| 1 | /*! |
| 2 | Provides types for dealing with capturing groups. |
| 3 | |
| 4 | Capturing groups refer to sub-patterns of regexes that some regex engines can |
| 5 | report matching offsets for. For example, matching `[a-z]([0-9]+)` against |
| 6 | `a789` would give `a789` as the overall match (for the implicit capturing group |
| 7 | at index `0`) and `789` as the match for the capturing group `([0-9]+)` (an |
| 8 | explicit capturing group at index `1`). |
| 9 | |
| 10 | Not all regex engines can report match offsets for capturing groups. Indeed, |
| 11 | to a first approximation, regex engines that can report capturing group offsets |
| 12 | tend to be quite a bit slower than regex engines that can't. This is because |
| 13 | tracking capturing groups at search time usually requires more "power" that |
| 14 | in turn adds overhead. |
| 15 | |
| 16 | Other regex implementations might call capturing groups "submatches." |
| 17 | |
| 18 | # Overview |
| 19 | |
| 20 | The main types in this module are: |
| 21 | |
| 22 | * [`Captures`] records the capturing group offsets found during a search. It |
| 23 | provides convenience routines for looking up capturing group offsets by either |
| 24 | index or name. |
| 25 | * [`GroupInfo`] records the mapping between capturing groups and "slots," |
| 26 | where the latter are how capturing groups are recorded during a regex search. |
| 27 | This also keeps a mapping from capturing group name to index, and capture |
| 28 | group index to name. A `GroupInfo` is used by `Captures` internally to |
| 29 | provide a convenient API. It is unlikely that you'll use a `GroupInfo` |
| 30 | directly, but for example, if you've compiled an Thompson NFA, then you can use |
| 31 | [`thompson::NFA::group_info`](crate::nfa::thompson::NFA::group_info) to get its |
| 32 | underlying `GroupInfo`. |
| 33 | */ |
| 34 | |
| 35 | use alloc::{string::String, sync::Arc, vec, vec::Vec}; |
| 36 | |
| 37 | use crate::util::{ |
| 38 | interpolate, |
| 39 | primitives::{ |
| 40 | NonMaxUsize, PatternID, PatternIDError, PatternIDIter, SmallIndex, |
| 41 | }, |
| 42 | search::{Match, Span}, |
| 43 | }; |
| 44 | |
| 45 | /// The span offsets of capturing groups after a match has been found. |
| 46 | /// |
| 47 | /// This type represents the output of regex engines that can report the |
| 48 | /// offsets at which capturing groups matches or "submatches" occur. For |
| 49 | /// example, the [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM). When a match |
| 50 | /// occurs, it will at minimum contain the [`PatternID`] of the pattern that |
| 51 | /// matched. Depending upon how it was constructed, it may also contain the |
| 52 | /// start/end offsets of the entire match of the pattern and the start/end |
| 53 | /// offsets of each capturing group that participated in the match. |
| 54 | /// |
| 55 | /// Values of this type are always created for a specific [`GroupInfo`]. It is |
| 56 | /// unspecified behavior to use a `Captures` value in a search with any regex |
| 57 | /// engine that has a different `GroupInfo` than the one the `Captures` were |
| 58 | /// created with. |
| 59 | /// |
| 60 | /// # Constructors |
| 61 | /// |
| 62 | /// There are three constructors for this type that control what kind of |
| 63 | /// information is available upon a match: |
| 64 | /// |
| 65 | /// * [`Captures::all`]: Will store overall pattern match offsets in addition |
| 66 | /// to the offsets of capturing groups that participated in the match. |
| 67 | /// * [`Captures::matches`]: Will store only the overall pattern |
| 68 | /// match offsets. The offsets of capturing groups (even ones that participated |
| 69 | /// in the match) are not available. |
| 70 | /// * [`Captures::empty`]: Will only store the pattern ID that matched. No |
| 71 | /// match offsets are available at all. |
| 72 | /// |
| 73 | /// If you aren't sure which to choose, then pick the first one. The first one |
| 74 | /// is what convenience routines like, |
| 75 | /// [`PikeVM::create_captures`](crate::nfa::thompson::pikevm::PikeVM::create_captures), |
| 76 | /// will use automatically. |
| 77 | /// |
| 78 | /// The main difference between these choices is performance. Namely, if you |
| 79 | /// ask for _less_ information, then the execution of regex search may be able |
| 80 | /// to run more quickly. |
| 81 | /// |
| 82 | /// # Notes |
| 83 | /// |
| 84 | /// It is worth pointing out that this type is not coupled to any one specific |
| 85 | /// regex engine. Instead, its coupling is with [`GroupInfo`], which is the |
| 86 | /// thing that is responsible for mapping capturing groups to "slot" offsets. |
| 87 | /// Slot offsets are indices into a single sequence of memory at which matching |
| 88 | /// haystack offsets for the corresponding group are written by regex engines. |
| 89 | /// |
| 90 | /// # Example |
| 91 | /// |
| 92 | /// This example shows how to parse a simple date and extract the components of |
| 93 | /// the date via capturing groups: |
| 94 | /// |
| 95 | /// ``` |
| 96 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
| 97 | /// |
| 98 | /// let re = PikeVM::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$" )?; |
| 99 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| 100 | /// |
| 101 | /// re.captures(&mut cache, "2010-03-14" , &mut caps); |
| 102 | /// assert!(caps.is_match()); |
| 103 | /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1)); |
| 104 | /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2)); |
| 105 | /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3)); |
| 106 | /// |
| 107 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 108 | /// ``` |
| 109 | /// |
| 110 | /// # Example: named capturing groups |
| 111 | /// |
| 112 | /// This example is like the one above, but leverages the ability to name |
| 113 | /// capturing groups in order to make the code a bit clearer: |
| 114 | /// |
| 115 | /// ``` |
| 116 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
| 117 | /// |
| 118 | /// let re = PikeVM::new(r"^(?P<y>[0-9]{4})-(?P<m>[0-9]{2})-(?P<d>[0-9]{2})$" )?; |
| 119 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| 120 | /// |
| 121 | /// re.captures(&mut cache, "2010-03-14" , &mut caps); |
| 122 | /// assert!(caps.is_match()); |
| 123 | /// assert_eq!(Some(Span::from(0..4)), caps.get_group_by_name("y" )); |
| 124 | /// assert_eq!(Some(Span::from(5..7)), caps.get_group_by_name("m" )); |
| 125 | /// assert_eq!(Some(Span::from(8..10)), caps.get_group_by_name("d" )); |
| 126 | /// |
| 127 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 128 | /// ``` |
| 129 | #[derive (Clone)] |
| 130 | pub struct Captures { |
| 131 | /// The group info that these capture groups are coupled to. This is what |
| 132 | /// gives the "convenience" of the `Captures` API. Namely, it provides the |
| 133 | /// slot mapping and the name|-->index mapping for capture lookups by name. |
| 134 | group_info: GroupInfo, |
| 135 | /// The ID of the pattern that matched. Regex engines must set this to |
| 136 | /// None when no match occurs. |
| 137 | pid: Option<PatternID>, |
| 138 | /// The slot values, i.e., submatch offsets. |
| 139 | /// |
| 140 | /// In theory, the smallest sequence of slots would be something like |
| 141 | /// `max(groups(pattern) for pattern in regex) * 2`, but instead, we use |
| 142 | /// `sum(groups(pattern) for pattern in regex) * 2`. Why? |
| 143 | /// |
| 144 | /// Well, the former could be used in theory, because we don't generally |
| 145 | /// have any overlapping APIs that involve capturing groups. Therefore, |
| 146 | /// there's technically never any need to have slots set for multiple |
| 147 | /// patterns. However, this might change some day, in which case, we would |
| 148 | /// need to have slots available. |
| 149 | /// |
| 150 | /// The other reason is that during the execution of some regex engines, |
| 151 | /// there exists a point in time where multiple slots for different |
| 152 | /// patterns may be written to before knowing which pattern has matched. |
| 153 | /// Therefore, the regex engines themselves, in order to support multiple |
| 154 | /// patterns correctly, must have all slots available. If `Captures` |
| 155 | /// doesn't have all slots available, then regex engines can't write |
| 156 | /// directly into the caller provided `Captures` and must instead write |
| 157 | /// into some other storage and then copy the slots involved in the match |
| 158 | /// at the end of the search. |
| 159 | /// |
| 160 | /// So overall, at least as of the time of writing, it seems like the path |
| 161 | /// of least resistance is to just require allocating all possible slots |
| 162 | /// instead of the conceptual minimum. Another way to justify this is that |
| 163 | /// the most common case is a single pattern, in which case, there is no |
| 164 | /// inefficiency here since the 'max' and 'sum' calculations above are |
| 165 | /// equivalent in that case. |
| 166 | /// |
| 167 | /// N.B. The mapping from group index to slot is maintained by `GroupInfo` |
| 168 | /// and is considered an API guarantee. See `GroupInfo` for more details on |
| 169 | /// that mapping. |
| 170 | /// |
| 171 | /// N.B. `Option<NonMaxUsize>` has the same size as a `usize`. |
| 172 | slots: Vec<Option<NonMaxUsize>>, |
| 173 | } |
| 174 | |
| 175 | impl Captures { |
| 176 | /// Create new storage for the offsets of all matching capturing groups. |
| 177 | /// |
| 178 | /// This routine provides the most information for matches---namely, the |
| 179 | /// spans of matching capturing groups---but also requires the regex search |
| 180 | /// routines to do the most work. |
| 181 | /// |
| 182 | /// It is unspecified behavior to use the returned `Captures` value in a |
| 183 | /// search with a `GroupInfo` other than the one that is provided to this |
| 184 | /// constructor. |
| 185 | /// |
| 186 | /// # Example |
| 187 | /// |
| 188 | /// This example shows that all capturing groups---but only ones that |
| 189 | /// participated in a match---are available to query after a match has |
| 190 | /// been found: |
| 191 | /// |
| 192 | /// ``` |
| 193 | /// use regex_automata::{ |
| 194 | /// nfa::thompson::pikevm::PikeVM, |
| 195 | /// util::captures::Captures, |
| 196 | /// Span, Match, |
| 197 | /// }; |
| 198 | /// |
| 199 | /// let re = PikeVM::new( |
| 200 | /// r"^(?:(?P<lower>[a-z]+)|(?P<upper>[A-Z]+))(?P<digits>[0-9]+)$" , |
| 201 | /// )?; |
| 202 | /// let mut cache = re.create_cache(); |
| 203 | /// let mut caps = Captures::all(re.get_nfa().group_info().clone()); |
| 204 | /// |
| 205 | /// re.captures(&mut cache, "ABC123" , &mut caps); |
| 206 | /// assert!(caps.is_match()); |
| 207 | /// assert_eq!(Some(Match::must(0, 0..6)), caps.get_match()); |
| 208 | /// // The 'lower' group didn't match, so it won't have any offsets. |
| 209 | /// assert_eq!(None, caps.get_group_by_name("lower" )); |
| 210 | /// assert_eq!(Some(Span::from(0..3)), caps.get_group_by_name("upper" )); |
| 211 | /// assert_eq!(Some(Span::from(3..6)), caps.get_group_by_name("digits" )); |
| 212 | /// |
| 213 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 214 | /// ``` |
| 215 | pub fn all(group_info: GroupInfo) -> Captures { |
| 216 | let slots = group_info.slot_len(); |
| 217 | Captures { group_info, pid: None, slots: vec![None; slots] } |
| 218 | } |
| 219 | |
| 220 | /// Create new storage for only the full match spans of a pattern. This |
| 221 | /// does not include any capturing group offsets. |
| 222 | /// |
| 223 | /// It is unspecified behavior to use the returned `Captures` value in a |
| 224 | /// search with a `GroupInfo` other than the one that is provided to this |
| 225 | /// constructor. |
| 226 | /// |
| 227 | /// # Example |
| 228 | /// |
| 229 | /// This example shows that only overall match offsets are reported when |
| 230 | /// this constructor is used. Accessing any capturing groups other than |
| 231 | /// the 0th will always return `None`. |
| 232 | /// |
| 233 | /// ``` |
| 234 | /// use regex_automata::{ |
| 235 | /// nfa::thompson::pikevm::PikeVM, |
| 236 | /// util::captures::Captures, |
| 237 | /// Match, |
| 238 | /// }; |
| 239 | /// |
| 240 | /// let re = PikeVM::new( |
| 241 | /// r"^(?:(?P<lower>[a-z]+)|(?P<upper>[A-Z]+))(?P<digits>[0-9]+)$" , |
| 242 | /// )?; |
| 243 | /// let mut cache = re.create_cache(); |
| 244 | /// let mut caps = Captures::matches(re.get_nfa().group_info().clone()); |
| 245 | /// |
| 246 | /// re.captures(&mut cache, "ABC123" , &mut caps); |
| 247 | /// assert!(caps.is_match()); |
| 248 | /// assert_eq!(Some(Match::must(0, 0..6)), caps.get_match()); |
| 249 | /// // We didn't ask for capturing group offsets, so they aren't available. |
| 250 | /// assert_eq!(None, caps.get_group_by_name("lower" )); |
| 251 | /// assert_eq!(None, caps.get_group_by_name("upper" )); |
| 252 | /// assert_eq!(None, caps.get_group_by_name("digits" )); |
| 253 | /// |
| 254 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 255 | /// ``` |
| 256 | pub fn matches(group_info: GroupInfo) -> Captures { |
| 257 | // This is OK because we know there are at least this many slots, |
| 258 | // and GroupInfo construction guarantees that the number of slots fits |
| 259 | // into a usize. |
| 260 | let slots = group_info.pattern_len().checked_mul(2).unwrap(); |
| 261 | Captures { group_info, pid: None, slots: vec![None; slots] } |
| 262 | } |
| 263 | |
| 264 | /// Create new storage for only tracking which pattern matched. No offsets |
| 265 | /// are stored at all. |
| 266 | /// |
| 267 | /// It is unspecified behavior to use the returned `Captures` value in a |
| 268 | /// search with a `GroupInfo` other than the one that is provided to this |
| 269 | /// constructor. |
| 270 | /// |
| 271 | /// # Example |
| 272 | /// |
| 273 | /// This example shows that only the pattern that matched can be accessed |
| 274 | /// from a `Captures` value created via this constructor. |
| 275 | /// |
| 276 | /// ``` |
| 277 | /// use regex_automata::{ |
| 278 | /// nfa::thompson::pikevm::PikeVM, |
| 279 | /// util::captures::Captures, |
| 280 | /// PatternID, |
| 281 | /// }; |
| 282 | /// |
| 283 | /// let re = PikeVM::new_many(&[r"[a-z]+" , r"[A-Z]+" ])?; |
| 284 | /// let mut cache = re.create_cache(); |
| 285 | /// let mut caps = Captures::empty(re.get_nfa().group_info().clone()); |
| 286 | /// |
| 287 | /// re.captures(&mut cache, "aABCz" , &mut caps); |
| 288 | /// assert!(caps.is_match()); |
