| 1 | /*! |
| 2 | Types and routines specific to sparse DFAs. |
| 3 | |
| 4 | This module is the home of [`sparse::DFA`](DFA). |
| 5 | |
| 6 | Unlike the [`dense`](super::dense) module, this module does not contain a |
| 7 | builder or configuration specific for sparse DFAs. Instead, the intended |
| 8 | way to build a sparse DFA is either by using a default configuration with |
| 9 | its constructor [`sparse::DFA::new`](DFA::new), or by first configuring the |
| 10 | construction of a dense DFA with [`dense::Builder`](super::dense::Builder) |
| 11 | and then calling [`dense::DFA::to_sparse`](super::dense::DFA::to_sparse). For |
| 12 | example, this configures a sparse DFA to do an overlapping search: |
| 13 | |
| 14 | ``` |
| 15 | use regex_automata::{ |
| 16 | dfa::{Automaton, OverlappingState, dense}, |
| 17 | HalfMatch, MatchKind, |
| 18 | }; |
| 19 | |
| 20 | let dense_re = dense::Builder::new() |
| 21 | .configure(dense::Config::new().match_kind(MatchKind::All)) |
| 22 | .build(r"Samwise|Sam" )?; |
| 23 | let sparse_re = dense_re.to_sparse()?; |
| 24 | |
| 25 | // Setup our haystack and initial start state. |
| 26 | let haystack = b"Samwise" ; |
| 27 | let mut state = OverlappingState::start(); |
| 28 | |
| 29 | // First, 'Sam' will match. |
| 30 | let end1 = sparse_re.find_overlapping_fwd_at( |
| 31 | None, None, haystack, 0, haystack.len(), &mut state, |
| 32 | )?; |
| 33 | assert_eq!(end1, Some(HalfMatch::must(0, 3))); |
| 34 | |
| 35 | // And now 'Samwise' will match. |
| 36 | let end2 = sparse_re.find_overlapping_fwd_at( |
| 37 | None, None, haystack, 3, haystack.len(), &mut state, |
| 38 | )?; |
| 39 | assert_eq!(end2, Some(HalfMatch::must(0, 7))); |
| 40 | # Ok::<(), Box<dyn std::error::Error>>(()) |
| 41 | ``` |
| 42 | */ |
| 43 | |
| 44 | #[cfg (feature = "alloc" )] |
| 45 | use core::iter; |
| 46 | use core::{ |
| 47 | convert::{TryFrom, TryInto}, |
| 48 | fmt, |
| 49 | mem::size_of, |
| 50 | }; |
| 51 | |
| 52 | #[cfg (feature = "alloc" )] |
| 53 | use alloc::{collections::BTreeSet, vec, vec::Vec}; |
| 54 | |
| 55 | #[cfg (feature = "alloc" )] |
| 56 | use crate::dfa::{dense, error::Error}; |
| 57 | use crate::{ |
| 58 | dfa::{ |
| 59 | automaton::{fmt_state_indicator, Automaton}, |
| 60 | special::Special, |
| 61 | DEAD, |
| 62 | }, |
| 63 | util::{ |
| 64 | alphabet::ByteClasses, |
| 65 | bytes::{self, DeserializeError, Endian, SerializeError}, |
| 66 | id::{PatternID, StateID}, |
| 67 | start::Start, |
| 68 | DebugByte, |
| 69 | }, |
| 70 | }; |
| 71 | |
| 72 | const LABEL: &str = "rust-regex-automata-dfa-sparse" ; |
| 73 | const VERSION: u32 = 2; |
| 74 | |
| 75 | /// A sparse deterministic finite automaton (DFA) with variable sized states. |
| 76 | /// |
| 77 | /// In contrast to a [dense::DFA](crate::dfa::dense::DFA), a sparse DFA uses |
| 78 | /// a more space efficient representation for its transitions. Consequently, |
| 79 | /// sparse DFAs may use much less memory than dense DFAs, but this comes at a |
| 80 | /// price. In particular, reading the more space efficient transitions takes |
| 81 | /// more work, and consequently, searching using a sparse DFA is typically |
| 82 | /// slower than a dense DFA. |
| 83 | /// |
| 84 | /// A sparse DFA can be built using the default configuration via the |
| 85 | /// [`DFA::new`] constructor. Otherwise, one can configure various aspects |
| 86 | /// of a dense DFA via [`dense::Builder`](crate::dfa::dense::Builder), |
