| 1 | /*! |
| 2 | Types and routines specific to dense DFAs. |
| 3 | |
| 4 | This module is the home of [`dense::DFA`](DFA). |
| 5 | |
| 6 | This module also contains a [`dense::Builder`](Builder) and a |
| 7 | [`dense::Config`](Config) for configuring and building a dense DFA. |
| 8 | */ |
| 9 | |
| 10 | #[cfg (feature = "alloc" )] |
| 11 | use core::cmp; |
| 12 | use core::{convert::TryFrom, fmt, iter, mem::size_of, slice}; |
| 13 | |
| 14 | #[cfg (feature = "alloc" )] |
| 15 | use alloc::{ |
| 16 | collections::{BTreeMap, BTreeSet}, |
| 17 | vec, |
| 18 | vec::Vec, |
| 19 | }; |
| 20 | |
| 21 | #[cfg (feature = "alloc" )] |
| 22 | use crate::{ |
| 23 | dfa::{ |
| 24 | accel::Accel, determinize, error::Error, minimize::Minimizer, sparse, |
| 25 | }, |
| 26 | nfa::thompson, |
| 27 | util::alphabet::ByteSet, |
| 28 | MatchKind, |
| 29 | }; |
| 30 | use crate::{ |
| 31 | dfa::{ |
| 32 | accel::Accels, |
| 33 | automaton::{fmt_state_indicator, Automaton}, |
| 34 | special::Special, |
| 35 | DEAD, |
| 36 | }, |
| 37 | util::{ |
| 38 | alphabet::{self, ByteClasses}, |
| 39 | bytes::{self, DeserializeError, Endian, SerializeError}, |
| 40 | id::{PatternID, StateID}, |
| 41 | start::Start, |
| 42 | }, |
| 43 | }; |
| 44 | |
| 45 | /// The label that is pre-pended to a serialized DFA. |
| 46 | const LABEL: &str = "rust-regex-automata-dfa-dense" ; |
| 47 | |
| 48 | /// The format version of dense regexes. This version gets incremented when a |
| 49 | /// change occurs. A change may not necessarily be a breaking change, but the |
| 50 | /// version does permit good error messages in the case where a breaking change |
| 51 | /// is made. |
| 52 | const VERSION: u32 = 2; |
| 53 | |
| 54 | /// The configuration used for compiling a dense DFA. |
| 55 | /// |
| 56 | /// A dense DFA configuration is a simple data object that is typically used |
| 57 | /// with [`dense::Builder::configure`](self::Builder::configure). |
| 58 | /// |
| 59 | /// The default configuration guarantees that a search will _never_ return a |
| 60 | /// [`MatchError`](crate::MatchError) for any haystack or pattern. Setting a |
| 61 | /// quit byte with [`Config::quit`] or enabling heuristic support for Unicode |
| 62 | /// word boundaries with [`Config::unicode_word_boundary`] can in turn cause a |
| 63 | /// search to return an error. See the corresponding configuration options for |
| 64 | /// more details on when those error conditions arise. |
| 65 | #[cfg (feature = "alloc" )] |
| 66 | #[derive (Clone, Copy, Debug, Default)] |
| 67 | pub struct Config { |
| 68 | // As with other configuration types in this crate, we put all our knobs |
| 69 | // in options so that we can distinguish between "default" and "not set." |
| 70 | // This makes it possible to easily combine multiple configurations |
| 71 | // without default values overwriting explicitly specified values. See the |
| 72 | // 'overwrite' method. |
| 73 | // |
| 74 | // For docs on the fields below, see the corresponding method setters. |
| 75 | anchored: Option<bool>, |
| 76 | accelerate: Option<bool>, |
| 77 | minimize: Option<bool>, |
| 78 | match_kind: Option<MatchKind>, |
| 79 | starts_for_each_pattern: Option<bool>, |
| 80 | byte_classes: Option<bool>, |
| 81 | unicode_word_boundary: Option<bool>, |
| 82 | quit: Option<ByteSet>, |
| 83 | dfa_size_limit: Option<Option<usize>>, |
| 84 | determinize_size_limit: Option<Option<usize>>, |
| 85 | } |
| 86 | |
| 87 | #[cfg (feature = "alloc" )] |
| 88 | impl Config { |
| 89 | /// Return a new default dense DFA compiler configuration. |
| 90 | pub fn new() -> Config { |
| 91 | Config::default() |
| 92 | } |
| 93 | |
| 94 | /// Set whether matching must be anchored at the beginning of the input. |
| 95 | /// |
| 96 | /// When enabled, a match must begin at the start of a search. When |
| 97 | /// disabled, the DFA will act as if the pattern started with a `(?s:.)*?`, |
| 98 | /// which enables a match to appear anywhere. |
| 99 | /// |
| 100 | /// Note that if you want to run both anchored and unanchored |
| 101 | /// searches without building multiple automatons, you can enable the |
| 102 | /// [`Config::starts_for_each_pattern`] configuration instead. This will |
| 103 | /// permit unanchored any-pattern searches and pattern-specific anchored |
| 104 | /// searches. See the documentation for that configuration for an example. |
| 105 | /// |
| 106 | /// By default this is disabled. |
| 107 | /// |
| 108 | /// **WARNING:** this is subtly different than using a `^` at the start of |
| 109 | /// your regex. A `^` forces a regex to match exclusively at the start of |
| 110 | /// input, regardless of where you begin your search. In contrast, enabling |
| 111 | /// this option will allow your regex to match anywhere in your input, |
| 112 | /// but the match must start at the beginning of a search. (Most of the |
| 113 | /// higher level convenience search routines make "start of input" and |
| 114 | /// "start of search" equivalent, but some routines allow treating these as |
| 115 | /// orthogonal.) |
| 116 | /// |
| 117 | /// For example, consider the haystack `aba` and the following searches: |
| 118 | /// |
| 119 | /// 1. The regex `^a` is compiled with `anchored=false` and searches |
| 120 | /// `aba` starting at position `2`. Since `^` requires the match to |
| 121 | /// start at the beginning of the input and `2 > 0`, no match is found. |
| 122 | /// 2. The regex `a` is compiled with `anchored=true` and searches `aba` |
| 123 | /// starting at position `2`. This reports a match at `[2, 3]` since |
| 124 | /// the match starts where the search started. Since there is no `^`, |
| 125 | /// there is no requirement for the match to start at the beginning of |
| 126 | /// the input. |
| 127 | /// 3. The regex `a` is compiled with `anchored=true` and searches `aba` |
| 128 | /// starting at position `1`. Since `b` corresponds to position `1` and |
| 129 | /// since the regex is anchored, it finds no match. |
| 130 | /// 4. The regex `a` is compiled with `anchored=false` and searches `aba` |
| 131 | /// startting at position `1`. Since the regex is neither anchored nor |
| 132 | /// starts with `^`, the regex is compiled with an implicit `(?s:.)*?` |
| 133 | /// prefix that permits it to match anywhere. Thus, it reports a match |
| 134 | /// at `[2, 3]`. |
| 135 | /// |
| 136 | /// # Example |
| 137 | /// |
| 138 | /// This demonstrates the differences between an anchored search and |
| 139 | /// a pattern that begins with `^` (as described in the above warning |
| 140 | /// message). |
| 141 | /// |
| 142 | /// ``` |
| 143 | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch}; |
| 144 | /// |
| 145 | /// let haystack = "aba".as_bytes(); |
| 146 | /// |
| 147 | /// let dfa = dense::Builder::new() |
| 148 | /// .configure(dense::Config::new().anchored(false)) // default |
| 149 | /// .build(r"^a")?; |
| 150 | /// let got = dfa.find_leftmost_fwd_at(None, None, haystack, 2, 3)?; |
| 151 | /// // No match is found because 2 is not the beginning of the haystack, |
| 152 | /// // which is what ^ requires. |
| 153 | /// let expected = None; |
| 154 | /// assert_eq!(expected, got); |
| 155 | /// |
| 156 | /// let dfa = dense::Builder::new() |
| 157 | /// .configure(dense::Config::new().anchored(true)) |
| 158 | /// .build(r"a")?; |
| 159 | /// let got = dfa.find_leftmost_fwd_at(None, None, haystack, 2, 3)?; |
| 160 | /// // An anchored search can still match anywhere in the haystack, it just |
| 161 | /// // must begin at the start of the search which is '2' in this case. |
| 162 | /// let expected = Some(HalfMatch::must(0, 3)); |
| 163 | /// assert_eq!(expected, got); |
| 164 | /// |
| 165 | /// let dfa = dense::Builder::new() |
| 166 | /// .configure(dense::Config::new().anchored(true)) |
| 167 | /// .build(r"a")?; |
| 168 | /// let got = dfa.find_leftmost_fwd_at(None, None, haystack, 1, 3)?; |
| 169 | /// // No match is found since we start searching at offset 1 which |
| 170 | /// // corresponds to 'b'. Since there is no '(?s:.)*?' prefix, no match |
| 171 | /// // is found. |
| 172 | /// let expected = None; |
| 173 | /// assert_eq!(expected, got); |
| 174 | /// |
| 175 | /// let dfa = dense::Builder::new() |
| 176 | /// .configure(dense::Config::new().anchored(false)) // default |
| 177 | /// .build(r"a")?; |
| 178 | /// let got = dfa.find_leftmost_fwd_at(None, None, haystack, 1, 3)?; |
| 179 | /// // Since anchored=false, an implicit '(?s:.)*?' prefix was added to the |
| 180 | /// // pattern. Even though the search starts at 'b', the 'match anything' |
| 181 | /// // prefix allows the search to match 'a'. |
| 182 | /// let expected = Some(HalfMatch::must(0, 3)); |
| 183 | /// assert_eq!(expected, got); |
| 184 | /// |
| 185 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 186 | /// ``` |
| 187 | pub fn anchored(mut self, yes: bool) -> Config { |
| 188 | self.anchored = Some(yes); |
| 189 | self |
| 190 | } |
| 191 | |
| 192 | /// Enable state acceleration. |
| 193 | /// |
| 194 | /// When enabled, DFA construction will analyze each state to determine |
| 195 | /// whether it is eligible for simple acceleration. Acceleration typically |
| 196 | /// occurs when most of a state's transitions loop back to itself, leaving |
| 197 | /// only a select few bytes that will exit the state. When this occurs, |
| 198 | /// other routines like `memchr` can be used to look for those bytes which |
| 199 | /// may be much faster than traversing the DFA. |
| 200 | /// |
| 201 | /// Callers may elect to disable this if consistent performance is more |
| 202 | /// desirable than variable performance. Namely, acceleration can sometimes |
| 203 | /// make searching slower than it otherwise would be if the transitions |
| 204 | /// that leave accelerated states are traversed frequently. |
| 205 | /// |
| 206 | /// See [`Automaton::accelerator`](crate::dfa::Automaton::accelerator) for |
| 207 | /// an example. |
| 208 | /// |
| 209 | /// This is enabled by default. |
| 210 | pub fn accelerate(mut self, yes: bool) -> Config { |
| 211 | self.accelerate = Some(yes); |
| 212 | self |
| 213 | } |
| 214 | |
| 215 | /// Minimize the DFA. |
| 216 | /// |
| 217 | /// When enabled, the DFA built will be minimized such that it is as small |
| 218 | /// as possible. |
| 219 | /// |
| 220 | /// Whether one enables minimization or not depends on the types of costs |
| 221 | /// you're willing to pay and how much you care about its benefits. In |
| 222 | /// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)` |
| 223 | /// space, where `n` is the number of DFA states and `k` is the alphabet |
| 224 | /// size. In practice, minimization can be quite costly in terms of both |
| 225 | /// space and time, so it should only be done if you're willing to wait |
| 226 | /// longer to produce a DFA. In general, you might want a minimal DFA in |
| 227 | /// the following circumstances: |
| 228 | /// |
| 229 | /// 1. You would like to optimize for the size of the automaton. This can |
| 230 | /// manifest in one of two ways. Firstly, if you're converting the |
| 231 | /// DFA into Rust code (or a table embedded in the code), then a minimal |
| 232 | /// DFA will translate into a corresponding reduction in code size, and |
| 233 | /// thus, also the final compiled binary size. Secondly, if you are |
| 234 | /// building many DFAs and putting them on the heap, you'll be able to |
| 235 | /// fit more if they are smaller. Note though that building a minimal |
| 236 | /// DFA itself requires additional space; you only realize the space |
| 237 | /// savings once the minimal DFA is constructed (at which point, the |
| 238 | /// space used for minimization is freed). |
| 239 | /// 2. You've observed that a smaller DFA results in faster match |
| 240 | /// performance. Naively, this isn't guaranteed since there is no |
| 241 | /// inherent difference between matching with a bigger-than-minimal |
| 242 | /// DFA and a minimal DFA. However, a smaller DFA may make use of your |
| 243 | /// CPU's cache more efficiently. |
| 244 | /// 3. You are trying to establish an equivalence between regular |
| 245 | /// languages. The standard method for this is to build a minimal DFA |
| 246 | /// for each language and then compare them. If the DFAs are equivalent |
| 247 | /// (up to state renaming), then the languages are equivalent. |
| 248 | /// |
| 249 | /// Typically, minimization only makes sense as an offline process. That |
| 250 | /// is, one might minimize a DFA before serializing it to persistent |
| 251 | /// storage. In practical terms, minimization can take around an order of |
| 252 | /// magnitude more time than compiling the initial DFA via determinization. |
| 253 | /// |
| 254 | /// This option is disabled by default. |
| 255 | pub fn minimize(mut self, yes: bool) -> Config { |
| 256 | self.minimize = Some(yes); |
| 257 | self |
| 258 | } |
| 259 | |
| 260 | /// Set the desired match semantics. |
| 261 | /// |
| 262 | /// The default is [`MatchKind::LeftmostFirst`], which corresponds to the |
| 263 | /// match semantics of Perl-like regex engines. That is, when multiple |
| 264 | /// patterns would match at the same leftmost position, the pattern that |
| 265 | /// appears first in the concrete syntax is chosen. |
| 266 | /// |
| 267 | /// Currently, the only other kind of match semantics supported is |
| 268 | /// [`MatchKind::All`]. This corresponds to classical DFA construction |
| 269 | /// where all possible matches are added to the DFA. |
| 270 | /// |
| 271 | /// Typically, `All` is used when one wants to execute an overlapping |
| 272 | /// search and `LeftmostFirst` otherwise. In particular, it rarely makes |
| 273 | /// sense to use `All` with the various "leftmost" find routines, since the |
| 274 | /// leftmost routines depend on the `LeftmostFirst` automata construction |
| 275 | /// strategy. Specifically, `LeftmostFirst` adds dead states to the DFA |
| 276 | /// as a way to terminate the search and report a match. `LeftmostFirst` |
| 277 | /// also supports non-greedy matches using this strategy where as `All` |
| 278 | /// does not. |
| 279 | /// |
| 280 | /// # Example: overlapping search |
| 281 | /// |
| 282 | /// This example shows the typical use of `MatchKind::All`, which is to |
| 283 | /// report overlapping matches. |
| 284 | /// |
| 285 | /// ``` |
| 286 | /// use regex_automata::{ |
| 287 | /// dfa::{Automaton, OverlappingState, dense}, |
| 288 | /// HalfMatch, MatchKind, |
| 289 | /// }; |
| 290 | /// |
| 291 | /// let dfa = dense::Builder::new() |
| 292 | /// .configure(dense::Config::new().match_kind(MatchKind::All)) |
| 293 | /// .build_many(&[r"\w+$", r"\S+$"])?; |
| 294 | /// let haystack = "@foo".as_bytes(); |
| 295 | /// let mut state = OverlappingState::start(); |
| 296 | /// |
| 297 | /// let expected = Some(HalfMatch::must(1, 4)); |
| 298 | /// let got = dfa.find_overlapping_fwd(haystack, &mut state)?; |
| 299 | /// assert_eq!(expected, got); |
| 300 | /// |
| 301 | /// // The first pattern also matches at the same position, so re-running |
| 302 | /// // the search will yield another match. Notice also that the first |
| 303 | /// // pattern is returned after the second. This is because the second |
| 304 | /// // pattern begins its match before the first, is therefore an earlier |
| 305 | /// // match and is thus reported first. |
| 306 | /// let expected = Some(HalfMatch::must(0, 4)); |
| 307 | /// let got = dfa.find_overlapping_fwd(haystack, &mut state)?; |
| 308 | /// assert_eq!(expected, got); |
| 309 | /// |
| 310 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 311 | /// ``` |
| 312 | /// |
| 313 | /// # Example: reverse automaton to find start of match |
| 314 | /// |
| 315 | /// Another example for using `MatchKind::All` is for constructing a |
| 316 | /// reverse automaton to find the start of a match. `All` semantics are |
| 317 | /// used for this in order to find the longest possible match, which |
| 318 | /// corresponds to the leftmost starting position. |
| 319 | /// |
| 320 | /// Note that if you need the starting position then |
| 321 | /// [`dfa::regex::Regex`](crate::dfa::regex::Regex) will handle this for |
| 322 | /// you, so it's usually not necessary to do this yourself. |
| 323 | /// |
| 324 | /// ``` |
| 325 | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, MatchKind}; |
| 326 | /// |
| 327 | /// let haystack = "123foobar456".as_bytes(); |
| 328 | /// let pattern = r"[a-z]+"; |
| 329 | /// |
| 330 | /// let dfa_fwd = dense::DFA::new(pattern)?; |
| 331 | /// let dfa_rev = dense::Builder::new() |
| 332 | /// .configure(dense::Config::new() |
| 333 | /// .anchored(true) |
| 334 | /// .match_kind(MatchKind::All) |
| 335 | /// ) |
| 336 | /// .build(pattern)?; |
| 337 | /// let expected_fwd = HalfMatch::must(0, 9); |
| 338 | /// let expected_rev = HalfMatch::must(0, 3); |
| 339 | /// let got_fwd = dfa_fwd.find_leftmost_fwd(haystack)?.unwrap(); |
| 340 | /// // Here we don't specify the pattern to search for since there's only |
| 341 | /// // one pattern and we're doing a leftmost search. But if this were an |
| 342 | /// // overlapping search, you'd need to specify the pattern that matched |
| 343 | /// // in the forward direction. (Otherwise, you might wind up finding the |
| 344 | /// // starting position of a match of some other pattern.) That in turn |
| 345 | /// // requires building the reverse automaton with starts_for_each_pattern |
| 346 | /// // enabled. Indeed, this is what Regex does internally. |
| 347 | /// let got_rev = dfa_rev.find_leftmost_rev_at( |
| 348 | /// None, haystack, 0, got_fwd.offset(), |
| 349 | /// )?.unwrap(); |
| 350 | /// assert_eq!(expected_fwd, got_fwd); |
| 351 | /// assert_eq!(expected_rev, got_rev); |
| 352 | /// |
| 353 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 354 | /// ``` |
| 355 | pub fn match_kind(mut self, kind: MatchKind) -> Config { |
| 356 | self.match_kind = Some(kind); |
| 357 | self |
| 358 | } |
| 359 | |
| 360 | /// Whether to compile a separate start state for each pattern in the |
| 361 | /// automaton. |
| 362 | /// |
| 363 | /// When enabled, a separate **anchored** start state is added for each |
| 364 | /// pattern in the DFA. When this start state is used, then the DFA will |
| 365 | /// only search for matches for the pattern specified, even if there are |
| 366 | /// other patterns in the DFA. |
| 367 | /// |
| 368 | /// The main downside of this option is that it can potentially increase |
| 369 | /// the size of the DFA and/or increase the time it takes to build the DFA. |
| 370 | /// |
| 371 | /// There are a few reasons one might want to enable this (it's disabled |
| 372 | /// by default): |
| 373 | /// |
| 374 | /// 1. When looking for the start of an overlapping match (using a |
| 375 | /// reverse DFA), doing it correctly requires starting the reverse search |
| 376 | /// using the starting state of the pattern that matched in the forward |
| 377 | /// direction. Indeed, when building a [`Regex`](crate::dfa::regex::Regex), |
| 378 | /// it will automatically enable this option when building the reverse DFA |
| 379 | /// internally. |
| 380 | /// 2. When you want to use a DFA with multiple patterns to both search |
| 381 | /// for matches of any pattern or to search for anchored matches of one |
| 382 | /// particular pattern while using the same DFA. (Otherwise, you would need |
| 383 | /// to compile a new DFA for each pattern.) |
| 384 | /// 3. Since the start states added for each pattern are anchored, if you |
| 385 | /// compile an unanchored DFA with one pattern while also enabling this |
| 386 | /// option, then you can use the same DFA to perform anchored or unanchored |
| 387 | /// searches. The latter you get with the standard search APIs. The former |
| 388 | /// you get from the various `_at` search methods that allow you specify a |
| 389 | /// pattern ID to search for. |
| 390 | /// |
| 391 | /// By default this is disabled. |
| 392 | /// |
| 393 | /// # Example |
| 394 | /// |
| 395 | /// This example shows how to use this option to permit the same DFA to |
| 396 | /// run both anchored and unanchored searches for a single pattern. |
| 397 | /// |
| 398 | /// ``` |
| 399 | /// use regex_automata::{ |
| 400 | /// dfa::{Automaton, dense}, |
| 401 | /// HalfMatch, PatternID, |
| 402 | /// }; |
| 403 | /// |
| 404 | /// let dfa = dense::Builder::new() |
| 405 | /// .configure(dense::Config::new().starts_for_each_pattern(true)) |
| 406 | /// .build(r"foo[0-9]+")?; |
| 407 | /// let haystack = b"quux foo123"; |
| 408 | /// |
| 409 | /// // Here's a normal unanchored search. Notice that we use 'None' for the |
| 410 | /// // pattern ID. Since the DFA was built as an unanchored machine, it |
| 411 | /// // use its default unanchored starting state. |
| 412 | /// let expected = HalfMatch::must(0, 11); |
| 413 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd_at( |
| 414 | /// None, None, haystack, 0, haystack.len(), |
| 415 | /// )?); |
| 416 | /// // But now if we explicitly specify the pattern to search ('0' being |
| 417 | /// // the only pattern in the DFA), then it will use the starting state |
| 418 | /// // for that specific pattern which is always anchored. Since the |
| 419 | /// // pattern doesn't have a match at the beginning of the haystack, we |
| 420 | /// // find nothing. |
| 421 | /// assert_eq!(None, dfa.find_leftmost_fwd_at( |
| 422 | /// None, Some(PatternID::must(0)), haystack, 0, haystack.len(), |
| 423 | /// )?); |
| 424 | /// // And finally, an anchored search is not the same as putting a '^' at |
| 425 | /// // beginning of the pattern. An anchored search can only match at the |
| 426 | /// // beginning of the *search*, which we can change: |
| 427 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd_at( |
| 428 | /// None, Some(PatternID::must(0)), haystack, 5, haystack.len(), |
| 429 | /// )?); |
| 430 | /// |
| 431 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 432 | /// ``` |
| 433 | pub fn starts_for_each_pattern(mut self, yes: bool) -> Config { |
| 434 | self.starts_for_each_pattern = Some(yes); |
| 435 | self |
| 436 | } |
| 437 | |
| 438 | /// Whether to attempt to shrink the size of the DFA's alphabet or not. |
| 439 | /// |
| 440 | /// This option is enabled by default and should never be disabled unless |
| 441 | /// one is debugging a generated DFA. |
| 442 | /// |
| 443 | /// When enabled, the DFA will use a map from all possible bytes to their |
| 444 | /// corresponding equivalence class. Each equivalence class represents a |
| 445 | /// set of bytes that does not discriminate between a match and a non-match |
| 446 | /// in the DFA. For example, the pattern `[ab]+` has at least two |
| 447 | /// equivalence classes: a set containing `a` and `b` and a set containing |
| 448 | /// every byte except for `a` and `b`. `a` and `b` are in the same |
| 449 | /// equivalence classes because they never discriminate between a match |
| 450 | /// and a non-match. |
| 451 | /// |
| 452 | /// The advantage of this map is that the size of the transition table |
| 453 | /// can be reduced drastically from `#states * 256 * sizeof(StateID)` to |
| 454 | /// `#states * k * sizeof(StateID)` where `k` is the number of equivalence |
| 455 | /// classes (rounded up to the nearest power of 2). As a result, total |
| 456 | /// space usage can decrease substantially. Moreover, since a smaller |
| 457 | /// alphabet is used, DFA compilation becomes faster as well. |
| 458 | /// |
| 459 | /// **WARNING:** This is only useful for debugging DFAs. Disabling this |
| 460 | /// does not yield any speed advantages. Namely, even when this is |
| 461 | /// disabled, a byte class map is still used while searching. The only |
| 462 | /// difference is that every byte will be forced into its own distinct |
| 463 | /// equivalence class. This is useful for debugging the actual generated |
| 464 | /// transitions because it lets one see the transitions defined on actual |
| 465 | /// bytes instead of the equivalence classes. |
| 466 | pub fn byte_classes(mut self, yes: bool) -> Config { |
| 467 | self.byte_classes = Some(yes); |
| 468 | self |
| 469 | } |
| 470 | |
| 471 | /// Heuristically enable Unicode word boundaries. |
| 472 | /// |
| 473 | /// When set, this will attempt to implement Unicode word boundaries as if |
| 474 | /// they were ASCII word boundaries. This only works when the search input |
| 475 | /// is ASCII only. If a non-ASCII byte is observed while searching, then a |
| 476 | /// [`MatchError::Quit`](crate::MatchError::Quit) error is returned. |
| 477 | /// |
| 478 | /// A possible alternative to enabling this option is to simply use an |
| 479 | /// ASCII word boundary, e.g., via `(?-u:\b)`. The main reason to use this |
| 480 | /// option is if you absolutely need Unicode support. This option lets one |
| 481 | /// use a fast search implementation (a DFA) for some potentially very |
| 482 | /// common cases, while providing the option to fall back to some other |
| 483 | /// regex engine to handle the general case when an error is returned. |
| 484 | /// |
| 485 | /// If the pattern provided has no Unicode word boundary in it, then this |
| 486 | /// option has no effect. (That is, quitting on a non-ASCII byte only |
| 487 | /// occurs when this option is enabled _and_ a Unicode word boundary is |
| 488 | /// present in the pattern.) |
| 489 | /// |
| 490 | /// This is almost equivalent to setting all non-ASCII bytes to be quit |
| 491 | /// bytes. The only difference is that this will cause non-ASCII bytes to |
| 492 | /// be quit bytes _only_ when a Unicode word boundary is present in the |
| 493 | /// pattern. |
| 494 | /// |
| 495 | /// When enabling this option, callers _must_ be prepared to handle |