| 289 | /// assert_eq!(Some(PatternID::must(0)), caps.pattern()); |
| 290 | /// // We didn't ask for any offsets, so they aren't available. |
| 291 | /// assert_eq!(None, caps.get_match()); |
| 292 | /// |
| 293 | /// re.captures(&mut cache, &"aABCz" [1..], &mut caps); |
| 294 | /// assert!(caps.is_match()); |
| 295 | /// assert_eq!(Some(PatternID::must(1)), caps.pattern()); |
| 296 | /// // We didn't ask for any offsets, so they aren't available. |
| 297 | /// assert_eq!(None, caps.get_match()); |
| 298 | /// |
| 299 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 300 | /// ``` |
| 301 | pub fn empty(group_info: GroupInfo) -> Captures { |
| 302 | Captures { group_info, pid: None, slots: vec![] } |
| 303 | } |
| 304 | |
| 305 | /// Returns true if and only if this capturing group represents a match. |
| 306 | /// |
| 307 | /// This is a convenience routine for `caps.pattern().is_some()`. |
| 308 | /// |
| 309 | /// # Example |
| 310 | /// |
| 311 | /// When using the PikeVM (for example), the lightest weight way of |
| 312 | /// detecting whether a match exists is to create capturing groups that |
| 313 | /// only track the ID of the pattern that match (if any): |
| 314 | /// |
| 315 | /// ``` |
| 316 | /// use regex_automata::{ |
| 317 | /// nfa::thompson::pikevm::PikeVM, |
| 318 | /// util::captures::Captures, |
| 319 | /// }; |
| 320 | /// |
| 321 | /// let re = PikeVM::new(r"[a-z]+" )?; |
| 322 | /// let mut cache = re.create_cache(); |
| 323 | /// let mut caps = Captures::empty(re.get_nfa().group_info().clone()); |
| 324 | /// |
| 325 | /// re.captures(&mut cache, "aABCz" , &mut caps); |
| 326 | /// assert!(caps.is_match()); |
| 327 | /// |
| 328 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 329 | /// ``` |
| 330 | #[inline ] |
| 331 | pub fn is_match(&self) -> bool { |
| 332 | self.pid.is_some() |
| 333 | } |
| 334 | |
| 335 | /// Returns the identifier of the pattern that matched when this |
| 336 | /// capturing group represents a match. If no match was found, then this |
| 337 | /// always returns `None`. |
| 338 | /// |
| 339 | /// This returns a pattern ID in precisely the cases in which `is_match` |
| 340 | /// returns `true`. Similarly, the pattern ID returned is always the |
| 341 | /// same pattern ID found in the `Match` returned by `get_match`. |
| 342 | /// |
| 343 | /// # Example |
| 344 | /// |
| 345 | /// When using the PikeVM (for example), the lightest weight way of |
| 346 | /// detecting which pattern matched is to create capturing groups that only |
| 347 | /// track the ID of the pattern that match (if any): |
| 348 | /// |
| 349 | /// ``` |
| 350 | /// use regex_automata::{ |
| 351 | /// nfa::thompson::pikevm::PikeVM, |
| 352 | /// util::captures::Captures, |
| 353 | /// PatternID, |
| 354 | /// }; |
| 355 | /// |
| 356 | /// let re = PikeVM::new_many(&[r"[a-z]+" , r"[A-Z]+" ])?; |
| 357 | /// let mut cache = re.create_cache(); |
| 358 | /// let mut caps = Captures::empty(re.get_nfa().group_info().clone()); |
| 359 | /// |
| 360 | /// re.captures(&mut cache, "ABC" , &mut caps); |
| 361 | /// assert_eq!(Some(PatternID::must(1)), caps.pattern()); |
| 362 | /// // Recall that offsets are only available when using a non-empty |
| 363 | /// // Captures value. So even though a match occurred, this returns None! |
| 364 | /// assert_eq!(None, caps.get_match()); |
| 365 | /// |
| 366 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 367 | /// ``` |
| 368 | #[inline ] |
| 369 | pub fn pattern(&self) -> Option<PatternID> { |
| 370 | self.pid |
| 371 | } |
| 372 | |
| 373 | /// Returns the pattern ID and the span of the match, if one occurred. |
| 374 | /// |
| 375 | /// This always returns `None` when `Captures` was created with |
| 376 | /// [`Captures::empty`], even if a match was found. |
| 377 | /// |
| 378 | /// If this routine returns a non-`None` value, then `is_match` is |
| 379 | /// guaranteed to return `true` and `pattern` is also guaranteed to return |
| 380 | /// a non-`None` value. |
| 381 | /// |
| 382 | /// # Example |
| 383 | /// |
| 384 | /// This example shows how to get the full match from a search: |
| 385 | /// |
| 386 | /// ``` |
| 387 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match}; |
| 388 | /// |
| 389 | /// let re = PikeVM::new_many(&[r"[a-z]+" , r"[A-Z]+" ])?; |
| 390 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| 391 | /// |
| 392 | /// re.captures(&mut cache, "ABC" , &mut caps); |
| 393 | /// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match()); |
| 394 | /// |
| 395 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 396 | /// ``` |
| 397 | #[inline ] |
| 398 | pub fn get_match(&self) -> Option<Match> { |
| 399 | Some(Match::new(self.pattern()?, self.get_group(0)?)) |
| 400 | } |
| 401 | |
| 402 | /// Returns the span of a capturing group match corresponding to the group |
| 403 | /// index given, only if both the overall pattern matched and the capturing |
| 404 | /// group participated in that match. |
| 405 | /// |
| 406 | /// This returns `None` if `index` is invalid. `index` is valid if and only |
| 407 | /// if it's less than [`Captures::group_len`] for the matching pattern. |
| 408 | /// |
| 409 | /// This always returns `None` when `Captures` was created with |
| 410 | /// [`Captures::empty`], even if a match was found. This also always |
| 411 | /// returns `None` for any `index > 0` when `Captures` was created with |
| 412 | /// [`Captures::matches`]. |
| 413 | /// |
| 414 | /// If this routine returns a non-`None` value, then `is_match` is |
| 415 | /// guaranteed to return `true`, `pattern` is guaranteed to return a |
| 416 | /// non-`None` value and `get_match` is guaranteed to return a non-`None` |
| 417 | /// value. |
| 418 | /// |
| 419 | /// By convention, the 0th capture group will always return the same |
| 420 | /// span as the span returned by `get_match`. This is because the 0th |
| 421 | /// capture group always corresponds to the entirety of the pattern's |
| 422 | /// match. (It is similarly always unnamed because it is implicit.) This |
| 423 | /// isn't necessarily true of all regex engines. For example, one can |
| 424 | /// hand-compile a [`thompson::NFA`](crate::nfa::thompson::NFA) via a |
| 425 | /// [`thompson::Builder`](crate::nfa::thompson::Builder), which isn't |
| 426 | /// technically forced to make the 0th capturing group always correspond to |
| 427 | /// the entire match. |
| 428 | /// |
| 429 | /// # Example |
| 430 | /// |
| 431 | /// This example shows how to get the capturing groups, by index, from a |
| 432 | /// match: |
| 433 | /// |
| 434 | /// ``` |
| 435 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 436 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span, Match}; |
| 437 | /// |
| 438 | /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$" )?; |
| 439 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| 440 | /// |
| 441 | /// re.captures(&mut cache, "Bruce Springsteen" , &mut caps); |
| 442 | /// assert_eq!(Some(Match::must(0, 0..17)), caps.get_match()); |
| 443 | /// assert_eq!(Some(Span::from(0..5)), caps.get_group(1)); |
| 444 | /// assert_eq!(Some(Span::from(6..17)), caps.get_group(2)); |
| 445 | /// // Looking for a non-existent capturing group will return None: |
| 446 | /// assert_eq!(None, caps.get_group(3)); |
| 447 | /// # // literals are too big for 32-bit usize: #1039 |
| 448 | /// # #[cfg (target_pointer_width = "64" )] |
| 449 | /// assert_eq!(None, caps.get_group(9944060567225171988)); |
| 450 | /// |
| 451 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 452 | /// ``` |
| 453 | #[inline ] |
| 454 | pub fn get_group(&self, index: usize) -> Option<Span> { |
| 455 | let pid = self.pattern()?; |
| 456 | // There's a little bit of work needed to map captures to slots in the |
| 457 | // fully general case. But in the overwhelming common case of a single |
| 458 | // pattern, we can just do some simple arithmetic. |
| 459 | let (slot_start, slot_end) = if self.group_info().pattern_len() == 1 { |
| 460 | (index.checked_mul(2)?, index.checked_mul(2)?.checked_add(1)?) |
| 461 | } else { |
| 462 | self.group_info().slots(pid, index)? |
| 463 | }; |
| 464 | let start = self.slots.get(slot_start).copied()??; |
| 465 | let end = self.slots.get(slot_end).copied()??; |
| 466 | Some(Span { start: start.get(), end: end.get() }) |
| 467 | } |
| 468 | |
| 469 | /// Returns the span of a capturing group match corresponding to the group |
| 470 | /// name given, only if both the overall pattern matched and the capturing |
| 471 | /// group participated in that match. |
| 472 | /// |
| 473 | /// This returns `None` if `name` does not correspond to a valid capturing |
| 474 | /// group for the pattern that matched. |
| 475 | /// |
| 476 | /// This always returns `None` when `Captures` was created with |
| 477 | /// [`Captures::empty`], even if a match was found. This also always |
| 478 | /// returns `None` for any `index > 0` when `Captures` was created with |
| 479 | /// [`Captures::matches`]. |
| 480 | /// |
| 481 | /// If this routine returns a non-`None` value, then `is_match` is |
| 482 | /// guaranteed to return `true`, `pattern` is guaranteed to return a |
| 483 | /// non-`None` value and `get_match` is guaranteed to return a non-`None` |
| 484 | /// value. |
| 485 | /// |
| 486 | /// # Example |
| 487 | /// |
| 488 | /// This example shows how to get the capturing groups, by name, from a |
| 489 | /// match: |
| 490 | /// |
| 491 | /// ``` |
| 492 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 493 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span, Match}; |
| 494 | /// |
| 495 | /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$" )?; |
| 496 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| 497 | /// |
| 498 | /// re.captures(&mut cache, "Bruce Springsteen" , &mut caps); |
| 499 | /// assert_eq!(Some(Match::must(0, 0..17)), caps.get_match()); |
| 500 | /// assert_eq!(Some(Span::from(0..5)), caps.get_group_by_name("first" )); |
| 501 | /// assert_eq!(Some(Span::from(6..17)), caps.get_group_by_name("last" )); |
| 502 | /// // Looking for a non-existent capturing group will return None: |
| 503 | /// assert_eq!(None, caps.get_group_by_name("middle" )); |
| 504 | /// |
| 505 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 506 | /// ``` |
| 507 | pub fn get_group_by_name(&self, name: &str) -> Option<Span> { |
| 508 | let index = self.group_info().to_index(self.pattern()?, name)?; |
| 509 | self.get_group(index) |
| 510 | } |
| 511 | |
| 512 | /// Returns an iterator of possible spans for every capturing group in the |
| 513 | /// matching pattern. |
| 514 | /// |
| 515 | /// If this `Captures` value does not correspond to a match, then the |
| 516 | /// iterator returned yields no elements. |
| 517 | /// |
| 518 | /// Note that the iterator returned yields elements of type `Option<Span>`. |
| 519 | /// A span is present if and only if it corresponds to a capturing group |
| 520 | /// that participated in a match. |
| 521 | /// |
| 522 | /// # Example |
| 523 | /// |
| 524 | /// This example shows how to collect all capturing groups: |
| 525 | /// |
| 526 | /// ``` |
| 527 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 528 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
| 529 | /// |
| 530 | /// let re = PikeVM::new( |
| 531 | /// // Matches first/last names, with an optional middle name. |
| 532 | /// r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$" , |
| 533 | /// )?; |
| 534 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| 535 | /// |
| 536 | /// re.captures(&mut cache, "Harry James Potter" , &mut caps); |
| 537 | /// assert!(caps.is_match()); |
| 538 | /// let groups: Vec<Option<Span>> = caps.iter().collect(); |
| 539 | /// assert_eq!(groups, vec![ |
| 540 | /// Some(Span::from(0..18)), |
| 541 | /// Some(Span::from(0..5)), |
| 542 | /// Some(Span::from(6..11)), |
| 543 | /// Some(Span::from(12..18)), |
| 544 | /// ]); |
| 545 | /// |
| 546 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 547 | /// ``` |
| 548 | /// |
| 549 | /// This example uses the same regex as the previous example, but with a |
| 550 | /// haystack that omits the middle name. This results in a capturing group |
| 551 | /// that is present in the elements yielded by the iterator but without a |
| 552 | /// match: |
| 553 | /// |
| 554 | /// ``` |
| 555 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 556 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
| 557 | /// |
| 558 | /// let re = PikeVM::new( |
| 559 | /// // Matches first/last names, with an optional middle name. |
| 560 | /// r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$" , |
| 561 | /// )?; |
| 562 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| 563 | /// |
| 564 | /// re.captures(&mut cache, "Harry Potter" , &mut caps); |
| 565 | /// assert!(caps.is_match()); |
| 566 | /// let groups: Vec<Option<Span>> = caps.iter().collect(); |
| 567 | /// assert_eq!(groups, vec![ |
| 568 | /// Some(Span::from(0..12)), |
| 569 | /// Some(Span::from(0..5)), |
| 570 | /// None, |
| 571 | /// Some(Span::from(6..12)), |
| 572 | /// ]); |
| 573 | /// |
| 574 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 575 | /// ``` |
| 576 | pub fn iter(&self) -> CapturesPatternIter<'_> { |
| 577 | let names = self |
| 578 | .pattern() |
| 579 | .map_or(GroupInfoPatternNames::empty().enumerate(), |pid| { |
| 580 | self.group_info().pattern_names(pid).enumerate() |
| 581 | }); |
| 582 | CapturesPatternIter { caps: self, names } |
| 583 | } |
| 584 | |
| 585 | /// Return the total number of capturing groups for the matching pattern. |
| 586 | /// |
| 587 | /// If this `Captures` value does not correspond to a match, then this |
| 588 | /// always returns `0`. |
| 589 | /// |
| 590 | /// This always returns the same number of elements yielded by |
| 591 | /// [`Captures::iter`]. That is, the number includes capturing groups even |
| 592 | /// if they don't participate in the match. |
| 593 | /// |
| 594 | /// # Example |
| 595 | /// |
| 596 | /// This example shows how to count the total number of capturing groups |
| 597 | /// associated with a pattern. Notice that it includes groups that did not |
| 598 | /// participate in a match (just like `Captures::iter` does). |
| 599 | /// |
| 600 | /// ``` |
| 601 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 602 | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
| 603 | /// |
| 604 | /// let re = PikeVM::new( |