| 87 | /// and then convert a dense DFA to a sparse DFA using |
| 88 | /// [`dense::DFA::to_sparse`](crate::dfa::dense::DFA::to_sparse). |
| 89 | /// |
| 90 | /// In general, a sparse DFA supports all the same search operations as a dense |
| 91 | /// DFA. |
| 92 | /// |
| 93 | /// Making the choice between a dense and sparse DFA depends on your specific |
| 94 | /// work load. If you can sacrifice a bit of search time performance, then a |
| 95 | /// sparse DFA might be the best choice. In particular, while sparse DFAs are |
| 96 | /// probably always slower than dense DFAs, you may find that they are easily |
| 97 | /// fast enough for your purposes! |
| 98 | /// |
| 99 | /// # Type parameters |
| 100 | /// |
| 101 | /// A `DFA` has one type parameter, `T`, which is used to represent the parts |
| 102 | /// of a sparse DFA. `T` is typically a `Vec<u8>` or a `&[u8]`. |
| 103 | /// |
| 104 | /// # The `Automaton` trait |
| 105 | /// |
| 106 | /// This type implements the [`Automaton`] trait, which means it can be used |
| 107 | /// for searching. For example: |
| 108 | /// |
| 109 | /// ``` |
| 110 | /// use regex_automata::{ |
| 111 | /// dfa::{Automaton, sparse::DFA}, |
| 112 | /// HalfMatch, |
| 113 | /// }; |
| 114 | /// |
| 115 | /// let dfa = DFA::new("foo[0-9]+" )?; |
| 116 | /// let expected = HalfMatch::must(0, 8); |
| 117 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 118 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 119 | /// ``` |
| 120 | #[derive (Clone)] |
| 121 | pub struct DFA<T> { |
| 122 | // When compared to a dense DFA, a sparse DFA *looks* a lot simpler |
| 123 | // representation-wise. In reality, it is perhaps more complicated. Namely, |
| 124 | // in a dense DFA, all information needs to be very cheaply accessible |
| 125 | // using only state IDs. In a sparse DFA however, each state uses a |
| 126 | // variable amount of space because each state encodes more information |
| 127 | // than just its transitions. Each state also includes an accelerator if |
| 128 | // one exists, along with the matching pattern IDs if the state is a match |
| 129 | // state. |
| 130 | // |
| 131 | // That is, a lot of the complexity is pushed down into how each state |
| 132 | // itself is represented. |
| 133 | trans: Transitions<T>, |
| 134 | starts: StartTable<T>, |
| 135 | special: Special, |
| 136 | } |
| 137 | |
| 138 | #[cfg (feature = "alloc" )] |
| 139 | impl DFA<Vec<u8>> { |
| 140 | /// Parse the given regular expression using a default configuration and |
| 141 | /// return the corresponding sparse DFA. |
| 142 | /// |
| 143 | /// If you want a non-default configuration, then use |
| 144 | /// the [`dense::Builder`](crate::dfa::dense::Builder) |
| 145 | /// to set your own configuration, and then call |
| 146 | /// [`dense::DFA::to_sparse`](crate::dfa::dense::DFA::to_sparse) to create |
| 147 | /// a sparse DFA. |
| 148 | /// |
| 149 | /// # Example |
| 150 | /// |
| 151 | /// ``` |
| 152 | /// use regex_automata::{ |
| 153 | /// dfa::{Automaton, sparse}, |
| 154 | /// HalfMatch, |
| 155 | /// }; |
| 156 | /// |
| 157 | /// let dfa = sparse::DFA::new("foo[0-9]+bar")?; |
| 158 | /// |
| 159 | /// let expected = HalfMatch::must(0, 11); |
| 160 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345bar")?); |
| 161 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 162 | /// ``` |