| 496 | /// a [`MatchError`](crate::MatchError) error during search. |
| 497 | /// When using a [`Regex`](crate::dfa::regex::Regex), this corresponds |
| 498 | /// to using the `try_` suite of methods. Alternatively, if |
| 499 | /// callers can guarantee that their input is ASCII only, then a |
| 500 | /// [`MatchError::Quit`](crate::MatchError::Quit) error will never be |
| 501 | /// returned while searching. |
| 502 | /// |
| 503 | /// This is disabled by default. |
| 504 | /// |
| 505 | /// # Example |
| 506 | /// |
| 507 | /// This example shows how to heuristically enable Unicode word boundaries |
| 508 | /// in a pattern. It also shows what happens when a search comes across a |
| 509 | /// non-ASCII byte. |
| 510 | /// |
| 511 | /// ``` |
| 512 | /// use regex_automata::{ |
| 513 | /// dfa::{Automaton, dense}, |
| 514 | /// HalfMatch, MatchError, MatchKind, |
| 515 | /// }; |
| 516 | /// |
| 517 | /// let dfa = dense::Builder::new() |
| 518 | /// .configure(dense::Config::new().unicode_word_boundary(true)) |
| 519 | /// .build(r"\b[0-9]+\b")?; |
| 520 | /// |
| 521 | /// // The match occurs before the search ever observes the snowman |
| 522 | /// // character, so no error occurs. |
| 523 | /// let haystack = "foo 123 ☃".as_bytes(); |
| 524 | /// let expected = Some(HalfMatch::must(0, 7)); |
| 525 | /// let got = dfa.find_leftmost_fwd(haystack)?; |
| 526 | /// assert_eq!(expected, got); |
| 527 | /// |
| 528 | /// // Notice that this search fails, even though the snowman character |
| 529 | /// // occurs after the ending match offset. This is because search |
| 530 | /// // routines read one byte past the end of the search to account for |
| 531 | /// // look-around, and indeed, this is required here to determine whether |
| 532 | /// // the trailing \b matches. |
| 533 | /// let haystack = "foo 123☃".as_bytes(); |
| 534 | /// let expected = MatchError::Quit { byte: 0xE2, offset: 7 }; |
| 535 | /// let got = dfa.find_leftmost_fwd(haystack); |
| 536 | /// assert_eq!(Err(expected), got); |
| 537 | /// |
| 538 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 539 | /// ``` |
| 540 | pub fn unicode_word_boundary(mut self, yes: bool) -> Config { |
| 541 | // We have a separate option for this instead of just setting the |
| 542 | // appropriate quit bytes here because we don't want to set quit bytes |
| 543 | // for every regex. We only want to set them when the regex contains a |
| 544 | // Unicode word boundary. |
| 545 | self.unicode_word_boundary = Some(yes); |
| 546 | self |
| 547 | } |
| 548 | |
| 549 | /// Add a "quit" byte to the DFA. |
| 550 | /// |
| 551 | /// When a quit byte is seen during search time, then search will return |
| 552 | /// a [`MatchError::Quit`](crate::MatchError::Quit) error indicating the |
| 553 | /// offset at which the search stopped. |
| 554 | /// |
| 555 | /// A quit byte will always overrule any other aspects of a regex. For |
| 556 | /// example, if the `x` byte is added as a quit byte and the regex `\w` is |
| 557 | /// used, then observing `x` will cause the search to quit immediately |
| 558 | /// despite the fact that `x` is in the `\w` class. |
| 559 | /// |
| 560 | /// This mechanism is primarily useful for heuristically enabling certain |
| 561 | /// features like Unicode word boundaries in a DFA. Namely, if the input |
| 562 | /// to search is ASCII, then a Unicode word boundary can be implemented |
| 563 | /// via an ASCII word boundary with no change in semantics. Thus, a DFA |
| 564 | /// can attempt to match a Unicode word boundary but give up as soon as it |
| 565 | /// observes a non-ASCII byte. Indeed, if callers set all non-ASCII bytes |
| 566 | /// to be quit bytes, then Unicode word boundaries will be permitted when |
| 567 | /// building DFAs. Of course, callers should enable |
| 568 | /// [`Config::unicode_word_boundary`] if they want this behavior instead. |
| 569 | /// (The advantage being that non-ASCII quit bytes will only be added if a |
| 570 | /// Unicode word boundary is in the pattern.) |
| 571 | /// |
| 572 | /// When enabling this option, callers _must_ be prepared to handle a |
| 573 | /// [`MatchError`](crate::MatchError) error during search. When using a |
| 574 | /// [`Regex`](crate::dfa::regex::Regex), this corresponds to using the |
| 575 | /// `try_` suite of methods. |
| 576 | /// |
| 577 | /// By default, there are no quit bytes set. |
| 578 | /// |
| 579 | /// # Panics |
| 580 | /// |
| 581 | /// This panics if heuristic Unicode word boundaries are enabled and any |
| 582 | /// non-ASCII byte is removed from the set of quit bytes. Namely, enabling |
| 583 | /// Unicode word boundaries requires setting every non-ASCII byte to a quit |
| 584 | /// byte. So if the caller attempts to undo any of that, then this will |
| 585 | /// panic. |
| 586 | /// |
| 587 | /// # Example |
| 588 | /// |
| 589 | /// This example shows how to cause a search to terminate if it sees a |
| 590 | /// `\n` byte. This could be useful if, for example, you wanted to prevent |
| 591 | /// a user supplied pattern from matching across a line boundary. |
| 592 | /// |
| 593 | /// ``` |
| 594 | /// use regex_automata::{ |
| 595 | /// dfa::{Automaton, dense}, |
| 596 | /// HalfMatch, MatchError, |
| 597 | /// }; |
| 598 | /// |
| 599 | /// let dfa = dense::Builder::new() |
| 600 | /// .configure(dense::Config::new().quit(b'\n', true)) |
| 601 | /// .build(r"foo\p{any}+bar")?; |
| 602 | /// |
| 603 | /// let haystack = "foo\nbar".as_bytes(); |
| 604 | /// // Normally this would produce a match, since \p{any} contains '\n'. |
| 605 | /// // But since we instructed the automaton to enter a quit state if a |
| 606 | /// // '\n' is observed, this produces a match error instead. |
| 607 | /// let expected = MatchError::Quit { byte: 0x0A, offset: 3 }; |
| 608 | /// let got = dfa.find_leftmost_fwd(haystack).unwrap_err(); |
| 609 | /// assert_eq!(expected, got); |
| 610 | /// |
| 611 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 612 | /// ``` |
| 613 | pub fn quit(mut self, byte: u8, yes: bool) -> Config { |
| 614 | if self.get_unicode_word_boundary() && !byte.is_ascii() && !yes { |
| 615 | panic!( |
| 616 | "cannot set non-ASCII byte to be non-quit when \ |
| 617 | Unicode word boundaries are enabled" |
| 618 | ); |
| 619 | } |
| 620 | if self.quit.is_none() { |
| 621 | self.quit = Some(ByteSet::empty()); |
| 622 | } |
| 623 | if yes { |
| 624 | self.quit.as_mut().unwrap().add(byte); |
| 625 | } else { |
| 626 | self.quit.as_mut().unwrap().remove(byte); |
| 627 | } |
| 628 | self |
| 629 | } |
| 630 | |
| 631 | /// Set a size limit on the total heap used by a DFA. |
| 632 | /// |
| 633 | /// This size limit is expressed in bytes and is applied during |
| 634 | /// determinization of an NFA into a DFA. If the DFA's heap usage, and only |
| 635 | /// the DFA, exceeds this configured limit, then determinization is stopped |
| 636 | /// and an error is returned. |
| 637 | /// |
| 638 | /// This limit does not apply to auxiliary storage used during |
| 639 | /// determinization that isn't part of the generated DFA. |
| 640 | /// |
| 641 | /// This limit is only applied during determinization. Currently, there is |
| 642 | /// no way to post-pone this check to after minimization if minimization |
| 643 | /// was enabled. |
| 644 | /// |
| 645 | /// The total limit on heap used during determinization is the sum of the |
| 646 | /// DFA and determinization size limits. |
| 647 | /// |
| 648 | /// The default is no limit. |
| 649 | /// |
| 650 | /// # Example |
| 651 | /// |
| 652 | /// This example shows a DFA that fails to build because of a configured |
| 653 | /// size limit. This particular example also serves as a cautionary tale |
| 654 | /// demonstrating just how big DFAs with large Unicode character classes |
| 655 | /// can get. |
| 656 | /// |
| 657 | /// ``` |
| 658 | /// use regex_automata::dfa::{dense, Automaton}; |
| 659 | /// |
| 660 | /// // 3MB isn't enough! |
| 661 | /// dense::Builder::new() |
| 662 | /// .configure(dense::Config::new().dfa_size_limit(Some(3_000_000))) |
| 663 | /// .build(r"\w{20}") |
| 664 | /// .unwrap_err(); |
| 665 | /// |
| 666 | /// // ... but 4MB probably is! |
| 667 | /// // (Note that DFA sizes aren't necessarily stable between releases.) |
| 668 | /// let dfa = dense::Builder::new() |
| 669 | /// .configure(dense::Config::new().dfa_size_limit(Some(4_000_000))) |
| 670 | /// .build(r"\w{20}")?; |
| 671 | /// let haystack = "A".repeat(20).into_bytes(); |
| 672 | /// assert!(dfa.find_leftmost_fwd(&haystack)?.is_some()); |
| 673 | /// |
| 674 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 675 | /// ``` |
| 676 | /// |
| 677 | /// While one needs a little more than 3MB to represent `\w{20}`, it |
| 678 | /// turns out that you only need a little more than 4KB to represent |
| 679 | /// `(?-u:\w{20})`. So only use Unicode if you need it! |
| 680 | pub fn dfa_size_limit(mut self, bytes: Option<usize>) -> Config { |
| 681 | self.dfa_size_limit = Some(bytes); |
| 682 | self |
| 683 | } |
| 684 | |
| 685 | /// Set a size limit on the total heap used by determinization. |
| 686 | /// |
| 687 | /// This size limit is expressed in bytes and is applied during |
| 688 | /// determinization of an NFA into a DFA. If the heap used for auxiliary |
| 689 | /// storage during determinization (memory that is not in the DFA but |
| 690 | /// necessary for building the DFA) exceeds this configured limit, then |
| 691 | /// determinization is stopped and an error is returned. |
| 692 | /// |
| 693 | /// This limit does not apply to heap used by the DFA itself. |
| 694 | /// |
| 695 | /// The total limit on heap used during determinization is the sum of the |
| 696 | /// DFA and determinization size limits. |
| 697 | /// |
| 698 | /// The default is no limit. |
| 699 | /// |
| 700 | /// # Example |
| 701 | /// |
| 702 | /// This example shows a DFA that fails to build because of a |
| 703 | /// configured size limit on the amount of heap space used by |
| 704 | /// determinization. This particular example complements the example for |
| 705 | /// [`Config::dfa_size_limit`] by demonstrating that not only does Unicode |
| 706 | /// potentially make DFAs themselves big, but it also results in more |
| 707 | /// auxiliary storage during determinization. (Although, auxiliary storage |
| 708 | /// is still not as much as the DFA itself.) |
| 709 | /// |
| 710 | /// ``` |
| 711 | /// use regex_automata::dfa::{dense, Automaton}; |
| 712 | /// |
| 713 | /// // 300KB isn't enough! |
| 714 | /// dense::Builder::new() |
| 715 | /// .configure(dense::Config::new() |
| 716 | /// .determinize_size_limit(Some(300_000)) |
| 717 | /// ) |
| 718 | /// .build(r"\w{20}") |
| 719 | /// .unwrap_err(); |
| 720 | /// |
| 721 | /// // ... but 400KB probably is! |
| 722 | /// // (Note that auxiliary storage sizes aren't necessarily stable between |
| 723 | /// // releases.) |
| 724 | /// let dfa = dense::Builder::new() |
| 725 | /// .configure(dense::Config::new() |
| 726 | /// .determinize_size_limit(Some(400_000)) |
| 727 | /// ) |
| 728 | /// .build(r"\w{20}")?; |
| 729 | /// let haystack = "A".repeat(20).into_bytes(); |
| 730 | /// assert!(dfa.find_leftmost_fwd(&haystack)?.is_some()); |
| 731 | /// |
| 732 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 733 | /// ``` |
| 734 | pub fn determinize_size_limit(mut self, bytes: Option<usize>) -> Config { |
| 735 | self.determinize_size_limit = Some(bytes); |
| 736 | self |
| 737 | } |
| 738 | |
| 739 | /// Returns whether this configuration has enabled anchored searches. |
| 740 | pub fn get_anchored(&self) -> bool { |
| 741 | self.anchored.unwrap_or(false) |
| 742 | } |
| 743 | |
| 744 | /// Returns whether this configuration has enabled simple state |
| 745 | /// acceleration. |
| 746 | pub fn get_accelerate(&self) -> bool { |
| 747 | self.accelerate.unwrap_or(true) |
| 748 | } |
| 749 | |
| 750 | /// Returns whether this configuration has enabled the expensive process |
| 751 | /// of minimizing a DFA. |
| 752 | pub fn get_minimize(&self) -> bool { |
| 753 | self.minimize.unwrap_or(false) |
| 754 | } |
| 755 | |
| 756 | /// Returns the match semantics set in this configuration. |
| 757 | pub fn get_match_kind(&self) -> MatchKind { |
| 758 | self.match_kind.unwrap_or(MatchKind::LeftmostFirst) |
| 759 | } |
| 760 | |
| 761 | /// Returns whether this configuration has enabled anchored starting states |
| 762 | /// for every pattern in the DFA. |
| 763 | pub fn get_starts_for_each_pattern(&self) -> bool { |
| 764 | self.starts_for_each_pattern.unwrap_or(false) |
| 765 | } |
| 766 | |
| 767 | /// Returns whether this configuration has enabled byte classes or not. |
| 768 | /// This is typically a debugging oriented option, as disabling it confers |
| 769 | /// no speed benefit. |
| 770 | pub fn get_byte_classes(&self) -> bool { |
| 771 | self.byte_classes.unwrap_or(true) |
| 772 | } |
| 773 | |
| 774 | /// Returns whether this configuration has enabled heuristic Unicode word |
| 775 | /// boundary support. When enabled, it is possible for a search to return |
| 776 | /// an error. |
| 777 | pub fn get_unicode_word_boundary(&self) -> bool { |
| 778 | self.unicode_word_boundary.unwrap_or(false) |
| 779 | } |
| 780 | |
| 781 | /// Returns whether this configuration will instruct the DFA to enter a |
| 782 | /// quit state whenever the given byte is seen during a search. When at |
| 783 | /// least one byte has this enabled, it is possible for a search to return |
| 784 | /// an error. |
| 785 | pub fn get_quit(&self, byte: u8) -> bool { |
| 786 | self.quit.map_or(false, |q| q.contains(byte)) |
| 787 | } |
| 788 | |
| 789 | /// Returns the DFA size limit of this configuration if one was set. |
| 790 | /// The size limit is total number of bytes on the heap that a DFA is |
| 791 | /// permitted to use. If the DFA exceeds this limit during construction, |
| 792 | /// then construction is stopped and an error is returned. |
| 793 | pub fn get_dfa_size_limit(&self) -> Option<usize> { |
| 794 | self.dfa_size_limit.unwrap_or(None) |
| 795 | } |
| 796 | |
| 797 | /// Returns the determinization size limit of this configuration if one |
| 798 | /// was set. The size limit is total number of bytes on the heap that |
| 799 | /// determinization is permitted to use. If determinization exceeds this |
| 800 | /// limit during construction, then construction is stopped and an error is |
| 801 | /// returned. |
| 802 | /// |
| 803 | /// This is different from the DFA size limit in that this only applies to |
| 804 | /// the auxiliary storage used during determinization. Once determinization |
| 805 | /// is complete, this memory is freed. |
| 806 | /// |
| 807 | /// The limit on the total heap memory used is the sum of the DFA and |
| 808 | /// determinization size limits. |
| 809 | pub fn get_determinize_size_limit(&self) -> Option<usize> { |
| 810 | self.determinize_size_limit.unwrap_or(None) |
| 811 | } |
| 812 | |
| 813 | /// Overwrite the default configuration such that the options in `o` are |
| 814 | /// always used. If an option in `o` is not set, then the corresponding |
| 815 | /// option in `self` is used. If it's not set in `self` either, then it |
| 816 | /// remains not set. |
| 817 | pub(crate) fn overwrite(self, o: Config) -> Config { |
| 818 | Config { |
| 819 | anchored: o.anchored.or(self.anchored), |
| 820 | accelerate: o.accelerate.or(self.accelerate), |
| 821 | minimize: o.minimize.or(self.minimize), |
| 822 | match_kind: o.match_kind.or(self.match_kind), |
| 823 | starts_for_each_pattern: o |
| 824 | .starts_for_each_pattern |
| 825 | .or(self.starts_for_each_pattern), |
| 826 | byte_classes: o.byte_classes.or(self.byte_classes), |
| 827 | unicode_word_boundary: o |
| 828 | .unicode_word_boundary |
| 829 | .or(self.unicode_word_boundary), |
| 830 | quit: o.quit.or(self.quit), |
| 831 | dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit), |
| 832 | determinize_size_limit: o |
| 833 | .determinize_size_limit |
| 834 | .or(self.determinize_size_limit), |
| 835 | } |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | /// A builder for constructing a deterministic finite automaton from regular |
| 840 | /// expressions. |
| 841 | /// |
| 842 | /// This builder provides two main things: |
| 843 | /// |
| 844 | /// 1. It provides a few different `build` routines for actually constructing |
| 845 | /// a DFA from different kinds of inputs. The most convenient is |
| 846 | /// [`Builder::build`], which builds a DFA directly from a pattern string. The |
| 847 | /// most flexible is [`Builder::build_from_nfa`], which builds a DFA straight |
| 848 | /// from an NFA. |
| 849 | /// 2. The builder permits configuring a number of things. |
| 850 | /// [`Builder::configure`] is used with [`Config`] to configure aspects of |
| 851 | /// the DFA and the construction process itself. [`Builder::syntax`] and |
| 852 | /// [`Builder::thompson`] permit configuring the regex parser and Thompson NFA |
| 853 | /// construction, respectively. The syntax and thompson configurations only |
| 854 | /// apply when building from a pattern string. |
| 855 | /// |
| 856 | /// This builder always constructs a *single* DFA. As such, this builder |
| 857 | /// can only be used to construct regexes that either detect the presence |
| 858 | /// of a match or find the end location of a match. A single DFA cannot |
| 859 | /// produce both the start and end of a match. For that information, use a |
| 860 | /// [`Regex`](crate::dfa::regex::Regex), which can be similarly configured |
| 861 | /// using [`regex::Builder`](crate::dfa::regex::Builder). The main reason to |
| 862 | /// use a DFA directly is if the end location of a match is enough for your use |
| 863 | /// case. Namely, a `Regex` will construct two DFAs instead of one, since a |
| 864 | /// second reverse DFA is needed to find the start of a match. |
| 865 | /// |
| 866 | /// Note that if one wants to build a sparse DFA, you must first build a dense |
| 867 | /// DFA and convert that to a sparse DFA. There is no way to build a sparse |
| 868 | /// DFA without first building a dense DFA. |
| 869 | /// |
| 870 | /// # Example |
| 871 | /// |
| 872 | /// This example shows how to build a minimized DFA that completely disables |
| 873 | /// Unicode. That is: |
| 874 | /// |
| 875 | /// * Things such as `\w`, `.` and `\b` are no longer Unicode-aware. `\w` |
| 876 | /// and `\b` are ASCII-only while `.` matches any byte except for `\n` |
| 877 | /// (instead of any UTF-8 encoding of a Unicode scalar value except for |
| 878 | /// `\n`). Things that are Unicode only, such as `\pL`, are not allowed. |
| 879 | /// * The pattern itself is permitted to match invalid UTF-8. For example, |
| 880 | /// things like `[^a]` that match any byte except for `a` are permitted. |
| 881 | /// * Unanchored patterns can search through invalid UTF-8. That is, for |
| 882 | /// unanchored patterns, the implicit prefix is `(?s-u:.)*?` instead of |
| 883 | /// `(?s:.)*?`. |
| 884 | /// |
| 885 | /// ``` |
| 886 | /// use regex_automata::{ |
| 887 | /// dfa::{Automaton, dense}, |
| 888 | /// nfa::thompson, |
| 889 | /// HalfMatch, SyntaxConfig, |
| 890 | /// }; |
| 891 | /// |
| 892 | /// let dfa = dense::Builder::new() |
| 893 | /// .configure(dense::Config::new().minimize(false)) |
| 894 | /// .syntax(SyntaxConfig::new().unicode(false).utf8(false)) |
| 895 | /// .thompson(thompson::Config::new().utf8(false)) |
| 896 | /// .build(r"foo[^b]ar.*")?; |
| 897 | /// |
| 898 | /// let haystack = b"\xFEfoo\xFFar\xE2\x98\xFF\n"; |
| 899 | /// let expected = Some(HalfMatch::must(0, 10)); |
| 900 | /// let got = dfa.find_leftmost_fwd(haystack)?; |
| 901 | /// assert_eq!(expected, got); |
| 902 | /// |
| 903 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 904 | /// ``` |
| 905 | #[cfg (feature = "alloc" )] |
| 906 | #[derive (Clone, Debug)] |
| 907 | pub struct Builder { |
| 908 | config: Config, |
| 909 | thompson: thompson::Builder, |
| 910 | } |
| 911 | |
| 912 | #[cfg (feature = "alloc" )] |
| 913 | impl Builder { |
| 914 | /// Create a new dense DFA builder with the default configuration. |
| 915 | pub fn new() -> Builder { |
| 916 | Builder { |
| 917 | config: Config::default(), |
| 918 | thompson: thompson::Builder::new(), |
| 919 | } |
| 920 | } |
| 921 | |
| 922 | /// Build a DFA from the given pattern. |
| 923 | /// |
| 924 | /// If there was a problem parsing or compiling the pattern, then an error |
| 925 | /// is returned. |
| 926 | pub fn build(&self, pattern: &str) -> Result<OwnedDFA, Error> { |
| 927 | self.build_many(&[pattern]) |
| 928 | } |
| 929 | |
| 930 | /// Build a DFA from the given patterns. |
| 931 | /// |
| 932 | /// When matches are returned, the pattern ID corresponds to the index of |
| 933 | /// the pattern in the slice given. |
| 934 | pub fn build_many<P: AsRef<str>>( |
| 935 | &self, |
| 936 | patterns: &[P], |
| 937 | ) -> Result<OwnedDFA, Error> { |
| 938 | let nfa = self.thompson.build_many(patterns).map_err(Error::nfa)?; |
| 939 | self.build_from_nfa(&nfa) |
| 940 | } |
| 941 | |
| 942 | /// Build a DFA from the given NFA. |
| 943 | /// |
| 944 | /// # Example |
| 945 | /// |
| 946 | /// This example shows how to build a DFA if you already have an NFA in |
| 947 | /// hand. |
| 948 | /// |
| 949 | /// ``` |
| 950 | /// use regex_automata::{ |
| 951 | /// dfa::{Automaton, dense}, |
| 952 | /// nfa::thompson, |
| 953 | /// HalfMatch, |
| 954 | /// }; |
| 955 | /// |
| 956 | /// let haystack = "foo123bar".as_bytes(); |
| 957 | /// |
| 958 | /// // This shows how to set non-default options for building an NFA. |
| 959 | /// let nfa = thompson::Builder::new() |
| 960 | /// .configure(thompson::Config::new().shrink(false)) |
| 961 | /// .build(r"[0-9]+")?; |
| 962 | /// let dfa = dense::Builder::new().build_from_nfa(&nfa)?; |
| 963 | /// let expected = Some(HalfMatch::must(0, 6)); |
| 964 | /// let got = dfa.find_leftmost_fwd(haystack)?; |
| 965 | /// assert_eq!(expected, got); |
| 966 | /// |
| 967 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 968 | /// ``` |
| 969 | pub fn build_from_nfa( |
| 970 | &self, |
| 971 | nfa: &thompson::NFA, |
| 972 | ) -> Result<OwnedDFA, Error> { |
| 973 | let mut quit = self.config.quit.unwrap_or(ByteSet::empty()); |
| 974 | if self.config.get_unicode_word_boundary() |
| 975 | && nfa.has_word_boundary_unicode() |
| 976 | { |
| 977 | for b in 0x80..=0xFF { |
| 978 | quit.add(b); |
| 979 | } |
| 980 | } |
| 981 | let classes = if !self.config.get_byte_classes() { |
| 982 | // DFAs will always use the equivalence class map, but enabling |
| 983 | // this option is useful for debugging. Namely, this will cause all |
| 984 | // transitions to be defined over their actual bytes instead of an |
| 985 | // opaque equivalence class identifier. The former is much easier |
| 986 | // to grok as a human. |
| 987 | ByteClasses::singletons() |
| 988 | } else { |
| 989 | let mut set = nfa.byte_class_set().clone(); |
| 990 | // It is important to distinguish any "quit" bytes from all other |
| 991 | // bytes. Otherwise, a non-quit byte may end up in the same class |
| 992 | // as a quit byte, and thus cause the DFA stop when it shouldn't. |
| 993 | if !quit.is_empty() { |
| 994 | set.add_set(&quit); |
| 995 | } |
| 996 | set.byte_classes() |
| 997 | }; |
| 998 | |
| 999 | let mut dfa = DFA::initial( |
| 1000 | classes, |
| 1001 | nfa.pattern_len(), |
| 1002 | self.config.get_starts_for_each_pattern(), |
| 1003 | )?; |
| 1004 | determinize::Config::new() |
| 1005 | .anchored(self.config.get_anchored()) |
| 1006 | .match_kind(self.config.get_match_kind()) |
| 1007 | .quit(quit) |
| 1008 | .dfa_size_limit(self.config.get_dfa_size_limit()) |
| 1009 | .determinize_size_limit(self.config.get_determinize_size_limit()) |
| 1010 | .run(nfa, &mut dfa)?; |
| 1011 | if self.config.get_minimize() { |
| 1012 | dfa.minimize(); |
| 1013 | } |
| 1014 | if self.config.get_accelerate() { |
| 1015 | dfa.accelerate(); |
| 1016 | } |
| 1017 | Ok(dfa) |
| 1018 | } |
| 1019 | |
| 1020 | /// Apply the given dense DFA configuration options to this builder. |
| 1021 | pub fn configure(&mut self, config: Config) -> &mut Builder { |
| 1022 | self.config = self.config.overwrite(config); |
| 1023 | self |
| 1024 | } |
| 1025 | |
| 1026 | /// Set the syntax configuration for this builder using |
| 1027 | /// [`SyntaxConfig`](crate::SyntaxConfig). |
| 1028 | /// |
| 1029 | /// This permits setting things like case insensitivity, Unicode and multi |
| 1030 | /// line mode. |
| 1031 | /// |
| 1032 | /// These settings only apply when constructing a DFA directly from a |
| 1033 | /// pattern. |
| 1034 | pub fn syntax( |
| 1035 | &mut self, |
| 1036 | config: crate::util::syntax::SyntaxConfig, |
| 1037 | ) -> &mut Builder { |
| 1038 | self.thompson.syntax(config); |
| 1039 | self |
| 1040 | } |
| 1041 | |
| 1042 | /// Set the Thompson NFA configuration for this builder using |
| 1043 | /// [`nfa::thompson::Config`](crate::nfa::thompson::Config). |
| 1044 | /// |
| 1045 | /// This permits setting things like whether the DFA should match the regex |
| 1046 | /// in reverse or if additional time should be spent shrinking the size of |
| 1047 | /// the NFA. |
| 1048 | /// |
| 1049 | /// These settings only apply when constructing a DFA directly from a |
| 1050 | /// pattern. |
| 1051 | pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder { |
| 1052 | self.thompson.configure(config); |
| 1053 | self |
| 1054 | } |
| 1055 | } |
| 1056 | |
| 1057 | #[cfg (feature = "alloc" )] |
| 1058 | impl Default for Builder { |
| 1059 | fn default() -> Builder { |
| 1060 | Builder::new() |
| 1061 | } |
| 1062 | } |
| 1063 | |
| 1064 | /// A convenience alias for an owned DFA. We use this particular instantiation |