| 605 | /// // Matches first/last names, with an optional middle name. |
| 606 | /// r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$" , |
| 607 | /// )?; |
| 608 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| 609 | /// |
| 610 | /// re.captures(&mut cache, "Harry Potter" , &mut caps); |
| 611 | /// assert_eq!(4, caps.group_len()); |
| 612 | /// |
| 613 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 614 | /// ``` |
| 615 | pub fn group_len(&self) -> usize { |
| 616 | let pid = match self.pattern() { |
| 617 | None => return 0, |
| 618 | Some(pid) => pid, |
| 619 | }; |
| 620 | self.group_info().group_len(pid) |
| 621 | } |
| 622 | |
| 623 | /// Returns a reference to the underlying group info on which these |
| 624 | /// captures are based. |
| 625 | /// |
| 626 | /// The difference between `GroupInfo` and `Captures` is that the former |
| 627 | /// defines the structure of capturing groups where as the latter is what |
| 628 | /// stores the actual match information. So where as `Captures` only gives |
| 629 | /// you access to the current match, `GroupInfo` lets you query any |
| 630 | /// information about all capturing groups, even ones for patterns that |
| 631 | /// weren't involved in a match. |
| 632 | /// |
| 633 | /// Note that a `GroupInfo` uses reference counting internally, so it may |
| 634 | /// be cloned cheaply. |
| 635 | /// |
| 636 | /// # Example |
| 637 | /// |
| 638 | /// This example shows how to get all capturing group names from the |
| 639 | /// underlying `GroupInfo`. Notice that we don't even need to run a |
| 640 | /// search. |
| 641 | /// |
| 642 | /// ``` |
| 643 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
| 644 | /// |
| 645 | /// let re = PikeVM::new_many(&[ |
| 646 | /// r"(?P<foo>a)" , |
| 647 | /// r"(a)(b)" , |
| 648 | /// r"ab" , |
| 649 | /// r"(?P<bar>a)(?P<quux>a)" , |
| 650 | /// r"(?P<foo>z)" , |
| 651 | /// ])?; |
| 652 | /// let caps = re.create_captures(); |
| 653 | /// |
| 654 | /// let expected = vec![ |
| 655 | /// (PatternID::must(0), 0, None), |
| 656 | /// (PatternID::must(0), 1, Some("foo" )), |
| 657 | /// (PatternID::must(1), 0, None), |
| 658 | /// (PatternID::must(1), 1, None), |
| 659 | /// (PatternID::must(1), 2, None), |
| 660 | /// (PatternID::must(2), 0, None), |
| 661 | /// (PatternID::must(3), 0, None), |
| 662 | /// (PatternID::must(3), 1, Some("bar" )), |
| 663 | /// (PatternID::must(3), 2, Some("quux" )), |
| 664 | /// (PatternID::must(4), 0, None), |
| 665 | /// (PatternID::must(4), 1, Some("foo" )), |
| 666 | /// ]; |
| 667 | /// // We could also just use 're.get_nfa().group_info()'. |
| 668 | /// let got: Vec<(PatternID, usize, Option<&str>)> = |
| 669 | /// caps.group_info().all_names().collect(); |
| 670 | /// assert_eq!(expected, got); |
| 671 | /// |
| 672 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 673 | /// ``` |
| 674 | pub fn group_info(&self) -> &GroupInfo { |
| 675 | &self.group_info |
| 676 | } |
| 677 | |
| 678 | /// Interpolates the capture references in `replacement` with the |
| 679 | /// corresponding substrings in `haystack` matched by each reference. The |
| 680 | /// interpolated string is returned. |
| 681 | /// |
| 682 | /// See the [`interpolate` module](interpolate) for documentation on the |
| 683 | /// format of the replacement string. |
| 684 | /// |
| 685 | /// # Example |
| 686 | /// |
| 687 | /// This example shows how to use interpolation, and also shows how it |
| 688 | /// can work with multi-pattern regexes. |
| 689 | /// |
| 690 | /// ``` |
| 691 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
| 692 | /// |
| 693 | /// let re = PikeVM::new_many(&[ |
| 694 | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})" , |
| 695 | /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})" , |
| 696 | /// ])?; |
| 697 | /// let mut cache = re.create_cache(); |
| 698 | /// let mut caps = re.create_captures(); |
| 699 | /// |
| 700 | /// let replacement = "year=$year, month=$month, day=$day" ; |
| 701 | /// |
| 702 | /// // This matches the first pattern. |
| 703 | /// let hay = "On 14-03-2010, I became a Tenneessee lamb." ; |
| 704 | /// re.captures(&mut cache, hay, &mut caps); |
| 705 | /// let result = caps.interpolate_string(hay, replacement); |
| 706 | /// assert_eq!("year=2010, month=03, day=14" , result); |
| 707 | /// |
| 708 | /// // And this matches the second pattern. |
| 709 | /// let hay = "On 2010-03-14, I became a Tenneessee lamb." ; |
| 710 | /// re.captures(&mut cache, hay, &mut caps); |
| 711 | /// let result = caps.interpolate_string(hay, replacement); |
| 712 | /// assert_eq!("year=2010, month=03, day=14" , result); |
| 713 | /// |
| 714 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 715 | /// ``` |
| 716 | pub fn interpolate_string( |
| 717 | &self, |
| 718 | haystack: &str, |
| 719 | replacement: &str, |
| 720 | ) -> String { |
| 721 | let mut dst = String::new(); |
| 722 | self.interpolate_string_into(haystack, replacement, &mut dst); |
| 723 | dst |
| 724 | } |
| 725 | |
| 726 | /// Interpolates the capture references in `replacement` with the |
| 727 | /// corresponding substrings in `haystack` matched by each reference. The |
| 728 | /// interpolated string is written to `dst`. |
| 729 | /// |
| 730 | /// See the [`interpolate` module](interpolate) for documentation on the |
| 731 | /// format of the replacement string. |
| 732 | /// |
| 733 | /// # Example |
| 734 | /// |
| 735 | /// This example shows how to use interpolation, and also shows how it |
| 736 | /// can work with multi-pattern regexes. |
| 737 | /// |
| 738 | /// ``` |
| 739 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
| 740 | /// |
| 741 | /// let re = PikeVM::new_many(&[ |
| 742 | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})" , |
| 743 | /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})" , |
| 744 | /// ])?; |
| 745 | /// let mut cache = re.create_cache(); |
| 746 | /// let mut caps = re.create_captures(); |
| 747 | /// |
| 748 | /// let replacement = "year=$year, month=$month, day=$day" ; |
| 749 | /// |
| 750 | /// // This matches the first pattern. |
| 751 | /// let hay = "On 14-03-2010, I became a Tenneessee lamb." ; |
| 752 | /// re.captures(&mut cache, hay, &mut caps); |
| 753 | /// let mut dst = String::new(); |
| 754 | /// caps.interpolate_string_into(hay, replacement, &mut dst); |
| 755 | /// assert_eq!("year=2010, month=03, day=14" , dst); |
| 756 | /// |
| 757 | /// // And this matches the second pattern. |
| 758 | /// let hay = "On 2010-03-14, I became a Tenneessee lamb." ; |
| 759 | /// re.captures(&mut cache, hay, &mut caps); |
| 760 | /// let mut dst = String::new(); |
| 761 | /// caps.interpolate_string_into(hay, replacement, &mut dst); |
| 762 | /// assert_eq!("year=2010, month=03, day=14" , dst); |
| 763 | /// |
| 764 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 765 | /// ``` |
| 766 | pub fn interpolate_string_into( |
| 767 | &self, |
| 768 | haystack: &str, |
| 769 | replacement: &str, |
| 770 | dst: &mut String, |
| 771 | ) { |
| 772 | interpolate::string( |
| 773 | replacement, |
| 774 | |index, dst| { |
| 775 | let span = match self.get_group(index) { |
| 776 | None => return, |
| 777 | Some(span) => span, |
| 778 | }; |
| 779 | dst.push_str(&haystack[span]); |
| 780 | }, |
| 781 | |name| self.group_info().to_index(self.pattern()?, name), |
| 782 | dst, |
| 783 | ); |
| 784 | } |
| 785 | |
| 786 | /// Interpolates the capture references in `replacement` with the |
| 787 | /// corresponding substrings in `haystack` matched by each reference. The |
| 788 | /// interpolated byte string is returned. |
| 789 | /// |
| 790 | /// See the [`interpolate` module](interpolate) for documentation on the |
| 791 | /// format of the replacement string. |
| 792 | /// |
| 793 | /// # Example |
| 794 | /// |
| 795 | /// This example shows how to use interpolation, and also shows how it |
| 796 | /// can work with multi-pattern regexes. |
| 797 | /// |
| 798 | /// ``` |
| 799 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
| 800 | /// |
| 801 | /// let re = PikeVM::new_many(&[ |
| 802 | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})" , |
| 803 | /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})" , |
| 804 | /// ])?; |
| 805 | /// let mut cache = re.create_cache(); |
| 806 | /// let mut caps = re.create_captures(); |
| 807 | /// |
| 808 | /// let replacement = b"year=$year, month=$month, day=$day" ; |
| 809 | /// |
| 810 | /// // This matches the first pattern. |
| 811 | /// let hay = b"On 14-03-2010, I became a Tenneessee lamb." ; |
| 812 | /// re.captures(&mut cache, hay, &mut caps); |
| 813 | /// let result = caps.interpolate_bytes(hay, replacement); |
| 814 | /// assert_eq!(&b"year=2010, month=03, day=14" [..], result); |
| 815 | /// |
| 816 | /// // And this matches the second pattern. |
| 817 | /// let hay = b"On 2010-03-14, I became a Tenneessee lamb." ; |
| 818 | /// re.captures(&mut cache, hay, &mut caps); |
| 819 | /// let result = caps.interpolate_bytes(hay, replacement); |
| 820 | /// assert_eq!(&b"year=2010, month=03, day=14" [..], result); |
| 821 | /// |
| 822 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 823 | /// ``` |
| 824 | pub fn interpolate_bytes( |
| 825 | &self, |
| 826 | haystack: &[u8], |
| 827 | replacement: &[u8], |
| 828 | ) -> Vec<u8> { |
| 829 | let mut dst = vec![]; |
| 830 | self.interpolate_bytes_into(haystack, replacement, &mut dst); |
| 831 | dst |
| 832 | } |
| 833 | |
| 834 | /// Interpolates the capture references in `replacement` with the |
| 835 | /// corresponding substrings in `haystack` matched by each reference. The |
| 836 | /// interpolated byte string is written to `dst`. |
| 837 | /// |
| 838 | /// See the [`interpolate` module](interpolate) for documentation on the |
| 839 | /// format of the replacement string. |
| 840 | /// |
| 841 | /// # Example |
| 842 | /// |
| 843 | /// This example shows how to use interpolation, and also shows how it |
| 844 | /// can work with multi-pattern regexes. |
| 845 | /// |
| 846 | /// ``` |
| 847 | /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
| 848 | /// |
| 849 | /// let re = PikeVM::new_many(&[ |
| 850 | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})" , |
| 851 | /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})" , |
| 852 | /// ])?; |
| 853 | /// let mut cache = re.create_cache(); |
| 854 | /// let mut caps = re.create_captures(); |
| 855 | /// |
| 856 | /// let replacement = b"year=$year, month=$month, day=$day" ; |
| 857 | /// |
| 858 | /// // This matches the first pattern. |
| 859 | /// let hay = b"On 14-03-2010, I became a Tenneessee lamb." ; |
| 860 | /// re.captures(&mut cache, hay, &mut caps); |
| 861 | /// let mut dst = vec![]; |
| 862 | /// caps.interpolate_bytes_into(hay, replacement, &mut dst); |
| 863 | /// assert_eq!(&b"year=2010, month=03, day=14" [..], dst); |
| 864 | /// |
| 865 | /// // And this matches the second pattern. |
| 866 | /// let hay = b"On 2010-03-14, I became a Tenneessee lamb." ; |
| 867 | /// re.captures(&mut cache, hay, &mut caps); |
| 868 | /// let mut dst = vec![]; |
| 869 | /// caps.interpolate_bytes_into(hay, replacement, &mut dst); |
| 870 | /// assert_eq!(&b"year=2010, month=03, day=14" [..], dst); |
| 871 | /// |
| 872 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 873 | /// ``` |
| 874 | pub fn interpolate_bytes_into( |
| 875 | &self, |
| 876 | haystack: &[u8], |
| 877 | replacement: &[u8], |
| 878 | dst: &mut Vec<u8>, |
| 879 | ) { |
| 880 | interpolate::bytes( |
| 881 | replacement, |
| 882 | |index, dst| { |
| 883 | let span = match self.get_group(index) { |
| 884 | None => return, |
| 885 | Some(span) => span, |
| 886 | }; |
| 887 | dst.extend_from_slice(&haystack[span]); |
| 888 | }, |
| 889 | |name| self.group_info().to_index(self.pattern()?, name), |
| 890 | dst, |
| 891 | ); |
| 892 | } |
| 893 | |
| 894 | /// This is a convenience routine for extracting the substrings |
| 895 | /// corresponding to matching capture groups in the given `haystack`. The |
| 896 | /// `haystack` should be the same substring used to find the match spans in |
| 897 | /// this `Captures` value. |
| 898 | /// |
| 899 | /// This is identical to [`Captures::extract_bytes`], except it works with |
| 900 | /// `&str` instead of `&[u8]`. |
| 901 | /// |
| 902 | /// # Panics |
| 903 | /// |
| 904 | /// This panics if the number of explicit matching groups in this |
| 905 | /// `Captures` value is less than `N`. This also panics if this `Captures` |
| 906 | /// value does not correspond to a match. |
| 907 | /// |
| 908 | /// Note that this does *not* panic if the number of explicit matching |
| 909 | /// groups is bigger than `N`. In that case, only the first `N` matching |
| 910 | /// groups are extracted. |
| 911 | /// |
| 912 | /// # Example |
| 913 | /// |
| 914 | /// ``` |
| 915 | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
| 916 | /// |
| 917 | /// let re = PikeVM::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})" )?; |
| 918 | /// let mut cache = re.create_cache(); |
| 919 | /// let mut caps = re.create_captures(); |
| 920 | /// |
| 921 | /// let hay = "On 2010-03-14, I became a Tenneessee lamb." ; |
| 922 | /// re.captures(&mut cache, hay, &mut caps); |
| 923 | /// assert!(caps.is_match()); |
| 924 | /// let (full, [year, month, day]) = caps.extract(hay); |
| 925 | /// assert_eq!("2010-03-14" , full); |
| 926 | /// assert_eq!("2010" , year); |
| 927 | /// assert_eq!("03" , month); |
| 928 | /// assert_eq!("14" , day); |
| 929 | /// |
| 930 | /// // We can also ask for fewer than all capture groups. |
| 931 | /// let (full, [year]) = caps.extract(hay); |
| 932 | /// assert_eq!("2010-03-14" , full); |
| 933 | /// assert_eq!("2010" , year); |
| 934 | /// |
| 935 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 936 | /// ``` |
| 937 | pub fn extract<'h, const N: usize>( |
| 938 | &self, |
| 939 | haystack: &'h str, |
| 940 | ) -> (&'h str, [&'h str; N]) { |
| 941 | let mut matched = self.iter().flatten(); |
| 942 | let whole_match = &haystack[matched.next().expect("a match" )]; |
| 943 | let group_matches = [0; N].map(|_| { |
| 944 | let sp = matched.next().expect("too few matching groups" ); |
| 945 | &haystack[sp] |
| 946 | }); |
| 947 | (whole_match, group_matches) |
| 948 | } |
| 949 | |
| 950 | /// This is a convenience routine for extracting the substrings |
| 951 | /// corresponding to matching capture groups in the given `haystack`. The |
