 | /// Match::must(0, 2..2), |
| 3595 | /// Match::must(0, 3..3), |
| 3596 | /// ]); |
| 3597 | /// |
| 3598 | /// Ok::<(), Box<dyn std::error::Error>>(()) |
| 3599 | /// ``` |
| 3600 | pub fn configure(&mut self, config: Config) -> &mut Builder { |
| 3601 | self.config = self.config.overwrite(config); |
| 3602 | self |
| 3603 | } |
| 3604 | |
| 3605 | /// Configure the syntax options when parsing a pattern string while |
| 3606 | /// building a `Regex`. |
| 3607 | /// |
| 3608 | /// These options _only_ apply when [`Builder::build`] or [`Builder::build_many`] |
| 3609 | /// are used. The other build methods accept `Hir` values, which have |
| 3610 | /// already been parsed. |
| 3611 | /// |
| 3612 | /// # Example |
| 3613 | /// |
| 3614 | /// This example shows how to enable case insensitive mode. |
| 3615 | /// |
| 3616 | /// ``` |
| 3617 | /// use regex_automata::{meta::Regex, util::syntax, Match}; |
| 3618 | /// |
| 3619 | /// let re = Regex::builder() |
| 3620 | /// .syntax(syntax::Config::new().case_insensitive(true)) |
| 3621 | /// .build(r"δ" )?; |
| 3622 | /// assert_eq!(Some(Match::must(0, 0..2)), re.find(r"Δ" )); |
| 3623 | /// |
| 3624 | /// Ok::<(), Box<dyn std::error::Error>>(()) |
| 3625 | /// ``` |
| 3626 | pub fn syntax( |
| 3627 | &mut self, |
| 3628 | config: crate::util::syntax::Config, |
| 3629 | ) -> &mut Builder { |
| 3630 | config.apply_ast(&mut self.ast); |
| 3631 | config.apply_hir(&mut self.hir); |
| 3632 | self |
| 3633 | } |
| 3634 | } |
| 3635 | |
| 3636 | #[cfg (test)] |
| 3637 | mod tests { |
| 3638 | use super::*; |
| 3639 | |
| 3640 | // I found this in the course of building out the benchmark suite for |
| 3641 | // rebar. |
| 3642 | #[test ] |
| 3643 | fn regression_suffix_literal_count() { |
| 3644 | let _ = env_logger::try_init(); |
| 3645 | |
| 3646 | let re = Regex::new(r"[a-zA-Z]+ing" ).unwrap(); |
| 3647 | assert_eq!(1, re.find_iter("tingling" ).count()); |
| 3648 | } |
| 3649 | } |
| 3650 | |