| 1065 | /// a lot in this crate, so it's worth giving it a name. This instantiation |
| 1066 | /// is commonly used for mutable APIs on the DFA while building it. The main |
| 1067 | /// reason for making DFAs generic is no_std support, and more generally, |
| 1068 | /// making it possible to load a DFA from an arbitrary slice of bytes. |
| 1069 | #[cfg (feature = "alloc" )] |
| 1070 | pub(crate) type OwnedDFA = DFA<Vec<u32>>; |
| 1071 | |
| 1072 | /// A dense table-based deterministic finite automaton (DFA). |
| 1073 | /// |
| 1074 | /// All dense DFAs have one or more start states, zero or more match states |
| 1075 | /// and a transition table that maps the current state and the current byte |
| 1076 | /// of input to the next state. A DFA can use this information to implement |
| 1077 | /// fast searching. In particular, the use of a dense DFA generally makes the |
| 1078 | /// trade off that match speed is the most valuable characteristic, even if |
| 1079 | /// building the DFA may take significant time *and* space. (More concretely, |
| 1080 | /// building a DFA takes time and space that is exponential in the size of the |
| 1081 | /// pattern in the worst case.) As such, the processing of every byte of input |
| 1082 | /// is done with a small constant number of operations that does not vary with |
| 1083 | /// the pattern, its size or the size of the alphabet. If your needs don't line |
| 1084 | /// up with this trade off, then a dense DFA may not be an adequate solution to |
| 1085 | /// your problem. |
| 1086 | /// |
| 1087 | /// In contrast, a [`sparse::DFA`] makes the opposite |
| 1088 | /// trade off: it uses less space but will execute a variable number of |
| 1089 | /// instructions per byte at match time, which makes it slower for matching. |
| 1090 | /// (Note that space usage is still exponential in the size of the pattern in |
| 1091 | /// the worst case.) |
| 1092 | /// |
| 1093 | /// A DFA can be built using the default configuration via the |
| 1094 | /// [`DFA::new`] constructor. Otherwise, one can |
| 1095 | /// configure various aspects via [`dense::Builder`](Builder). |
| 1096 | /// |
| 1097 | /// A single DFA fundamentally supports the following operations: |
| 1098 | /// |
| 1099 | /// 1. Detection of a match. |
| 1100 | /// 2. Location of the end of a match. |
| 1101 | /// 3. In the case of a DFA with multiple patterns, which pattern matched is |
| 1102 | /// reported as well. |
| 1103 | /// |
| 1104 | /// A notable absence from the above list of capabilities is the location of |
| 1105 | /// the *start* of a match. In order to provide both the start and end of |
| 1106 | /// a match, *two* DFAs are required. This functionality is provided by a |
| 1107 | /// [`Regex`](crate::dfa::regex::Regex). |
| 1108 | /// |
| 1109 | /// # Type parameters |
| 1110 | /// |
| 1111 | /// A `DFA` has one type parameter, `T`, which is used to represent state IDs, |
| 1112 | /// pattern IDs and accelerators. `T` is typically a `Vec<u32>` or a `&[u32]`. |
| 1113 | /// |
| 1114 | /// # The `Automaton` trait |
| 1115 | /// |
| 1116 | /// This type implements the [`Automaton`] trait, which means it can be used |
| 1117 | /// for searching. For example: |
| 1118 | /// |
| 1119 | /// ``` |
| 1120 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch}; |
| 1121 | /// |
| 1122 | /// let dfa = DFA::new("foo[0-9]+" )?; |
| 1123 | /// let expected = HalfMatch::must(0, 8); |
| 1124 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 1125 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1126 | /// ``` |
| 1127 | #[derive (Clone)] |
| 1128 | pub struct DFA<T> { |
| 1129 | /// The transition table for this DFA. This includes the transitions |
| 1130 | /// themselves, along with the stride, number of states and the equivalence |
| 1131 | /// class mapping. |
| 1132 | tt: TransitionTable<T>, |
| 1133 | /// The set of starting state identifiers for this DFA. The starting state |
| 1134 | /// IDs act as pointers into the transition table. The specific starting |
| 1135 | /// state chosen for each search is dependent on the context at which the |
| 1136 | /// search begins. |
| 1137 | st: StartTable<T>, |
| 1138 | /// The set of match states and the patterns that match for each |
| 1139 | /// corresponding match state. |
| 1140 | /// |
| 1141 | /// This structure is technically only needed because of support for |
| 1142 | /// multi-regexes. Namely, multi-regexes require answering not just whether |
| 1143 | /// a match exists, but _which_ patterns match. So we need to store the |
| 1144 | /// matching pattern IDs for each match state. We do this even when there |
| 1145 | /// is only one pattern for the sake of simplicity. In practice, this uses |
| 1146 | /// up very little space for the case of on pattern. |
| 1147 | ms: MatchStates<T>, |
| 1148 | /// Information about which states are "special." Special states are states |
| 1149 | /// that are dead, quit, matching, starting or accelerated. For more info, |
| 1150 | /// see the docs for `Special`. |
| 1151 | special: Special, |
| 1152 | /// The accelerators for this DFA. |
| 1153 | /// |
| 1154 | /// If a state is accelerated, then there exist only a small number of |
| 1155 | /// bytes that can cause the DFA to leave the state. This permits searching |
| 1156 | /// to use optimized routines to find those specific bytes instead of using |
| 1157 | /// the transition table. |
| 1158 | /// |
| 1159 | /// All accelerated states exist in a contiguous range in the DFA's |
| 1160 | /// transition table. See dfa/special.rs for more details on how states are |
| 1161 | /// arranged. |
| 1162 | accels: Accels<T>, |
| 1163 | } |
| 1164 | |
| 1165 | #[cfg (feature = "alloc" )] |
| 1166 | impl OwnedDFA { |
| 1167 | /// Parse the given regular expression using a default configuration and |
| 1168 | /// return the corresponding DFA. |
| 1169 | /// |
| 1170 | /// If you want a non-default configuration, then use the |
| 1171 | /// [`dense::Builder`](Builder) to set your own configuration. |
| 1172 | /// |
| 1173 | /// # Example |
| 1174 | /// |
| 1175 | /// ``` |
| 1176 | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch}; |
| 1177 | /// |
| 1178 | /// let dfa = dense::DFA::new("foo[0-9]+bar")?; |
| 1179 | /// let expected = HalfMatch::must(0, 11); |
| 1180 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345bar")?); |
| 1181 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1182 | /// ``` |
| 1183 | pub fn new(pattern: &str) -> Result<OwnedDFA, Error> { |
| 1184 | Builder::new().build(pattern) |
| 1185 | } |
| 1186 | |
| 1187 | /// Parse the given regular expressions using a default configuration and |
| 1188 | /// return the corresponding multi-DFA. |
| 1189 | /// |
| 1190 | /// If you want a non-default configuration, then use the |
| 1191 | /// [`dense::Builder`](Builder) to set your own configuration. |
| 1192 | /// |
| 1193 | /// # Example |
| 1194 | /// |
| 1195 | /// ``` |
| 1196 | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch}; |
| 1197 | /// |
| 1198 | /// let dfa = dense::DFA::new_many(&["[0-9]+", "[a-z]+"])?; |
| 1199 | /// let expected = HalfMatch::must(1, 3); |
| 1200 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345bar")?); |
| 1201 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1202 | /// ``` |
| 1203 | pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<OwnedDFA, Error> { |
| 1204 | Builder::new().build_many(patterns) |
| 1205 | } |
| 1206 | } |
| 1207 | |
| 1208 | #[cfg (feature = "alloc" )] |
| 1209 | impl OwnedDFA { |
| 1210 | /// Create a new DFA that matches every input. |
| 1211 | /// |
| 1212 | /// # Example |
| 1213 | /// |
| 1214 | /// ``` |
| 1215 | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch}; |
| 1216 | /// |
| 1217 | /// let dfa = dense::DFA::always_match()?; |
| 1218 | /// |
| 1219 | /// let expected = HalfMatch::must(0, 0); |
| 1220 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"")?); |
| 1221 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo")?); |
| 1222 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1223 | /// ``` |
| 1224 | pub fn always_match() -> Result<OwnedDFA, Error> { |
| 1225 | let nfa = thompson::NFA::always_match(); |
| 1226 | Builder::new().build_from_nfa(&nfa) |
| 1227 | } |
| 1228 | |
| 1229 | /// Create a new DFA that never matches any input. |
| 1230 | /// |
| 1231 | /// # Example |
| 1232 | /// |
| 1233 | /// ``` |
| 1234 | /// use regex_automata::dfa::{Automaton, dense}; |
| 1235 | /// |
| 1236 | /// let dfa = dense::DFA::never_match()?; |
| 1237 | /// assert_eq!(None, dfa.find_leftmost_fwd(b"")?); |
| 1238 | /// assert_eq!(None, dfa.find_leftmost_fwd(b"foo")?); |
| 1239 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1240 | /// ``` |
| 1241 | pub fn never_match() -> Result<OwnedDFA, Error> { |
| 1242 | let nfa = thompson::NFA::never_match(); |
| 1243 | Builder::new().build_from_nfa(&nfa) |
| 1244 | } |
| 1245 | |
| 1246 | /// Create an initial DFA with the given equivalence classes, pattern count |
| 1247 | /// and whether anchored starting states are enabled for each pattern. An |
| 1248 | /// initial DFA can be further mutated via determinization. |
| 1249 | fn initial( |
| 1250 | classes: ByteClasses, |
| 1251 | pattern_count: usize, |
| 1252 | starts_for_each_pattern: bool, |
| 1253 | ) -> Result<OwnedDFA, Error> { |
| 1254 | let start_pattern_count = |
| 1255 | if starts_for_each_pattern { pattern_count } else { 0 }; |
| 1256 | Ok(DFA { |
| 1257 | tt: TransitionTable::minimal(classes), |
| 1258 | st: StartTable::dead(start_pattern_count)?, |
| 1259 | ms: MatchStates::empty(pattern_count), |
| 1260 | special: Special::new(), |
| 1261 | accels: Accels::empty(), |
| 1262 | }) |
| 1263 | } |
| 1264 | } |
| 1265 | |
| 1266 | impl<T: AsRef<[u32]>> DFA<T> { |
| 1267 | /// Cheaply return a borrowed version of this dense DFA. Specifically, |
| 1268 | /// the DFA returned always uses `&[u32]` for its transition table. |
| 1269 | pub fn as_ref(&self) -> DFA<&'_ [u32]> { |
| 1270 | DFA { |
| 1271 | tt: self.tt.as_ref(), |
| 1272 | st: self.st.as_ref(), |
| 1273 | ms: self.ms.as_ref(), |
| 1274 | special: self.special, |
| 1275 | accels: self.accels(), |
| 1276 | } |
| 1277 | } |
| 1278 | |
| 1279 | /// Return an owned version of this sparse DFA. Specifically, the DFA |
| 1280 | /// returned always uses `Vec<u32>` for its transition table. |
| 1281 | /// |
| 1282 | /// Effectively, this returns a dense DFA whose transition table lives on |
| 1283 | /// the heap. |
| 1284 | #[cfg (feature = "alloc" )] |
| 1285 | pub fn to_owned(&self) -> OwnedDFA { |
| 1286 | DFA { |
| 1287 | tt: self.tt.to_owned(), |
| 1288 | st: self.st.to_owned(), |
| 1289 | ms: self.ms.to_owned(), |
| 1290 | special: self.special, |
| 1291 | accels: self.accels().to_owned(), |
| 1292 | } |
| 1293 | } |
| 1294 | |
| 1295 | /// Returns true only if this DFA has starting states for each pattern. |
| 1296 | /// |
| 1297 | /// When a DFA has starting states for each pattern, then a search with the |
| 1298 | /// DFA can be configured to only look for anchored matches of a specific |
| 1299 | /// pattern. Specifically, APIs like [`Automaton::find_earliest_fwd_at`] |
| 1300 | /// can accept a non-None `pattern_id` if and only if this method returns |
| 1301 | /// true. Otherwise, calling `find_earliest_fwd_at` will panic. |
| 1302 | /// |
| 1303 | /// Note that if the DFA has no patterns, this always returns false. |
| 1304 | pub fn has_starts_for_each_pattern(&self) -> bool { |
| 1305 | self.st.patterns > 0 |
| 1306 | } |
| 1307 | |
| 1308 | /// Returns the total number of elements in the alphabet for this DFA. |
| 1309 | /// |
| 1310 | /// That is, this returns the total number of transitions that each state |
| 1311 | /// in this DFA must have. Typically, a normal byte oriented DFA would |
| 1312 | /// always have an alphabet size of 256, corresponding to the number of |
| 1313 | /// unique values in a single byte. However, this implementation has two |
| 1314 | /// peculiarities that impact the alphabet length: |
| 1315 | /// |
| 1316 | /// * Every state has a special "EOI" transition that is only followed |
| 1317 | /// after the end of some haystack is reached. This EOI transition is |
| 1318 | /// necessary to account for one byte of look-ahead when implementing |
| 1319 | /// things like `\b` and `$`. |
| 1320 | /// * Bytes are grouped into equivalence classes such that no two bytes in |
| 1321 | /// the same class can distinguish a match from a non-match. For example, |
| 1322 | /// in the regex `^[a-z]+$`, the ASCII bytes `a-z` could all be in the |
| 1323 | /// same equivalence class. This leads to a massive space savings. |
| 1324 | /// |
| 1325 | /// Note though that the alphabet length does _not_ necessarily equal the |
| 1326 | /// total stride space taken up by a single DFA state in the transition |
| 1327 | /// table. Namely, for performance reasons, the stride is always the |
| 1328 | /// smallest power of two that is greater than or equal to the alphabet |
| 1329 | /// length. For this reason, [`DFA::stride`] or [`DFA::stride2`] are |
| 1330 | /// often more useful. The alphabet length is typically useful only for |
| 1331 | /// informational purposes. |
| 1332 | pub fn alphabet_len(&self) -> usize { |
| 1333 | self.tt.alphabet_len() |
| 1334 | } |
| 1335 | |
| 1336 | /// Returns the total stride for every state in this DFA, expressed as the |
| 1337 | /// exponent of a power of 2. The stride is the amount of space each state |
| 1338 | /// takes up in the transition table, expressed as a number of transitions. |
| 1339 | /// (Unused transitions map to dead states.) |
| 1340 | /// |
| 1341 | /// The stride of a DFA is always equivalent to the smallest power of 2 |
| 1342 | /// that is greater than or equal to the DFA's alphabet length. This |
| 1343 | /// definition uses extra space, but permits faster translation between |
| 1344 | /// premultiplied state identifiers and contiguous indices (by using shifts |
| 1345 | /// instead of relying on integer division). |
| 1346 | /// |
| 1347 | /// For example, if the DFA's stride is 16 transitions, then its `stride2` |
| 1348 | /// is `4` since `2^4 = 16`. |
| 1349 | /// |
| 1350 | /// The minimum `stride2` value is `1` (corresponding to a stride of `2`) |
| 1351 | /// while the maximum `stride2` value is `9` (corresponding to a stride of |
| 1352 | /// `512`). The maximum is not `8` since the maximum alphabet size is `257` |
| 1353 | /// when accounting for the special EOI transition. However, an alphabet |
| 1354 | /// length of that size is exceptionally rare since the alphabet is shrunk |
| 1355 | /// into equivalence classes. |
| 1356 | pub fn stride2(&self) -> usize { |
| 1357 | self.tt.stride2 |
| 1358 | } |
| 1359 | |
| 1360 | /// Returns the total stride for every state in this DFA. This corresponds |
| 1361 | /// to the total number of transitions used by each state in this DFA's |
| 1362 | /// transition table. |
| 1363 | /// |
| 1364 | /// Please see [`DFA::stride2`] for more information. In particular, this |
| 1365 | /// returns the stride as the number of transitions, where as `stride2` |
| 1366 | /// returns it as the exponent of a power of 2. |
| 1367 | pub fn stride(&self) -> usize { |
| 1368 | self.tt.stride() |
| 1369 | } |
| 1370 | |
| 1371 | /// Returns the "universal" start state for this DFA. |
| 1372 | /// |
| 1373 | /// A universal start state occurs only when all of the starting states |
| 1374 | /// for this DFA are precisely the same. This occurs when there are no |
| 1375 | /// look-around assertions at the beginning (or end for a reverse DFA) of |
| 1376 | /// the pattern. |
| 1377 | /// |
| 1378 | /// Using this as a starting state for a DFA without a universal starting |
| 1379 | /// state has unspecified behavior. This condition is not checked, so the |
| 1380 | /// caller must guarantee it themselves. |
| 1381 | pub(crate) fn universal_start_state(&self) -> StateID { |
| 1382 | // We choose 'NonWordByte' for no particular reason, other than |
| 1383 | // the fact that this is the 'main' starting configuration used in |
| 1384 | // determinization. But in essence, it doesn't really matter. |
| 1385 | // |
| 1386 | // Also, we might consider exposing this routine, but it seems |
| 1387 | // a little tricky to use correctly. Maybe if we also expose a |
| 1388 | // 'has_universal_start_state' method? |
| 1389 | self.st.start(Start::NonWordByte, None) |
| 1390 | } |
| 1391 | |
| 1392 | /// Returns the memory usage, in bytes, of this DFA. |
| 1393 | /// |
| 1394 | /// The memory usage is computed based on the number of bytes used to |
| 1395 | /// represent this DFA. |
| 1396 | /// |
| 1397 | /// This does **not** include the stack size used up by this DFA. To |
| 1398 | /// compute that, use `std::mem::size_of::<dense::DFA>()`. |
| 1399 | pub fn memory_usage(&self) -> usize { |
| 1400 | self.tt.memory_usage() |
| 1401 | + self.st.memory_usage() |
| 1402 | + self.ms.memory_usage() |
| 1403 | + self.accels.memory_usage() |
| 1404 | } |
| 1405 | } |
| 1406 | |
| 1407 | /// Routines for converting a dense DFA to other representations, such as |
| 1408 | /// sparse DFAs or raw bytes suitable for persistent storage. |
| 1409 | impl<T: AsRef<[u32]>> DFA<T> { |
| 1410 | /// Convert this dense DFA to a sparse DFA. |
| 1411 | /// |
| 1412 | /// If a `StateID` is too small to represent all states in the sparse |
| 1413 | /// DFA, then this returns an error. In most cases, if a dense DFA is |
| 1414 | /// constructable with `StateID` then a sparse DFA will be as well. |
| 1415 | /// However, it is not guaranteed. |
| 1416 | /// |
| 1417 | /// # Example |
| 1418 | /// |
| 1419 | /// ``` |
| 1420 | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch}; |
| 1421 | /// |
| 1422 | /// let dense = dense::DFA::new("foo[0-9]+")?; |
| 1423 | /// let sparse = dense.to_sparse()?; |
| 1424 | /// |
| 1425 | /// let expected = HalfMatch::must(0, 8); |
| 1426 | /// assert_eq!(Some(expected), sparse.find_leftmost_fwd(b"foo12345")?); |
| 1427 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1428 | /// ``` |
| 1429 | #[cfg (feature = "alloc" )] |
| 1430 | pub fn to_sparse(&self) -> Result<sparse::DFA<Vec<u8>>, Error> { |
| 1431 | sparse::DFA::from_dense(self) |
| 1432 | } |
| 1433 | |
| 1434 | /// Serialize this DFA as raw bytes to a `Vec<u8>` in little endian |
| 1435 | /// format. Upon success, the `Vec<u8>` and the initial padding length are |
| 1436 | /// returned. |
| 1437 | /// |
| 1438 | /// The written bytes are guaranteed to be deserialized correctly and |
| 1439 | /// without errors in a semver compatible release of this crate by a |
| 1440 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 1441 | /// deserialization APIs has been satisfied): |
| 1442 | /// |
| 1443 | /// * [`DFA::from_bytes`] |
| 1444 | /// * [`DFA::from_bytes_unchecked`] |
| 1445 | /// |
| 1446 | /// The padding returned is non-zero if the returned `Vec<u8>` starts at |
| 1447 | /// an address that does not have the same alignment as `u32`. The padding |
| 1448 | /// corresponds to the number of leading bytes written to the returned |
| 1449 | /// `Vec<u8>`. |
| 1450 | /// |
| 1451 | /// # Example |
| 1452 | /// |
| 1453 | /// This example shows how to serialize and deserialize a DFA: |
| 1454 | /// |
| 1455 | /// ``` |
| 1456 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch}; |
| 1457 | /// |
| 1458 | /// // Compile our original DFA. |
| 1459 | /// let original_dfa = DFA::new("foo[0-9]+")?; |
| 1460 | /// |
| 1461 | /// // N.B. We use native endianness here to make the example work, but |
| 1462 | /// // using to_bytes_little_endian would work on a little endian target. |
| 1463 | /// let (buf, _) = original_dfa.to_bytes_native_endian(); |
| 1464 | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
| 1465 | /// // ignore it. |
| 1466 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0; |
| 1467 | /// |
| 1468 | /// let expected = HalfMatch::must(0, 8); |
| 1469 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?); |
| 1470 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1471 | /// ``` |
| 1472 | #[cfg (feature = "alloc" )] |
| 1473 | pub fn to_bytes_little_endian(&self) -> (Vec<u8>, usize) { |
| 1474 | self.to_bytes::<bytes::LE>() |
| 1475 | } |
| 1476 | |
| 1477 | /// Serialize this DFA as raw bytes to a `Vec<u8>` in big endian |
| 1478 | /// format. Upon success, the `Vec<u8>` and the initial padding length are |
| 1479 | /// returned. |
| 1480 | /// |
| 1481 | /// The written bytes are guaranteed to be deserialized correctly and |
| 1482 | /// without errors in a semver compatible release of this crate by a |
| 1483 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 1484 | /// deserialization APIs has been satisfied): |
| 1485 | /// |
| 1486 | /// * [`DFA::from_bytes`] |
| 1487 | /// * [`DFA::from_bytes_unchecked`] |
| 1488 | /// |
| 1489 | /// The padding returned is non-zero if the returned `Vec<u8>` starts at |
| 1490 | /// an address that does not have the same alignment as `u32`. The padding |
| 1491 | /// corresponds to the number of leading bytes written to the returned |
| 1492 | /// `Vec<u8>`. |
| 1493 | /// |
| 1494 | /// # Example |
| 1495 | /// |
| 1496 | /// This example shows how to serialize and deserialize a DFA: |
| 1497 | /// |
| 1498 | /// ``` |
| 1499 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch}; |
| 1500 | /// |
| 1501 | /// // Compile our original DFA. |
| 1502 | /// let original_dfa = DFA::new("foo[0-9]+")?; |
| 1503 | /// |
| 1504 | /// // N.B. We use native endianness here to make the example work, but |
| 1505 | /// // using to_bytes_big_endian would work on a big endian target. |
| 1506 | /// let (buf, _) = original_dfa.to_bytes_native_endian(); |
| 1507 | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
| 1508 | /// // ignore it. |
| 1509 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0; |
| 1510 | /// |
| 1511 | /// let expected = HalfMatch::must(0, 8); |
| 1512 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?); |
| 1513 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1514 | /// ``` |
| 1515 | #[cfg (feature = "alloc" )] |
| 1516 | pub fn to_bytes_big_endian(&self) -> (Vec<u8>, usize) { |
| 1517 | self.to_bytes::<bytes::BE>() |
| 1518 | } |
| 1519 | |
| 1520 | /// Serialize this DFA as raw bytes to a `Vec<u8>` in native endian |
| 1521 | /// format. Upon success, the `Vec<u8>` and the initial padding length are |
| 1522 | /// returned. |
| 1523 | /// |
| 1524 | /// The written bytes are guaranteed to be deserialized correctly and |
| 1525 | /// without errors in a semver compatible release of this crate by a |
| 1526 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 1527 | /// deserialization APIs has been satisfied): |
| 1528 | /// |
| 1529 | /// * [`DFA::from_bytes`] |
| 1530 | /// * [`DFA::from_bytes_unchecked`] |
| 1531 | /// |
| 1532 | /// The padding returned is non-zero if the returned `Vec<u8>` starts at |
| 1533 | /// an address that does not have the same alignment as `u32`. The padding |
| 1534 | /// corresponds to the number of leading bytes written to the returned |
| 1535 | /// `Vec<u8>`. |
| 1536 | /// |
| 1537 | /// Generally speaking, native endian format should only be used when |
| 1538 | /// you know that the target you're compiling the DFA for matches the |
| 1539 | /// endianness of the target on which you're compiling DFA. For example, |
| 1540 | /// if serialization and deserialization happen in the same process or on |
| 1541 | /// the same machine. Otherwise, when serializing a DFA for use in a |
| 1542 | /// portable environment, you'll almost certainly want to serialize _both_ |
| 1543 | /// a little endian and a big endian version and then load the correct one |
| 1544 | /// based on the target's configuration. |
| 1545 | /// |
| 1546 | /// # Example |
| 1547 | /// |
| 1548 | /// This example shows how to serialize and deserialize a DFA: |
| 1549 | /// |
| 1550 | /// ``` |
| 1551 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch}; |
| 1552 | /// |
| 1553 | /// // Compile our original DFA. |
| 1554 | /// let original_dfa = DFA::new("foo[0-9]+")?; |
| 1555 | /// |
| 1556 | /// let (buf, _) = original_dfa.to_bytes_native_endian(); |
| 1557 | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
| 1558 | /// // ignore it. |
| 1559 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0; |
| 1560 | /// |
| 1561 | /// let expected = HalfMatch::must(0, 8); |
| 1562 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?); |
| 1563 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1564 | /// ``` |
| 1565 | #[cfg (feature = "alloc" )] |
| 1566 | pub fn to_bytes_native_endian(&self) -> (Vec<u8>, usize) { |
| 1567 | self.to_bytes::<bytes::NE>() |
| 1568 | } |
| 1569 | |
| 1570 | /// The implementation of the public `to_bytes` serialization methods, |
| 1571 | /// which is generic over endianness. |
| 1572 | #[cfg (feature = "alloc" )] |
| 1573 | fn to_bytes<E: Endian>(&self) -> (Vec<u8>, usize) { |
| 1574 | let len = self.write_to_len(); |
| 1575 | let (mut buf, padding) = bytes::alloc_aligned_buffer::<u32>(len); |
| 1576 | // This should always succeed since the only possible serialization |
| 1577 | // error is providing a buffer that's too small, but we've ensured that |
| 1578 | // `buf` is big enough here. |
| 1579 | self.as_ref().write_to::<E>(&mut buf[padding..]).unwrap(); |
| 1580 | (buf, padding) |
| 1581 | } |
| 1582 | |
| 1583 | /// Serialize this DFA as raw bytes to the given slice, in little endian |
| 1584 | /// format. Upon success, the total number of bytes written to `dst` is |
| 1585 | /// returned. |
| 1586 | /// |
| 1587 | /// The written bytes are guaranteed to be deserialized correctly and |