| 952 | /// `haystack` should be the same substring used to find the match spans in |
| 953 | /// this `Captures` value. |
| 954 | /// |
| 955 | /// This is identical to [`Captures::extract`], except it works with |
| 956 | /// `&[u8]` instead of `&str`. |
| 957 | /// |
| 958 | /// # Panics |
| 959 | /// |
| 960 | /// This panics if the number of explicit matching groups in this |
| 961 | /// `Captures` value is less than `N`. This also panics if this `Captures` |
| 962 | /// value does not correspond to a match. |
| 963 | /// |
| 964 | /// Note that this does *not* panic if the number of explicit matching |
| 965 | /// groups is bigger than `N`. In that case, only the first `N` matching |
| 966 | /// groups are extracted. |
| 967 | /// |
| 968 | /// # Example |
| 969 | /// |
| 970 | /// ``` |
| 971 | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
| 972 | /// |
| 973 | /// let re = PikeVM::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})" )?; |
| 974 | /// let mut cache = re.create_cache(); |
| 975 | /// let mut caps = re.create_captures(); |
| 976 | /// |
| 977 | /// let hay = b"On 2010-03-14, I became a Tenneessee lamb." ; |
| 978 | /// re.captures(&mut cache, hay, &mut caps); |
| 979 | /// assert!(caps.is_match()); |
| 980 | /// let (full, [year, month, day]) = caps.extract_bytes(hay); |
| 981 | /// assert_eq!(b"2010-03-14" , full); |
| 982 | /// assert_eq!(b"2010" , year); |
| 983 | /// assert_eq!(b"03" , month); |
| 984 | /// assert_eq!(b"14" , day); |
| 985 | /// |
| 986 | /// // We can also ask for fewer than all capture groups. |
| 987 | /// let (full, [year]) = caps.extract_bytes(hay); |
| 988 | /// assert_eq!(b"2010-03-14" , full); |
| 989 | /// assert_eq!(b"2010" , year); |
| 990 | /// |
| 991 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 992 | /// ``` |
| 993 | pub fn extract_bytes<'h, const N: usize>( |
| 994 | &self, |
| 995 | haystack: &'h [u8], |
| 996 | ) -> (&'h [u8], [&'h [u8]; N]) { |
| 997 | let mut matched = self.iter().flatten(); |
| 998 | let whole_match = &haystack[matched.next().expect("a match" )]; |
| 999 | let group_matches = [0; N].map(|_| { |
| 1000 | let sp = matched.next().expect("too few matching groups" ); |
| 1001 | &haystack[sp] |
| 1002 | }); |
| 1003 | (whole_match, group_matches) |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | /// Lower level "slot" oriented APIs. One does not typically need to use these |
| 1008 | /// when executing a search. They are instead mostly intended for folks that |
| 1009 | /// are writing their own regex engine while reusing this `Captures` type. |
| 1010 | impl Captures { |
| 1011 | /// Clear this `Captures` value. |
| 1012 | /// |
| 1013 | /// After clearing, all slots inside this `Captures` value will be set to |
| 1014 | /// `None`. Similarly, any pattern ID that it was previously associated |
| 1015 | /// with (for a match) is erased. |
| 1016 | /// |
| 1017 | /// It is not usually necessary to call this routine. Namely, a `Captures` |
| 1018 | /// value only provides high level access to the capturing groups of the |
| 1019 | /// pattern that matched, and only low level access to individual slots. |
| 1020 | /// Thus, even if slots corresponding to groups that aren't associated |
| 1021 | /// with the matching pattern are set, then it won't impact the higher |
| 1022 | /// level APIs. Namely, higher level APIs like [`Captures::get_group`] will |
| 1023 | /// return `None` if no pattern ID is present, even if there are spans set |
| 1024 | /// in the underlying slots. |
| 1025 | /// |
| 1026 | /// Thus, to "clear" a `Captures` value of a match, it is usually only |
| 1027 | /// necessary to call [`Captures::set_pattern`] with `None`. |
| 1028 | /// |
| 1029 | /// # Example |
| 1030 | /// |
| 1031 | /// This example shows what happens when a `Captures` value is cleared. |
| 1032 | /// |
| 1033 | /// ``` |
| 1034 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 1035 | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
| 1036 | /// |
| 1037 | /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$" )?; |
| 1038 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| 1039 | /// |
| 1040 | /// re.captures(&mut cache, "Bruce Springsteen" , &mut caps); |
| 1041 | /// assert!(caps.is_match()); |
| 1042 | /// let slots: Vec<Option<usize>> = |
| 1043 | /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
| 1044 | /// // Note that the following ordering is considered an API guarantee. |
| 1045 | /// assert_eq!(slots, vec![ |
| 1046 | /// Some(0), |
| 1047 | /// Some(17), |
| 1048 | /// Some(0), |
| 1049 | /// Some(5), |
| 1050 | /// Some(6), |
| 1051 | /// Some(17), |
| 1052 | /// ]); |
| 1053 | /// |
| 1054 | /// // Now clear the slots. Everything is gone and it is no longer a match. |
| 1055 | /// caps.clear(); |
| 1056 | /// assert!(!caps.is_match()); |
| 1057 | /// let slots: Vec<Option<usize>> = |
| 1058 | /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
| 1059 | /// assert_eq!(slots, vec![ |
| 1060 | /// None, |
| 1061 | /// None, |
| 1062 | /// None, |
| 1063 | /// None, |
| 1064 | /// None, |
| 1065 | /// None, |
| 1066 | /// ]); |
| 1067 | /// |
| 1068 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1069 | /// ``` |
| 1070 | #[inline ] |
| 1071 | pub fn clear(&mut self) { |
| 1072 | self.pid = None; |
| 1073 | for slot in self.slots.iter_mut() { |
| 1074 | *slot = None; |
| 1075 | } |
| 1076 | } |
| 1077 | |
| 1078 | /// Set the pattern on this `Captures` value. |
| 1079 | /// |
| 1080 | /// When the pattern ID is `None`, then this `Captures` value does not |
| 1081 | /// correspond to a match (`is_match` will return `false`). Otherwise, it |
| 1082 | /// corresponds to a match. |
| 1083 | /// |
| 1084 | /// This is useful in search implementations where you might want to |
| 1085 | /// initially call `set_pattern(None)` in order to avoid the cost of |
| 1086 | /// calling `clear()` if it turns out to not be necessary. |
| 1087 | /// |
| 1088 | /// # Example |
| 1089 | /// |
| 1090 | /// This example shows that `set_pattern` merely overwrites the pattern ID. |
| 1091 | /// It does not actually change the underlying slot values. |
| 1092 | /// |
| 1093 | /// ``` |
| 1094 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 1095 | /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
| 1096 | /// |
| 1097 | /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$" )?; |
| 1098 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| 1099 | /// |
| 1100 | /// re.captures(&mut cache, "Bruce Springsteen" , &mut caps); |
| 1101 | /// assert!(caps.is_match()); |
| 1102 | /// assert!(caps.pattern().is_some()); |
| 1103 | /// let slots: Vec<Option<usize>> = |
| 1104 | /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
| 1105 | /// // Note that the following ordering is considered an API guarantee. |
| 1106 | /// assert_eq!(slots, vec![ |
| 1107 | /// Some(0), |
| 1108 | /// Some(17), |
| 1109 | /// Some(0), |
| 1110 | /// Some(5), |
| 1111 | /// Some(6), |
| 1112 | /// Some(17), |
| 1113 | /// ]); |
| 1114 | /// |
| 1115 | /// // Now set the pattern to None. Note that the slot values remain. |
| 1116 | /// caps.set_pattern(None); |
| 1117 | /// assert!(!caps.is_match()); |
| 1118 | /// assert!(!caps.pattern().is_some()); |
| 1119 | /// let slots: Vec<Option<usize>> = |
| 1120 | /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
| 1121 | /// // Note that the following ordering is considered an API guarantee. |
| 1122 | /// assert_eq!(slots, vec![ |
| 1123 | /// Some(0), |
| 1124 | /// Some(17), |
| 1125 | /// Some(0), |
| 1126 | /// Some(5), |
| 1127 | /// Some(6), |
| 1128 | /// Some(17), |
| 1129 | /// ]); |
| 1130 | /// |
| 1131 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1132 | /// ``` |
| 1133 | #[inline ] |
| 1134 | pub fn set_pattern(&mut self, pid: Option<PatternID>) { |
| 1135 | self.pid = pid; |
| 1136 | } |
| 1137 | |
| 1138 | /// Returns the underlying slots, where each slot stores a single offset. |
| 1139 | /// |
| 1140 | /// Every matching capturing group generally corresponds to two slots: one |
| 1141 | /// slot for the starting position and another for the ending position. |
| 1142 | /// Typically, either both are present or neither are. (The weasel word |
| 1143 | /// "typically" is used here because it really depends on the regex engine |
| 1144 | /// implementation. Every sensible regex engine likely adheres to this |
| 1145 | /// invariant, and every regex engine in this crate is sensible.) |
| 1146 | /// |
| 1147 | /// Generally speaking, callers should prefer to use higher level routines |
| 1148 | /// like [`Captures::get_match`] or [`Captures::get_group`]. |
| 1149 | /// |
| 1150 | /// An important note here is that a regex engine may not reset all of the |
| 1151 | /// slots to `None` values when no match occurs, or even when a match of |
| 1152 | /// a different pattern occurs. But this depends on how the regex engine |
| 1153 | /// implementation deals with slots. |
| 1154 | /// |
| 1155 | /// # Example |
| 1156 | /// |
| 1157 | /// This example shows how to get the underlying slots from a regex match. |
| 1158 | /// |
| 1159 | /// ``` |
| 1160 | /// use regex_automata::{ |
| 1161 | /// nfa::thompson::pikevm::PikeVM, |
| 1162 | /// util::primitives::{PatternID, NonMaxUsize}, |
| 1163 | /// }; |
| 1164 | /// |
| 1165 | /// let re = PikeVM::new_many(&[ |
| 1166 | /// r"[a-z]+" , |
| 1167 | /// r"[0-9]+" , |
| 1168 | /// ])?; |
| 1169 | /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| 1170 | /// |
| 1171 | /// re.captures(&mut cache, "123" , &mut caps); |
| 1172 | /// assert_eq!(Some(PatternID::must(1)), caps.pattern()); |
| 1173 | /// // Note that the only guarantee we have here is that slots 2 and 3 |
| 1174 | /// // are set to correct values. The contents of the first two slots are |
| 1175 | /// // unspecified since the 0th pattern did not match. |
| 1176 | /// let expected = &[ |
| 1177 | /// None, |
| 1178 | /// None, |
| 1179 | /// NonMaxUsize::new(0), |
| 1180 | /// NonMaxUsize::new(3), |
| 1181 | /// ]; |
| 1182 | /// assert_eq!(expected, caps.slots()); |
| 1183 | /// |
| 1184 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1185 | /// ``` |
| 1186 | #[inline ] |
| 1187 | pub fn slots(&self) -> &[Option<NonMaxUsize>] { |
| 1188 | &self.slots |
| 1189 | } |
| 1190 | |
| 1191 | /// Returns the underlying slots as a mutable slice, where each slot stores |
| 1192 | /// a single offset. |
| 1193 | /// |
| 1194 | /// This tends to be most useful for regex engine implementations for |
| 1195 | /// writing offsets for matching capturing groups to slots. |
| 1196 | /// |
| 1197 | /// See [`Captures::slots`] for more information about slots. |
| 1198 | #[inline ] |
| 1199 | pub fn slots_mut(&mut self) -> &mut [Option<NonMaxUsize>] { |
| 1200 | &mut self.slots |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | impl core::fmt::Debug for Captures { |
| 1205 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 1206 | let mut dstruct: DebugStruct<'_, '_> = f.debug_struct(name:"Captures" ); |
| 1207 | dstruct.field(name:"pid" , &self.pid); |
| 1208 | if let Some(pid: PatternID) = self.pid { |
| 1209 | dstruct.field(name:"spans" , &CapturesDebugMap { pid, caps: self }); |
| 1210 | } |
| 1211 | dstruct.finish() |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | /// A little helper type to provide a nice map-like debug representation for |
| 1216 | /// our capturing group spans. |
| 1217 | struct CapturesDebugMap<'a> { |
| 1218 | pid: PatternID, |
| 1219 | caps: &'a Captures, |
| 1220 | } |
| 1221 | |
| 1222 | impl<'a> core::fmt::Debug for CapturesDebugMap<'a> { |
| 1223 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 1224 | struct Key<'a>(usize, Option<&'a str>); |
| 1225 | |
| 1226 | impl<'a> core::fmt::Debug for Key<'a> { |
| 1227 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 1228 | write!(f, " {}" , self.0)?; |
| 1229 | if let Some(name) = self.1 { |
| 1230 | write!(f, "/ {:?}" , name)?; |
| 1231 | } |
| 1232 | Ok(()) |
| 1233 | } |
| 1234 | } |
| 1235 | |
| 1236 | let mut map = f.debug_map(); |
| 1237 | let names = self.caps.group_info().pattern_names(self.pid); |
| 1238 | for (group_index, maybe_name) in names.enumerate() { |
| 1239 | let key = Key(group_index, maybe_name); |
| 1240 | match self.caps.get_group(group_index) { |
| 1241 | None => map.entry(&key, &None::<()>), |
| 1242 | Some(span) => map.entry(&key, &span), |
| 1243 | }; |
| 1244 | } |
| 1245 | map.finish() |
| 1246 | } |
| 1247 | } |
| 1248 | |
| 1249 | /// An iterator over all capturing groups in a `Captures` value. |
| 1250 | /// |
| 1251 | /// This iterator includes capturing groups that did not participate in a |
| 1252 | /// match. See the [`Captures::iter`] method documentation for more details |
| 1253 | /// and examples. |
| 1254 | /// |
| 1255 | /// The lifetime parameter `'a` refers to the lifetime of the underlying |
| 1256 | /// `Captures` value. |
| 1257 | #[derive (Clone, Debug)] |
| 1258 | pub struct CapturesPatternIter<'a> { |
| 1259 | caps: &'a Captures, |
| 1260 | names: core::iter::Enumerate<GroupInfoPatternNames<'a>>, |
| 1261 | } |
| 1262 | |
| 1263 | impl<'a> Iterator for CapturesPatternIter<'a> { |
| 1264 | type Item = Option<Span>; |
| 1265 | |
| 1266 | fn next(&mut self) -> Option<Option<Span>> { |
| 1267 | let (group_index: usize, _) = self.names.next()?; |
| 1268 | Some(self.caps.get_group(group_index)) |
| 1269 | } |
| 1270 | |
| 1271 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 1272 | self.names.size_hint() |
| 1273 | } |
| 1274 | |
| 1275 | fn count(self) -> usize { |
| 1276 | self.names.count() |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | impl<'a> ExactSizeIterator for CapturesPatternIter<'a> {} |
| 1281 | impl<'a> core::iter::FusedIterator for CapturesPatternIter<'a> {} |
| 1282 | |
| 1283 | /// Represents information about capturing groups in a compiled regex. |
| 1284 | /// |
| 1285 | /// The information encapsulated by this type consists of the following. For |
| 1286 | /// each pattern: |
| 1287 | /// |
| 1288 | /// * A map from every capture group name to its corresponding capture group |
| 1289 | /// index. |
| 1290 | /// * A map from every capture group index to its corresponding capture group |
| 1291 | /// name. |
| 1292 | /// * A map from capture group index to its corresponding slot index. A slot |
| 1293 | /// refers to one half of a capturing group. That is, a capture slot is either |
| 1294 | /// the start or end of a capturing group. A slot is usually the mechanism |