| 163 | pub fn new(pattern: &str) -> Result<DFA<Vec<u8>>, Error> { |
| 164 | dense::Builder::new() |
| 165 | .build(pattern) |
| 166 | .and_then(|dense| dense.to_sparse()) |
| 167 | } |
| 168 | |
| 169 | /// Parse the given regular expressions using a default configuration and |
| 170 | /// return the corresponding multi-DFA. |
| 171 | /// |
| 172 | /// If you want a non-default configuration, then use |
| 173 | /// the [`dense::Builder`](crate::dfa::dense::Builder) |
| 174 | /// to set your own configuration, and then call |
| 175 | /// [`dense::DFA::to_sparse`](crate::dfa::dense::DFA::to_sparse) to create |
| 176 | /// a sparse DFA. |
| 177 | /// |
| 178 | /// # Example |
| 179 | /// |
| 180 | /// ``` |
| 181 | /// use regex_automata::{ |
| 182 | /// dfa::{Automaton, sparse}, |
| 183 | /// HalfMatch, |
| 184 | /// }; |
| 185 | /// |
| 186 | /// let dfa = sparse::DFA::new_many(&["[0-9]+", "[a-z]+"])?; |
| 187 | /// let expected = HalfMatch::must(1, 3); |
| 188 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345bar")?); |
| 189 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 190 | /// ``` |
| 191 | pub fn new_many<P: AsRef<str>>( |
| 192 | patterns: &[P], |
| 193 | ) -> Result<DFA<Vec<u8>>, Error> { |
| 194 | dense::Builder::new() |
| 195 | .build_many(patterns) |
| 196 | .and_then(|dense| dense.to_sparse()) |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | #[cfg (feature = "alloc" )] |
| 201 | impl DFA<Vec<u8>> { |
| 202 | /// Create a new DFA that matches every input. |
| 203 | /// |
| 204 | /// # Example |
| 205 | /// |
| 206 | /// ``` |
| 207 | /// use regex_automata::{ |
| 208 | /// dfa::{Automaton, sparse}, |
| 209 | /// HalfMatch, |
| 210 | /// }; |
| 211 | /// |
| 212 | /// let dfa = sparse::DFA::always_match()?; |
| 213 | /// |
| 214 | /// let expected = HalfMatch::must(0, 0); |
| 215 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"")?); |
| 216 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo")?); |
| 217 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 218 | /// ``` |
| 219 | pub fn always_match() -> Result<DFA<Vec<u8>>, Error> { |
| 220 | dense::DFA::always_match()?.to_sparse() |
| 221 | } |
| 222 | |
| 223 | /// Create a new sparse DFA that never matches any input. |
| 224 | /// |
| 225 | /// # Example |
| 226 | /// |
| 227 | /// ``` |
| 228 | /// use regex_automata::dfa::{Automaton, sparse}; |
| 229 | /// |
| 230 | /// let dfa = sparse::DFA::never_match()?; |
| 231 | /// assert_eq!(None, dfa.find_leftmost_fwd(b"")?); |
| 232 | /// assert_eq!(None, dfa.find_leftmost_fwd(b"foo")?); |
| 233 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 234 | /// ``` |
| 235 | pub fn never_match() -> Result<DFA<Vec<u8>>, Error> { |
| 236 | dense::DFA::never_match()?.to_sparse() |
| 237 | } |
| 238 | |
| 239 | /// The implementation for constructing a sparse DFA from a dense DFA. |
| 240 | pub(crate) fn from_dense<T: AsRef<[u32]>>( |
| 241 | dfa: &dense::DFA<T>, |
| 242 | ) -> Result<DFA<Vec<u8>>, Error> { |
| 243 | // In order to build the transition table, we need to be able to write |
| 244 | // state identifiers for each of the "next" transitions in each state. |
| 245 | // Our state identifiers correspond to the byte offset in the |
| 246 | // transition table at which the state is encoded. Therefore, we do not |
| 247 | // actually know what the state identifiers are until we've allocated |
| 248 | // exactly as much space as we need for each state. Thus, construction |