| 1588 | /// without errors in a semver compatible release of this crate by a |
| 1589 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 1590 | /// deserialization APIs has been satisfied): |
| 1591 | /// |
| 1592 | /// * [`DFA::from_bytes`] |
| 1593 | /// * [`DFA::from_bytes_unchecked`] |
| 1594 | /// |
| 1595 | /// Note that unlike the various `to_byte_*` routines, this does not write |
| 1596 | /// any padding. Callers are responsible for handling alignment correctly. |
| 1597 | /// |
| 1598 | /// # Errors |
| 1599 | /// |
| 1600 | /// This returns an error if the given destination slice is not big enough |
| 1601 | /// to contain the full serialized DFA. If an error occurs, then nothing |
| 1602 | /// is written to `dst`. |
| 1603 | /// |
| 1604 | /// # Example |
| 1605 | /// |
| 1606 | /// This example shows how to serialize and deserialize a DFA without |
| 1607 | /// dynamic memory allocation. |
| 1608 | /// |
| 1609 | /// ``` |
| 1610 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch}; |
| 1611 | /// |
| 1612 | /// // Compile our original DFA. |
| 1613 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 1614 | /// |
| 1615 | /// // Create a 4KB buffer on the stack to store our serialized DFA. |
| 1616 | /// let mut buf = [0u8; 4 * (1<<10)]; |
| 1617 | /// // N.B. We use native endianness here to make the example work, but |
| 1618 | /// // using write_to_little_endian would work on a little endian target. |
| 1619 | /// let written = original_dfa.write_to_native_endian(&mut buf)?; |
| 1620 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf[..written])?.0; |
| 1621 | /// |
| 1622 | /// let expected = HalfMatch::must(0, 8); |
| 1623 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 1624 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1625 | /// ``` |
| 1626 | pub fn write_to_little_endian( |
| 1627 | &self, |
| 1628 | dst: &mut [u8], |
| 1629 | ) -> Result<usize, SerializeError> { |
| 1630 | self.as_ref().write_to::<bytes::LE>(dst) |
| 1631 | } |
| 1632 | |
| 1633 | /// Serialize this DFA as raw bytes to the given slice, in big endian |
| 1634 | /// format. Upon success, the total number of bytes written to `dst` is |
| 1635 | /// returned. |
| 1636 | /// |
| 1637 | /// The written bytes are guaranteed to be deserialized correctly and |
| 1638 | /// without errors in a semver compatible release of this crate by a |
| 1639 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 1640 | /// deserialization APIs has been satisfied): |
| 1641 | /// |
| 1642 | /// * [`DFA::from_bytes`] |
| 1643 | /// * [`DFA::from_bytes_unchecked`] |
| 1644 | /// |
| 1645 | /// Note that unlike the various `to_byte_*` routines, this does not write |
| 1646 | /// any padding. Callers are responsible for handling alignment correctly. |
| 1647 | /// |
| 1648 | /// # Errors |
| 1649 | /// |
| 1650 | /// This returns an error if the given destination slice is not big enough |
| 1651 | /// to contain the full serialized DFA. If an error occurs, then nothing |
| 1652 | /// is written to `dst`. |
| 1653 | /// |
| 1654 | /// # Example |
| 1655 | /// |
| 1656 | /// This example shows how to serialize and deserialize a DFA without |
| 1657 | /// dynamic memory allocation. |
| 1658 | /// |
| 1659 | /// ``` |
| 1660 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch}; |
| 1661 | /// |
| 1662 | /// // Compile our original DFA. |
| 1663 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 1664 | /// |
| 1665 | /// // Create a 4KB buffer on the stack to store our serialized DFA. |
| 1666 | /// let mut buf = [0u8; 4 * (1<<10)]; |
| 1667 | /// // N.B. We use native endianness here to make the example work, but |
| 1668 | /// // using write_to_big_endian would work on a big endian target. |
| 1669 | /// let written = original_dfa.write_to_native_endian(&mut buf)?; |
| 1670 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf[..written])?.0; |
| 1671 | /// |
| 1672 | /// let expected = HalfMatch::must(0, 8); |
| 1673 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 1674 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1675 | /// ``` |
| 1676 | pub fn write_to_big_endian( |
| 1677 | &self, |
| 1678 | dst: &mut [u8], |
| 1679 | ) -> Result<usize, SerializeError> { |
| 1680 | self.as_ref().write_to::<bytes::BE>(dst) |
| 1681 | } |
| 1682 | |
| 1683 | /// Serialize this DFA as raw bytes to the given slice, in native endian |
| 1684 | /// format. Upon success, the total number of bytes written to `dst` is |
| 1685 | /// returned. |
| 1686 | /// |
| 1687 | /// The written bytes are guaranteed to be deserialized correctly and |
| 1688 | /// without errors in a semver compatible release of this crate by a |
| 1689 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 1690 | /// deserialization APIs has been satisfied): |
| 1691 | /// |
| 1692 | /// * [`DFA::from_bytes`] |
| 1693 | /// * [`DFA::from_bytes_unchecked`] |
| 1694 | /// |
| 1695 | /// Generally speaking, native endian format should only be used when |
| 1696 | /// you know that the target you're compiling the DFA for matches the |
| 1697 | /// endianness of the target on which you're compiling DFA. For example, |
| 1698 | /// if serialization and deserialization happen in the same process or on |
| 1699 | /// the same machine. Otherwise, when serializing a DFA for use in a |
| 1700 | /// portable environment, you'll almost certainly want to serialize _both_ |
| 1701 | /// a little endian and a big endian version and then load the correct one |
| 1702 | /// based on the target's configuration. |
| 1703 | /// |
| 1704 | /// Note that unlike the various `to_byte_*` routines, this does not write |
| 1705 | /// any padding. Callers are responsible for handling alignment correctly. |
| 1706 | /// |
| 1707 | /// # Errors |
| 1708 | /// |
| 1709 | /// This returns an error if the given destination slice is not big enough |
| 1710 | /// to contain the full serialized DFA. If an error occurs, then nothing |
| 1711 | /// is written to `dst`. |
| 1712 | /// |
| 1713 | /// # Example |
| 1714 | /// |
| 1715 | /// This example shows how to serialize and deserialize a DFA without |
| 1716 | /// dynamic memory allocation. |
| 1717 | /// |
| 1718 | /// ``` |
| 1719 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch}; |
| 1720 | /// |
| 1721 | /// // Compile our original DFA. |
| 1722 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 1723 | /// |
| 1724 | /// // Create a 4KB buffer on the stack to store our serialized DFA. |
| 1725 | /// let mut buf = [0u8; 4 * (1<<10)]; |
| 1726 | /// let written = original_dfa.write_to_native_endian(&mut buf)?; |
| 1727 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf[..written])?.0; |
| 1728 | /// |
| 1729 | /// let expected = HalfMatch::must(0, 8); |
| 1730 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 1731 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1732 | /// ``` |
| 1733 | pub fn write_to_native_endian( |
| 1734 | &self, |
| 1735 | dst: &mut [u8], |
| 1736 | ) -> Result<usize, SerializeError> { |
| 1737 | self.as_ref().write_to::<bytes::NE>(dst) |
| 1738 | } |
| 1739 | |
| 1740 | /// Return the total number of bytes required to serialize this DFA. |
| 1741 | /// |
| 1742 | /// This is useful for determining the size of the buffer required to pass |
| 1743 | /// to one of the serialization routines: |
| 1744 | /// |
| 1745 | /// * [`DFA::write_to_little_endian`] |
| 1746 | /// * [`DFA::write_to_big_endian`] |
| 1747 | /// * [`DFA::write_to_native_endian`] |
| 1748 | /// |
| 1749 | /// Passing a buffer smaller than the size returned by this method will |
| 1750 | /// result in a serialization error. Serialization routines are guaranteed |
| 1751 | /// to succeed when the buffer is big enough. |
| 1752 | /// |
| 1753 | /// # Example |
| 1754 | /// |
| 1755 | /// This example shows how to dynamically allocate enough room to serialize |
| 1756 | /// a DFA. |
| 1757 | /// |
| 1758 | /// ``` |
| 1759 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch}; |
| 1760 | /// |
| 1761 | /// // Compile our original DFA. |
| 1762 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 1763 | /// |
| 1764 | /// let mut buf = vec![0; original_dfa.write_to_len()]; |
| 1765 | /// let written = original_dfa.write_to_native_endian(&mut buf)?; |
| 1766 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf[..written])?.0; |
| 1767 | /// |
| 1768 | /// let expected = HalfMatch::must(0, 8); |
| 1769 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 1770 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1771 | /// ``` |
| 1772 | /// |
| 1773 | /// Note that this example isn't actually guaranteed to work! In |
| 1774 | /// particular, if `buf` is not aligned to a 4-byte boundary, then the |
| 1775 | /// `DFA::from_bytes` call will fail. If you need this to work, then you |
| 1776 | /// either need to deal with adding some initial padding yourself, or use |
| 1777 | /// one of the `to_bytes` methods, which will do it for you. |
| 1778 | pub fn write_to_len(&self) -> usize { |
| 1779 | bytes::write_label_len(LABEL) |
| 1780 | + bytes::write_endianness_check_len() |
| 1781 | + bytes::write_version_len() |
| 1782 | + size_of::<u32>() // unused, intended for future flexibility |
| 1783 | + self.tt.write_to_len() |
| 1784 | + self.st.write_to_len() |
| 1785 | + self.ms.write_to_len() |
| 1786 | + self.special.write_to_len() |
| 1787 | + self.accels.write_to_len() |
| 1788 | } |
| 1789 | } |
| 1790 | |
| 1791 | impl<'a> DFA<&'a [u32]> { |
| 1792 | /// Safely deserialize a DFA with a specific state identifier |
| 1793 | /// representation. Upon success, this returns both the deserialized DFA |
| 1794 | /// and the number of bytes read from the given slice. Namely, the contents |
| 1795 | /// of the slice beyond the DFA are not read. |
| 1796 | /// |
| 1797 | /// Deserializing a DFA using this routine will never allocate heap memory. |
| 1798 | /// For safety purposes, the DFA's transition table will be verified such |
| 1799 | /// that every transition points to a valid state. If this verification is |
| 1800 | /// too costly, then a [`DFA::from_bytes_unchecked`] API is provided, which |
| 1801 | /// will always execute in constant time. |
| 1802 | /// |
| 1803 | /// The bytes given must be generated by one of the serialization APIs |
| 1804 | /// of a `DFA` using a semver compatible release of this crate. Those |
| 1805 | /// include: |
| 1806 | /// |
| 1807 | /// * [`DFA::to_bytes_little_endian`] |
| 1808 | /// * [`DFA::to_bytes_big_endian`] |
| 1809 | /// * [`DFA::to_bytes_native_endian`] |
| 1810 | /// * [`DFA::write_to_little_endian`] |
| 1811 | /// * [`DFA::write_to_big_endian`] |
| 1812 | /// * [`DFA::write_to_native_endian`] |
| 1813 | /// |
| 1814 | /// The `to_bytes` methods allocate and return a `Vec<u8>` for you, along |
| 1815 | /// with handling alignment correctly. The `write_to` methods do not |
| 1816 | /// allocate and write to an existing slice (which may be on the stack). |
| 1817 | /// Since deserialization always uses the native endianness of the target |
| 1818 | /// platform, the serialization API you use should match the endianness of |
| 1819 | /// the target platform. (It's often a good idea to generate serialized |
| 1820 | /// DFAs for both forms of endianness and then load the correct one based |
| 1821 | /// on endianness.) |
| 1822 | /// |
| 1823 | /// # Errors |
| 1824 | /// |
| 1825 | /// Generally speaking, it's easier to state the conditions in which an |
| 1826 | /// error is _not_ returned. All of the following must be true: |
| 1827 | /// |
| 1828 | /// * The bytes given must be produced by one of the serialization APIs |
| 1829 | /// on this DFA, as mentioned above. |
| 1830 | /// * The endianness of the target platform matches the endianness used to |
| 1831 | /// serialized the provided DFA. |
| 1832 | /// * The slice given must have the same alignment as `u32`. |
| 1833 | /// |
| 1834 | /// If any of the above are not true, then an error will be returned. |
| 1835 | /// |
| 1836 | /// # Panics |
| 1837 | /// |
| 1838 | /// This routine will never panic for any input. |
| 1839 | /// |
| 1840 | /// # Example |
| 1841 | /// |
| 1842 | /// This example shows how to serialize a DFA to raw bytes, deserialize it |
| 1843 | /// and then use it for searching. |
| 1844 | /// |
| 1845 | /// ``` |
| 1846 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch}; |
| 1847 | /// |
| 1848 | /// let initial = DFA::new("foo[0-9]+" )?; |
| 1849 | /// let (bytes, _) = initial.to_bytes_native_endian(); |
| 1850 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes)?.0; |
| 1851 | /// |
| 1852 | /// let expected = HalfMatch::must(0, 8); |
| 1853 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 1854 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1855 | /// ``` |
| 1856 | /// |
| 1857 | /// # Example: dealing with alignment and padding |
| 1858 | /// |
| 1859 | /// In the above example, we used the `to_bytes_native_endian` method to |
| 1860 | /// serialize a DFA, but we ignored part of its return value corresponding |
| 1861 | /// to padding added to the beginning of the serialized DFA. This is OK |
| 1862 | /// because deserialization will skip this initial padding. What matters |
| 1863 | /// is that the address immediately following the padding has an alignment |
| 1864 | /// that matches `u32`. That is, the following is an equivalent but |
| 1865 | /// alternative way to write the above example: |
| 1866 | /// |
| 1867 | /// ``` |
| 1868 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch}; |
| 1869 | /// |
| 1870 | /// let initial = DFA::new("foo[0-9]+" )?; |
| 1871 | /// // Serialization returns the number of leading padding bytes added to |
| 1872 | /// // the returned Vec<u8>. |
| 1873 | /// let (bytes, pad) = initial.to_bytes_native_endian(); |
| 1874 | /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes[pad..])?.0; |
| 1875 | /// |
| 1876 | /// let expected = HalfMatch::must(0, 8); |
| 1877 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 1878 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1879 | /// ``` |
| 1880 | /// |
| 1881 | /// This padding is necessary because Rust's standard library does |
| 1882 | /// not expose any safe and robust way of creating a `Vec<u8>` with a |
| 1883 | /// guaranteed alignment other than 1. Now, in practice, the underlying |
| 1884 | /// allocator is likely to provide a `Vec<u8>` that meets our alignment |
| 1885 | /// requirements, which means `pad` is zero in practice most of the time. |
| 1886 | /// |
| 1887 | /// The purpose of exposing the padding like this is flexibility for the |
| 1888 | /// caller. For example, if one wants to embed a serialized DFA into a |
| 1889 | /// compiled program, then it's important to guarantee that it starts at a |
| 1890 | /// `u32`-aligned address. The simplest way to do this is to discard the |
| 1891 | /// padding bytes and set it up so that the serialized DFA itself begins at |
| 1892 | /// a properly aligned address. We can show this in two parts. The first |
| 1893 | /// part is serializing the DFA to a file: |
| 1894 | /// |
| 1895 | /// ```no_run |
| 1896 | /// use regex_automata::dfa::{Automaton, dense::DFA}; |
| 1897 | /// |
| 1898 | /// let dfa = DFA::new("foo[0-9]+" )?; |
| 1899 | /// |
| 1900 | /// let (bytes, pad) = dfa.to_bytes_big_endian(); |
| 1901 | /// // Write the contents of the DFA *without* the initial padding. |
| 1902 | /// std::fs::write("foo.bigendian.dfa" , &bytes[pad..])?; |
| 1903 | /// |
| 1904 | /// // Do it again, but this time for little endian. |
| 1905 | /// let (bytes, pad) = dfa.to_bytes_little_endian(); |
| 1906 | /// std::fs::write("foo.littleendian.dfa" , &bytes[pad..])?; |
| 1907 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1908 | /// ``` |
| 1909 | /// |
| 1910 | /// And now the second part is embedding the DFA into the compiled program |
| 1911 | /// and deserializing it at runtime on first use. We use conditional |
| 1912 | /// compilation to choose the correct endianness. |
| 1913 | /// |
| 1914 | /// ```no_run |
| 1915 | /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch}; |
| 1916 | /// |
| 1917 | /// type S = u32; |
| 1918 | /// type DFA = dense::DFA<&'static [S]>; |
| 1919 | /// |
| 1920 | /// fn get_foo() -> &'static DFA { |
| 1921 | /// use std::cell::Cell; |
| 1922 | /// use std::mem::MaybeUninit; |
| 1923 | /// use std::sync::Once; |
| 1924 | /// |
| 1925 | /// // This struct with a generic B is used to permit unsizing |
| 1926 | /// // coercions, specifically, where B winds up being a [u8]. We also |
| 1927 | /// // need repr(C) to guarantee that _align comes first, which forces |
| 1928 | /// // a correct alignment. |
| 1929 | /// #[repr (C)] |
| 1930 | /// struct Aligned<B: ?Sized> { |
| 1931 | /// _align: [S; 0], |
| 1932 | /// bytes: B, |
| 1933 | /// } |
| 1934 | /// |
| 1935 | /// # const _: &str = stringify! { |
| 1936 | /// // This assignment is made possible (implicitly) via the |
| 1937 | /// // CoerceUnsized trait. |
| 1938 | /// static ALIGNED: &Aligned<[u8]> = &Aligned { |
| 1939 | /// _align: [], |
| 1940 | /// #[cfg(target_endian = "big" )] |
| 1941 | /// bytes: *include_bytes!("foo.bigendian.dfa" ), |
| 1942 | /// #[cfg(target_endian = "little" )] |
| 1943 | /// bytes: *include_bytes!("foo.littleendian.dfa" ), |
| 1944 | /// }; |
| 1945 | /// # }; |
| 1946 | /// # static ALIGNED: &Aligned<[u8]> = &Aligned { |
| 1947 | /// # _align: [], |
| 1948 | /// # bytes: [], |
| 1949 | /// # }; |
| 1950 | /// |
| 1951 | /// struct Lazy(Cell<MaybeUninit<DFA>>); |
| 1952 | /// // SAFETY: This is safe because DFA impls Sync. |
| 1953 | /// unsafe impl Sync for Lazy {} |
| 1954 | /// |
| 1955 | /// static INIT: Once = Once::new(); |
| 1956 | /// static DFA: Lazy = Lazy(Cell::new(MaybeUninit::uninit())); |
| 1957 | /// |
| 1958 | /// INIT.call_once(|| { |
| 1959 | /// let (dfa, _) = DFA::from_bytes(&ALIGNED.bytes) |
| 1960 | /// .expect("serialized DFA should be valid" ); |
| 1961 | /// // SAFETY: This is guaranteed to only execute once, and all |
| 1962 | /// // we do with the pointer is write the DFA to it. |
| 1963 | /// unsafe { |
| 1964 | /// (*DFA.0.as_ptr()).as_mut_ptr().write(dfa); |
| 1965 | /// } |
| 1966 | /// }); |
| 1967 | /// // SAFETY: DFA is guaranteed to by initialized via INIT and is |
| 1968 | /// // stored in static memory. |
| 1969 | /// unsafe { |
| 1970 | /// let dfa = (*DFA.0.as_ptr()).as_ptr(); |
| 1971 | /// std::mem::transmute::<*const DFA, &'static DFA>(dfa) |
| 1972 | /// } |
| 1973 | /// } |
| 1974 | /// |
| 1975 | /// let dfa = get_foo(); |
| 1976 | /// let expected = HalfMatch::must(0, 8); |
| 1977 | /// assert_eq!(Ok(Some(expected)), dfa.find_leftmost_fwd(b"foo12345" )); |
| 1978 | /// ``` |
| 1979 | /// |
| 1980 | /// Alternatively, consider using |
| 1981 | /// [`lazy_static`](https://crates.io/crates/lazy_static) |
| 1982 | /// or |
| 1983 | /// [`once_cell`](https://crates.io/crates/once_cell), |
| 1984 | /// which will guarantee safety for you. You will still need to use the |
| 1985 | /// `Aligned` trick above to force correct alignment, but this is safe to |
| 1986 | /// do and `from_bytes` will return an error if you get it wrong. |
| 1987 | pub fn from_bytes( |
| 1988 | slice: &'a [u8], |
| 1989 | ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> { |
| 1990 | // SAFETY: This is safe because we validate both the transition table, |
| 1991 | // start state ID list and the match states below. If either validation |
| 1992 | // fails, then we return an error. |
| 1993 | let (dfa, nread) = unsafe { DFA::from_bytes_unchecked(slice)? }; |
| 1994 | dfa.tt.validate()?; |
| 1995 | dfa.st.validate(&dfa.tt)?; |
| 1996 | dfa.ms.validate(&dfa)?; |
| 1997 | dfa.accels.validate()?; |
| 1998 | // N.B. dfa.special doesn't have a way to do unchecked deserialization, |
| 1999 | // so it has already been validated. |
| 2000 | Ok((dfa, nread)) |
| 2001 | } |
| 2002 | |
| 2003 | /// Deserialize a DFA with a specific state identifier representation in |
| 2004 | /// constant time by omitting the verification of the validity of the |
| 2005 | /// transition table and other data inside the DFA. |
| 2006 | /// |
| 2007 | /// This is just like [`DFA::from_bytes`], except it can potentially return |
| 2008 | /// a DFA that exhibits undefined behavior if its transition table contains |
| 2009 | /// invalid state identifiers. |
| 2010 | /// |
| 2011 | /// This routine is useful if you need to deserialize a DFA cheaply |
| 2012 | /// and cannot afford the transition table validation performed by |
| 2013 | /// `from_bytes`. |
| 2014 | /// |
| 2015 | /// # Example |
| 2016 | /// |
| 2017 | /// ``` |
| 2018 | /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch}; |
| 2019 | /// |
| 2020 | /// let initial = DFA::new("foo[0-9]+" )?; |
| 2021 | /// let (bytes, _) = initial.to_bytes_native_endian(); |
| 2022 | /// // SAFETY: This is guaranteed to be safe since the bytes given come |
| 2023 | /// // directly from a compatible serialization routine. |
| 2024 | /// let dfa: DFA<&[u32]> = unsafe { DFA::from_bytes_unchecked(&bytes)?.0 }; |
| 2025 | /// |
| 2026 | /// let expected = HalfMatch::must(0, 8); |
| 2027 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 2028 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2029 | /// ``` |
| 2030 | pub unsafe fn from_bytes_unchecked( |
| 2031 | slice: &'a [u8], |
| 2032 | ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> { |
| 2033 | let mut nr = 0; |
| 2034 | |
| 2035 | nr += bytes::skip_initial_padding(slice); |
| 2036 | bytes::check_alignment::<StateID>(&slice[nr..])?; |
| 2037 | nr += bytes::read_label(&slice[nr..], LABEL)?; |
| 2038 | nr += bytes::read_endianness_check(&slice[nr..])?; |
| 2039 | nr += bytes::read_version(&slice[nr..], VERSION)?; |
| 2040 | |
| 2041 | let _unused = bytes::try_read_u32(&slice[nr..], "unused space" )?; |
| 2042 | nr += size_of::<u32>(); |
| 2043 | |
| 2044 | let (tt, nread) = TransitionTable::from_bytes_unchecked(&slice[nr..])?; |
| 2045 | nr += nread; |
| 2046 | |
| 2047 | let (st, nread) = StartTable::from_bytes_unchecked(&slice[nr..])?; |
| 2048 | nr += nread; |
| 2049 | |
| 2050 | let (ms, nread) = MatchStates::from_bytes_unchecked(&slice[nr..])?; |
| 2051 | nr += nread; |
| 2052 | |
| 2053 | let (special, nread) = Special::from_bytes(&slice[nr..])?; |
| 2054 | nr += nread; |
| 2055 | special.validate_state_count(tt.count(), tt.stride2)?; |
| 2056 | |
| 2057 | let (accels, nread) = Accels::from_bytes_unchecked(&slice[nr..])?; |
| 2058 | nr += nread; |
| 2059 | |
| 2060 | Ok((DFA { tt, st, ms, special, accels }, nr)) |
| 2061 | } |
| 2062 | |
| 2063 | /// The implementation of the public `write_to` serialization methods, |
| 2064 | /// which is generic over endianness. |
| 2065 | /// |
| 2066 | /// This is defined only for &[u32] to reduce binary size/compilation time. |
| 2067 | fn write_to<E: Endian>( |
| 2068 | &self, |
| 2069 | mut dst: &mut [u8], |
| 2070 | ) -> Result<usize, SerializeError> { |
| 2071 | let nwrite = self.write_to_len(); |
| 2072 | if dst.len() < nwrite { |
| 2073 | return Err(SerializeError::buffer_too_small("dense DFA" )); |
| 2074 | } |
| 2075 | dst = &mut dst[..nwrite]; |
| 2076 | |
| 2077 | let mut nw = 0; |
| 2078 | nw += bytes::write_label(LABEL, &mut dst[nw..])?; |
| 2079 | nw += bytes::write_endianness_check::<E>(&mut dst[nw..])?; |
| 2080 | nw += bytes::write_version::<E>(VERSION, &mut dst[nw..])?; |
| 2081 | nw += { |
| 2082 | // Currently unused, intended for future flexibility |
| 2083 | E::write_u32(0, &mut dst[nw..]); |
| 2084 | size_of::<u32>() |
| 2085 | }; |
| 2086 | nw += self.tt.write_to::<E>(&mut dst[nw..])?; |
| 2087 | nw += self.st.write_to::<E>(&mut dst[nw..])?; |
| 2088 | nw += self.ms.write_to::<E>(&mut dst[nw..])?; |
| 2089 | nw += self.special.write_to::<E>(&mut dst[nw..])?; |
| 2090 | nw += self.accels.write_to::<E>(&mut dst[nw..])?; |
| 2091 | Ok(nw) |
| 2092 | } |
| 2093 | } |
| 2094 | |
| 2095 | /// The following methods implement mutable routines on the internal |
| 2096 | /// representation of a DFA. As such, we must fix the first type parameter to a |
| 2097 | /// `Vec<u32>` since a generic `T: AsRef<[u32]>` does not permit mutation. We |
| 2098 | /// can get away with this because these methods are internal to the crate and |
| 2099 | /// are exclusively used during construction of the DFA. |
| 2100 | #[cfg (feature = "alloc" )] |
| 2101 | impl OwnedDFA { |
| 2102 | /// Add a start state of this DFA. |
| 2103 | pub(crate) fn set_start_state( |
| 2104 | &mut self, |
| 2105 | index: Start, |
| 2106 | pattern_id: Option<PatternID>, |
| 2107 | id: StateID, |
| 2108 | ) { |
| 2109 | assert!(self.tt.is_valid(id), "invalid start state" ); |
| 2110 | self.st.set_start(index, pattern_id, id); |
| 2111 | } |
| 2112 | |
| 2113 | /// Set the given transition to this DFA. Both the `from` and `to` states |
| 2114 | /// must already exist. |
| 2115 | pub(crate) fn set_transition( |
| 2116 | &mut self, |
| 2117 | from: StateID, |
| 2118 | byte: alphabet::Unit, |
| 2119 | to: StateID, |
| 2120 | ) { |
| 2121 | self.tt.set(from, byte, to); |
| 2122 | } |
| 2123 | |
| 2124 | /// An an empty state (a state where all transitions lead to a dead state) |
| 2125 | /// and return its identifier. The identifier returned is guaranteed to |
| 2126 | /// not point to any other existing state. |
| 2127 | /// |
| 2128 | /// If adding a state would exceed `StateID::LIMIT`, then this returns an |
| 2129 | /// error. |
| 2130 | pub(crate) fn add_empty_state(&mut self) -> Result<StateID, Error> { |
| 2131 | self.tt.add_empty_state() |
| 2132 | } |
| 2133 | |
| 2134 | /// Swap the two states given in the transition table. |
| 2135 | /// |
| 2136 | /// This routine does not do anything to check the correctness of this |