| 1295 | /// by which a regex engine records offsets for each capturing group during a |
| 1296 | /// search. |
| 1297 | /// |
| 1298 | /// A `GroupInfo` uses reference counting internally and is thus cheap to |
| 1299 | /// clone. |
| 1300 | /// |
| 1301 | /// # Mapping from capture groups to slots |
| 1302 | /// |
| 1303 | /// One of the main responsibilities of a `GroupInfo` is to build a mapping |
| 1304 | /// from `(PatternID, u32)` (where the `u32` is a capture index) to something |
| 1305 | /// called a "slot." As mentioned above, a slot refers to one half of a |
| 1306 | /// capturing group. Both combined provide the start and end offsets of |
| 1307 | /// a capturing group that participated in a match. |
| 1308 | /// |
| 1309 | /// **The mapping between group indices and slots is an API guarantee.** That |
| 1310 | /// is, the mapping won't change within a semver compatible release. |
| 1311 | /// |
| 1312 | /// Slots exist primarily because this is a convenient mechanism by which |
| 1313 | /// regex engines report group offsets at search time. For example, the |
| 1314 | /// [`nfa::thompson::State::Capture`](crate::nfa::thompson::State::Capture) |
| 1315 | /// NFA state includes the slot index. When a regex engine transitions through |
| 1316 | /// this state, it will likely use the slot index to write the current haystack |
| 1317 | /// offset to some region of memory. When a match is found, those slots are |
| 1318 | /// then reported to the caller, typically via a convenient abstraction like a |
| 1319 | /// [`Captures`] value. |
| 1320 | /// |
| 1321 | /// Because this crate provides first class support for multi-pattern regexes, |
| 1322 | /// and because of some performance related reasons, the mapping between |
| 1323 | /// capturing groups and slots is a little complex. However, in the case of a |
| 1324 | /// single pattern, the mapping can be described very simply: for all capture |
| 1325 | /// group indices `i`, its corresponding slots are at `i * 2` and `i * 2 + 1`. |
| 1326 | /// Notice that the pattern ID isn't involved at all here, because it only |
| 1327 | /// applies to a single-pattern regex, it is therefore always `0`. |
| 1328 | /// |
| 1329 | /// In the multi-pattern case, the mapping is a bit more complicated. To talk |
| 1330 | /// about it, we must define what we mean by "implicit" vs "explicit" |
| 1331 | /// capturing groups: |
| 1332 | /// |
| 1333 | /// * An **implicit** capturing group refers to the capturing group that is |
| 1334 | /// present for every pattern automatically, and corresponds to the overall |
| 1335 | /// match of a pattern. Every pattern has precisely one implicit capturing |
| 1336 | /// group. It is always unnamed and it always corresponds to the capture group |
| 1337 | /// index `0`. |
| 1338 | /// * An **explicit** capturing group refers to any capturing group that |
| 1339 | /// appears in the concrete syntax of the pattern. (Or, if an NFA was hand |
| 1340 | /// built without any concrete syntax, it refers to any capturing group with an |
| 1341 | /// index greater than `0`.) |
| 1342 | /// |
| 1343 | /// Some examples: |
| 1344 | /// |
| 1345 | /// * `\w+` has one implicit capturing group and zero explicit capturing |
| 1346 | /// groups. |
| 1347 | /// * `(\w+)` has one implicit group and one explicit group. |
| 1348 | /// * `foo(\d+)(?:\pL+)(\d+)` has one implicit group and two explicit groups. |
| 1349 | /// |
| 1350 | /// Turning back to the slot mapping, we can now state it as follows: |
| 1351 | /// |
| 1352 | /// * Given a pattern ID `pid`, the slots for its implicit group are always |
| 1353 | /// at `pid * 2` and `pid * 2 + 1`. |
| 1354 | /// * Given a pattern ID `0`, the slots for its explicit groups start |
| 1355 | /// at `group_info.pattern_len() * 2`. |
| 1356 | /// * Given a pattern ID `pid > 0`, the slots for its explicit groups start |
| 1357 | /// immediately following where the slots for the explicit groups of `pid - 1` |
| 1358 | /// end. |
| 1359 | /// |
| 1360 | /// In particular, while there is a concrete formula one can use to determine |
| 1361 | /// where the slots for the implicit group of any pattern are, there is no |
| 1362 | /// general formula for determining where the slots for explicit capturing |
| 1363 | /// groups are. This is because each pattern can contain a different number |
| 1364 | /// of groups. |
| 1365 | /// |
| 1366 | /// The intended way of getting the slots for a particular capturing group |
| 1367 | /// (whether implicit or explicit) is via the [`GroupInfo::slot`] or |
| 1368 | /// [`GroupInfo::slots`] method. |
| 1369 | /// |
| 1370 | /// See below for a concrete example of how capturing groups get mapped to |
| 1371 | /// slots. |
| 1372 | /// |
| 1373 | /// # Example |
| 1374 | /// |
| 1375 | /// This example shows how to build a new `GroupInfo` and query it for |
| 1376 | /// information. |
| 1377 | /// |
| 1378 | /// ``` |
| 1379 | /// use regex_automata::util::{captures::GroupInfo, primitives::PatternID}; |
| 1380 | /// |
| 1381 | /// let info = GroupInfo::new(vec![ |
| 1382 | /// vec![None, Some("foo" )], |
| 1383 | /// vec![None], |
| 1384 | /// vec![None, None, None, Some("bar" ), None], |
| 1385 | /// vec![None, None, Some("foo" )], |
| 1386 | /// ])?; |
| 1387 | /// // The number of patterns being tracked. |
| 1388 | /// assert_eq!(4, info.pattern_len()); |
| 1389 | /// // We can query the number of groups for any pattern. |
| 1390 | /// assert_eq!(2, info.group_len(PatternID::must(0))); |
| 1391 | /// assert_eq!(1, info.group_len(PatternID::must(1))); |
| 1392 | /// assert_eq!(5, info.group_len(PatternID::must(2))); |
| 1393 | /// assert_eq!(3, info.group_len(PatternID::must(3))); |
| 1394 | /// // An invalid pattern always has zero groups. |
| 1395 | /// assert_eq!(0, info.group_len(PatternID::must(999))); |
| 1396 | /// // 2 slots per group |
| 1397 | /// assert_eq!(22, info.slot_len()); |
| 1398 | /// |
| 1399 | /// // We can map a group index for a particular pattern to its name, if |
| 1400 | /// // one exists. |
| 1401 | /// assert_eq!(Some("foo" ), info.to_name(PatternID::must(3), 2)); |
| 1402 | /// assert_eq!(None, info.to_name(PatternID::must(2), 4)); |
| 1403 | /// // Or map a name to its group index. |
| 1404 | /// assert_eq!(Some(1), info.to_index(PatternID::must(0), "foo" )); |
| 1405 | /// assert_eq!(Some(2), info.to_index(PatternID::must(3), "foo" )); |
| 1406 | /// |
| 1407 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1408 | /// ``` |
| 1409 | /// |
| 1410 | /// # Example: mapping from capture groups to slots |
| 1411 | /// |
| 1412 | /// This example shows the specific mapping from capture group indices for |
| 1413 | /// each pattern to their corresponding slots. The slot values shown in this |
| 1414 | /// example are considered an API guarantee. |
| 1415 | /// |
| 1416 | /// ``` |
| 1417 | /// use regex_automata::util::{captures::GroupInfo, primitives::PatternID}; |
| 1418 | /// |
| 1419 | /// let info = GroupInfo::new(vec![ |
| 1420 | /// vec![None, Some("foo" )], |
| 1421 | /// vec![None], |
| 1422 | /// vec![None, None, None, Some("bar" ), None], |
| 1423 | /// vec![None, None, Some("foo" )], |
| 1424 | /// ])?; |
| 1425 | /// |
| 1426 | /// // We first show the slots for each pattern's implicit group. |
| 1427 | /// assert_eq!(Some((0, 1)), info.slots(PatternID::must(0), 0)); |
| 1428 | /// assert_eq!(Some((2, 3)), info.slots(PatternID::must(1), 0)); |
| 1429 | /// assert_eq!(Some((4, 5)), info.slots(PatternID::must(2), 0)); |
| 1430 | /// assert_eq!(Some((6, 7)), info.slots(PatternID::must(3), 0)); |
| 1431 | /// |
| 1432 | /// // And now we show the slots for each pattern's explicit group. |
| 1433 | /// assert_eq!(Some((8, 9)), info.slots(PatternID::must(0), 1)); |
| 1434 | /// assert_eq!(Some((10, 11)), info.slots(PatternID::must(2), 1)); |
| 1435 | /// assert_eq!(Some((12, 13)), info.slots(PatternID::must(2), 2)); |
| 1436 | /// assert_eq!(Some((14, 15)), info.slots(PatternID::must(2), 3)); |
| 1437 | /// assert_eq!(Some((16, 17)), info.slots(PatternID::must(2), 4)); |
| 1438 | /// assert_eq!(Some((18, 19)), info.slots(PatternID::must(3), 1)); |
| 1439 | /// assert_eq!(Some((20, 21)), info.slots(PatternID::must(3), 2)); |
| 1440 | /// |
| 1441 | /// // Asking for the slots for an invalid pattern ID or even for an invalid |
| 1442 | /// // group index for a specific pattern will return None. So for example, |
| 1443 | /// // you're guaranteed to not get the slots for a different pattern than the |
| 1444 | /// // one requested. |
| 1445 | /// assert_eq!(None, info.slots(PatternID::must(5), 0)); |
| 1446 | /// assert_eq!(None, info.slots(PatternID::must(1), 1)); |
| 1447 | /// |
| 1448 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1449 | /// ``` |
| 1450 | #[derive (Clone, Debug, Default)] |
| 1451 | pub struct GroupInfo(Arc<GroupInfoInner>); |
| 1452 | |
| 1453 | impl GroupInfo { |
| 1454 | /// Creates a new group info from a sequence of patterns, where each |
| 1455 | /// sequence of patterns yields a sequence of possible group names. The |
| 1456 | /// index of each pattern in the sequence corresponds to its `PatternID`, |
| 1457 | /// and the index of each group in each pattern's sequence corresponds to |
| 1458 | /// its corresponding group index. |
| 1459 | /// |
| 1460 | /// While this constructor is very generic and therefore perhaps hard to |
| 1461 | /// chew on, an example of a valid concrete type that can be passed to |
| 1462 | /// this constructor is `Vec<Vec<Option<String>>>`. The outer `Vec` |
| 1463 | /// corresponds to the patterns, i.e., one `Vec<Option<String>>` per |
| 1464 | /// pattern. The inner `Vec` corresponds to the capturing groups for |
| 1465 | /// each pattern. The `Option<String>` corresponds to the name of the |
| 1466 | /// capturing group, if present. |
| 1467 | /// |
| 1468 | /// It is legal to pass an empty iterator to this constructor. It will |
| 1469 | /// return an empty group info with zero slots. An empty group info is |
| 1470 | /// useful for cases where you have no patterns or for cases where slots |
| 1471 | /// aren't being used at all (e.g., for most DFAs in this crate). |
| 1472 | /// |
| 1473 | /// # Errors |
| 1474 | /// |
| 1475 | /// This constructor returns an error if the given capturing groups are |
| 1476 | /// invalid in some way. Those reasons include, but are not necessarily |
| 1477 | /// limited to: |
| 1478 | /// |
| 1479 | /// * Too many patterns (i.e., `PatternID` would overflow). |
| 1480 | /// * Too many capturing groups (e.g., `u32` would overflow). |
| 1481 | /// * A pattern is given that has no capturing groups. (All patterns must |
| 1482 | /// have at least an implicit capturing group at index `0`.) |
| 1483 | /// * The capturing group at index `0` has a name. It must be unnamed. |
| 1484 | /// * There are duplicate capturing group names within the same pattern. |
| 1485 | /// (Multiple capturing groups with the same name may exist, but they |
| 1486 | /// must be in different patterns.) |
| 1487 | /// |
| 1488 | /// An example below shows how to trigger some of the above error |
| 1489 | /// conditions. |
| 1490 | /// |
| 1491 | /// # Example |
| 1492 | /// |
| 1493 | /// This example shows how to build a new `GroupInfo` and query it for |
| 1494 | /// information. |
| 1495 | /// |
| 1496 | /// ``` |
| 1497 | /// use regex_automata::util::captures::GroupInfo; |
| 1498 | /// |
| 1499 | /// let info = GroupInfo::new(vec![ |
| 1500 | /// vec![None, Some("foo" )], |
| 1501 | /// vec![None], |
| 1502 | /// vec![None, None, None, Some("bar" ), None], |
| 1503 | /// vec![None, None, Some("foo" )], |
| 1504 | /// ])?; |
| 1505 | /// // The number of patterns being tracked. |
| 1506 | /// assert_eq!(4, info.pattern_len()); |
| 1507 | /// // 2 slots per group |
| 1508 | /// assert_eq!(22, info.slot_len()); |
| 1509 | /// |
| 1510 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1511 | /// ``` |
| 1512 | /// |
| 1513 | /// # Example: empty `GroupInfo` |
| 1514 | /// |
| 1515 | /// This example shows how to build a new `GroupInfo` and query it for |
| 1516 | /// information. |
| 1517 | /// |
| 1518 | /// ``` |
| 1519 | /// use regex_automata::util::captures::GroupInfo; |
| 1520 | /// |
| 1521 | /// let info = GroupInfo::empty(); |
| 1522 | /// // Everything is zero. |
| 1523 | /// assert_eq!(0, info.pattern_len()); |
| 1524 | /// assert_eq!(0, info.slot_len()); |
| 1525 | /// |
| 1526 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1527 | /// ``` |
| 1528 | /// |
| 1529 | /// # Example: error conditions |
| 1530 | /// |
| 1531 | /// This example shows how to provoke some of the ways in which building |
| 1532 | /// a `GroupInfo` can fail. |
| 1533 | /// |
| 1534 | /// ``` |
| 1535 | /// use regex_automata::util::captures::GroupInfo; |
| 1536 | /// |
| 1537 | /// // Either the group info is empty, or all patterns must have at least |
| 1538 | /// // one capturing group. |
| 1539 | /// assert!(GroupInfo::new(vec![ |
| 1540 | /// vec![None, Some("a" )], // ok |
| 1541 | /// vec![None], // ok |
| 1542 | /// vec![], // not ok |
| 1543 | /// ]).is_err()); |
| 1544 | /// // Note that building an empty group info is OK. |
| 1545 | /// assert!(GroupInfo::new(Vec::<Vec<Option<String>>>::new()).is_ok()); |
| 1546 | /// |
| 1547 | /// // The first group in each pattern must correspond to an implicit |
| 1548 | /// // anonymous group. i.e., One that is not named. By convention, this |
| 1549 | /// // group corresponds to the overall match of a regex. Every other group |
| 1550 | /// // in a pattern is explicit and optional. |
| 1551 | /// assert!(GroupInfo::new(vec![vec![Some("foo" )]]).is_err()); |
| 1552 | /// |
| 1553 | /// // There must not be duplicate group names within the same pattern. |
| 1554 | /// assert!(GroupInfo::new(vec![ |
| 1555 | /// vec![None, Some("foo" ), Some("foo" )], |
| 1556 | /// ]).is_err()); |
| 1557 | /// // But duplicate names across distinct patterns is OK. |
| 1558 | /// assert!(GroupInfo::new(vec![ |
| 1559 | /// vec![None, Some("foo" )], |
| 1560 | /// vec![None, Some("foo" )], |
| 1561 | /// ]).is_ok()); |
| 1562 | /// |
| 1563 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1564 | /// ``` |
| 1565 | /// |
| 1566 | /// There are other ways for building a `GroupInfo` to fail but are |
| 1567 | /// difficult to show. For example, if the number of patterns given would |
| 1568 | /// overflow `PatternID`. |