| 249 | // of the transition table happens in two passes. |
| 250 | // |
| 251 | // In the first pass, we fill out the shell of each state, which |
| 252 | // includes the transition count, the input byte ranges and zero-filled |
| 253 | // space for the transitions and accelerators, if present. In this |
| 254 | // first pass, we also build up a map from the state identifier index |
| 255 | // of the dense DFA to the state identifier in this sparse DFA. |
| 256 | // |
| 257 | // In the second pass, we fill in the transitions based on the map |
| 258 | // built in the first pass. |
| 259 | |
| 260 | // The capacity given here reflects a minimum. (Well, the true minimum |
| 261 | // is likely even bigger, but hopefully this saves a few reallocs.) |
| 262 | let mut sparse = Vec::with_capacity(StateID::SIZE * dfa.state_count()); |
| 263 | // This maps state indices from the dense DFA to StateIDs in the sparse |
| 264 | // DFA. We build out this map on the first pass, and then use it in the |
| 265 | // second pass to back-fill our transitions. |
| 266 | let mut remap: Vec<StateID> = vec![DEAD; dfa.state_count()]; |
| 267 | for state in dfa.states() { |
| 268 | let pos = sparse.len(); |
| 269 | |
| 270 | remap[dfa.to_index(state.id())] = |
| 271 | StateID::new(pos).map_err(|_| Error::too_many_states())?; |
| 272 | // zero-filled space for the transition count |
| 273 | sparse.push(0); |
| 274 | sparse.push(0); |
| 275 | |
| 276 | let mut transition_count = 0; |
| 277 | for (unit1, unit2, _) in state.sparse_transitions() { |
| 278 | match (unit1.as_u8(), unit2.as_u8()) { |
| 279 | (Some(b1), Some(b2)) => { |
| 280 | transition_count += 1; |
| 281 | sparse.push(b1); |
| 282 | sparse.push(b2); |
| 283 | } |
| 284 | (None, None) => {} |
| 285 | (Some(_), None) | (None, Some(_)) => { |
| 286 | // can never occur because sparse_transitions never |
| 287 | // groups EOI with any other transition. |
| 288 | unreachable!() |
| 289 | } |
| 290 | } |
| 291 | } |
| 292 | // Add dummy EOI transition. This is never actually read while |
| 293 | // searching, but having space equivalent to the total number |
| 294 | // of transitions is convenient. Otherwise, we'd need to track |
| 295 | // a different number of transitions for the byte ranges as for |
| 296 | // the 'next' states. |
| 297 | // |
| 298 | // N.B. The loop above is not guaranteed to yield the EOI |
| 299 | // transition, since it may point to a DEAD state. By putting |
| 300 | // it here, we always write the EOI transition, and thus |
| 301 | // guarantee that our transition count is >0. Why do we always |
| 302 | // need the EOI transition? Because in order to implement |
| 303 | // Automaton::next_eoi_state, this lets us just ask for the last |
| 304 | // transition. There are probably other/better ways to do this. |
| 305 | transition_count += 1; |
| 306 | sparse.push(0); |
| 307 | sparse.push(0); |
| 308 | |
| 309 | // Check some assumptions about transition count. |
| 310 | assert_ne!( |
| 311 | transition_count, 0, |
| 312 | "transition count should be non-zero" , |
| 313 | ); |
| 314 | assert!( |
| 315 | transition_count <= 257, |
| 316 | "expected transition count {} to be <= 257" , |
| 317 | transition_count, |
| 318 | ); |
| 319 | |
| 320 | // Fill in the transition count. |
| 321 | // Since transition count is always <= 257, we use the most |