| 2137 | /// swap. Callers must ensure that other states pointing to id1 and id2 are |
| 2138 | /// updated appropriately. |
| 2139 | pub(crate) fn swap_states(&mut self, id1: StateID, id2: StateID) { |
| 2140 | self.tt.swap(id1, id2); |
| 2141 | } |
| 2142 | |
| 2143 | /// Truncate the states in this DFA to the given count. |
| 2144 | /// |
| 2145 | /// This routine does not do anything to check the correctness of this |
| 2146 | /// truncation. Callers must ensure that other states pointing to truncated |
| 2147 | /// states are updated appropriately. |
| 2148 | pub(crate) fn truncate_states(&mut self, count: usize) { |
| 2149 | self.tt.truncate(count); |
| 2150 | } |
| 2151 | |
| 2152 | /// Return a mutable representation of the state corresponding to the given |
| 2153 | /// id. This is useful for implementing routines that manipulate DFA states |
| 2154 | /// (e.g., swapping states). |
| 2155 | pub(crate) fn state_mut(&mut self, id: StateID) -> StateMut<'_> { |
| 2156 | self.tt.state_mut(id) |
| 2157 | } |
| 2158 | |
| 2159 | /// Minimize this DFA in place using Hopcroft's algorithm. |
| 2160 | pub(crate) fn minimize(&mut self) { |
| 2161 | Minimizer::new(self).run(); |
| 2162 | } |
| 2163 | |
| 2164 | /// Updates the match state pattern ID map to use the one provided. |
| 2165 | /// |
| 2166 | /// This is useful when it's convenient to manipulate matching states |
| 2167 | /// (and their corresponding pattern IDs) as a map. In particular, the |
| 2168 | /// representation used by a DFA for this map is not amenable to mutation, |
| 2169 | /// so if things need to be changed (like when shuffling states), it's |
| 2170 | /// often easier to work with the map form. |
| 2171 | pub(crate) fn set_pattern_map( |
| 2172 | &mut self, |
| 2173 | map: &BTreeMap<StateID, Vec<PatternID>>, |
| 2174 | ) -> Result<(), Error> { |
| 2175 | self.ms = self.ms.new_with_map(map)?; |
| 2176 | Ok(()) |
| 2177 | } |
| 2178 | |
| 2179 | /// Find states that have a small number of non-loop transitions and mark |
| 2180 | /// them as candidates for acceleration during search. |
| 2181 | pub(crate) fn accelerate(&mut self) { |
| 2182 | // dead and quit states can never be accelerated. |
| 2183 | if self.state_count() <= 2 { |
| 2184 | return; |
| 2185 | } |
| 2186 | |
| 2187 | // Go through every state and record their accelerator, if possible. |
| 2188 | let mut accels = BTreeMap::new(); |
| 2189 | // Count the number of accelerated match, start and non-match/start |
| 2190 | // states. |
| 2191 | let (mut cmatch, mut cstart, mut cnormal) = (0, 0, 0); |
| 2192 | for state in self.states() { |
| 2193 | if let Some(accel) = state.accelerate(self.byte_classes()) { |
| 2194 | accels.insert(state.id(), accel); |
| 2195 | if self.is_match_state(state.id()) { |
| 2196 | cmatch += 1; |
| 2197 | } else if self.is_start_state(state.id()) { |
| 2198 | cstart += 1; |
| 2199 | } else { |
| 2200 | assert!(!self.is_dead_state(state.id())); |
| 2201 | assert!(!self.is_quit_state(state.id())); |
| 2202 | cnormal += 1; |
| 2203 | } |
| 2204 | } |
| 2205 | } |
| 2206 | // If no states were able to be accelerated, then we're done. |
| 2207 | if accels.is_empty() { |
| 2208 | return; |
| 2209 | } |
| 2210 | let original_accels_len = accels.len(); |
| 2211 | |
| 2212 | // A remapper keeps track of state ID changes. Once we're done |
| 2213 | // shuffling, the remapper is used to rewrite all transitions in the |
| 2214 | // DFA based on the new positions of states. |
| 2215 | let mut remapper = Remapper::from_dfa(self); |
| 2216 | |
| 2217 | // As we swap states, if they are match states, we need to swap their |
| 2218 | // pattern ID lists too (for multi-regexes). We do this by converting |
| 2219 | // the lists to an easily swappable map, and then convert back to |
| 2220 | // MatchStates once we're done. |
| 2221 | let mut new_matches = self.ms.to_map(self); |
| 2222 | |
| 2223 | // There is at least one state that gets accelerated, so these are |
| 2224 | // guaranteed to get set to sensible values below. |
| 2225 | self.special.min_accel = StateID::MAX; |
| 2226 | self.special.max_accel = StateID::ZERO; |
| 2227 | let update_special_accel = |
| 2228 | |special: &mut Special, accel_id: StateID| { |
| 2229 | special.min_accel = cmp::min(special.min_accel, accel_id); |
| 2230 | special.max_accel = cmp::max(special.max_accel, accel_id); |
| 2231 | }; |
| 2232 | |
| 2233 | // Start by shuffling match states. Any match states that are |
| 2234 | // accelerated get moved to the end of the match state range. |
| 2235 | if cmatch > 0 && self.special.matches() { |
| 2236 | // N.B. special.{min,max}_match do not need updating, since the |
| 2237 | // range/number of match states does not change. Only the ordering |
| 2238 | // of match states may change. |
| 2239 | let mut next_id = self.special.max_match; |
| 2240 | let mut cur_id = next_id; |
| 2241 | while cur_id >= self.special.min_match { |
| 2242 | if let Some(accel) = accels.remove(&cur_id) { |
| 2243 | accels.insert(next_id, accel); |
| 2244 | update_special_accel(&mut self.special, next_id); |
| 2245 | |
| 2246 | // No need to do any actual swapping for equivalent IDs. |
| 2247 | if cur_id != next_id { |
| 2248 | remapper.swap(self, cur_id, next_id); |
| 2249 | |
| 2250 | // Swap pattern IDs for match states. |
| 2251 | let cur_pids = new_matches.remove(&cur_id).unwrap(); |
| 2252 | let next_pids = new_matches.remove(&next_id).unwrap(); |
| 2253 | new_matches.insert(cur_id, next_pids); |
| 2254 | new_matches.insert(next_id, cur_pids); |
| 2255 | } |
| 2256 | next_id = self.tt.prev_state_id(next_id); |
| 2257 | } |
| 2258 | cur_id = self.tt.prev_state_id(cur_id); |
| 2259 | } |
| 2260 | } |
| 2261 | |
| 2262 | // This is where it gets tricky. Without acceleration, start states |
| 2263 | // normally come right after match states. But we want accelerated |
| 2264 | // states to be a single contiguous range (to make it very fast |
| 2265 | // to determine whether a state *is* accelerated), while also keeping |
| 2266 | // match and starting states as contiguous ranges for the same reason. |
| 2267 | // So what we do here is shuffle states such that it looks like this: |
| 2268 | // |
| 2269 | // DQMMMMAAAAASSSSSSNNNNNNN |
| 2270 | // | | |
| 2271 | // |---------| |
| 2272 | // accelerated states |
| 2273 | // |
| 2274 | // Where: |
| 2275 | // D - dead state |
| 2276 | // Q - quit state |
| 2277 | // M - match state (may be accelerated) |
| 2278 | // A - normal state that is accelerated |
| 2279 | // S - start state (may be accelerated) |
| 2280 | // N - normal state that is NOT accelerated |
| 2281 | // |
| 2282 | // We implement this by shuffling states, which is done by a sequence |
| 2283 | // of pairwise swaps. We start by looking at all normal states to be |
| 2284 | // accelerated. When we find one, we swap it with the earliest starting |
| 2285 | // state, and then swap that with the earliest normal state. This |
| 2286 | // preserves the contiguous property. |
| 2287 | // |
| 2288 | // Once we're done looking for accelerated normal states, now we look |
| 2289 | // for accelerated starting states by moving them to the beginning |
| 2290 | // of the starting state range (just like we moved accelerated match |
| 2291 | // states to the end of the matching state range). |
| 2292 | // |
| 2293 | // For a more detailed/different perspective on this, see the docs |
| 2294 | // in dfa/special.rs. |
| 2295 | if cnormal > 0 { |
| 2296 | // our next available starting and normal states for swapping. |
| 2297 | let mut next_start_id = self.special.min_start; |
| 2298 | let mut cur_id = self.from_index(self.state_count() - 1); |
| 2299 | // This is guaranteed to exist since cnormal > 0. |
| 2300 | let mut next_norm_id = |
| 2301 | self.tt.next_state_id(self.special.max_start); |
| 2302 | while cur_id >= next_norm_id { |
| 2303 | if let Some(accel) = accels.remove(&cur_id) { |
| 2304 | remapper.swap(self, next_start_id, cur_id); |
| 2305 | remapper.swap(self, next_norm_id, cur_id); |
| 2306 | // Keep our accelerator map updated with new IDs if the |
| 2307 | // states we swapped were also accelerated. |
| 2308 | if let Some(accel2) = accels.remove(&next_norm_id) { |
| 2309 | accels.insert(cur_id, accel2); |
| 2310 | } |
| 2311 | if let Some(accel2) = accels.remove(&next_start_id) { |
| 2312 | accels.insert(next_norm_id, accel2); |
| 2313 | } |
| 2314 | accels.insert(next_start_id, accel); |
| 2315 | update_special_accel(&mut self.special, next_start_id); |
| 2316 | // Our start range shifts one to the right now. |
| 2317 | self.special.min_start = |
| 2318 | self.tt.next_state_id(self.special.min_start); |
| 2319 | self.special.max_start = |
| 2320 | self.tt.next_state_id(self.special.max_start); |
| 2321 | next_start_id = self.tt.next_state_id(next_start_id); |
| 2322 | next_norm_id = self.tt.next_state_id(next_norm_id); |
| 2323 | } |
| 2324 | // This is pretty tricky, but if our 'next_norm_id' state also |
| 2325 | // happened to be accelerated, then the result is that it is |
| 2326 | // now in the position of cur_id, so we need to consider it |
| 2327 | // again. This loop is still guaranteed to terminate though, |
| 2328 | // because when accels contains cur_id, we're guaranteed to |
| 2329 | // increment next_norm_id even if cur_id remains unchanged. |
| 2330 | if !accels.contains_key(&cur_id) { |
| 2331 | cur_id = self.tt.prev_state_id(cur_id); |
| 2332 | } |
| 2333 | } |
| 2334 | } |
| 2335 | // Just like we did for match states, but we want to move accelerated |
| 2336 | // start states to the beginning of the range instead of the end. |
| 2337 | if cstart > 0 { |
| 2338 | // N.B. special.{min,max}_start do not need updating, since the |
| 2339 | // range/number of start states does not change at this point. Only |
| 2340 | // the ordering of start states may change. |
| 2341 | let mut next_id = self.special.min_start; |
| 2342 | let mut cur_id = next_id; |
| 2343 | while cur_id <= self.special.max_start { |
| 2344 | if let Some(accel) = accels.remove(&cur_id) { |
| 2345 | remapper.swap(self, cur_id, next_id); |
| 2346 | accels.insert(next_id, accel); |
| 2347 | update_special_accel(&mut self.special, next_id); |
| 2348 | next_id = self.tt.next_state_id(next_id); |
| 2349 | } |
| 2350 | cur_id = self.tt.next_state_id(cur_id); |
| 2351 | } |
| 2352 | } |
| 2353 | |
| 2354 | // Remap all transitions in our DFA and assert some things. |
| 2355 | remapper.remap(self); |
| 2356 | // This unwrap is OK because acceleration never changes the number of |
| 2357 | // match states or patterns in those match states. Since acceleration |
| 2358 | // runs after the pattern map has been set at least once, we know that |
| 2359 | // our match states cannot error. |
| 2360 | self.set_pattern_map(&new_matches).unwrap(); |
| 2361 | self.special.set_max(); |
| 2362 | self.special.validate().expect("special state ranges should validate" ); |
| 2363 | self.special |
| 2364 | .validate_state_count(self.state_count(), self.stride2()) |
| 2365 | .expect( |
| 2366 | "special state ranges should be consistent with state count" , |
| 2367 | ); |
| 2368 | assert_eq!( |
| 2369 | self.special.accel_len(self.stride()), |
| 2370 | // We record the number of accelerated states initially detected |
| 2371 | // since the accels map is itself mutated in the process above. |
| 2372 | // If mutated incorrectly, its size may change, and thus can't be |
| 2373 | // trusted as a source of truth of how many accelerated states we |
| 2374 | // expected there to be. |
| 2375 | original_accels_len, |
| 2376 | "mismatch with expected number of accelerated states" , |
| 2377 | ); |
| 2378 | |
| 2379 | // And finally record our accelerators. We kept our accels map updated |
| 2380 | // as we shuffled states above, so the accelerators should now |
| 2381 | // correspond to a contiguous range in the state ID space. (Which we |
| 2382 | // assert.) |
| 2383 | let mut prev: Option<StateID> = None; |
| 2384 | for (id, accel) in accels { |
| 2385 | assert!(prev.map_or(true, |p| self.tt.next_state_id(p) == id)); |
| 2386 | prev = Some(id); |
| 2387 | self.accels.add(accel); |
| 2388 | } |
| 2389 | } |
| 2390 | |
| 2391 | /// Shuffle the states in this DFA so that starting states, match |
| 2392 | /// states and accelerated states are all contiguous. |
| 2393 | /// |
| 2394 | /// See dfa/special.rs for more details. |
| 2395 | pub(crate) fn shuffle( |
| 2396 | &mut self, |
| 2397 | mut matches: BTreeMap<StateID, Vec<PatternID>>, |
| 2398 | ) -> Result<(), Error> { |
| 2399 | // The determinizer always adds a quit state and it is always second. |
| 2400 | self.special.quit_id = self.from_index(1); |
| 2401 | // If all we have are the dead and quit states, then we're done and |
| 2402 | // the DFA will never produce a match. |
| 2403 | if self.state_count() <= 2 { |
| 2404 | self.special.set_max(); |
| 2405 | return Ok(()); |
| 2406 | } |
| 2407 | |
| 2408 | // Collect all our start states into a convenient set and confirm there |
| 2409 | // is no overlap with match states. In the classicl DFA construction, |
| 2410 | // start states can be match states. But because of look-around, we |
| 2411 | // delay all matches by a byte, which prevents start states from being |
| 2412 | // match states. |
| 2413 | let mut is_start: BTreeSet<StateID> = BTreeSet::new(); |
| 2414 | for (start_id, _, _) in self.starts() { |
| 2415 | // While there's nothing theoretically wrong with setting a start |
| 2416 | // state to a dead ID (indeed, it could be an optimization!), the |
| 2417 | // shuffling code below assumes that start states aren't dead. If |
| 2418 | // this assumption is violated, the dead state could be shuffled |
| 2419 | // to a new location, which must never happen. So if we do want |
| 2420 | // to allow start states to be dead, then this assert should be |
| 2421 | // removed and the code below fixed. |
| 2422 | // |
| 2423 | // N.B. Minimization can cause start states to be dead, but that |
| 2424 | // happens after states are shuffled, so it's OK. Also, start |
| 2425 | // states are dead for the DFA that never matches anything, but |
| 2426 | // in that case, there are no states to shuffle. |
| 2427 | assert_ne!(start_id, DEAD, "start state cannot be dead" ); |
| 2428 | assert!( |
| 2429 | !matches.contains_key(&start_id), |
| 2430 | "{:?} is both a start and a match state, which is not allowed" , |
| 2431 | start_id, |
| 2432 | ); |
| 2433 | is_start.insert(start_id); |
| 2434 | } |
| 2435 | |
| 2436 | // We implement shuffling by a sequence of pairwise swaps of states. |
| 2437 | // Since we have a number of things referencing states via their |
| 2438 | // IDs and swapping them changes their IDs, we need to record every |
| 2439 | // swap we make so that we can remap IDs. The remapper handles this |
| 2440 | // book-keeping for us. |
| 2441 | let mut remapper = Remapper::from_dfa(self); |
| 2442 | |
| 2443 | // Shuffle matching states. |
| 2444 | if matches.is_empty() { |
| 2445 | self.special.min_match = DEAD; |
| 2446 | self.special.max_match = DEAD; |
| 2447 | } else { |
| 2448 | // The determinizer guarantees that the first two states are the |
| 2449 | // dead and quit states, respectively. We want our match states to |
| 2450 | // come right after quit. |
| 2451 | let mut next_id = self.from_index(2); |
| 2452 | let mut new_matches = BTreeMap::new(); |
| 2453 | self.special.min_match = next_id; |
| 2454 | for (id, pids) in matches { |
| 2455 | remapper.swap(self, next_id, id); |
| 2456 | new_matches.insert(next_id, pids); |
| 2457 | // If we swapped a start state, then update our set. |
| 2458 | if is_start.contains(&next_id) { |
| 2459 | is_start.remove(&next_id); |
| 2460 | is_start.insert(id); |
| 2461 | } |
| 2462 | next_id = self.tt.next_state_id(next_id); |
| 2463 | } |
| 2464 | matches = new_matches; |
| 2465 | self.special.max_match = cmp::max( |
| 2466 | self.special.min_match, |
| 2467 | self.tt.prev_state_id(next_id), |
| 2468 | ); |
| 2469 | } |
| 2470 | |
| 2471 | // Shuffle starting states. |
| 2472 | { |
| 2473 | let mut next_id = self.from_index(2); |
| 2474 | if self.special.matches() { |
| 2475 | next_id = self.tt.next_state_id(self.special.max_match); |
| 2476 | } |
| 2477 | self.special.min_start = next_id; |
| 2478 | for id in is_start { |
| 2479 | remapper.swap(self, next_id, id); |
| 2480 | next_id = self.tt.next_state_id(next_id); |
| 2481 | } |
| 2482 | self.special.max_start = cmp::max( |
| 2483 | self.special.min_start, |
| 2484 | self.tt.prev_state_id(next_id), |
| 2485 | ); |
| 2486 | } |
| 2487 | |
| 2488 | // Finally remap all transitions in our DFA. |
| 2489 | remapper.remap(self); |
| 2490 | self.set_pattern_map(&matches)?; |
| 2491 | self.special.set_max(); |
| 2492 | self.special.validate().expect("special state ranges should validate" ); |
| 2493 | self.special |
| 2494 | .validate_state_count(self.state_count(), self.stride2()) |
| 2495 | .expect( |
| 2496 | "special state ranges should be consistent with state count" , |
| 2497 | ); |
| 2498 | Ok(()) |
| 2499 | } |
| 2500 | } |
| 2501 | |
| 2502 | /// A variety of generic internal methods for accessing DFA internals. |
| 2503 | impl<T: AsRef<[u32]>> DFA<T> { |
| 2504 | /// Return the byte classes used by this DFA. |
| 2505 | pub(crate) fn byte_classes(&self) -> &ByteClasses { |
| 2506 | &self.tt.classes |
| 2507 | } |
| 2508 | |
| 2509 | /// Return the info about special states. |
| 2510 | pub(crate) fn special(&self) -> &Special { |
| 2511 | &self.special |
| 2512 | } |
| 2513 | |
| 2514 | /// Return the info about special states as a mutable borrow. |
| 2515 | #[cfg (feature = "alloc" )] |
| 2516 | pub(crate) fn special_mut(&mut self) -> &mut Special { |
| 2517 | &mut self.special |
| 2518 | } |
| 2519 | |
| 2520 | /// Returns an iterator over all states in this DFA. |
| 2521 | /// |
| 2522 | /// This iterator yields a tuple for each state. The first element of the |
| 2523 | /// tuple corresponds to a state's identifier, and the second element |
| 2524 | /// corresponds to the state itself (comprised of its transitions). |
| 2525 | pub(crate) fn states(&self) -> StateIter<'_, T> { |
| 2526 | self.tt.states() |
| 2527 | } |
| 2528 | |
| 2529 | /// Return the total number of states in this DFA. Every DFA has at least |
| 2530 | /// 1 state, even the empty DFA. |
| 2531 | pub(crate) fn state_count(&self) -> usize { |
| 2532 | self.tt.count() |
| 2533 | } |
| 2534 | |
| 2535 | /// Return an iterator over all pattern IDs for the given match state. |
| 2536 | /// |
| 2537 | /// If the given state is not a match state, then this panics. |
| 2538 | #[cfg (feature = "alloc" )] |
| 2539 | pub(crate) fn pattern_id_slice(&self, id: StateID) -> &[PatternID] { |
| 2540 | assert!(self.is_match_state(id)); |
| 2541 | self.ms.pattern_id_slice(self.match_state_index(id)) |
| 2542 | } |
| 2543 | |
| 2544 | /// Return the total number of pattern IDs for the given match state. |
| 2545 | /// |
| 2546 | /// If the given state is not a match state, then this panics. |
| 2547 | pub(crate) fn match_pattern_len(&self, id: StateID) -> usize { |
| 2548 | assert!(self.is_match_state(id)); |
| 2549 | self.ms.pattern_len(self.match_state_index(id)) |
| 2550 | } |
| 2551 | |
| 2552 | /// Returns the total number of patterns matched by this DFA. |
| 2553 | pub(crate) fn pattern_count(&self) -> usize { |
| 2554 | self.ms.patterns |
| 2555 | } |
| 2556 | |
| 2557 | /// Returns a map from match state ID to a list of pattern IDs that match |
| 2558 | /// in that state. |
| 2559 | #[cfg (feature = "alloc" )] |
| 2560 | pub(crate) fn pattern_map(&self) -> BTreeMap<StateID, Vec<PatternID>> { |
| 2561 | self.ms.to_map(self) |
| 2562 | } |
| 2563 | |
| 2564 | /// Returns the ID of the quit state for this DFA. |
| 2565 | #[cfg (feature = "alloc" )] |
| 2566 | pub(crate) fn quit_id(&self) -> StateID { |
| 2567 | self.from_index(1) |
| 2568 | } |
| 2569 | |
| 2570 | /// Convert the given state identifier to the state's index. The state's |
| 2571 | /// index corresponds to the position in which it appears in the transition |
| 2572 | /// table. When a DFA is NOT premultiplied, then a state's identifier is |
| 2573 | /// also its index. When a DFA is premultiplied, then a state's identifier |
| 2574 | /// is equal to `index * alphabet_len`. This routine reverses that. |
| 2575 | pub(crate) fn to_index(&self, id: StateID) -> usize { |
| 2576 | self.tt.to_index(id) |
| 2577 | } |
| 2578 | |
| 2579 | /// Convert an index to a state (in the range 0..self.state_count()) to an |
| 2580 | /// actual state identifier. |
| 2581 | /// |
| 2582 | /// This is useful when using a `Vec<T>` as an efficient map keyed by state |
| 2583 | /// to some other information (such as a remapped state ID). |
| 2584 | #[cfg (feature = "alloc" )] |
| 2585 | pub(crate) fn from_index(&self, index: usize) -> StateID { |
| 2586 | self.tt.from_index(index) |
| 2587 | } |
| 2588 | |
| 2589 | /// Return the table of state IDs for this DFA's start states. |
| 2590 | pub(crate) fn starts(&self) -> StartStateIter<'_> { |
| 2591 | self.st.iter() |
| 2592 | } |
| 2593 | |
| 2594 | /// Returns the index of the match state for the given ID. If the |
| 2595 | /// given ID does not correspond to a match state, then this may |
| 2596 | /// panic or produce an incorrect result. |
| 2597 | fn match_state_index(&self, id: StateID) -> usize { |
| 2598 | debug_assert!(self.is_match_state(id)); |
| 2599 | // This is one of the places where we rely on the fact that match |
| 2600 | // states are contiguous in the transition table. Namely, that the |
| 2601 | // first match state ID always corresponds to dfa.special.min_start. |
| 2602 | // From there, since we know the stride, we can compute the overall |
| 2603 | // index of any match state given the match state's ID. |
| 2604 | let min = self.special().min_match.as_usize(); |
| 2605 | // CORRECTNESS: We're allowed to produce an incorrect result or panic, |
| 2606 | // so both the subtraction and the unchecked StateID construction is |
| 2607 | // OK. |
| 2608 | self.to_index(StateID::new_unchecked(id.as_usize() - min)) |
| 2609 | } |
| 2610 | |
| 2611 | /// Returns the index of the accelerator state for the given ID. If the |
| 2612 | /// given ID does not correspond to an accelerator state, then this may |
| 2613 | /// panic or produce an incorrect result. |
| 2614 | fn accelerator_index(&self, id: StateID) -> usize { |
| 2615 | let min = self.special().min_accel.as_usize(); |
| 2616 | // CORRECTNESS: We're allowed to produce an incorrect result or panic, |
| 2617 | // so both the subtraction and the unchecked StateID construction is |
| 2618 | // OK. |
| 2619 | self.to_index(StateID::new_unchecked(id.as_usize() - min)) |
| 2620 | } |
| 2621 | |
| 2622 | /// Return the accelerators for this DFA. |
| 2623 | fn accels(&self) -> Accels<&[u32]> { |
| 2624 | self.accels.as_ref() |
| 2625 | } |
| 2626 | |
| 2627 | /// Return this DFA's transition table as a slice. |
| 2628 | fn trans(&self) -> &[StateID] { |
| 2629 | self.tt.table() |
| 2630 | } |
| 2631 | } |
| 2632 | |
| 2633 | impl<T: AsRef<[u32]>> fmt::Debug for DFA<T> { |
| 2634 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2635 | writeln!(f, "dense::DFA(" )?; |
| 2636 | for state in self.states() { |
| 2637 | fmt_state_indicator(f, self, state.id())?; |
| 2638 | let id = if f.alternate() { |
| 2639 | state.id().as_usize() |
| 2640 | } else { |
| 2641 | self.to_index(state.id()) |
| 2642 | }; |
| 2643 | write!(f, " {:06?}: " , id)?; |
| 2644 | state.fmt(f)?; |
| 2645 | write!(f, " \n" )?; |
| 2646 | } |
| 2647 | writeln!(f, "" )?; |
| 2648 | for (i, (start_id, sty, pid)) in self.starts().enumerate() { |
| 2649 | let id = if f.alternate() { |
| 2650 | start_id.as_usize() |
| 2651 | } else { |
| 2652 | self.to_index(start_id) |
| 2653 | }; |
| 2654 | if i % self.st.stride == 0 { |
| 2655 | match pid { |
| 2656 | None => writeln!(f, "START-GROUP(ALL)" )?, |
| 2657 | Some(pid) => { |
| 2658 | writeln!(f, "START_GROUP(pattern: {:?})" , pid)? |
| 2659 | } |
| 2660 | } |
| 2661 | } |
| 2662 | writeln!(f, " {:?} => {:06?}" , sty, id)?; |
| 2663 | } |
| 2664 | if self.pattern_count() > 1 { |
| 2665 | writeln!(f, "" )?; |
| 2666 | for i in 0..self.ms.count() { |
| 2667 | let id = self.ms.match_state_id(self, i); |
| 2668 | let id = if f.alternate() { |
| 2669 | id.as_usize() |
| 2670 | } else { |
| 2671 | self.to_index(id) |
| 2672 | }; |
| 2673 | write!(f, "MATCH( {:06?}): " , id)?; |
| 2674 | for (i, &pid) in self.ms.pattern_id_slice(i).iter().enumerate() |
| 2675 | { |
| 2676 | if i > 0 { |
| 2677 | write!(f, ", " )?; |
| 2678 | } |
| 2679 | write!(f, " {:?}" , pid)?; |
| 2680 | } |
| 2681 | writeln!(f, "" )?; |
| 2682 | } |
| 2683 | } |
| 2684 | writeln!(f, "state count: {:?}" , self.state_count())?; |
| 2685 | writeln!(f, "pattern count: {:?}" , self.pattern_count())?; |
| 2686 | writeln!(f, ")" )?; |
| 2687 | Ok(()) |
| 2688 | } |
| 2689 | } |
| 2690 | |
| 2691 | unsafe impl<T: AsRef<[u32]>> Automaton for DFA<T> { |
| 2692 | #[inline ] |
| 2693 | fn is_special_state(&self, id: StateID) -> bool { |
| 2694 | self.special.is_special_state(id) |
| 2695 | } |
| 2696 | |
| 2697 | #[inline ] |
| 2698 | fn is_dead_state(&self, id: StateID) -> bool { |
| 2699 | self.special.is_dead_state(id) |
| 2700 | } |
| 2701 | |
| 2702 | #[inline ] |
| 2703 | fn is_quit_state(&self, id: StateID) -> bool { |
| 2704 | self.special.is_quit_state(id) |
| 2705 | } |
| 2706 | |
| 2707 | #[inline ] |
| 2708 | fn is_match_state(&self, id: StateID) -> bool { |
| 2709 | self.special.is_match_state(id) |
| 2710 | } |
| 2711 | |
| 2712 | #[inline ] |
| 2713 | fn is_start_state(&self, id: StateID) -> bool { |
| 2714 | self.special.is_start_state(id) |
| 2715 | } |