| 1569 | pub fn new<P, G, N>(pattern_groups: P) -> Result<GroupInfo, GroupInfoError> |
| 1570 | where |
| 1571 | P: IntoIterator<Item = G>, |
| 1572 | G: IntoIterator<Item = Option<N>>, |
| 1573 | N: AsRef<str>, |
| 1574 | { |
| 1575 | let mut group_info = GroupInfoInner { |
| 1576 | slot_ranges: vec![], |
| 1577 | name_to_index: vec![], |
| 1578 | index_to_name: vec![], |
| 1579 | memory_extra: 0, |
| 1580 | }; |
| 1581 | for (pattern_index, groups) in pattern_groups.into_iter().enumerate() { |
| 1582 | // If we can't convert the pattern index to an ID, then the caller |
| 1583 | // tried to build capture info for too many patterns. |
| 1584 | let pid = PatternID::new(pattern_index) |
| 1585 | .map_err(GroupInfoError::too_many_patterns)?; |
| 1586 | |
| 1587 | let mut groups_iter = groups.into_iter().enumerate(); |
| 1588 | match groups_iter.next() { |
| 1589 | None => return Err(GroupInfoError::missing_groups(pid)), |
| 1590 | Some((_, Some(_))) => { |
| 1591 | return Err(GroupInfoError::first_must_be_unnamed(pid)) |
| 1592 | } |
| 1593 | Some((_, None)) => {} |
| 1594 | } |
| 1595 | group_info.add_first_group(pid); |
| 1596 | // Now iterate over the rest, which correspond to all of the |
| 1597 | // (conventionally) explicit capture groups in a regex pattern. |
| 1598 | for (group_index, maybe_name) in groups_iter { |
| 1599 | // Just like for patterns, if the group index can't be |
| 1600 | // converted to a "small" index, then the caller has given too |
| 1601 | // many groups for a particular pattern. |
| 1602 | let group = SmallIndex::new(group_index).map_err(|_| { |
| 1603 | GroupInfoError::too_many_groups(pid, group_index) |
| 1604 | })?; |
| 1605 | group_info.add_explicit_group(pid, group, maybe_name)?; |
| 1606 | } |
| 1607 | } |
| 1608 | group_info.fixup_slot_ranges()?; |
| 1609 | Ok(GroupInfo(Arc::new(group_info))) |
| 1610 | } |
| 1611 | |
| 1612 | /// This creates an empty `GroupInfo`. |
| 1613 | /// |
| 1614 | /// This is a convenience routine for calling `GroupInfo::new` with an |
| 1615 | /// iterator that yields no elements. |
| 1616 | /// |
| 1617 | /// # Example |
| 1618 | /// |
| 1619 | /// This example shows how to build a new empty `GroupInfo` and query it |
| 1620 | /// for information. |
| 1621 | /// |
| 1622 | /// ``` |
| 1623 | /// use regex_automata::util::captures::GroupInfo; |
| 1624 | /// |
| 1625 | /// let info = GroupInfo::empty(); |
| 1626 | /// // Everything is zero. |
| 1627 | /// assert_eq!(0, info.pattern_len()); |
| 1628 | /// assert_eq!(0, info.all_group_len()); |
| 1629 | /// assert_eq!(0, info.slot_len()); |
| 1630 | /// |
| 1631 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1632 | /// ``` |
| 1633 | pub fn empty() -> GroupInfo { |
| 1634 | GroupInfo::new(core::iter::empty::<[Option<&str>; 0]>()) |
| 1635 | .expect("empty group info is always valid" ) |
| 1636 | } |
| 1637 | |
| 1638 | /// Return the capture group index corresponding to the given name in the |
| 1639 | /// given pattern. If no such capture group name exists in the given |
| 1640 | /// pattern, then this returns `None`. |
| 1641 | /// |
| 1642 | /// If the given pattern ID is invalid, then this returns `None`. |
| 1643 | /// |
| 1644 | /// This also returns `None` for all inputs if these captures are empty |
| 1645 | /// (e.g., built from an empty [`GroupInfo`]). To check whether captures |
| 1646 | /// are present for a specific pattern, use [`GroupInfo::group_len`]. |
| 1647 | /// |
| 1648 | /// # Example |
| 1649 | /// |
| 1650 | /// This example shows how to find the capture index for the given pattern |
| 1651 | /// and group name. |
| 1652 | /// |
| 1653 | /// Remember that capture indices are relative to the pattern, such that |
| 1654 | /// the same capture index value may refer to different capturing groups |
| 1655 | /// for distinct patterns. |
| 1656 | /// |
| 1657 | /// ``` |
| 1658 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 1659 | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
| 1660 | /// |
| 1661 | /// let (pid0, pid1) = (PatternID::must(0), PatternID::must(1)); |
| 1662 | /// |
| 1663 | /// let nfa = NFA::new_many(&[ |
| 1664 | /// r"a(?P<quux>\w+)z(?P<foo>\s+)" , |
| 1665 | /// r"a(?P<foo>\d+)z" , |
| 1666 | /// ])?; |
| 1667 | /// let groups = nfa.group_info(); |
| 1668 | /// assert_eq!(Some(2), groups.to_index(pid0, "foo" )); |
| 1669 | /// // Recall that capture index 0 is always unnamed and refers to the |
| 1670 | /// // entire pattern. So the first capturing group present in the pattern |
| 1671 | /// // itself always starts at index 1. |
| 1672 | /// assert_eq!(Some(1), groups.to_index(pid1, "foo" )); |
| 1673 | /// |
| 1674 | /// // And if a name does not exist for a particular pattern, None is |
| 1675 | /// // returned. |
| 1676 | /// assert!(groups.to_index(pid0, "quux" ).is_some()); |
| 1677 | /// assert!(groups.to_index(pid1, "quux" ).is_none()); |
| 1678 | /// |
| 1679 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1680 | /// ``` |
| 1681 | #[inline ] |
| 1682 | pub fn to_index(&self, pid: PatternID, name: &str) -> Option<usize> { |
| 1683 | let indices = self.0.name_to_index.get(pid.as_usize())?; |
| 1684 | indices.get(name).cloned().map(|i| i.as_usize()) |
| 1685 | } |
| 1686 | |
| 1687 | /// Return the capture name for the given index and given pattern. If the |
| 1688 | /// corresponding group does not have a name, then this returns `None`. |
| 1689 | /// |
| 1690 | /// If the pattern ID is invalid, then this returns `None`. |
| 1691 | /// |
| 1692 | /// If the group index is invalid for the given pattern, then this returns |
| 1693 | /// `None`. A group `index` is valid for a pattern `pid` in an `nfa` if and |
| 1694 | /// only if `index < nfa.pattern_capture_len(pid)`. |
| 1695 | /// |
| 1696 | /// This also returns `None` for all inputs if these captures are empty |
| 1697 | /// (e.g., built from an empty [`GroupInfo`]). To check whether captures |
| 1698 | /// are present for a specific pattern, use [`GroupInfo::group_len`]. |
| 1699 | /// |
| 1700 | /// # Example |
| 1701 | /// |
| 1702 | /// This example shows how to find the capture group name for the given |
| 1703 | /// pattern and group index. |
| 1704 | /// |
| 1705 | /// ``` |
| 1706 | /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| 1707 | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
| 1708 | /// |
| 1709 | /// let (pid0, pid1) = (PatternID::must(0), PatternID::must(1)); |
| 1710 | /// |
| 1711 | /// let nfa = NFA::new_many(&[ |
| 1712 | /// r"a(?P<foo>\w+)z(\s+)x(\d+)" , |
| 1713 | /// r"a(\d+)z(?P<foo>\s+)" , |
| 1714 | /// ])?; |
| 1715 | /// let groups = nfa.group_info(); |
| 1716 | /// assert_eq!(None, groups.to_name(pid0, 0)); |
| 1717 | /// assert_eq!(Some("foo" ), groups.to_name(pid0, 1)); |
| 1718 | /// assert_eq!(None, groups.to_name(pid0, 2)); |
| 1719 | /// assert_eq!(None, groups.to_name(pid0, 3)); |
| 1720 | /// |
| 1721 | /// assert_eq!(None, groups.to_name(pid1, 0)); |
| 1722 | /// assert_eq!(None, groups.to_name(pid1, 1)); |
| 1723 | /// assert_eq!(Some("foo" ), groups.to_name(pid1, 2)); |
| 1724 | /// // '3' is not a valid capture index for the second pattern. |
| 1725 | /// assert_eq!(None, groups.to_name(pid1, 3)); |
| 1726 | /// |
| 1727 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1728 | /// ``` |
| 1729 | #[inline ] |
| 1730 | pub fn to_name(&self, pid: PatternID, group_index: usize) -> Option<&str> { |
| 1731 | let pattern_names = self.0.index_to_name.get(pid.as_usize())?; |
| 1732 | pattern_names.get(group_index)?.as_deref() |
| 1733 | } |
| 1734 | |
| 1735 | /// Return an iterator of all capture groups and their names (if present) |
| 1736 | /// for a particular pattern. |
| 1737 | /// |
| 1738 | /// If the given pattern ID is invalid or if this `GroupInfo` is empty, |
| 1739 | /// then the iterator yields no elements. |
| 1740 | /// |
| 1741 | /// The number of elements yielded by this iterator is always equal to |
| 1742 | /// the result of calling [`GroupInfo::group_len`] with the same |
| 1743 | /// `PatternID`. |
| 1744 | /// |
| 1745 | /// # Example |
| 1746 | /// |
| 1747 | /// This example shows how to get a list of all capture group names for |
| 1748 | /// a particular pattern. |
| 1749 | /// |
| 1750 | /// ``` |
| 1751 | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
| 1752 | /// |
| 1753 | /// let nfa = NFA::new(r"(a)(?P<foo>b)(c)(d)(?P<bar>e)" )?; |
| 1754 | /// // The first is the implicit group that is always unnammed. The next |
| 1755 | /// // 5 groups are the explicit groups found in the concrete syntax above. |
| 1756 | /// let expected = vec![None, None, Some("foo" ), None, None, Some("bar" )]; |
| 1757 | /// let got: Vec<Option<&str>> = |
| 1758 | /// nfa.group_info().pattern_names(PatternID::ZERO).collect(); |
| 1759 | /// assert_eq!(expected, got); |
| 1760 | /// |
| 1761 | /// // Using an invalid pattern ID will result in nothing yielded. |
| 1762 | /// let got = nfa.group_info().pattern_names(PatternID::must(999)).count(); |
| 1763 | /// assert_eq!(0, got); |
| 1764 | /// |
| 1765 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1766 | /// ``` |
| 1767 | #[inline ] |
| 1768 | pub fn pattern_names(&self, pid: PatternID) -> GroupInfoPatternNames<'_> { |
| 1769 | GroupInfoPatternNames { |
| 1770 | it: self |
| 1771 | .0 |
| 1772 | .index_to_name |
| 1773 | .get(pid.as_usize()) |
| 1774 | .map(|indices| indices.iter()) |
| 1775 | .unwrap_or([].iter()), |
| 1776 | } |
| 1777 | } |
| 1778 | |
| 1779 | /// Return an iterator of all capture groups for all patterns supported by |
| 1780 | /// this `GroupInfo`. Each item yielded is a triple of the group's pattern |
| 1781 | /// ID, index in the pattern and the group's name, if present. |
| 1782 | /// |
| 1783 | /// # Example |
| 1784 | /// |
| 1785 | /// This example shows how to get a list of all capture groups found in |
| 1786 | /// one NFA, potentially spanning multiple patterns. |
| 1787 | /// |
| 1788 | /// ``` |
| 1789 | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
| 1790 | /// |
| 1791 | /// let nfa = NFA::new_many(&[ |
| 1792 | /// r"(?P<foo>a)" , |
| 1793 | /// r"a" , |
| 1794 | /// r"(a)" , |
| 1795 | /// ])?; |
| 1796 | /// let expected = vec![ |
| 1797 | /// (PatternID::must(0), 0, None), |
| 1798 | /// (PatternID::must(0), 1, Some("foo" )), |
| 1799 | /// (PatternID::must(1), 0, None), |
| 1800 | /// (PatternID::must(2), 0, None), |
| 1801 | /// (PatternID::must(2), 1, None), |
| 1802 | /// ]; |
| 1803 | /// let got: Vec<(PatternID, usize, Option<&str>)> = |
| 1804 | /// nfa.group_info().all_names().collect(); |
| 1805 | /// assert_eq!(expected, got); |
| 1806 | /// |
| 1807 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1808 | /// ``` |
| 1809 | /// |
| 1810 | /// Unlike other capturing group related routines, this routine doesn't |
| 1811 | /// panic even if captures aren't enabled on this NFA: |
| 1812 | /// |
| 1813 | /// ``` |
| 1814 | /// use regex_automata::nfa::thompson::{NFA, WhichCaptures}; |
| 1815 | /// |
| 1816 | /// let nfa = NFA::compiler() |
| 1817 | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
| 1818 | /// .build_many(&[ |
| 1819 | /// r"(?P<foo>a)" , |
| 1820 | /// r"a" , |
| 1821 | /// r"(a)" , |
| 1822 | /// ])?; |
| 1823 | /// // When captures aren't enabled, there's nothing to return. |
| 1824 | /// assert_eq!(0, nfa.group_info().all_names().count()); |
| 1825 | /// |
| 1826 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1827 | /// ``` |
| 1828 | #[inline ] |
| 1829 | pub fn all_names(&self) -> GroupInfoAllNames<'_> { |
| 1830 | GroupInfoAllNames { |
| 1831 | group_info: self, |
| 1832 | pids: PatternID::iter(self.pattern_len()), |
| 1833 | current_pid: None, |
| 1834 | names: None, |
| 1835 | } |
| 1836 | } |
| 1837 | |
| 1838 | /// Returns the starting and ending slot corresponding to the given |
| 1839 | /// capturing group for the given pattern. The ending slot is always one |
| 1840 | /// more than the starting slot returned. |
| 1841 | /// |
| 1842 | /// Note that this is like [`GroupInfo::slot`], except that it also returns |
| 1843 | /// the ending slot value for convenience. |
| 1844 | /// |
| 1845 | /// If either the pattern ID or the capture index is invalid, then this |
| 1846 | /// returns None. |
| 1847 | /// |
| 1848 | /// # Example |
| 1849 | /// |
| 1850 | /// This example shows that the starting slots for the first capturing |
| 1851 | /// group of each pattern are distinct. |
| 1852 | /// |
| 1853 | /// ``` |
| 1854 | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
| 1855 | /// |
| 1856 | /// let nfa = NFA::new_many(&["a" , "b" ])?; |
| 1857 | /// assert_ne!( |
| 1858 | /// nfa.group_info().slots(PatternID::must(0), 0), |
| 1859 | /// nfa.group_info().slots(PatternID::must(1), 0), |
| 1860 | /// ); |
| 1861 | /// |
| 1862 | /// // Also, the start and end slot values are never equivalent. |
| 1863 | /// let (start, end) = nfa.group_info().slots(PatternID::ZERO, 0).unwrap(); |
| 1864 | /// assert_ne!(start, end); |
| 1865 | /// |
| 1866 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1867 | /// ``` |
| 1868 | #[inline ] |
| 1869 | pub fn slots( |
| 1870 | &self, |
| 1871 | pid: PatternID, |
| 1872 | group_index: usize, |
| 1873 | ) -> Option<(usize, usize)> { |
| 1874 | // Since 'slot' only even returns valid starting slots, we know that |
| 1875 | // there must also be an end slot and that end slot is always one more |
| 1876 | // than the start slot. |
| 1877 | self.slot(pid, group_index).map(|start| (start, start + 1)) |
| 1878 | } |
| 1879 | |
| 1880 | /// Returns the starting slot corresponding to the given capturing group |
| 1881 | /// for the given pattern. The ending slot is always one more than the |
| 1882 | /// value returned. |
| 1883 | /// |
| 1884 | /// If either the pattern ID or the capture index is invalid, then this |
| 1885 | /// returns None. |
| 1886 | /// |
| 1887 | /// # Example |
| 1888 | /// |
| 1889 | /// This example shows that the starting slots for the first capturing |
| 1890 | /// group of each pattern are distinct. |
| 1891 | /// |
| 1892 | /// ``` |
| 1893 | /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
| 1894 | /// |
| 1895 | /// let nfa = NFA::new_many(&["a" , "b" ])?; |
| 1896 | /// assert_ne!( |
| 1897 | /// nfa.group_info().slot(PatternID::must(0), 0), |
| 1898 | /// nfa.group_info().slot(PatternID::must(1), 0), |
| 1899 | /// ); |
| 1900 | /// |
| 1901 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1902 | /// ``` |
| 1903 | #[inline ] |