| 2716 | |
| 2717 | #[inline ] |
| 2718 | fn is_accel_state(&self, id: StateID) -> bool { |
| 2719 | self.special.is_accel_state(id) |
| 2720 | } |
| 2721 | |
| 2722 | #[inline ] |
| 2723 | fn next_state(&self, current: StateID, input: u8) -> StateID { |
| 2724 | let input = self.byte_classes().get(input); |
| 2725 | let o = current.as_usize() + usize::from(input); |
| 2726 | self.trans()[o] |
| 2727 | } |
| 2728 | |
| 2729 | #[inline ] |
| 2730 | unsafe fn next_state_unchecked( |
| 2731 | &self, |
| 2732 | current: StateID, |
| 2733 | input: u8, |
| 2734 | ) -> StateID { |
| 2735 | let input = self.byte_classes().get_unchecked(input); |
| 2736 | let o = current.as_usize() + usize::from(input); |
| 2737 | *self.trans().get_unchecked(o) |
| 2738 | } |
| 2739 | |
| 2740 | #[inline ] |
| 2741 | fn next_eoi_state(&self, current: StateID) -> StateID { |
| 2742 | let eoi = self.byte_classes().eoi().as_usize(); |
| 2743 | let o = current.as_usize() + eoi; |
| 2744 | self.trans()[o] |
| 2745 | } |
| 2746 | |
| 2747 | #[inline ] |
| 2748 | fn pattern_count(&self) -> usize { |
| 2749 | self.ms.patterns |
| 2750 | } |
| 2751 | |
| 2752 | #[inline ] |
| 2753 | fn match_count(&self, id: StateID) -> usize { |
| 2754 | self.match_pattern_len(id) |
| 2755 | } |
| 2756 | |
| 2757 | #[inline ] |
| 2758 | fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID { |
| 2759 | // This is an optimization for the very common case of a DFA with a |
| 2760 | // single pattern. This conditional avoids a somewhat more costly path |
| 2761 | // that finds the pattern ID from the state machine, which requires |
| 2762 | // a bit of slicing/pointer-chasing. This optimization tends to only |
| 2763 | // matter when matches are frequent. |
| 2764 | if self.ms.patterns == 1 { |
| 2765 | return PatternID::ZERO; |
| 2766 | } |
| 2767 | let state_index = self.match_state_index(id); |
| 2768 | self.ms.pattern_id(state_index, match_index) |
| 2769 | } |
| 2770 | |
| 2771 | #[inline ] |
| 2772 | fn start_state_forward( |
| 2773 | &self, |
| 2774 | pattern_id: Option<PatternID>, |
| 2775 | bytes: &[u8], |
| 2776 | start: usize, |
| 2777 | end: usize, |
| 2778 | ) -> StateID { |
| 2779 | let index = Start::from_position_fwd(bytes, start, end); |
| 2780 | self.st.start(index, pattern_id) |
| 2781 | } |
| 2782 | |
| 2783 | #[inline ] |
| 2784 | fn start_state_reverse( |
| 2785 | &self, |
| 2786 | pattern_id: Option<PatternID>, |
| 2787 | bytes: &[u8], |
| 2788 | start: usize, |
| 2789 | end: usize, |
| 2790 | ) -> StateID { |
| 2791 | let index = Start::from_position_rev(bytes, start, end); |
| 2792 | self.st.start(index, pattern_id) |
| 2793 | } |
| 2794 | |
| 2795 | #[inline (always)] |
| 2796 | fn accelerator(&self, id: StateID) -> &[u8] { |
| 2797 | if !self.is_accel_state(id) { |
| 2798 | return &[]; |
| 2799 | } |
| 2800 | self.accels.needles(self.accelerator_index(id)) |
| 2801 | } |
| 2802 | } |
| 2803 | |
| 2804 | /// The transition table portion of a dense DFA. |
| 2805 | /// |
| 2806 | /// The transition table is the core part of the DFA in that it describes how |
| 2807 | /// to move from one state to another based on the input sequence observed. |
| 2808 | #[derive (Clone)] |
| 2809 | pub(crate) struct TransitionTable<T> { |
| 2810 | /// A contiguous region of memory representing the transition table in |
| 2811 | /// row-major order. The representation is dense. That is, every state |
| 2812 | /// has precisely the same number of transitions. The maximum number of |
| 2813 | /// transitions per state is 257 (256 for each possible byte value, plus 1 |
| 2814 | /// for the special EOI transition). If a DFA has been instructed to use |
| 2815 | /// byte classes (the default), then the number of transitions is usually |
| 2816 | /// substantially fewer. |
| 2817 | /// |
| 2818 | /// In practice, T is either `Vec<u32>` or `&[u32]`. |
| 2819 | table: T, |
| 2820 | /// A set of equivalence classes, where a single equivalence class |
| 2821 | /// represents a set of bytes that never discriminate between a match |
| 2822 | /// and a non-match in the DFA. Each equivalence class corresponds to a |
| 2823 | /// single character in this DFA's alphabet, where the maximum number of |
| 2824 | /// characters is 257 (each possible value of a byte plus the special |
| 2825 | /// EOI transition). Consequently, the number of equivalence classes |
| 2826 | /// corresponds to the number of transitions for each DFA state. Note |
| 2827 | /// though that the *space* used by each DFA state in the transition table |
| 2828 | /// may be larger. The total space used by each DFA state is known as the |
| 2829 | /// stride. |
| 2830 | /// |
| 2831 | /// The only time the number of equivalence classes is fewer than 257 is if |
| 2832 | /// the DFA's kind uses byte classes (which is the default). Equivalence |
| 2833 | /// classes should generally only be disabled when debugging, so that |
| 2834 | /// the transitions themselves aren't obscured. Disabling them has no |
| 2835 | /// other benefit, since the equivalence class map is always used while |
| 2836 | /// searching. In the vast majority of cases, the number of equivalence |
| 2837 | /// classes is substantially smaller than 257, particularly when large |
| 2838 | /// Unicode classes aren't used. |
| 2839 | classes: ByteClasses, |
| 2840 | /// The stride of each DFA state, expressed as a power-of-two exponent. |
| 2841 | /// |
| 2842 | /// The stride of a DFA corresponds to the total amount of space used by |
| 2843 | /// each DFA state in the transition table. This may be bigger than the |
| 2844 | /// size of a DFA's alphabet, since the stride is always the smallest |
| 2845 | /// power of two greater than or equal to the alphabet size. |
| 2846 | /// |
| 2847 | /// While this wastes space, this avoids the need for integer division |
| 2848 | /// to convert between premultiplied state IDs and their corresponding |
| 2849 | /// indices. Instead, we can use simple bit-shifts. |
| 2850 | /// |
| 2851 | /// See the docs for the `stride2` method for more details. |
| 2852 | /// |
| 2853 | /// The minimum `stride2` value is `1` (corresponding to a stride of `2`) |
| 2854 | /// while the maximum `stride2` value is `9` (corresponding to a stride of |
| 2855 | /// `512`). The maximum is not `8` since the maximum alphabet size is `257` |
| 2856 | /// when accounting for the special EOI transition. However, an alphabet |
| 2857 | /// length of that size is exceptionally rare since the alphabet is shrunk |
| 2858 | /// into equivalence classes. |
| 2859 | stride2: usize, |
| 2860 | } |
| 2861 | |
| 2862 | impl<'a> TransitionTable<&'a [u32]> { |
| 2863 | /// Deserialize a transition table starting at the beginning of `slice`. |
| 2864 | /// Upon success, return the total number of bytes read along with the |
| 2865 | /// transition table. |
| 2866 | /// |
| 2867 | /// If there was a problem deserializing any part of the transition table, |
| 2868 | /// then this returns an error. Notably, if the given slice does not have |
| 2869 | /// the same alignment as `StateID`, then this will return an error (among |
| 2870 | /// other possible errors). |
| 2871 | /// |
| 2872 | /// This is guaranteed to execute in constant time. |
| 2873 | /// |
| 2874 | /// # Safety |
| 2875 | /// |
| 2876 | /// This routine is not safe because it does not check the valdity of the |
| 2877 | /// transition table itself. In particular, the transition table can be |
| 2878 | /// quite large, so checking its validity can be somewhat expensive. An |
| 2879 | /// invalid transition table is not safe because other code may rely on the |
| 2880 | /// transition table being correct (such as explicit bounds check elision). |
| 2881 | /// Therefore, an invalid transition table can lead to undefined behavior. |
| 2882 | /// |
| 2883 | /// Callers that use this function must either pass on the safety invariant |
| 2884 | /// or guarantee that the bytes given contain a valid transition table. |
| 2885 | /// This guarantee is upheld by the bytes written by `write_to`. |
| 2886 | unsafe fn from_bytes_unchecked( |
| 2887 | mut slice: &'a [u8], |
| 2888 | ) -> Result<(TransitionTable<&'a [u32]>, usize), DeserializeError> { |
| 2889 | let slice_start = slice.as_ptr() as usize; |
| 2890 | |
| 2891 | let (count, nr) = bytes::try_read_u32_as_usize(slice, "state count" )?; |
| 2892 | slice = &slice[nr..]; |
| 2893 | |
| 2894 | let (stride2, nr) = bytes::try_read_u32_as_usize(slice, "stride2" )?; |
| 2895 | slice = &slice[nr..]; |
| 2896 | |
| 2897 | let (classes, nr) = ByteClasses::from_bytes(slice)?; |
| 2898 | slice = &slice[nr..]; |
| 2899 | |
| 2900 | // The alphabet length (determined by the byte class map) cannot be |
| 2901 | // bigger than the stride (total space used by each DFA state). |
| 2902 | if stride2 > 9 { |
| 2903 | return Err(DeserializeError::generic( |
| 2904 | "dense DFA has invalid stride2 (too big)" , |
| 2905 | )); |
| 2906 | } |
| 2907 | // It also cannot be zero, since even a DFA that never matches anything |
| 2908 | // has a non-zero number of states with at least two equivalence |
| 2909 | // classes: one for all 256 byte values and another for the EOI |
| 2910 | // sentinel. |
| 2911 | if stride2 < 1 { |
| 2912 | return Err(DeserializeError::generic( |
| 2913 | "dense DFA has invalid stride2 (too small)" , |
| 2914 | )); |
| 2915 | } |
| 2916 | // This is OK since 1 <= stride2 <= 9. |
| 2917 | let stride = |
| 2918 | 1usize.checked_shl(u32::try_from(stride2).unwrap()).unwrap(); |
| 2919 | if classes.alphabet_len() > stride { |
| 2920 | return Err(DeserializeError::generic( |
| 2921 | "alphabet size cannot be bigger than transition table stride" , |
| 2922 | )); |
| 2923 | } |
| 2924 | |
| 2925 | let trans_count = |
| 2926 | bytes::shl(count, stride2, "dense table transition count" )?; |
| 2927 | let table_bytes_len = bytes::mul( |
| 2928 | trans_count, |
| 2929 | StateID::SIZE, |
| 2930 | "dense table state byte count" , |
| 2931 | )?; |
| 2932 | bytes::check_slice_len(slice, table_bytes_len, "transition table" )?; |
| 2933 | bytes::check_alignment::<StateID>(slice)?; |
| 2934 | let table_bytes = &slice[..table_bytes_len]; |
| 2935 | slice = &slice[table_bytes_len..]; |
| 2936 | // SAFETY: Since StateID is always representable as a u32, all we need |
| 2937 | // to do is ensure that we have the proper length and alignment. We've |
| 2938 | // checked both above, so the cast below is safe. |
| 2939 | // |
| 2940 | // N.B. This is the only not-safe code in this function, so we mark |
| 2941 | // it explicitly to call it out, even though it is technically |
| 2942 | // superfluous. |
| 2943 | #[allow (unused_unsafe)] |
| 2944 | let table = unsafe { |
| 2945 | core::slice::from_raw_parts( |
| 2946 | table_bytes.as_ptr() as *const u32, |
| 2947 | trans_count, |
| 2948 | ) |
| 2949 | }; |
| 2950 | let tt = TransitionTable { table, classes, stride2 }; |
| 2951 | Ok((tt, slice.as_ptr() as usize - slice_start)) |
| 2952 | } |
| 2953 | } |
| 2954 | |
| 2955 | #[cfg (feature = "alloc" )] |
| 2956 | impl TransitionTable<Vec<u32>> { |
| 2957 | /// Create a minimal transition table with just two states: a dead state |
| 2958 | /// and a quit state. The alphabet length and stride of the transition |
| 2959 | /// table is determined by the given set of equivalence classes. |
| 2960 | fn minimal(classes: ByteClasses) -> TransitionTable<Vec<u32>> { |
| 2961 | let mut tt = TransitionTable { |
| 2962 | table: vec![], |
| 2963 | classes, |
| 2964 | stride2: classes.stride2(), |
| 2965 | }; |
| 2966 | // Two states, regardless of alphabet size, can always fit into u32. |
| 2967 | tt.add_empty_state().unwrap(); // dead state |
| 2968 | tt.add_empty_state().unwrap(); // quit state |
| 2969 | tt |
| 2970 | } |
| 2971 | |
| 2972 | /// Set a transition in this table. Both the `from` and `to` states must |
| 2973 | /// already exist, otherwise this panics. `unit` should correspond to the |
| 2974 | /// transition out of `from` to set to `to`. |
| 2975 | fn set(&mut self, from: StateID, unit: alphabet::Unit, to: StateID) { |
| 2976 | assert!(self.is_valid(from), "invalid 'from' state" ); |
| 2977 | assert!(self.is_valid(to), "invalid 'to' state" ); |
| 2978 | self.table[from.as_usize() + self.classes.get_by_unit(unit)] = |
| 2979 | to.as_u32(); |
| 2980 | } |
| 2981 | |
| 2982 | /// Add an empty state (a state where all transitions lead to a dead state) |
| 2983 | /// and return its identifier. The identifier returned is guaranteed to |
| 2984 | /// not point to any other existing state. |
| 2985 | /// |
| 2986 | /// If adding a state would exhaust the state identifier space, then this |
| 2987 | /// returns an error. |
| 2988 | fn add_empty_state(&mut self) -> Result<StateID, Error> { |
| 2989 | // Normally, to get a fresh state identifier, we would just |
| 2990 | // take the index of the next state added to the transition |
| 2991 | // table. However, we actually perform an optimization here |
| 2992 | // that premultiplies state IDs by the stride, such that they |
| 2993 | // point immediately at the beginning of their transitions in |
| 2994 | // the transition table. This avoids an extra multiplication |
| 2995 | // instruction for state lookup at search time. |
| 2996 | // |
| 2997 | // Premultiplied identifiers means that instead of your matching |
| 2998 | // loop looking something like this: |
| 2999 | // |
| 3000 | // state = dfa.start |
| 3001 | // for byte in haystack: |
| 3002 | // next = dfa.transitions[state * stride + byte] |
| 3003 | // if dfa.is_match(next): |
| 3004 | // return true |
| 3005 | // return false |
| 3006 | // |
| 3007 | // it can instead look like this: |
| 3008 | // |
| 3009 | // state = dfa.start |
| 3010 | // for byte in haystack: |
| 3011 | // next = dfa.transitions[state + byte] |
| 3012 | // if dfa.is_match(next): |
| 3013 | // return true |
| 3014 | // return false |
| 3015 | // |
| 3016 | // In other words, we save a multiplication instruction in the |
| 3017 | // critical path. This turns out to be a decent performance win. |
| 3018 | // The cost of using premultiplied state ids is that they can |
| 3019 | // require a bigger state id representation. (And they also make |
| 3020 | // the code a bit more complex, especially during minimization and |
| 3021 | // when reshuffling states, as one needs to convert back and forth |
| 3022 | // between state IDs and state indices.) |
| 3023 | // |
| 3024 | // To do this, we simply take the index of the state into the |
| 3025 | // entire transition table, rather than the index of the state |
| 3026 | // itself. e.g., If the stride is 64, then the ID of the 3rd state |
| 3027 | // is 192, not 2. |
| 3028 | let next = self.table.len(); |
| 3029 | let id = StateID::new(next).map_err(|_| Error::too_many_states())?; |
| 3030 | self.table.extend(iter::repeat(0).take(self.stride())); |
| 3031 | Ok(id) |
| 3032 | } |
| 3033 | |
| 3034 | /// Swap the two states given in this transition table. |
| 3035 | /// |
| 3036 | /// This routine does not do anything to check the correctness of this |
| 3037 | /// swap. Callers must ensure that other states pointing to id1 and id2 are |
| 3038 | /// updated appropriately. |
| 3039 | /// |
| 3040 | /// Both id1 and id2 must point to valid states, otherwise this panics. |
| 3041 | fn swap(&mut self, id1: StateID, id2: StateID) { |
| 3042 | assert!(self.is_valid(id1), "invalid 'id1' state: {:?}" , id1); |
| 3043 | assert!(self.is_valid(id2), "invalid 'id2' state: {:?}" , id2); |
| 3044 | // We only need to swap the parts of the state that are used. So if the |
| 3045 | // stride is 64, but the alphabet length is only 33, then we save a lot |
| 3046 | // of work. |
| 3047 | for b in 0..self.classes.alphabet_len() { |
| 3048 | self.table.swap(id1.as_usize() + b, id2.as_usize() + b); |
| 3049 | } |
| 3050 | } |
| 3051 | |
| 3052 | /// Truncate the states in this transition table to the given count. |
| 3053 | /// |
| 3054 | /// This routine does not do anything to check the correctness of this |
| 3055 | /// truncation. Callers must ensure that other states pointing to truncated |
| 3056 | /// states are updated appropriately. |
| 3057 | fn truncate(&mut self, count: usize) { |
| 3058 | self.table.truncate(count << self.stride2); |
| 3059 | } |
| 3060 | |
| 3061 | /// Return a mutable representation of the state corresponding to the given |
| 3062 | /// id. This is useful for implementing routines that manipulate DFA states |
| 3063 | /// (e.g., swapping states). |
| 3064 | fn state_mut(&mut self, id: StateID) -> StateMut<'_> { |
| 3065 | let alphabet_len = self.alphabet_len(); |
| 3066 | let i = id.as_usize(); |
| 3067 | StateMut { |
| 3068 | id, |
| 3069 | stride2: self.stride2, |
| 3070 | transitions: &mut self.table_mut()[i..i + alphabet_len], |
| 3071 | } |
| 3072 | } |
| 3073 | } |
| 3074 | |
| 3075 | impl<T: AsRef<[u32]>> TransitionTable<T> { |
| 3076 | /// Writes a serialized form of this transition table to the buffer given. |
| 3077 | /// If the buffer is too small, then an error is returned. To determine |
| 3078 | /// how big the buffer must be, use `write_to_len`. |
| 3079 | fn write_to<E: Endian>( |
| 3080 | &self, |
| 3081 | mut dst: &mut [u8], |
| 3082 | ) -> Result<usize, SerializeError> { |
| 3083 | let nwrite = self.write_to_len(); |
| 3084 | if dst.len() < nwrite { |
| 3085 | return Err(SerializeError::buffer_too_small("transition table" )); |
| 3086 | } |
| 3087 | dst = &mut dst[..nwrite]; |
| 3088 | |
| 3089 | // write state count |
| 3090 | // Unwrap is OK since number of states is guaranteed to fit in a u32. |
| 3091 | E::write_u32(u32::try_from(self.count()).unwrap(), dst); |
| 3092 | dst = &mut dst[size_of::<u32>()..]; |
| 3093 | |
| 3094 | // write state stride (as power of 2) |
| 3095 | // Unwrap is OK since stride2 is guaranteed to be <= 9. |
| 3096 | E::write_u32(u32::try_from(self.stride2).unwrap(), dst); |
| 3097 | dst = &mut dst[size_of::<u32>()..]; |
| 3098 | |
| 3099 | // write byte class map |
| 3100 | let n = self.classes.write_to(dst)?; |
| 3101 | dst = &mut dst[n..]; |
| 3102 | |
| 3103 | // write actual transitions |
| 3104 | for &sid in self.table() { |
| 3105 | let n = bytes::write_state_id::<E>(sid, &mut dst); |
| 3106 | dst = &mut dst[n..]; |
| 3107 | } |
| 3108 | Ok(nwrite) |
| 3109 | } |
| 3110 | |
| 3111 | /// Returns the number of bytes the serialized form of this transition |
| 3112 | /// table will use. |
| 3113 | fn write_to_len(&self) -> usize { |
| 3114 | size_of::<u32>() // state count |
| 3115 | + size_of::<u32>() // stride2 |
| 3116 | + self.classes.write_to_len() |
| 3117 | + (self.table().len() * StateID::SIZE) |
| 3118 | } |
| 3119 | |
| 3120 | /// Validates that every state ID in this transition table is valid. |
| 3121 | /// |
| 3122 | /// That is, every state ID can be used to correctly index a state in this |
| 3123 | /// table. |
| 3124 | fn validate(&self) -> Result<(), DeserializeError> { |
| 3125 | for state in self.states() { |
| 3126 | for (_, to) in state.transitions() { |
| 3127 | if !self.is_valid(to) { |
| 3128 | return Err(DeserializeError::generic( |
| 3129 | "found invalid state ID in transition table" , |
| 3130 | )); |
| 3131 | } |
| 3132 | } |
| 3133 | } |
| 3134 | Ok(()) |
| 3135 | } |
| 3136 | |
| 3137 | /// Converts this transition table to a borrowed value. |
| 3138 | fn as_ref(&self) -> TransitionTable<&'_ [u32]> { |
| 3139 | TransitionTable { |
| 3140 | table: self.table.as_ref(), |
| 3141 | classes: self.classes.clone(), |
| 3142 | stride2: self.stride2, |
| 3143 | } |
| 3144 | } |
| 3145 | |
| 3146 | /// Converts this transition table to an owned value. |
| 3147 | #[cfg (feature = "alloc" )] |
| 3148 | fn to_owned(&self) -> TransitionTable<Vec<u32>> { |
| 3149 | TransitionTable { |
| 3150 | table: self.table.as_ref().to_vec(), |
| 3151 | classes: self.classes.clone(), |
| 3152 | stride2: self.stride2, |
| 3153 | } |
| 3154 | } |
| 3155 | |
| 3156 | /// Return the state for the given ID. If the given ID is not valid, then |
| 3157 | /// this panics. |
| 3158 | fn state(&self, id: StateID) -> State<'_> { |
| 3159 | assert!(self.is_valid(id)); |
| 3160 | |
| 3161 | let i = id.as_usize(); |
| 3162 | State { |
| 3163 | id, |
| 3164 | stride2: self.stride2, |
| 3165 | transitions: &self.table()[i..i + self.alphabet_len()], |
| 3166 | } |
| 3167 | } |
| 3168 | |
| 3169 | /// Returns an iterator over all states in this transition table. |
| 3170 | /// |
| 3171 | /// This iterator yields a tuple for each state. The first element of the |
| 3172 | /// tuple corresponds to a state's identifier, and the second element |
| 3173 | /// corresponds to the state itself (comprised of its transitions). |
| 3174 | fn states(&self) -> StateIter<'_, T> { |
| 3175 | StateIter { |
| 3176 | tt: self, |
| 3177 | it: self.table().chunks(self.stride()).enumerate(), |
| 3178 | } |
| 3179 | } |
| 3180 | |
| 3181 | /// Convert a state identifier to an index to a state (in the range |
| 3182 | /// 0..self.count()). |
| 3183 | /// |
| 3184 | /// This is useful when using a `Vec<T>` as an efficient map keyed by state |
| 3185 | /// to some other information (such as a remapped state ID). |
| 3186 | /// |
| 3187 | /// If the given ID is not valid, then this may panic or produce an |
| 3188 | /// incorrect index. |
| 3189 | fn to_index(&self, id: StateID) -> usize { |
| 3190 | id.as_usize() >> self.stride2 |
| 3191 | } |
| 3192 | |
| 3193 | /// Convert an index to a state (in the range 0..self.count()) to an actual |
| 3194 | /// state identifier. |
| 3195 | /// |
| 3196 | /// This is useful when using a `Vec<T>` as an efficient map keyed by state |
| 3197 | /// to some other information (such as a remapped state ID). |
| 3198 | /// |
| 3199 | /// If the given index is not in the specified range, then this may panic |
| 3200 | /// or produce an incorrect state ID. |
| 3201 | fn from_index(&self, index: usize) -> StateID { |
| 3202 | // CORRECTNESS: If the given index is not valid, then it is not |
| 3203 | // required for this to panic or return a valid state ID. |
| 3204 | StateID::new_unchecked(index << self.stride2) |
| 3205 | } |
| 3206 | |
| 3207 | /// Returns the state ID for the state immediately following the one given. |
| 3208 | /// |
| 3209 | /// This does not check whether the state ID returned is invalid. In fact, |
| 3210 | /// if the state ID given is the last state in this DFA, then the state ID |
| 3211 | /// returned is guaranteed to be invalid. |
| 3212 | #[cfg (feature = "alloc" )] |
| 3213 | fn next_state_id(&self, id: StateID) -> StateID { |
| 3214 | self.from_index(self.to_index(id).checked_add(1).unwrap()) |
| 3215 | } |
| 3216 | |
| 3217 | /// Returns the state ID for the state immediately preceding the one given. |
| 3218 | /// |
| 3219 | /// If the dead ID given (which is zero), then this panics. |
| 3220 | #[cfg (feature = "alloc" )] |
| 3221 | fn prev_state_id(&self, id: StateID) -> StateID { |
| 3222 | self.from_index(self.to_index(id).checked_sub(1).unwrap()) |
| 3223 | } |
| 3224 | |
| 3225 | /// Returns the table as a slice of state IDs. |
| 3226 | fn table(&self) -> &[StateID] { |
| 3227 | let integers = self.table.as_ref(); |
| 3228 | // SAFETY: This is safe because StateID is guaranteed to be |
| 3229 | // representable as a u32. |
| 3230 | unsafe { |
| 3231 | core::slice::from_raw_parts( |
| 3232 | integers.as_ptr() as *const StateID, |
| 3233 | integers.len(), |
| 3234 | ) |
| 3235 | } |
| 3236 | } |
| 3237 | |
| 3238 | /// Returns the total number of states in this transition table. |
| 3239 | /// |
| 3240 | /// Note that a DFA always has at least two states: the dead and quit |
| 3241 | /// states. In particular, the dead state always has ID 0 and is |
| 3242 | /// correspondingly always the first state. The dead state is never a match |
| 3243 | /// state. |
| 3244 | fn count(&self) -> usize { |
| 3245 | self.table().len() >> self.stride2 |
| 3246 | } |
| 3247 | |
| 3248 | /// Returns the total stride for every state in this DFA. This corresponds |
| 3249 | /// to the total number of transitions used by each state in this DFA's |
| 3250 | /// transition table. |
| 3251 | fn stride(&self) -> usize { |
| 3252 | 1 << self.stride2 |
| 3253 | } |
| 3254 | |
| 3255 | /// Returns the total number of elements in the alphabet for this |
| 3256 | /// transition table. This is always less than or equal to `self.stride()`. |
| 3257 | /// It is only equal when the alphabet length is a power of 2. Otherwise, |
| 3258 | /// it is always strictly less. |
| 3259 | fn alphabet_len(&self) -> usize { |
| 3260 | self.classes.alphabet_len() |
| 3261 | } |
| 3262 | |
| 3263 | /// Returns true if and only if the given state ID is valid for this |
| 3264 | /// transition table. Validity in this context means that the given ID can |
| 3265 | /// be used as a valid offset with `self.stride()` to index this transition |
| 3266 | /// table. |
| 3267 | fn is_valid(&self, id: StateID) -> bool { |
| 3268 | let id = id.as_usize(); |
| 3269 | id < self.table().len() && id % self.stride() == 0 |
| 3270 | } |
| 3271 | |
| 3272 | /// Return the memory usage, in bytes, of this transition table. |
| 3273 | /// |
| 3274 | /// This does not include the size of a `TransitionTable` value itself. |
| 3275 | fn memory_usage(&self) -> usize { |
| 3276 | self.table().len() * StateID::SIZE |
| 3277 | } |
| 3278 | } |
| 3279 | |
| 3280 | #[cfg (feature = "alloc" )] |
| 3281 | impl<T: AsMut<[u32]>> TransitionTable<T> { |
| 3282 | /// Returns the table as a slice of state IDs. |
| 3283 | fn table_mut(&mut self) -> &mut [StateID] { |
| 3284 | let integers = self.table.as_mut(); |
| 3285 | // SAFETY: This is safe because StateID is guaranteed to be |
| 3286 | // representable as a u32. |
| 3287 | unsafe { |