| 1904 | pub fn slot(&self, pid: PatternID, group_index: usize) -> Option<usize> { |
| 1905 | if group_index >= self.group_len(pid) { |
| 1906 | return None; |
| 1907 | } |
| 1908 | // At this point, we know that 'pid' refers to a real pattern and that |
| 1909 | // 'group_index' refers to a real group. We therefore also know that |
| 1910 | // the pattern and group can be combined to return a correct slot. |
| 1911 | // That's why we don't need to use checked arithmetic below. |
| 1912 | if group_index == 0 { |
| 1913 | Some(pid.as_usize() * 2) |
| 1914 | } else { |
| 1915 | // As above, we don't need to check that our slot is less than the |
| 1916 | // end of our range since we already know the group index is a |
| 1917 | // valid index for the given pattern. |
| 1918 | let (start, _) = self.0.slot_ranges[pid]; |
| 1919 | Some(start.as_usize() + ((group_index - 1) * 2)) |
| 1920 | } |
| 1921 | } |
| 1922 | |
| 1923 | /// Returns the total number of patterns in this `GroupInfo`. |
| 1924 | /// |
| 1925 | /// This may return zero if the `GroupInfo` was constructed with no |
| 1926 | /// patterns. |
| 1927 | /// |
| 1928 | /// This is guaranteed to be no bigger than [`PatternID::LIMIT`] because |
| 1929 | /// `GroupInfo` construction will fail if too many patterns are added. |
| 1930 | /// |
| 1931 | /// # Example |
| 1932 | /// |
| 1933 | /// ``` |
| 1934 | /// use regex_automata::nfa::thompson::NFA; |
| 1935 | /// |
| 1936 | /// let nfa = NFA::new_many(&["[0-9]+" , "[a-z]+" , "[A-Z]+" ])?; |
| 1937 | /// assert_eq!(3, nfa.group_info().pattern_len()); |
| 1938 | /// |
| 1939 | /// let nfa = NFA::never_match(); |
| 1940 | /// assert_eq!(0, nfa.group_info().pattern_len()); |
| 1941 | /// |
| 1942 | /// let nfa = NFA::always_match(); |
| 1943 | /// assert_eq!(1, nfa.group_info().pattern_len()); |
| 1944 | /// |
| 1945 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1946 | /// ``` |
| 1947 | #[inline ] |
| 1948 | pub fn pattern_len(&self) -> usize { |
| 1949 | self.0.pattern_len() |
| 1950 | } |
| 1951 | |
| 1952 | /// Return the number of capture groups in a pattern. |
| 1953 | /// |
| 1954 | /// If the pattern ID is invalid, then this returns `0`. |
| 1955 | /// |
| 1956 | /// # Example |
| 1957 | /// |
| 1958 | /// This example shows how the values returned by this routine may vary |
| 1959 | /// for different patterns and NFA configurations. |
| 1960 | /// |
| 1961 | /// ``` |
| 1962 | /// use regex_automata::{nfa::thompson::{NFA, WhichCaptures}, PatternID}; |
| 1963 | /// |
| 1964 | /// let nfa = NFA::new(r"(a)(b)(c)" )?; |
| 1965 | /// // There are 3 explicit groups in the pattern's concrete syntax and |
| 1966 | /// // 1 unnamed and implicit group spanning the entire pattern. |
| 1967 | /// assert_eq!(4, nfa.group_info().group_len(PatternID::ZERO)); |
| 1968 | /// |
| 1969 | /// let nfa = NFA::new(r"abc" )?; |
| 1970 | /// // There is just the unnamed implicit group. |
| 1971 | /// assert_eq!(1, nfa.group_info().group_len(PatternID::ZERO)); |
| 1972 | /// |
| 1973 | /// let nfa = NFA::compiler() |
| 1974 | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
| 1975 | /// .build(r"abc" )?; |
| 1976 | /// // We disabled capturing groups, so there are none. |
| 1977 | /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO)); |
| 1978 | /// |
| 1979 | /// let nfa = NFA::compiler() |
| 1980 | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
| 1981 | /// .build(r"(a)(b)(c)" )?; |
| 1982 | /// // We disabled capturing groups, so there are none, even if there are |
| 1983 | /// // explicit groups in the concrete syntax. |
| 1984 | /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO)); |
| 1985 | /// |
| 1986 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1987 | /// ``` |
| 1988 | #[inline ] |
| 1989 | pub fn group_len(&self, pid: PatternID) -> usize { |
| 1990 | self.0.group_len(pid) |
| 1991 | } |
| 1992 | |
| 1993 | /// Return the total number of capture groups across all patterns. |
| 1994 | /// |
| 1995 | /// This includes implicit groups that represent the entire match of a |
| 1996 | /// pattern. |
| 1997 | /// |
| 1998 | /// # Example |
| 1999 | /// |
| 2000 | /// This example shows how the values returned by this routine may vary |
| 2001 | /// for different patterns and NFA configurations. |
| 2002 | /// |
| 2003 | /// ``` |
| 2004 | /// use regex_automata::{nfa::thompson::{NFA, WhichCaptures}, PatternID}; |
| 2005 | /// |
| 2006 | /// let nfa = NFA::new(r"(a)(b)(c)" )?; |
| 2007 | /// // There are 3 explicit groups in the pattern's concrete syntax and |
| 2008 | /// // 1 unnamed and implicit group spanning the entire pattern. |
| 2009 | /// assert_eq!(4, nfa.group_info().all_group_len()); |
| 2010 | /// |
| 2011 | /// let nfa = NFA::new(r"abc" )?; |
| 2012 | /// // There is just the unnamed implicit group. |
| 2013 | /// assert_eq!(1, nfa.group_info().all_group_len()); |
| 2014 | /// |
| 2015 | /// let nfa = NFA::new_many(&["(a)" , "b" , "(c)" ])?; |
| 2016 | /// // Each pattern has one implicit groups, and two |
| 2017 | /// // patterns have one explicit group each. |
| 2018 | /// assert_eq!(5, nfa.group_info().all_group_len()); |
| 2019 | /// |
| 2020 | /// let nfa = NFA::compiler() |
| 2021 | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
| 2022 | /// .build(r"abc" )?; |
| 2023 | /// // We disabled capturing groups, so there are none. |
| 2024 | /// assert_eq!(0, nfa.group_info().all_group_len()); |
| 2025 | /// |
| 2026 | /// let nfa = NFA::compiler() |
| 2027 | /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
| 2028 | /// .build(r"(a)(b)(c)" )?; |
| 2029 | /// // We disabled capturing groups, so there are none, even if there are |
| 2030 | /// // explicit groups in the concrete syntax. |
| 2031 | /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO)); |
| 2032 | /// |
| 2033 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2034 | /// ``` |
| 2035 | #[inline ] |
| 2036 | pub fn all_group_len(&self) -> usize { |
| 2037 | self.slot_len() / 2 |
| 2038 | } |
| 2039 | |
| 2040 | /// Returns the total number of slots in this `GroupInfo` across all |
| 2041 | /// patterns. |
| 2042 | /// |
| 2043 | /// The total number of slots is always twice the total number of capturing |
| 2044 | /// groups, including both implicit and explicit groups. |
| 2045 | /// |
| 2046 | /// # Example |
| 2047 | /// |
| 2048 | /// This example shows the relationship between the number of capturing |
| 2049 | /// groups and slots. |
| 2050 | /// |
| 2051 | /// ``` |
| 2052 | /// use regex_automata::util::captures::GroupInfo; |
| 2053 | /// |
| 2054 | /// // There are 11 total groups here. |
| 2055 | /// let info = GroupInfo::new(vec![ |
| 2056 | /// vec![None, Some("foo" )], |
| 2057 | /// vec![None], |
| 2058 | /// vec![None, None, None, Some("bar" ), None], |
| 2059 | /// vec![None, None, Some("foo" )], |
| 2060 | /// ])?; |
| 2061 | /// // 2 slots per group gives us 11*2=22 slots. |
| 2062 | /// assert_eq!(22, info.slot_len()); |
| 2063 | /// |
| 2064 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2065 | /// ``` |
| 2066 | #[inline ] |
| 2067 | pub fn slot_len(&self) -> usize { |
| 2068 | self.0.small_slot_len().as_usize() |
| 2069 | } |
| 2070 | |
| 2071 | /// Returns the total number of slots for implicit capturing groups. |
| 2072 | /// |
| 2073 | /// This is like [`GroupInfo::slot_len`], except it doesn't include the |
| 2074 | /// explicit slots for each pattern. Since there are always exactly 2 |
| 2075 | /// implicit slots for each pattern, the number of implicit slots is always |
| 2076 | /// equal to twice the number of patterns. |
| 2077 | /// |
| 2078 | /// # Example |
| 2079 | /// |
| 2080 | /// This example shows the relationship between the number of capturing |
| 2081 | /// groups, implicit slots and explicit slots. |
| 2082 | /// |
| 2083 | /// ``` |
| 2084 | /// use regex_automata::util::captures::GroupInfo; |
| 2085 | /// |
| 2086 | /// // There are 11 total groups here. |
| 2087 | /// let info = GroupInfo::new(vec![vec![None, Some("foo" ), Some("bar" )]])?; |
| 2088 | /// // 2 slots per group gives us 11*2=22 slots. |
| 2089 | /// assert_eq!(6, info.slot_len()); |
| 2090 | /// // 2 implicit slots per pattern gives us 2 implicit slots since there |
| 2091 | /// // is 1 pattern. |
| 2092 | /// assert_eq!(2, info.implicit_slot_len()); |
| 2093 | /// // 2 explicit capturing groups gives us 2*2=4 explicit slots. |
| 2094 | /// assert_eq!(4, info.explicit_slot_len()); |
| 2095 | /// |
| 2096 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2097 | /// ``` |
| 2098 | #[inline ] |
| 2099 | pub fn implicit_slot_len(&self) -> usize { |
| 2100 | self.pattern_len() * 2 |
| 2101 | } |
| 2102 | |
| 2103 | /// Returns the total number of slots for explicit capturing groups. |
| 2104 | /// |
| 2105 | /// This is like [`GroupInfo::slot_len`], except it doesn't include the |
| 2106 | /// implicit slots for each pattern. (There are always 2 implicit slots for |
| 2107 | /// each pattern.) |
| 2108 | /// |
| 2109 | /// For a non-empty `GroupInfo`, it is always the case that `slot_len` is |
| 2110 | /// strictly greater than `explicit_slot_len`. For an empty `GroupInfo`, |
| 2111 | /// both the total number of slots and the number of explicit slots is |
| 2112 | /// `0`. |
| 2113 | /// |
| 2114 | /// # Example |
| 2115 | /// |
| 2116 | /// This example shows the relationship between the number of capturing |
| 2117 | /// groups, implicit slots and explicit slots. |
| 2118 | /// |
| 2119 | /// ``` |
| 2120 | /// use regex_automata::util::captures::GroupInfo; |
| 2121 | /// |
| 2122 | /// // There are 11 total groups here. |
| 2123 | /// let info = GroupInfo::new(vec![vec![None, Some("foo" ), Some("bar" )]])?; |
| 2124 | /// // 2 slots per group gives us 11*2=22 slots. |
| 2125 | /// assert_eq!(6, info.slot_len()); |
| 2126 | /// // 2 implicit slots per pattern gives us 2 implicit slots since there |
| 2127 | /// // is 1 pattern. |
| 2128 | /// assert_eq!(2, info.implicit_slot_len()); |
| 2129 | /// // 2 explicit capturing groups gives us 2*2=4 explicit slots. |
| 2130 | /// assert_eq!(4, info.explicit_slot_len()); |
| 2131 | /// |
| 2132 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2133 | /// ``` |
| 2134 | #[inline ] |
| 2135 | pub fn explicit_slot_len(&self) -> usize { |
| 2136 | self.slot_len().saturating_sub(self.implicit_slot_len()) |
| 2137 | } |
| 2138 | |
| 2139 | /// Returns the memory usage, in bytes, of this `GroupInfo`. |
| 2140 | /// |
| 2141 | /// This does **not** include the stack size used up by this `GroupInfo`. |
| 2142 | /// To compute that, use `std::mem::size_of::<GroupInfo>()`. |
| 2143 | #[inline ] |
| 2144 | pub fn memory_usage(&self) -> usize { |
| 2145 | use core::mem::size_of as s; |
| 2146 | |
| 2147 | s::<GroupInfoInner>() |
| 2148 | + self.0.slot_ranges.len() * s::<(SmallIndex, SmallIndex)>() |
| 2149 | + self.0.name_to_index.len() * s::<CaptureNameMap>() |
| 2150 | + self.0.index_to_name.len() * s::<Vec<Option<Arc<str>>>>() |
| 2151 | + self.0.memory_extra |
| 2152 | } |
| 2153 | } |
| 2154 | |
| 2155 | /// A map from capture group name to its corresponding capture group index. |
| 2156 | /// |
| 2157 | /// This type is actually wrapped inside a Vec indexed by pattern ID on a |
| 2158 | /// `GroupInfo`, since multiple patterns may have the same capture group name. |
| 2159 | /// That is, each pattern gets its own namespace of capture group names. |
| 2160 | /// |
| 2161 | /// Perhaps a more memory efficient representation would be |
| 2162 | /// HashMap<(PatternID, Arc<str>), usize>, but this makes it difficult to look |
| 2163 | /// up a capture index by name without producing a `Arc<str>`, which requires |
| 2164 | /// an allocation. To fix this, I think we'd need to define our own unsized |
| 2165 | /// type or something? Anyway, I didn't give this much thought since it |
| 2166 | /// probably doesn't matter much in the grand scheme of things. But it did |
| 2167 | /// stand out to me as mildly wasteful. |
| 2168 | #[cfg (feature = "std" )] |
| 2169 | type CaptureNameMap = std::collections::HashMap<Arc<str>, SmallIndex>; |
| 2170 | #[cfg (not(feature = "std" ))] |
| 2171 | type CaptureNameMap = alloc::collections::BTreeMap<Arc<str>, SmallIndex>; |
| 2172 | |
| 2173 | /// The inner guts of `GroupInfo`. This type only exists so that it can |
| 2174 | /// be wrapped in an `Arc` to make `GroupInfo` reference counted. |
| 2175 | #[derive (Debug, Default)] |
| 2176 | struct GroupInfoInner { |
| 2177 | slot_ranges: Vec<(SmallIndex, SmallIndex)>, |
| 2178 | name_to_index: Vec<CaptureNameMap>, |
| 2179 | index_to_name: Vec<Vec<Option<Arc<str>>>>, |
| 2180 | memory_extra: usize, |
| 2181 | } |
| 2182 | |
| 2183 | impl GroupInfoInner { |
| 2184 | /// This adds the first unnamed group for the given pattern ID. The given |
| 2185 | /// pattern ID must be zero if this is the first time this method is |
| 2186 | /// called, or must be exactly one more than the pattern ID supplied to the |
| 2187 | /// previous call to this method. (This method panics if this rule is |
| 2188 | /// violated.) |
| 2189 | /// |
| 2190 | /// This can be thought of as initializing the GroupInfo state for the |
| 2191 | /// given pattern and closing off the state for any previous pattern. |
| 2192 | fn add_first_group(&mut self, pid: PatternID) { |
| 2193 | assert_eq!(pid.as_usize(), self.slot_ranges.len()); |
| 2194 | assert_eq!(pid.as_usize(), self.name_to_index.len()); |
| 2195 | assert_eq!(pid.as_usize(), self.index_to_name.len()); |
| 2196 | // This is the start of our slots for the explicit capturing groups. |
| 2197 | // Note that since the slots for the 0th group for every pattern appear |
| 2198 | // before any slots for the nth group (where n > 0) in any pattern, we |
| 2199 | // will have to fix up the slot ranges once we know how many patterns |
| 2200 | // we've added capture groups for. |
| 2201 | let slot_start = self.small_slot_len(); |
| 2202 | self.slot_ranges.push((slot_start, slot_start)); |
| 2203 | self.name_to_index.push(CaptureNameMap::new()); |
| 2204 | self.index_to_name.push(vec![None]); |
| 2205 | self.memory_extra += core::mem::size_of::<Option<Arc<str>>>(); |
| 2206 | } |
| 2207 | |
| 2208 | /// Add an explicit capturing group for the given pattern with the given |
| 2209 | /// index. If the group has a name, then that must be given as well. |
| 2210 | /// |
| 2211 | /// Note that every capturing group except for the first or zeroth group is |
| 2212 | /// explicit. |
| 2213 | /// |
| 2214 | /// This returns an error if adding this group would result in overflowing |
| 2215 | /// slot indices or if a capturing group with the same name for this |
| 2216 | /// pattern has already been added. |
| 2217 | fn add_explicit_group<N: AsRef<str>>( |
| 2218 | &mut self, |
| 2219 | pid: PatternID, |
| 2220 | group: SmallIndex, |
| 2221 | maybe_name: Option<N>, |
| 2222 | ) -> Result<(), GroupInfoError> { |
| 2223 | // We also need to check that the slot index generated for |
| 2224 | // this group is also valid. Although, this is a little weird |
| 2225 | // because we offset these indices below, at which point, we'll |
| 2226 | // have to recheck them. Gosh this is annoying. Note that |
| 2227 | // the '+2' below is OK because 'end' is guaranteed to be less |
| 2228 | // than isize::MAX. |
| 2229 | let end = &mut self.slot_ranges[pid].1; |
| 2230 | *end = SmallIndex::new(end.as_usize() + 2).map_err(|_| { |
| 2231 | GroupInfoError::too_many_groups(pid, group.as_usize()) |
| 2232 | })?; |
| 2233 | if let Some(name) = maybe_name { |
| 2234 | let name = Arc::<str>::from(name.as_ref()); |
| 2235 | if self.name_to_index[pid].contains_key(&*name) { |
| 2236 | return Err(GroupInfoError::duplicate(pid, &name)); |
| 2237 | } |
| 2238 | let len = name.len(); |
| 2239 | self.name_to_index[pid].insert(Arc::clone(&name), group); |
| 2240 | self.index_to_name[pid].push(Some(name)); |
| 2241 | // Adds the memory used by the Arc<str> in both maps. |
| 2242 | self.memory_extra += |
| 2243 | 2 * (len + core::mem::size_of::<Option<Arc<str>>>()); |
| 2244 | // And also the value entry for the 'name_to_index' map. |
| 2245 | // This is probably an underestimate for 'name_to_index' since |
| 2246 | // hashmaps/btrees likely have some non-zero overhead, but we |
| 2247 | // assume here that they have zero overhead. |
| 2248 | self.memory_extra += core::mem::size_of::<SmallIndex>(); |
| 2249 | } else { |
| 2250 | self.index_to_name[pid].push(None); |
| 2251 | self.memory_extra += core::mem::size_of::<Option<Arc<str>>>(); |
| 2252 | } |
| 2253 | // This is a sanity assert that checks that our group index |
| 2254 | // is in line with the number of groups added so far for this |
| 2255 | // pattern. |
| 2256 | assert_eq!(group.one_more(), self.group_len(pid)); |
| 2257 | // And is also in line with the 'index_to_name' map. |
| 2258 | assert_eq!(group.one_more(), self.index_to_name[pid].len()); |
| 2259 | Ok(()) |
| 2260 | } |
| 2261 | |
| 2262 | /// This corrects the slot ranges to account for the slots corresponding |
| 2263 | /// to the zeroth group of each pattern. That is, every slot range is |
| 2264 | /// offset by 'pattern_len() * 2', since each pattern uses two slots to |
| 2265 | /// represent the zeroth group. |
| 2266 | fn fixup_slot_ranges(&mut self) -> Result<(), GroupInfoError> { |
| 2267 | use crate::util::primitives::IteratorIndexExt; |
| 2268 | // Since we know number of patterns fits in PatternID and |
| 2269 | // PatternID::MAX < isize::MAX, it follows that multiplying by 2 will |
| 2270 | // never overflow usize. |
| 2271 | let offset = self.pattern_len().checked_mul(2).unwrap(); |
| 2272 | for (pid, &mut (ref mut start, ref mut end)) in |
| 2273 | self.slot_ranges.iter_mut().with_pattern_ids() |
| 2274 | { |
| 2275 | let group_len = 1 + ((end.as_usize() - start.as_usize()) / 2); |
| 2276 | let new_end = match end.as_usize().checked_add(offset) { |
| 2277 | Some(new_end) => new_end, |
| 2278 | None => { |
| 2279 | return Err(GroupInfoError::too_many_groups( |
| 2280 | pid, group_len, |
| 2281 | )) |
| 2282 | } |
| 2283 | }; |
| 2284 | *end = SmallIndex::new(new_end).map_err(|_| { |
| 2285 | GroupInfoError::too_many_groups(pid, group_len) |
| 2286 | })?; |
| 2287 | // Since start <= end, if end is valid then start must be too. |
| 2288 | *start = SmallIndex::new(start.as_usize() + offset).unwrap(); |
| 2289 | } |
| 2290 | Ok(()) |
| 2291 | } |
| 2292 | |
| 2293 | /// Return the total number of patterns represented by this capture slot |
| 2294 | /// info. |
| 2295 | fn pattern_len(&self) -> usize { |
| 2296 | self.slot_ranges.len() |
| 2297 | } |
| 2298 | |
| 2299 | /// Return the total number of capturing groups for the given pattern. If |
| 2300 | /// the given pattern isn't valid for this capture slot info, then 0 is |
| 2301 | /// returned. |
| 2302 | fn group_len(&self, pid: PatternID) -> usize { |
| 2303 | let (start, end) = match self.slot_ranges.get(pid.as_usize()) { |
| 2304 | None => return 0, |
| 2305 | Some(range) => range, |
| 2306 | }; |
| 2307 | // The difference between any two SmallIndex values always fits in a |
| 2308 | // usize since we know that SmallIndex::MAX <= isize::MAX-1. We also |
| 2309 | // know that start<=end by construction and that the number of groups |
| 2310 | // never exceeds SmallIndex and thus never overflows usize. |
| 2311 | 1 + ((end.as_usize() - start.as_usize()) / 2) |
| 2312 | } |
| 2313 | |
| 2314 | /// Return the total number of slots in this capture slot info as a |
| 2315 | /// "small index." |
| 2316 | fn small_slot_len(&self) -> SmallIndex { |
| 2317 | // Since slots are allocated in order of pattern (starting at 0) and |
| 2318 | // then in order of capture group, it follows that the number of slots |
| 2319 | // is the end of the range of slots for the last pattern. This is |
| 2320 | // true even when the last pattern has no capturing groups, since |
| 2321 | // 'slot_ranges' will still represent it explicitly with an empty |
| 2322 | // range. |
| 2323 | self.slot_ranges.last().map_or(SmallIndex::ZERO, |&(_, end)| end) |
| 2324 | } |
| 2325 | } |
| 2326 | |
| 2327 | /// An error that may occur when building a `GroupInfo`. |
| 2328 | /// |
| 2329 | /// Building a `GroupInfo` does a variety of checks to make sure the |
| 2330 | /// capturing groups satisfy a number of invariants. This includes, but is not |
| 2331 | /// limited to, ensuring that the first capturing group is unnamed and that |
| 2332 | /// there are no duplicate capture groups for a specific pattern. |
| 2333 | #[derive (Clone, Debug)] |
| 2334 | pub struct GroupInfoError { |
| 2335 | kind: GroupInfoErrorKind, |
| 2336 | } |
| 2337 | |
| 2338 | /// The kind of error that occurs when building a `GroupInfo` fails. |
| 2339 | /// |
| 2340 | /// We keep this un-exported because it's not clear how useful it is to |
| 2341 | /// export it. |
| 2342 | #[derive (Clone, Debug)] |
| 2343 | enum GroupInfoErrorKind { |
| 2344 | /// This occurs when too many patterns have been added. i.e., It would |
| 2345 | /// otherwise overflow a `PatternID`. |
| 2346 | TooManyPatterns { err: PatternIDError }, |
| 2347 | /// This occurs when too many capturing groups have been added for a |
| 2348 | /// particular pattern. |
| 2349 | TooManyGroups { |
| 2350 | /// The ID of the pattern that had too many groups. |
| 2351 | pattern: PatternID, |
| 2352 | /// The minimum number of groups that the caller has tried to add for |
| 2353 | /// a pattern. |
| 2354 | minimum: usize, |
| 2355 | }, |
| 2356 | /// An error that occurs when a pattern has no capture groups. Either the |
| 2357 | /// group info must be empty, or all patterns must have at least one group |
| 2358 | /// (corresponding to the unnamed group for the entire pattern). |
| 2359 | MissingGroups { |
| 2360 | /// The ID of the pattern that had no capturing groups. |
| 2361 | pattern: PatternID, |
| 2362 | }, |
| 2363 | /// An error that occurs when one tries to provide a name for the capture |
| 2364 | /// group at index 0. This capturing group must currently always be |
| 2365 | /// unnamed. |
| 2366 | FirstMustBeUnnamed { |
| 2367 | /// The ID of the pattern that was found to have a named first |
| 2368 | /// capturing group. |
| 2369 | pattern: PatternID, |
| 2370 | }, |
| 2371 | /// An error that occurs when duplicate capture group names for the same |
| 2372 | /// pattern are added. |
| 2373 | /// |
| 2374 | /// NOTE: At time of writing, this error can never occur if you're using |
| 2375 | /// regex-syntax, since the parser itself will reject patterns with |
| 2376 | /// duplicate capture group names. This error can only occur when the |
| 2377 | /// builder is used to hand construct NFAs. |
| 2378 | Duplicate { |
| 2379 | /// The pattern in which the duplicate capture group name was found. |
| 2380 | pattern: PatternID, |
| 2381 | /// The duplicate name. |
| 2382 | name: String, |
| 2383 | }, |
| 2384 | } |
| 2385 | |
| 2386 | impl GroupInfoError { |
| 2387 | fn too_many_patterns(err: PatternIDError) -> GroupInfoError { |
| 2388 | GroupInfoError { kind: GroupInfoErrorKind::TooManyPatterns { err } } |
| 2389 | } |
| 2390 | |
| 2391 | fn too_many_groups(pattern: PatternID, minimum: usize) -> GroupInfoError { |
| 2392 | GroupInfoError { |
| 2393 | kind: GroupInfoErrorKind::TooManyGroups { pattern, minimum }, |
| 2394 | } |
| 2395 | } |
| 2396 | |
| 2397 | fn missing_groups(pattern: PatternID) -> GroupInfoError { |
| 2398 | GroupInfoError { kind: GroupInfoErrorKind::MissingGroups { pattern } } |
| 2399 | } |
| 2400 | |
| 2401 | fn first_must_be_unnamed(pattern: PatternID) -> GroupInfoError { |
| 2402 | GroupInfoError { |
| 2403 | kind: GroupInfoErrorKind::FirstMustBeUnnamed { pattern }, |
| 2404 | } |
| 2405 | } |
| 2406 | |
| 2407 | fn duplicate(pattern: PatternID, name: &str) -> GroupInfoError { |
| 2408 | GroupInfoError { |
| 2409 | kind: GroupInfoErrorKind::Duplicate { |
| 2410 | pattern, |
| 2411 | name: String::from(name), |
| 2412 | }, |
| 2413 | } |
| 2414 | } |
| 2415 | } |
| 2416 | |
| 2417 | #[cfg (feature = "std" )] |
| 2418 | impl std::error::Error for GroupInfoError { |
| 2419 | fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { |
| 2420 | match self.kind { |
| 2421 | GroupInfoErrorKind::TooManyPatterns { .. } |
| 2422 | | GroupInfoErrorKind::TooManyGroups { .. } |
| 2423 | | GroupInfoErrorKind::MissingGroups { .. } |
| 2424 | | GroupInfoErrorKind::FirstMustBeUnnamed { .. } |
| 2425 | | GroupInfoErrorKind::Duplicate { .. } => None, |
| 2426 | } |
| 2427 | } |
| 2428 | } |
| 2429 | |
| 2430 | impl core::fmt::Display for GroupInfoError { |
| 2431 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| 2432 | use self::GroupInfoErrorKind::*; |
| 2433 | |
| 2434 | match self.kind { |
| 2435 | TooManyPatterns { ref err } => { |
| 2436 | write!(f, "too many patterns to build capture info: {}" , err) |
| 2437 | } |
| 2438 | TooManyGroups { pattern, minimum } => { |
| 2439 | write!( |
| 2440 | f, |
| 2441 | "too many capture groups (at least {}) were \ |
| 2442 | found for pattern {}" , |
| 2443 | minimum, |
| 2444 | pattern.as_usize() |
| 2445 | ) |
| 2446 | } |
| 2447 | MissingGroups { pattern } => write!( |
| 2448 | f, |
| 2449 | "no capturing groups found for pattern {} \ |
| 2450 | (either all patterns have zero groups or all patterns have \ |
| 2451 | at least one group)" , |
| 2452 | pattern.as_usize(), |
| 2453 | ), |
| 2454 | FirstMustBeUnnamed { pattern } => write!( |
| 2455 | f, |
| 2456 | "first capture group (at index 0) for pattern {} has a name \ |
| 2457 | (it must be unnamed)" , |
| 2458 | pattern.as_usize(), |
| 2459 | ), |
| 2460 | Duplicate { pattern, ref name } => write!( |
| 2461 | f, |
| 2462 | "duplicate capture group name ' {}' found for pattern {}" , |
| 2463 | name, |
| 2464 | pattern.as_usize(), |
| 2465 | ), |
| 2466 | } |
| 2467 | } |
| 2468 | } |
| 2469 | |
| 2470 | /// An iterator over capturing groups and their names for a specific pattern. |
| 2471 | /// |
| 2472 | /// This iterator is created by [`GroupInfo::pattern_names`]. |
| 2473 | /// |
| 2474 | /// The lifetime parameter `'a` refers to the lifetime of the `GroupInfo` |
| 2475 | /// from which this iterator was created. |
| 2476 | #[derive (Clone, Debug)] |
| 2477 | pub struct GroupInfoPatternNames<'a> { |
| 2478 | it: core::slice::Iter<'a, Option<Arc<str>>>, |
| 2479 | } |
| 2480 | |
| 2481 | impl GroupInfoPatternNames<'static> { |
| 2482 | fn empty() -> GroupInfoPatternNames<'static> { |
| 2483 | GroupInfoPatternNames { it: [].iter() } |
| 2484 | } |
| 2485 | } |
| 2486 | |
| 2487 | impl<'a> Iterator for GroupInfoPatternNames<'a> { |
| 2488 | type Item = Option<&'a str>; |
| 2489 | |
| 2490 | fn next(&mut self) -> Option<Option<&'a str>> { |
| 2491 | self.it.next().map(|x: &'a Option>| x.as_deref()) |
| 2492 | } |
| 2493 | |
| 2494 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 2495 | self.it.size_hint() |
| 2496 | } |
| 2497 | |
| 2498 | fn count(self) -> usize { |
| 2499 | self.it.count() |
| 2500 | } |
| 2501 | } |
| 2502 | |
| 2503 | impl<'a> ExactSizeIterator for GroupInfoPatternNames<'a> {} |
| 2504 | impl<'a> core::iter::FusedIterator for GroupInfoPatternNames<'a> {} |
| 2505 | |
| 2506 | /// An iterator over capturing groups and their names for a `GroupInfo`. |
| 2507 | /// |
| 2508 | /// This iterator is created by [`GroupInfo::all_names`]. |
| 2509 | /// |
| 2510 | /// The lifetime parameter `'a` refers to the lifetime of the `GroupInfo` |
| 2511 | /// from which this iterator was created. |
| 2512 | #[derive (Debug)] |
| 2513 | pub struct GroupInfoAllNames<'a> { |
| 2514 | group_info: &'a GroupInfo, |
| 2515 | pids: PatternIDIter, |
| 2516 | current_pid: Option<PatternID>, |
| 2517 | names: Option<core::iter::Enumerate<GroupInfoPatternNames<'a>>>, |
| 2518 | } |
| 2519 | |
| 2520 | impl<'a> Iterator for GroupInfoAllNames<'a> { |
| 2521 | type Item = (PatternID, usize, Option<&'a str>); |
| 2522 | |
| 2523 | fn next(&mut self) -> Option<(PatternID, usize, Option<&'a str>)> { |
| 2524 | // If the group info has no captures, then we never have anything |
| 2525 | // to yield. We need to consider this case explicitly (at time of |
| 2526 | // writing) because 'pattern_capture_names' will panic if captures |
| 2527 | // aren't enabled. |
| 2528 | if self.group_info.0.index_to_name.is_empty() { |
| 2529 | return None; |
| 2530 | } |
| 2531 | if self.current_pid.is_none() { |
| 2532 | self.current_pid = Some(self.pids.next()?); |
| 2533 | } |
| 2534 | let pid = self.current_pid.unwrap(); |
| 2535 | if self.names.is_none() { |
| 2536 | self.names = Some(self.group_info.pattern_names(pid).enumerate()); |
| 2537 | } |
| 2538 | let (group_index, name) = match self.names.as_mut().unwrap().next() { |
| 2539 | Some((group_index, name)) => (group_index, name), |
| 2540 | None => { |
| 2541 | self.current_pid = None; |
| 2542 | self.names = None; |
| 2543 | return self.next(); |
| 2544 | } |
| 2545 | }; |
| 2546 | Some((pid, group_index, name)) |
| 2547 | } |
| 2548 | } |
| 2549 | |