| 3288 | core::slice::from_raw_parts_mut( |
| 3289 | integers.as_mut_ptr() as *mut StateID, |
| 3290 | integers.len(), |
| 3291 | ) |
| 3292 | } |
| 3293 | } |
| 3294 | } |
| 3295 | |
| 3296 | /// The set of all possible starting states in a DFA. |
| 3297 | /// |
| 3298 | /// The set of starting states corresponds to the possible choices one can make |
| 3299 | /// in terms of starting a DFA. That is, before following the first transition, |
| 3300 | /// you first need to select the state that you start in. |
| 3301 | /// |
| 3302 | /// Normally, a DFA converted from an NFA that has a single starting state |
| 3303 | /// would itself just have one starting state. However, our support for look |
| 3304 | /// around generally requires more starting states. The correct starting state |
| 3305 | /// is chosen based on certain properties of the position at which we begin |
| 3306 | /// our search. |
| 3307 | /// |
| 3308 | /// Before listing those properties, we first must define two terms: |
| 3309 | /// |
| 3310 | /// * `haystack` - The bytes to execute the search. The search always starts |
| 3311 | /// at the beginning of `haystack` and ends before or at the end of |
| 3312 | /// `haystack`. |
| 3313 | /// * `context` - The (possibly empty) bytes surrounding `haystack`. `haystack` |
| 3314 | /// must be contained within `context` such that `context` is at least as big |
| 3315 | /// as `haystack`. |
| 3316 | /// |
| 3317 | /// This split is crucial for dealing with look-around. For example, consider |
| 3318 | /// the context `foobarbaz`, the haystack `bar` and the regex `^bar$`. This |
| 3319 | /// regex should _not_ match the haystack since `bar` does not appear at the |
| 3320 | /// beginning of the input. Similarly, the regex `\Bbar\B` should match the |
| 3321 | /// haystack because `bar` is not surrounded by word boundaries. But a search |
| 3322 | /// that does not take context into account would not permit `\B` to match |
| 3323 | /// since the beginning of any string matches a word boundary. Similarly, a |
| 3324 | /// search that does not take context into account when searching `^bar$` in |
| 3325 | /// the haystack `bar` would produce a match when it shouldn't. |
| 3326 | /// |
| 3327 | /// Thus, it follows that the starting state is chosen based on the following |
| 3328 | /// criteria, derived from the position at which the search starts in the |
| 3329 | /// `context` (corresponding to the start of `haystack`): |
| 3330 | /// |
| 3331 | /// 1. If the search starts at the beginning of `context`, then the `Text` |
| 3332 | /// start state is used. (Since `^` corresponds to |
| 3333 | /// `hir::Anchor::StartText`.) |
| 3334 | /// 2. If the search starts at a position immediately following a line |
| 3335 | /// terminator, then the `Line` start state is used. (Since `(?m:^)` |
| 3336 | /// corresponds to `hir::Anchor::StartLine`.) |
| 3337 | /// 3. If the search starts at a position immediately following a byte |
| 3338 | /// classified as a "word" character (`[_0-9a-zA-Z]`), then the `WordByte` |
| 3339 | /// start state is used. (Since `(?-u:\b)` corresponds to a word boundary.) |
| 3340 | /// 4. Otherwise, if the search starts at a position immediately following |
| 3341 | /// a byte that is not classified as a "word" character (`[^_0-9a-zA-Z]`), |
| 3342 | /// then the `NonWordByte` start state is used. (Since `(?-u:\B)` |
| 3343 | /// corresponds to a not-word-boundary.) |
| 3344 | /// |
| 3345 | /// (N.B. Unicode word boundaries are not supported by the DFA because they |
| 3346 | /// require multi-byte look-around and this is difficult to support in a DFA.) |
| 3347 | /// |
| 3348 | /// To further complicate things, we also support constructing individual |
| 3349 | /// anchored start states for each pattern in the DFA. (Which is required to |
| 3350 | /// implement overlapping regexes correctly, but is also generally useful.) |
| 3351 | /// Thus, when individual start states for each pattern are enabled, then the |
| 3352 | /// total number of start states represented is `4 + (4 * #patterns)`, where |
| 3353 | /// the 4 comes from each of the 4 possibilities above. The first 4 represents |
| 3354 | /// the starting states for the entire DFA, which support searching for |
| 3355 | /// multiple patterns simultaneously (possibly unanchored). |
| 3356 | /// |
| 3357 | /// If individual start states are disabled, then this will only store 4 |
| 3358 | /// start states. Typically, individual start states are only enabled when |
| 3359 | /// constructing the reverse DFA for regex matching. But they are also useful |
| 3360 | /// for building DFAs that can search for a specific pattern or even to support |
| 3361 | /// both anchored and unanchored searches with the same DFA. |
| 3362 | /// |
| 3363 | /// Note though that while the start table always has either `4` or |
| 3364 | /// `4 + (4 * #patterns)` starting state *ids*, the total number of states |
| 3365 | /// might be considerably smaller. That is, many of the IDs may be duplicative. |
| 3366 | /// (For example, if a regex doesn't have a `\b` sub-pattern, then there's no |
| 3367 | /// reason to generate a unique starting state for handling word boundaries. |
| 3368 | /// Similarly for start/end anchors.) |
| 3369 | #[derive (Clone)] |
| 3370 | pub(crate) struct StartTable<T> { |
| 3371 | /// The initial start state IDs. |
| 3372 | /// |
| 3373 | /// In practice, T is either `Vec<u32>` or `&[u32]`. |
| 3374 | /// |
| 3375 | /// The first `stride` (currently always 4) entries always correspond to |
| 3376 | /// the start states for the entire DFA. After that, there are |
| 3377 | /// `stride * patterns` state IDs, where `patterns` may be zero in the |
| 3378 | /// case of a DFA with no patterns or in the case where the DFA was built |
| 3379 | /// without enabling starting states for each pattern. |
| 3380 | table: T, |
| 3381 | /// The number of starting state IDs per pattern. |
| 3382 | stride: usize, |
| 3383 | /// The total number of patterns for which starting states are encoded. |
| 3384 | /// This may be zero for non-empty DFAs when the DFA was built without |
| 3385 | /// start states for each pattern. Thus, one cannot use this field to |
| 3386 | /// say how many patterns are in the DFA in all cases. It is specific to |
| 3387 | /// how many patterns are represented in this start table. |
| 3388 | patterns: usize, |
| 3389 | } |
| 3390 | |
| 3391 | #[cfg (feature = "alloc" )] |
| 3392 | impl StartTable<Vec<u32>> { |
| 3393 | /// Create a valid set of start states all pointing to the dead state. |
| 3394 | /// |
| 3395 | /// When the corresponding DFA is constructed with start states for each |
| 3396 | /// pattern, then `patterns` should be the number of patterns. Otherwise, |
| 3397 | /// it should be zero. |
| 3398 | /// |
| 3399 | /// If the total table size could exceed the allocatable limit, then this |
| 3400 | /// returns an error. In practice, this is unlikely to be able to occur, |
| 3401 | /// since it's likely that allocation would have failed long before it got |
| 3402 | /// to this point. |
| 3403 | fn dead(patterns: usize) -> Result<StartTable<Vec<u32>>, Error> { |
| 3404 | assert!(patterns <= PatternID::LIMIT); |
| 3405 | let stride = Start::count(); |
| 3406 | let pattern_starts_len = match stride.checked_mul(patterns) { |
| 3407 | Some(x) => x, |
| 3408 | None => return Err(Error::too_many_start_states()), |
| 3409 | }; |
| 3410 | let table_len = match stride.checked_add(pattern_starts_len) { |
| 3411 | Some(x) => x, |
| 3412 | None => return Err(Error::too_many_start_states()), |
| 3413 | }; |
| 3414 | if table_len > core::isize::MAX as usize { |
| 3415 | return Err(Error::too_many_start_states()); |
| 3416 | } |
| 3417 | let table = vec![DEAD.as_u32(); table_len]; |
| 3418 | Ok(StartTable { table, stride, patterns }) |
| 3419 | } |
| 3420 | } |
| 3421 | |
| 3422 | impl<'a> StartTable<&'a [u32]> { |
| 3423 | /// Deserialize a table of start state IDs starting at the beginning of |
| 3424 | /// `slice`. Upon success, return the total number of bytes read along with |
| 3425 | /// the table of starting state IDs. |
| 3426 | /// |
| 3427 | /// If there was a problem deserializing any part of the starting IDs, |
| 3428 | /// then this returns an error. Notably, if the given slice does not have |
| 3429 | /// the same alignment as `StateID`, then this will return an error (among |
| 3430 | /// other possible errors). |
| 3431 | /// |
| 3432 | /// This is guaranteed to execute in constant time. |
| 3433 | /// |
| 3434 | /// # Safety |
| 3435 | /// |
| 3436 | /// This routine is not safe because it does not check the valdity of the |
| 3437 | /// starting state IDs themselves. In particular, the number of starting |
| 3438 | /// IDs can be of variable length, so it's possible that checking their |
| 3439 | /// validity cannot be done in constant time. An invalid starting state |
| 3440 | /// ID is not safe because other code may rely on the starting IDs being |
| 3441 | /// correct (such as explicit bounds check elision). Therefore, an invalid |
| 3442 | /// start ID can lead to undefined behavior. |
| 3443 | /// |
| 3444 | /// Callers that use this function must either pass on the safety invariant |
| 3445 | /// or guarantee that the bytes given contain valid starting state IDs. |
| 3446 | /// This guarantee is upheld by the bytes written by `write_to`. |
| 3447 | unsafe fn from_bytes_unchecked( |
| 3448 | mut slice: &'a [u8], |
| 3449 | ) -> Result<(StartTable<&'a [u32]>, usize), DeserializeError> { |
| 3450 | let slice_start = slice.as_ptr() as usize; |
| 3451 | |
| 3452 | let (stride, nr) = |
| 3453 | bytes::try_read_u32_as_usize(slice, "start table stride" )?; |
| 3454 | slice = &slice[nr..]; |
| 3455 | |
| 3456 | let (patterns, nr) = |
| 3457 | bytes::try_read_u32_as_usize(slice, "start table patterns" )?; |
| 3458 | slice = &slice[nr..]; |
| 3459 | |
| 3460 | if stride != Start::count() { |
| 3461 | return Err(DeserializeError::generic( |
| 3462 | "invalid starting table stride" , |
| 3463 | )); |
| 3464 | } |
| 3465 | if patterns > PatternID::LIMIT { |
| 3466 | return Err(DeserializeError::generic( |
| 3467 | "invalid number of patterns" , |
| 3468 | )); |
| 3469 | } |
| 3470 | let pattern_table_size = |
| 3471 | bytes::mul(stride, patterns, "invalid pattern count" )?; |
| 3472 | // Our start states always start with a single stride of start states |
| 3473 | // for the entire automaton which permit it to match any pattern. What |
| 3474 | // follows it are an optional set of start states for each pattern. |
| 3475 | let start_state_count = bytes::add( |
| 3476 | stride, |
| 3477 | pattern_table_size, |
| 3478 | "invalid 'any' pattern starts size" , |
| 3479 | )?; |
| 3480 | let table_bytes_len = bytes::mul( |
| 3481 | start_state_count, |
| 3482 | StateID::SIZE, |
| 3483 | "pattern table bytes length" , |
| 3484 | )?; |
| 3485 | bytes::check_slice_len(slice, table_bytes_len, "start ID table" )?; |
| 3486 | bytes::check_alignment::<StateID>(slice)?; |
| 3487 | let table_bytes = &slice[..table_bytes_len]; |
| 3488 | slice = &slice[table_bytes_len..]; |
| 3489 | // SAFETY: Since StateID is always representable as a u32, all we need |
| 3490 | // to do is ensure that we have the proper length and alignment. We've |
| 3491 | // checked both above, so the cast below is safe. |
| 3492 | // |
| 3493 | // N.B. This is the only not-safe code in this function, so we mark |
| 3494 | // it explicitly to call it out, even though it is technically |
| 3495 | // superfluous. |
| 3496 | #[allow (unused_unsafe)] |
| 3497 | let table = unsafe { |
| 3498 | core::slice::from_raw_parts( |
| 3499 | table_bytes.as_ptr() as *const u32, |
| 3500 | start_state_count, |
| 3501 | ) |
| 3502 | }; |
| 3503 | let st = StartTable { table, stride, patterns }; |
| 3504 | Ok((st, slice.as_ptr() as usize - slice_start)) |
| 3505 | } |
| 3506 | } |
| 3507 | |
| 3508 | impl<T: AsRef<[u32]>> StartTable<T> { |
| 3509 | /// Writes a serialized form of this start table to the buffer given. If |
| 3510 | /// the buffer is too small, then an error is returned. To determine how |
| 3511 | /// big the buffer must be, use `write_to_len`. |
| 3512 | fn write_to<E: Endian>( |
| 3513 | &self, |
| 3514 | mut dst: &mut [u8], |
| 3515 | ) -> Result<usize, SerializeError> { |
| 3516 | let nwrite = self.write_to_len(); |
| 3517 | if dst.len() < nwrite { |
| 3518 | return Err(SerializeError::buffer_too_small( |
| 3519 | "starting table ids" , |
| 3520 | )); |
| 3521 | } |
| 3522 | dst = &mut dst[..nwrite]; |
| 3523 | |
| 3524 | // write stride |
| 3525 | // Unwrap is OK since the stride is always 4 (currently). |
| 3526 | E::write_u32(u32::try_from(self.stride).unwrap(), dst); |
| 3527 | dst = &mut dst[size_of::<u32>()..]; |
| 3528 | // write pattern count |
| 3529 | // Unwrap is OK since number of patterns is guaranteed to fit in a u32. |
| 3530 | E::write_u32(u32::try_from(self.patterns).unwrap(), dst); |
| 3531 | dst = &mut dst[size_of::<u32>()..]; |
| 3532 | // write start IDs |
| 3533 | for &sid in self.table() { |
| 3534 | let n = bytes::write_state_id::<E>(sid, &mut dst); |
| 3535 | dst = &mut dst[n..]; |
| 3536 | } |
| 3537 | Ok(nwrite) |
| 3538 | } |
| 3539 | |
| 3540 | /// Returns the number of bytes the serialized form of this start ID table |
| 3541 | /// will use. |
| 3542 | fn write_to_len(&self) -> usize { |
| 3543 | size_of::<u32>() // stride |
| 3544 | + size_of::<u32>() // # patterns |
| 3545 | + (self.table().len() * StateID::SIZE) |
| 3546 | } |
| 3547 | |
| 3548 | /// Validates that every state ID in this start table is valid by checking |
| 3549 | /// it against the given transition table (which must be for the same DFA). |
| 3550 | /// |
| 3551 | /// That is, every state ID can be used to correctly index a state. |
| 3552 | fn validate( |
| 3553 | &self, |
| 3554 | tt: &TransitionTable<T>, |
| 3555 | ) -> Result<(), DeserializeError> { |
| 3556 | for &id in self.table() { |
| 3557 | if !tt.is_valid(id) { |
| 3558 | return Err(DeserializeError::generic( |
| 3559 | "found invalid starting state ID" , |
| 3560 | )); |
| 3561 | } |
| 3562 | } |
| 3563 | Ok(()) |
| 3564 | } |
| 3565 | |
| 3566 | /// Converts this start list to a borrowed value. |
| 3567 | fn as_ref(&self) -> StartTable<&'_ [u32]> { |
| 3568 | StartTable { |
| 3569 | table: self.table.as_ref(), |
| 3570 | stride: self.stride, |
| 3571 | patterns: self.patterns, |
| 3572 | } |
| 3573 | } |
| 3574 | |
| 3575 | /// Converts this start list to an owned value. |
| 3576 | #[cfg (feature = "alloc" )] |
| 3577 | fn to_owned(&self) -> StartTable<Vec<u32>> { |
| 3578 | StartTable { |
| 3579 | table: self.table.as_ref().to_vec(), |
| 3580 | stride: self.stride, |
| 3581 | patterns: self.patterns, |
| 3582 | } |
| 3583 | } |
| 3584 | |
| 3585 | /// Return the start state for the given start index and pattern ID. If the |
| 3586 | /// pattern ID is None, then the corresponding start state for the entire |
| 3587 | /// DFA is returned. If the pattern ID is not None, then the corresponding |
| 3588 | /// starting state for the given pattern is returned. If this start table |
| 3589 | /// does not have individual starting states for each pattern, then this |
| 3590 | /// panics. |
| 3591 | fn start(&self, index: Start, pattern_id: Option<PatternID>) -> StateID { |
| 3592 | let start_index = index.as_usize(); |
| 3593 | let index = match pattern_id { |
| 3594 | None => start_index, |
| 3595 | Some(pid) => { |
| 3596 | let pid = pid.as_usize(); |
| 3597 | assert!(pid < self.patterns, "invalid pattern ID {:?}" , pid); |
| 3598 | self.stride + (self.stride * pid) + start_index |
| 3599 | } |
| 3600 | }; |
| 3601 | self.table()[index] |
| 3602 | } |
| 3603 | |
| 3604 | /// Returns an iterator over all start state IDs in this table. |
| 3605 | /// |
| 3606 | /// Each item is a triple of: start state ID, the start state type and the |
| 3607 | /// pattern ID (if any). |
| 3608 | fn iter(&self) -> StartStateIter<'_> { |
| 3609 | StartStateIter { st: self.as_ref(), i: 0 } |
| 3610 | } |
| 3611 | |
| 3612 | /// Returns the table as a slice of state IDs. |
| 3613 | fn table(&self) -> &[StateID] { |
| 3614 | let integers = self.table.as_ref(); |
| 3615 | // SAFETY: This is safe because StateID is guaranteed to be |
| 3616 | // representable as a u32. |
| 3617 | unsafe { |
| 3618 | core::slice::from_raw_parts( |
| 3619 | integers.as_ptr() as *const StateID, |
| 3620 | integers.len(), |
| 3621 | ) |
| 3622 | } |
| 3623 | } |
| 3624 | |
| 3625 | /// Return the memory usage, in bytes, of this start list. |
| 3626 | /// |
| 3627 | /// This does not include the size of a `StartList` value itself. |
| 3628 | fn memory_usage(&self) -> usize { |
| 3629 | self.table().len() * StateID::SIZE |
| 3630 | } |
| 3631 | } |
| 3632 | |
| 3633 | #[cfg (feature = "alloc" )] |
| 3634 | impl<T: AsMut<[u32]>> StartTable<T> { |
| 3635 | /// Set the start state for the given index and pattern. |
| 3636 | /// |
| 3637 | /// If the pattern ID or state ID are not valid, then this will panic. |
| 3638 | fn set_start( |
| 3639 | &mut self, |
| 3640 | index: Start, |
| 3641 | pattern_id: Option<PatternID>, |
| 3642 | id: StateID, |
| 3643 | ) { |
| 3644 | let start_index = index.as_usize(); |
| 3645 | let index = match pattern_id { |
| 3646 | None => start_index, |
| 3647 | Some(pid) => self |
| 3648 | .stride |
| 3649 | .checked_mul(pid.as_usize()) |
| 3650 | .unwrap() |
| 3651 | .checked_add(self.stride) |
| 3652 | .unwrap() |
| 3653 | .checked_add(start_index) |
| 3654 | .unwrap(), |
| 3655 | }; |
| 3656 | self.table_mut()[index] = id; |
| 3657 | } |
| 3658 | |
| 3659 | /// Returns the table as a mutable slice of state IDs. |
| 3660 | fn table_mut(&mut self) -> &mut [StateID] { |
| 3661 | let integers = self.table.as_mut(); |
| 3662 | // SAFETY: This is safe because StateID is guaranteed to be |
| 3663 | // representable as a u32. |
| 3664 | unsafe { |
| 3665 | core::slice::from_raw_parts_mut( |
| 3666 | integers.as_mut_ptr() as *mut StateID, |
| 3667 | integers.len(), |
| 3668 | ) |
| 3669 | } |
| 3670 | } |
| 3671 | } |
| 3672 | |
| 3673 | /// An iterator over start state IDs. |
| 3674 | /// |
| 3675 | /// This iterator yields a triple of start state ID, the start state type |
| 3676 | /// and the pattern ID (if any). The pattern ID is None for start states |
| 3677 | /// corresponding to the entire DFA and non-None for start states corresponding |
| 3678 | /// to a specific pattern. The latter only occurs when the DFA is compiled with |
| 3679 | /// start states for each pattern. |
| 3680 | pub(crate) struct StartStateIter<'a> { |
| 3681 | st: StartTable<&'a [u32]>, |
| 3682 | i: usize, |
| 3683 | } |
| 3684 | |
| 3685 | impl<'a> Iterator for StartStateIter<'a> { |
| 3686 | type Item = (StateID, Start, Option<PatternID>); |
| 3687 | |
| 3688 | fn next(&mut self) -> Option<(StateID, Start, Option<PatternID>)> { |
| 3689 | let i: usize = self.i; |
| 3690 | let table: &[StateID] = self.st.table(); |
| 3691 | if i >= table.len() { |
| 3692 | return None; |
| 3693 | } |
| 3694 | self.i += 1; |
| 3695 | |
| 3696 | // This unwrap is okay since the stride of the starting state table |
| 3697 | // must always match the number of start state types. |
| 3698 | let start_type: Start = Start::from_usize(i % self.st.stride).unwrap(); |
| 3699 | let pid: Option = if i < self.st.stride { |
| 3700 | None |
| 3701 | } else { |
| 3702 | Some( |
| 3703 | PatternID::new((i - self.st.stride) / self.st.stride).unwrap(), |
| 3704 | ) |
| 3705 | }; |
| 3706 | Some((table[i], start_type, pid)) |
| 3707 | } |
| 3708 | } |
| 3709 | |
| 3710 | /// This type represents that patterns that should be reported whenever a DFA |
| 3711 | /// enters a match state. This structure exists to support DFAs that search for |
| 3712 | /// matches for multiple regexes. |
| 3713 | /// |
| 3714 | /// This structure relies on the fact that all match states in a DFA occur |
| 3715 | /// contiguously in the DFA's transition table. (See dfa/special.rs for a more |
| 3716 | /// detailed breakdown of the representation.) Namely, when a match occurs, we |
| 3717 | /// know its state ID. Since we know the start and end of the contiguous region |
| 3718 | /// of match states, we can use that to compute the position at which the match |
| 3719 | /// state occurs. That in turn is used as an offset into this structure. |
| 3720 | #[derive (Clone, Debug)] |
| 3721 | struct MatchStates<T> { |
| 3722 | /// Slices is a flattened sequence of pairs, where each pair points to a |
| 3723 | /// sub-slice of pattern_ids. The first element of the pair is an offset |
| 3724 | /// into pattern_ids and the second element of the pair is the number |
| 3725 | /// of 32-bit pattern IDs starting at that position. That is, each pair |
| 3726 | /// corresponds to a single DFA match state and its corresponding match |
| 3727 | /// IDs. The number of pairs always corresponds to the number of distinct |
| 3728 | /// DFA match states. |
| 3729 | /// |
| 3730 | /// In practice, T is either Vec<u32> or &[u32]. |
| 3731 | slices: T, |
| 3732 | /// A flattened sequence of pattern IDs for each DFA match state. The only |
| 3733 | /// way to correctly read this sequence is indirectly via `slices`. |
| 3734 | /// |
| 3735 | /// In practice, T is either Vec<u32> or &[u32]. |
| 3736 | pattern_ids: T, |
| 3737 | /// The total number of unique patterns represented by these match states. |
| 3738 | patterns: usize, |
| 3739 | } |
| 3740 | |
| 3741 | impl<'a> MatchStates<&'a [u32]> { |
| 3742 | unsafe fn from_bytes_unchecked( |
| 3743 | mut slice: &'a [u8], |
| 3744 | ) -> Result<(MatchStates<&'a [u32]>, usize), DeserializeError> { |
| 3745 | let slice_start = slice.as_ptr() as usize; |
| 3746 | |
| 3747 | // Read the total number of match states. |
| 3748 | let (count, nr) = |
| 3749 | bytes::try_read_u32_as_usize(slice, "match state count" )?; |
| 3750 | slice = &slice[nr..]; |
| 3751 | |
| 3752 | // Read the slice start/length pairs. |
| 3753 | let pair_count = bytes::mul(2, count, "match state offset pairs" )?; |
| 3754 | let slices_bytes_len = bytes::mul( |
| 3755 | pair_count, |
| 3756 | PatternID::SIZE, |
| 3757 | "match state slice offset byte length" , |
| 3758 | )?; |
| 3759 | bytes::check_slice_len(slice, slices_bytes_len, "match state slices" )?; |
| 3760 | bytes::check_alignment::<PatternID>(slice)?; |
| 3761 | let slices_bytes = &slice[..slices_bytes_len]; |
| 3762 | slice = &slice[slices_bytes_len..]; |
| 3763 | // SAFETY: Since PatternID is always representable as a u32, all we |
| 3764 | // need to do is ensure that we have the proper length and alignment. |
| 3765 | // We've checked both above, so the cast below is safe. |
| 3766 | // |
| 3767 | // N.B. This is one of the few not-safe snippets in this function, so |
| 3768 | // we mark it explicitly to call it out, even though it is technically |
| 3769 | // superfluous. |
| 3770 | #[allow (unused_unsafe)] |
| 3771 | let slices = unsafe { |
| 3772 | core::slice::from_raw_parts( |
| 3773 | slices_bytes.as_ptr() as *const u32, |
| 3774 | pair_count, |
| 3775 | ) |
| 3776 | }; |
| 3777 | |
| 3778 | // Read the total number of unique pattern IDs (which is always 1 more |
| 3779 | // than the maximum pattern ID in this automaton, since pattern IDs are |
| 3780 | // handed out contiguously starting at 0). |
| 3781 | let (patterns, nr) = |
| 3782 | bytes::try_read_u32_as_usize(slice, "pattern count" )?; |
| 3783 | slice = &slice[nr..]; |
| 3784 | |
| 3785 | // Now read the pattern ID count. We don't need to store this |
| 3786 | // explicitly, but we need it to know how many pattern IDs to read. |
| 3787 | let (idcount, nr) = |
| 3788 | bytes::try_read_u32_as_usize(slice, "pattern ID count" )?; |
| 3789 | slice = &slice[nr..]; |
| 3790 | |
| 3791 | // Read the actual pattern IDs. |
| 3792 | let pattern_ids_len = |
| 3793 | bytes::mul(idcount, PatternID::SIZE, "pattern ID byte length" )?; |
| 3794 | bytes::check_slice_len(slice, pattern_ids_len, "match pattern IDs" )?; |
| 3795 | bytes::check_alignment::<PatternID>(slice)?; |
| 3796 | let pattern_ids_bytes = &slice[..pattern_ids_len]; |
| 3797 | slice = &slice[pattern_ids_len..]; |
| 3798 | // SAFETY: Since PatternID is always representable as a u32, all we |
| 3799 | // need to do is ensure that we have the proper length and alignment. |
| 3800 | // We've checked both above, so the cast below is safe. |
| 3801 | // |
| 3802 | // N.B. This is one of the few not-safe snippets in this function, so |
| 3803 | // we mark it explicitly to call it out, even though it is technically |
| 3804 | // superfluous. |
| 3805 | #[allow (unused_unsafe)] |
| 3806 | let pattern_ids = unsafe { |
| 3807 | core::slice::from_raw_parts( |
| 3808 | pattern_ids_bytes.as_ptr() as *const u32, |
| 3809 | idcount, |
| 3810 | ) |
| 3811 | }; |
| 3812 | |
| 3813 | let ms = MatchStates { slices, pattern_ids, patterns }; |
| 3814 | Ok((ms, slice.as_ptr() as usize - slice_start)) |
| 3815 | } |
| 3816 | } |
| 3817 | |
| 3818 | #[cfg (feature = "alloc" )] |
| 3819 | impl MatchStates<Vec<u32>> { |
| 3820 | fn empty(pattern_count: usize) -> MatchStates<Vec<u32>> { |
| 3821 | assert!(pattern_count <= PatternID::LIMIT); |
| 3822 | MatchStates { |
| 3823 | slices: vec![], |
| 3824 | pattern_ids: vec![], |
| 3825 | patterns: pattern_count, |
| 3826 | } |
| 3827 | } |
| 3828 | |
| 3829 | fn new( |
| 3830 | matches: &BTreeMap<StateID, Vec<PatternID>>, |
| 3831 | pattern_count: usize, |
| 3832 | ) -> Result<MatchStates<Vec<u32>>, Error> { |
| 3833 | let mut m = MatchStates::empty(pattern_count); |
| 3834 | for (_, pids) in matches.iter() { |
| 3835 | let start = PatternID::new(m.pattern_ids.len()) |
| 3836 | .map_err(|_| Error::too_many_match_pattern_ids())?; |
| 3837 | m.slices.push(start.as_u32()); |
| 3838 | // This is always correct since the number of patterns in a single |
| 3839 | // match state can never exceed maximum number of allowable |
| 3840 | // patterns. Why? Because a pattern can only appear once in a |
| 3841 | // particular match state, by construction. (And since our pattern |
| 3842 | // ID limit is one less than u32::MAX, we're guaranteed that the |
| 3843 | // length fits in a u32.) |
| 3844 | m.slices.push(u32::try_from(pids.len()).unwrap()); |
| 3845 | for &pid in pids { |
| 3846 | m.pattern_ids.push(pid.as_u32()); |
| 3847 | } |
| 3848 | } |
| 3849 | m.patterns = pattern_count; |
| 3850 | Ok(m) |
| 3851 | } |
| 3852 | |
| 3853 | fn new_with_map( |
| 3854 | &self, |
| 3855 | matches: &BTreeMap<StateID, Vec<PatternID>>, |
| 3856 | ) -> Result<MatchStates<Vec<u32>>, Error> { |
| 3857 | MatchStates::new(matches, self.patterns) |
| 3858 | } |
| 3859 | } |
| 3860 | |
| 3861 | impl<T: AsRef<[u32]>> MatchStates<T> { |
| 3862 | /// Writes a serialized form of these match states to the buffer given. If |
| 3863 | /// the buffer is too small, then an error is returned. To determine how |
| 3864 | /// big the buffer must be, use `write_to_len`. |
| 3865 | fn write_to<E: Endian>( |
| 3866 | &self, |
| 3867 | mut dst: &mut [u8], |
| 3868 | ) -> Result<usize, SerializeError> { |
| 3869 | let nwrite = self.write_to_len(); |
| 3870 | if dst.len() < nwrite { |
| 3871 | return Err(SerializeError::buffer_too_small("match states" )); |
| 3872 | } |
| 3873 | dst = &mut dst[..nwrite]; |
| 3874 | |
| 3875 | // write state ID count |
| 3876 | // Unwrap is OK since number of states is guaranteed to fit in a u32. |
| 3877 | E::write_u32(u32::try_from(self.count()).unwrap(), dst); |
| 3878 | dst = &mut dst[size_of::<u32>()..]; |
| 3879 | |
| 3880 | // write slice offset pairs |
| 3881 | for &pid in self.slices() { |
| 3882 | let n = bytes::write_pattern_id::<E>(pid, &mut dst); |
| 3883 | dst = &mut dst[n..]; |
| 3884 | } |
| 3885 | |
| 3886 | // write unique pattern ID count |
| 3887 | // Unwrap is OK since number of patterns is guaranteed to fit in a u32. |
| 3888 | E::write_u32(u32::try_from(self.patterns).unwrap(), dst); |
| 3889 | dst = &mut dst[size_of::<u32>()..]; |
| 3890 | |
| 3891 | // write pattern ID count |
| 3892 | // Unwrap is OK since we check at construction (and deserialization) |
| 3893 | // that the number of patterns is representable as a u32. |
| 3894 | E::write_u32(u32::try_from(self.pattern_ids().len()).unwrap(), dst); |
| 3895 | dst = &mut dst[size_of::<u32>()..]; |
| 3896 | |
| 3897 | // write pattern IDs |
| 3898 | for &pid in self.pattern_ids() { |
| 3899 | let n = bytes::write_pattern_id::<E>(pid, &mut dst); |
| 3900 | dst = &mut dst[n..]; |
| 3901 | } |
| 3902 | |
| 3903 | Ok(nwrite) |
| 3904 | } |
| 3905 | |
| 3906 | /// Returns the number of bytes the serialized form of this transition |
| 3907 | /// table will use. |
| 3908 | fn write_to_len(&self) -> usize { |
| 3909 | size_of::<u32>() // match state count |
| 3910 | + (self.slices().len() * PatternID::SIZE) |
| 3911 | + size_of::<u32>() // unique pattern ID count |
| 3912 | + size_of::<u32>() // pattern ID count |
| 3913 | + (self.pattern_ids().len() * PatternID::SIZE) |
| 3914 | } |
| 3915 | |
| 3916 | /// Valides that the match state info is itself internally consistent and |
| 3917 | /// consistent with the recorded match state region in the given DFA. |
| 3918 | fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> { |
| 3919 | if self.count() != dfa.special.match_len(dfa.stride()) { |
| 3920 | return Err(DeserializeError::generic( |
| 3921 | "match state count mismatch" , |
| 3922 | )); |
| 3923 | } |
| 3924 | for si in 0..self.count() { |
| 3925 | let start = self.slices()[si * 2].as_usize(); |
| 3926 | let len = self.slices()[si * 2 + 1].as_usize(); |
| 3927 | if start >= self.pattern_ids().len() { |
| 3928 | return Err(DeserializeError::generic( |
| 3929 | "invalid pattern ID start offset" , |
| 3930 | )); |
| 3931 | } |
| 3932 | if start + len > self.pattern_ids().len() { |
| 3933 | return Err(DeserializeError::generic( |
| 3934 | "invalid pattern ID length" , |
| 3935 | )); |
| 3936 | } |
| 3937 | for mi in 0..len { |
| 3938 | let pid = self.pattern_id(si, mi); |
| 3939 | if pid.as_usize() >= self.patterns { |
| 3940 | return Err(DeserializeError::generic( |
| 3941 | "invalid pattern ID" , |
| 3942 | )); |
| 3943 | } |
| 3944 | } |
| 3945 | } |
| 3946 | Ok(()) |
| 3947 | } |
| 3948 | |
| 3949 | /// Converts these match states back into their map form. This is useful |
| 3950 | /// when shuffling states, as the normal MatchStates representation is not |
| 3951 | /// amenable to easy state swapping. But with this map, to swap id1 and |
| 3952 | /// id2, all you need to do is: |
| 3953 | /// |
| 3954 | /// if let Some(pids) = map.remove(&id1) { |
| 3955 | /// map.insert(id2, pids); |
| 3956 | /// } |
| 3957 | /// |
| 3958 | /// Once shuffling is done, use MatchStates::new to convert back. |
| 3959 | #[cfg (feature = "alloc" )] |
| 3960 | fn to_map(&self, dfa: &DFA<T>) -> BTreeMap<StateID, Vec<PatternID>> { |
| 3961 | let mut map = BTreeMap::new(); |
| 3962 | for i in 0..self.count() { |
| 3963 | let mut pids = vec![]; |
| 3964 | for j in 0..self.pattern_len(i) { |
| 3965 | pids.push(self.pattern_id(i, j)); |
| 3966 | } |
| 3967 | map.insert(self.match_state_id(dfa, i), pids); |
| 3968 | } |
| 3969 | map |
| 3970 | } |
| 3971 | |
| 3972 | /// Converts these match states to a borrowed value. |
| 3973 | fn as_ref(&self) -> MatchStates<&'_ [u32]> { |
| 3974 | MatchStates { |
| 3975 | slices: self.slices.as_ref(), |
| 3976 | pattern_ids: self.pattern_ids.as_ref(), |
| 3977 | patterns: self.patterns, |
| 3978 | } |
| 3979 | } |
| 3980 | |
| 3981 | /// Converts these match states to an owned value. |
| 3982 | #[cfg (feature = "alloc" )] |
| 3983 | fn to_owned(&self) -> MatchStates<Vec<u32>> { |
| 3984 | MatchStates { |
| 3985 | slices: self.slices.as_ref().to_vec(), |
| 3986 | pattern_ids: self.pattern_ids.as_ref().to_vec(), |
| 3987 | patterns: self.patterns, |
| 3988 | } |
| 3989 | } |
| 3990 | |
| 3991 | /// Returns the match state ID given the match state index. (Where the |
| 3992 | /// first match state corresponds to index 0.) |
| 3993 | /// |
| 3994 | /// This panics if there is no match state at the given index. |
| 3995 | fn match_state_id(&self, dfa: &DFA<T>, index: usize) -> StateID { |
| 3996 | assert!(dfa.special.matches(), "no match states to index" ); |
| 3997 | // This is one of the places where we rely on the fact that match |
| 3998 | // states are contiguous in the transition table. Namely, that the |
| 3999 | // first match state ID always corresponds to dfa.special.min_start. |
| 4000 | // From there, since we know the stride, we can compute the ID of any |
| 4001 | // match state given its index. |
| 4002 | let stride2 = u32::try_from(dfa.stride2()).unwrap(); |
| 4003 | let offset = index.checked_shl(stride2).unwrap(); |
| 4004 | let id = dfa.special.min_match.as_usize().checked_add(offset).unwrap(); |
| 4005 | let sid = StateID::new(id).unwrap(); |
| 4006 | assert!(dfa.is_match_state(sid)); |
| 4007 | sid |
| 4008 | } |
| 4009 | |
| 4010 | /// Returns the pattern ID at the given match index for the given match |
| 4011 | /// state. |
| 4012 | /// |
| 4013 | /// The match state index is the state index minus the state index of the |
| 4014 | /// first match state in the DFA. |
| 4015 | /// |
| 4016 | /// The match index is the index of the pattern ID for the given state. |
| 4017 | /// The index must be less than `self.pattern_len(state_index)`. |
| 4018 | fn pattern_id(&self, state_index: usize, match_index: usize) -> PatternID { |
| 4019 | self.pattern_id_slice(state_index)[match_index] |
| 4020 | } |
| 4021 | |
| 4022 | /// Returns the number of patterns in the given match state. |
| 4023 | /// |
| 4024 | /// The match state index is the state index minus the state index of the |
| 4025 | /// first match state in the DFA. |
| 4026 | fn pattern_len(&self, state_index: usize) -> usize { |
| 4027 | self.slices()[state_index * 2 + 1].as_usize() |
| 4028 | } |
| 4029 | |
| 4030 | /// Returns all of the pattern IDs for the given match state index. |
| 4031 | /// |
| 4032 | /// The match state index is the state index minus the state index of the |
| 4033 | /// first match state in the DFA. |
| 4034 | fn pattern_id_slice(&self, state_index: usize) -> &[PatternID] { |
| 4035 | let start = self.slices()[state_index * 2].as_usize(); |
| 4036 | let len = self.pattern_len(state_index); |
| 4037 | &self.pattern_ids()[start..start + len] |
| 4038 | } |
| 4039 | |
| 4040 | /// Returns the pattern ID offset slice of u32 as a slice of PatternID. |
| 4041 | fn slices(&self) -> &[PatternID] { |
| 4042 | let integers = self.slices.as_ref(); |
| 4043 | // SAFETY: This is safe because PatternID is guaranteed to be |
| 4044 | // representable as a u32. |
| 4045 | unsafe { |
| 4046 | core::slice::from_raw_parts( |
| 4047 | integers.as_ptr() as *const PatternID, |
| 4048 | integers.len(), |
| 4049 | ) |
| 4050 | } |
| 4051 | } |
| 4052 | |
| 4053 | /// Returns the total number of match states. |
| 4054 | fn count(&self) -> usize { |
| 4055 | assert_eq!(0, self.slices().len() % 2); |
| 4056 | self.slices().len() / 2 |
| 4057 | } |
| 4058 | |
| 4059 | /// Returns the pattern ID slice of u32 as a slice of PatternID. |
| 4060 | fn pattern_ids(&self) -> &[PatternID] { |
| 4061 | let integers = self.pattern_ids.as_ref(); |
| 4062 | // SAFETY: This is safe because PatternID is guaranteed to be |
| 4063 | // representable as a u32. |
| 4064 | unsafe { |
| 4065 | core::slice::from_raw_parts( |
| 4066 | integers.as_ptr() as *const PatternID, |
| 4067 | integers.len(), |
| 4068 | ) |
| 4069 | } |
| 4070 | } |
| 4071 | |
| 4072 | /// Return the memory usage, in bytes, of these match pairs. |
| 4073 | fn memory_usage(&self) -> usize { |
| 4074 | (self.slices().len() + self.pattern_ids().len()) * PatternID::SIZE |
| 4075 | } |
| 4076 | } |
| 4077 | |
| 4078 | /// An iterator over all states in a DFA. |
| 4079 | /// |
| 4080 | /// This iterator yields a tuple for each state. The first element of the |
| 4081 | /// tuple corresponds to a state's identifier, and the second element |
| 4082 | /// corresponds to the state itself (comprised of its transitions). |
| 4083 | /// |
| 4084 | /// `'a` corresponding to the lifetime of original DFA, `T` corresponds to |
| 4085 | /// the type of the transition table itself. |
| 4086 | pub(crate) struct StateIter<'a, T> { |
| 4087 | tt: &'a TransitionTable<T>, |
| 4088 | it: iter::Enumerate<slice::Chunks<'a, StateID>>, |
| 4089 | } |
| 4090 | |
| 4091 | impl<'a, T: AsRef<[u32]>> Iterator for StateIter<'a, T> { |
| 4092 | type Item = State<'a>; |
| 4093 | |
| 4094 | fn next(&mut self) -> Option<State<'a>> { |
| 4095 | self.it.next().map(|(index: usize, _)| { |
| 4096 | let id: StateID = self.tt.from_index(index); |
| 4097 | self.tt.state(id) |
| 4098 | }) |
| 4099 | } |
| 4100 | } |
| 4101 | |
| 4102 | /// An immutable representation of a single DFA state. |
| 4103 | /// |
| 4104 | /// `'a` correspondings to the lifetime of a DFA's transition table. |
| 4105 | pub(crate) struct State<'a> { |
| 4106 | id: StateID, |
| 4107 | stride2: usize, |
| 4108 | transitions: &'a [StateID], |
| 4109 | } |
| 4110 | |
| 4111 | impl<'a> State<'a> { |
| 4112 | /// Return an iterator over all transitions in this state. This yields |
| 4113 | /// a number of transitions equivalent to the alphabet length of the |
| 4114 | /// corresponding DFA. |
| 4115 | /// |
| 4116 | /// Each transition is represented by a tuple. The first element is |
| 4117 | /// the input byte for that transition and the second element is the |
| 4118 | /// transitions itself. |
| 4119 | pub(crate) fn transitions(&self) -> StateTransitionIter<'_> { |
| 4120 | StateTransitionIter { |
| 4121 | len: self.transitions.len(), |
| 4122 | it: self.transitions.iter().enumerate(), |
| 4123 | } |
| 4124 | } |
| 4125 | |
| 4126 | /// Return an iterator over a sparse representation of the transitions in |
| 4127 | /// this state. Only non-dead transitions are returned. |
| 4128 | /// |
| 4129 | /// The "sparse" representation in this case corresponds to a sequence of |
| 4130 | /// triples. The first two elements of the triple comprise an inclusive |
| 4131 | /// byte range while the last element corresponds to the transition taken |
| 4132 | /// for all bytes in the range. |
| 4133 | /// |
| 4134 | /// This is somewhat more condensed than the classical sparse |
| 4135 | /// representation (where you have an element for every non-dead |
| 4136 | /// transition), but in practice, checking if a byte is in a range is very |
| 4137 | /// cheap and using ranges tends to conserve quite a bit more space. |
| 4138 | pub(crate) fn sparse_transitions(&self) -> StateSparseTransitionIter<'_> { |
| 4139 | StateSparseTransitionIter { dense: self.transitions(), cur: None } |
| 4140 | } |
| 4141 | |
| 4142 | /// Returns the identifier for this state. |
| 4143 | pub(crate) fn id(&self) -> StateID { |
| 4144 | self.id |
| 4145 | } |
| 4146 | |
| 4147 | /// Analyzes this state to determine whether it can be accelerated. If so, |
| 4148 | /// it returns an accelerator that contains at least one byte. |
| 4149 | #[cfg (feature = "alloc" )] |
| 4150 | fn accelerate(&self, classes: &ByteClasses) -> Option<Accel> { |
| 4151 | // We just try to add bytes to our accelerator. Once adding fails |
| 4152 | // (because we've added too many bytes), then give up. |
| 4153 | let mut accel = Accel::new(); |
| 4154 | for (class, id) in self.transitions() { |
| 4155 | if id == self.id() { |
| 4156 | continue; |
| 4157 | } |
| 4158 | for unit in classes.elements(class) { |
| 4159 | if let Some(byte) = unit.as_u8() { |
| 4160 | if !accel.add(byte) { |
| 4161 | return None; |
| 4162 | } |
| 4163 | } |
| 4164 | } |
| 4165 | } |
| 4166 | if accel.is_empty() { |
| 4167 | None |
| 4168 | } else { |
| 4169 | Some(accel) |
| 4170 | } |
| 4171 | } |
| 4172 | } |
| 4173 | |
| 4174 | impl<'a> fmt::Debug for State<'a> { |
| 4175 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 4176 | for (i: usize, (start: Unit, end: Unit, id: StateID)) in self.sparse_transitions().enumerate() { |
| 4177 | let index: usize = if f.alternate() { |
| 4178 | id.as_usize() |
| 4179 | } else { |
| 4180 | id.as_usize() >> self.stride2 |
| 4181 | }; |
| 4182 | if i > 0 { |
| 4183 | write!(f, ", " )?; |
| 4184 | } |
| 4185 | if start == end { |
| 4186 | write!(f, " {:?} => {:?}" , start, index)?; |
| 4187 | } else { |
| 4188 | write!(f, " {:?}- {:?} => {:?}" , start, end, index)?; |
| 4189 | } |
| 4190 | } |
| 4191 | Ok(()) |
| 4192 | } |
| 4193 | } |
| 4194 | |
| 4195 | /// A mutable representation of a single DFA state. |
| 4196 | /// |
| 4197 | /// `'a` correspondings to the lifetime of a DFA's transition table. |
| 4198 | #[cfg (feature = "alloc" )] |
| 4199 | pub(crate) struct StateMut<'a> { |
| 4200 | id: StateID, |
| 4201 | stride2: usize, |
| 4202 | transitions: &'a mut [StateID], |
| 4203 | } |
| 4204 | |
| 4205 | #[cfg (feature = "alloc" )] |
| 4206 | impl<'a> StateMut<'a> { |
| 4207 | /// Return an iterator over all transitions in this state. This yields |
| 4208 | /// a number of transitions equivalent to the alphabet length of the |
| 4209 | /// corresponding DFA. |
| 4210 | /// |
| 4211 | /// Each transition is represented by a tuple. The first element is the |
| 4212 | /// input byte for that transition and the second element is a mutable |
| 4213 | /// reference to the transition itself. |
| 4214 | pub(crate) fn iter_mut(&mut self) -> StateTransitionIterMut<'_> { |
| 4215 | StateTransitionIterMut { |
| 4216 | len: self.transitions.len(), |
| 4217 | it: self.transitions.iter_mut().enumerate(), |
| 4218 | } |
| 4219 | } |
| 4220 | } |
| 4221 | |
| 4222 | #[cfg (feature = "alloc" )] |
| 4223 | impl<'a> fmt::Debug for StateMut<'a> { |
| 4224 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 4225 | fmt::Debug::fmt( |
| 4226 | &State { |
| 4227 | id: self.id, |
| 4228 | stride2: self.stride2, |
| 4229 | transitions: self.transitions, |
| 4230 | }, |
| 4231 | f, |
| 4232 | ) |
| 4233 | } |
| 4234 | } |
| 4235 | |
| 4236 | /// An iterator over all transitions in a single DFA state. This yields |
| 4237 | /// a number of transitions equivalent to the alphabet length of the |
| 4238 | /// corresponding DFA. |
| 4239 | /// |
| 4240 | /// Each transition is represented by a tuple. The first element is the input |
| 4241 | /// byte for that transition and the second element is the transition itself. |
| 4242 | #[derive (Debug)] |
| 4243 | pub(crate) struct StateTransitionIter<'a> { |
| 4244 | len: usize, |
| 4245 | it: iter::Enumerate<slice::Iter<'a, StateID>>, |
| 4246 | } |
| 4247 | |
| 4248 | impl<'a> Iterator for StateTransitionIter<'a> { |
| 4249 | type Item = (alphabet::Unit, StateID); |
| 4250 | |
| 4251 | fn next(&mut self) -> Option<(alphabet::Unit, StateID)> { |
| 4252 | self.it.next().map(|(i: usize, &id: StateID)| { |
| 4253 | let unit: Unit = if i + 1 == self.len { |
| 4254 | alphabet::Unit::eoi(num_byte_equiv_classes:i) |
| 4255 | } else { |
| 4256 | let b: u8 = u8::try_from(i) |
| 4257 | .expect(msg:"raw byte alphabet is never exceeded" ); |
| 4258 | alphabet::Unit::u8(byte:b) |
| 4259 | }; |
| 4260 | (unit, id) |
| 4261 | }) |
| 4262 | } |
| 4263 | } |
| 4264 | |
| 4265 | /// A mutable iterator over all transitions in a DFA state. |
| 4266 | /// |
| 4267 | /// Each transition is represented by a tuple. The first element is the |
| 4268 | /// input byte for that transition and the second element is a mutable |
| 4269 | /// reference to the transition itself. |
| 4270 | #[cfg (feature = "alloc" )] |
| 4271 | #[derive (Debug)] |
| 4272 | pub(crate) struct StateTransitionIterMut<'a> { |
| 4273 | len: usize, |
| 4274 | it: iter::Enumerate<slice::IterMut<'a, StateID>>, |
| 4275 | } |
| 4276 | |
| 4277 | #[cfg (feature = "alloc" )] |
| 4278 | impl<'a> Iterator for StateTransitionIterMut<'a> { |
| 4279 | type Item = (alphabet::Unit, &'a mut StateID); |
| 4280 | |
| 4281 | fn next(&mut self) -> Option<(alphabet::Unit, &'a mut StateID)> { |
| 4282 | self.it.next().map(|(i, id)| { |
| 4283 | let unit = if i + 1 == self.len { |
| 4284 | alphabet::Unit::eoi(i) |
| 4285 | } else { |
| 4286 | let b = u8::try_from(i) |
| 4287 | .expect("raw byte alphabet is never exceeded" ); |
| 4288 | alphabet::Unit::u8(b) |
| 4289 | }; |
| 4290 | (unit, id) |
| 4291 | }) |
| 4292 | } |
| 4293 | } |
| 4294 | |
| 4295 | /// An iterator over all non-DEAD transitions in a single DFA state using a |
| 4296 | /// sparse representation. |
| 4297 | /// |
| 4298 | /// Each transition is represented by a triple. The first two elements of the |
| 4299 | /// triple comprise an inclusive byte range while the last element corresponds |
| 4300 | /// to the transition taken for all bytes in the range. |
| 4301 | /// |
| 4302 | /// As a convenience, this always returns `alphabet::Unit` values of the same |
| 4303 | /// type. That is, you'll never get a (byte, EOI) or a (EOI, byte). Only (byte, |
| 4304 | /// byte) and (EOI, EOI) values are yielded. |
| 4305 | #[derive (Debug)] |
| 4306 | pub(crate) struct StateSparseTransitionIter<'a> { |
| 4307 | dense: StateTransitionIter<'a>, |
| 4308 | cur: Option<(alphabet::Unit, alphabet::Unit, StateID)>, |
| 4309 | } |
| 4310 | |
| 4311 | impl<'a> Iterator for StateSparseTransitionIter<'a> { |
| 4312 | type Item = (alphabet::Unit, alphabet::Unit, StateID); |
| 4313 | |
| 4314 | fn next(&mut self) -> Option<(alphabet::Unit, alphabet::Unit, StateID)> { |
| 4315 | while let Some((unit, next)) = self.dense.next() { |
| 4316 | let (prev_start, prev_end, prev_next) = match self.cur { |
| 4317 | Some(t) => t, |
| 4318 | None => { |
| 4319 | self.cur = Some((unit, unit, next)); |
| 4320 | continue; |
| 4321 | } |
| 4322 | }; |
| 4323 | if prev_next == next && !unit.is_eoi() { |
| 4324 | self.cur = Some((prev_start, unit, prev_next)); |
| 4325 | } else { |
| 4326 | self.cur = Some((unit, unit, next)); |
| 4327 | if prev_next != DEAD { |
| 4328 | return Some((prev_start, prev_end, prev_next)); |
| 4329 | } |
| 4330 | } |
| 4331 | } |
| 4332 | if let Some((start, end, next)) = self.cur.take() { |
| 4333 | if next != DEAD { |
| 4334 | return Some((start, end, next)); |
| 4335 | } |
| 4336 | } |
| 4337 | None |
| 4338 | } |
| 4339 | } |
| 4340 | |
| 4341 | /// An iterator over pattern IDs for a single match state. |
| 4342 | #[derive (Debug)] |
| 4343 | pub(crate) struct PatternIDIter<'a>(slice::Iter<'a, PatternID>); |
| 4344 | |
| 4345 | impl<'a> Iterator for PatternIDIter<'a> { |
| 4346 | type Item = PatternID; |
| 4347 | |
| 4348 | fn next(&mut self) -> Option<PatternID> { |
| 4349 | self.0.next().copied() |
| 4350 | } |
| 4351 | } |
| 4352 | |
| 4353 | /// Remapper is an abstraction the manages the remapping of state IDs in a |
| 4354 | /// dense DFA. This is useful when one wants to shuffle states into different |
| 4355 | /// positions in the DFA. |
| 4356 | /// |
| 4357 | /// One of the key complexities this manages is the ability to correctly move |
| 4358 | /// one state multiple times. |
| 4359 | /// |
| 4360 | /// Once shuffling is complete, `remap` should be called, which will rewrite |
| 4361 | /// all pertinent transitions to updated state IDs. |
| 4362 | #[cfg (feature = "alloc" )] |
| 4363 | #[derive (Debug)] |
| 4364 | struct Remapper { |
| 4365 | /// A map from the index of a state to its pre-multiplied identifier. |
| 4366 | /// |
| 4367 | /// When a state is swapped with another, then their corresponding |
| 4368 | /// locations in this map are also swapped. Thus, its new position will |
| 4369 | /// still point to its old pre-multiplied StateID. |
| 4370 | /// |
| 4371 | /// While there is a bit more to it, this then allows us to rewrite the |
| 4372 | /// state IDs in a DFA's transition table in a single pass. This is done |
| 4373 | /// by iterating over every ID in this map, then iterating over each |
| 4374 | /// transition for the state at that ID and re-mapping the transition from |
| 4375 | /// `old_id` to `map[dfa.to_index(old_id)]`. That is, we find the position |
| 4376 | /// in this map where `old_id` *started*, and set it to where it ended up |
| 4377 | /// after all swaps have been completed. |
| 4378 | map: Vec<StateID>, |
| 4379 | } |
| 4380 | |
| 4381 | #[cfg (feature = "alloc" )] |
| 4382 | impl Remapper { |
| 4383 | fn from_dfa(dfa: &OwnedDFA) -> Remapper { |
| 4384 | Remapper { |
| 4385 | map: (0..dfa.state_count()).map(|i| dfa.from_index(i)).collect(), |
| 4386 | } |
| 4387 | } |
| 4388 | |
| 4389 | fn swap(&mut self, dfa: &mut OwnedDFA, id1: StateID, id2: StateID) { |
| 4390 | dfa.swap_states(id1, id2); |
| 4391 | self.map.swap(dfa.to_index(id1), dfa.to_index(id2)); |
| 4392 | } |
| 4393 | |
| 4394 | fn remap(mut self, dfa: &mut OwnedDFA) { |
| 4395 | // Update the map to account for states that have been swapped |
| 4396 | // multiple times. For example, if (A, C) and (C, G) are swapped, then |
| 4397 | // transitions previously pointing to A should now point to G. But if |
| 4398 | // we don't update our map, they will erroneously be set to C. All we |
| 4399 | // do is follow the swaps in our map until we see our original state |
| 4400 | // ID. |
| 4401 | let oldmap = self.map.clone(); |
| 4402 | for i in 0..dfa.state_count() { |
| 4403 | let cur_id = dfa.from_index(i); |
| 4404 | let mut new = oldmap[i]; |
| 4405 | if cur_id == new { |
| 4406 | continue; |
| 4407 | } |
| 4408 | loop { |
| 4409 | let id = oldmap[dfa.to_index(new)]; |
| 4410 | if cur_id == id { |
| 4411 | self.map[i] = new; |
| 4412 | break; |
| 4413 | } |
| 4414 | new = id; |
| 4415 | } |
| 4416 | } |
| 4417 | |
| 4418 | // To work around the borrow checker for converting state IDs to |
| 4419 | // indices. We cannot borrow self while mutably iterating over a |
| 4420 | // state's transitions. Otherwise, we'd just use dfa.to_index(..). |
| 4421 | let stride2 = dfa.stride2(); |
| 4422 | let to_index = |id: StateID| -> usize { id.as_usize() >> stride2 }; |
| 4423 | |
| 4424 | // Now that we've finished shuffling, we need to remap all of our |
| 4425 | // transitions. We don't need to handle re-mapping accelerated states |
| 4426 | // since `accels` is only populated after shuffling. |
| 4427 | for &id in self.map.iter() { |
| 4428 | for (_, next_id) in dfa.state_mut(id).iter_mut() { |
| 4429 | *next_id = self.map[to_index(*next_id)]; |
| 4430 | } |
| 4431 | } |
| 4432 | for start_id in dfa.st.table_mut().iter_mut() { |
| 4433 | *start_id = self.map[to_index(*start_id)]; |
| 4434 | } |
| 4435 | } |
| 4436 | } |
| 4437 | |
| 4438 | #[cfg (all(test, feature = "alloc" ))] |
| 4439 | mod tests { |
| 4440 | use super::*; |
| 4441 | |
| 4442 | #[test ] |
| 4443 | fn errors_with_unicode_word_boundary() { |
| 4444 | let pattern = r"\b" ; |
| 4445 | assert!(Builder::new().build(pattern).is_err()); |
| 4446 | } |
| 4447 | |
| 4448 | #[test ] |
| 4449 | fn roundtrip_never_match() { |
| 4450 | let dfa = DFA::never_match().unwrap(); |
| 4451 | let (buf, _) = dfa.to_bytes_native_endian(); |
| 4452 | let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0; |
| 4453 | |
| 4454 | assert_eq!(None, dfa.find_leftmost_fwd(b"foo12345" ).unwrap()); |
| 4455 | } |
| 4456 | |
| 4457 | #[test ] |
| 4458 | fn roundtrip_always_match() { |
| 4459 | use crate::HalfMatch; |
| 4460 | |
| 4461 | let dfa = DFA::always_match().unwrap(); |
| 4462 | let (buf, _) = dfa.to_bytes_native_endian(); |
| 4463 | let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0; |
| 4464 | |
| 4465 | assert_eq!( |
| 4466 | Some(HalfMatch::must(0, 0)), |
| 4467 | dfa.find_leftmost_fwd(b"foo12345" ).unwrap() |
| 4468 | ); |
| 4469 | } |
| 4470 | } |
| 4471 | |