| 322 | // significant bit to indicate whether this is a match state or |
| 323 | // not. |
| 324 | let ntrans = if dfa.is_match_state(state.id()) { |
| 325 | transition_count | (1 << 15) |
| 326 | } else { |
| 327 | transition_count |
| 328 | }; |
| 329 | bytes::NE::write_u16(ntrans, &mut sparse[pos..]); |
| 330 | |
| 331 | // zero-fill the actual transitions. |
| 332 | // Unwraps are OK since transition_count <= 257 and our minimum |
| 333 | // support usize size is 16-bits. |
| 334 | let zeros = usize::try_from(transition_count) |
| 335 | .unwrap() |
| 336 | .checked_mul(StateID::SIZE) |
| 337 | .unwrap(); |
| 338 | sparse.extend(iter::repeat(0).take(zeros)); |
| 339 | |
| 340 | // If this is a match state, write the pattern IDs matched by this |
| 341 | // state. |
| 342 | if dfa.is_match_state(state.id()) { |
| 343 | let plen = dfa.match_pattern_len(state.id()); |
| 344 | // Write the actual pattern IDs with a u32 length prefix. |
| 345 | // First, zero-fill space. |
| 346 | let mut pos = sparse.len(); |
| 347 | // Unwraps are OK since it's guaranteed that plen <= |
| 348 | // PatternID::LIMIT, which is in turn guaranteed to fit into a |
| 349 | // u32. |
| 350 | let zeros = size_of::<u32>() |
| 351 | .checked_mul(plen) |
| 352 | .unwrap() |
| 353 | .checked_add(size_of::<u32>()) |
| 354 | .unwrap(); |
| 355 | sparse.extend(iter::repeat(0).take(zeros)); |
| 356 | |
| 357 | // Now write the length prefix. |
| 358 | bytes::NE::write_u32( |
| 359 | // Will never fail since u32::MAX is invalid pattern ID. |
| 360 | // Thus, the number of pattern IDs is representable by a |
| 361 | // u32. |
| 362 | plen.try_into().expect("pattern ID count fits in u32" ), |
| 363 | &mut sparse[pos..], |
| 364 | ); |
| 365 | pos += size_of::<u32>(); |
| 366 | |
| 367 | // Now write the pattern IDs. |
| 368 | for &pid in dfa.pattern_id_slice(state.id()) { |
| 369 | pos += bytes::write_pattern_id::<bytes::NE>( |
| 370 | pid, |
| 371 | &mut sparse[pos..], |
| 372 | ); |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | // And now add the accelerator, if one exists. An accelerator is |
| 377 | // at most 4 bytes and at least 1 byte. The first byte is the |
| 378 | // length, N. N bytes follow the length. The set of bytes that |
| 379 | // follow correspond (exhaustively) to the bytes that must be seen |
| 380 | // to leave this state. |
| 381 | let accel = dfa.accelerator(state.id()); |
| 382 | sparse.push(accel.len().try_into().unwrap()); |
| 383 | sparse.extend_from_slice(accel); |
| 384 | } |
| 385 | |
| 386 | let mut new = DFA { |
| 387 | trans: Transitions { |
| 388 | sparse, |
| 389 | classes: dfa.byte_classes().clone(), |
| 390 | count: dfa.state_count(), |
| 391 | patterns: dfa.pattern_count(), |
| 392 | }, |
| 393 | starts: StartTable::from_dense_dfa(dfa, &remap)?, |
| 394 | special: dfa.special().remap(|id| remap[dfa.to_index(id)]), |
| 395 | }; |
| 396 | // And here's our second pass. Iterate over all of the dense states |
| 397 | // again, and update the transitions in each of the states in the |
| 398 | // sparse DFA. |
| 399 | for old_state in dfa.states() { |
| 400 | let new_id = remap[dfa.to_index(old_state.id())]; |
| 401 | let mut new_state = new.trans.state_mut(new_id); |
| 402 | let sparse = old_state.sparse_transitions(); |
| 403 | for (i, (_, _, next)) in sparse.enumerate() { |
| 404 | let next = remap[dfa.to_index(next)]; |
| 405 | new_state.set_next_at(i, next); |
| 406 | } |
| 407 | } |
| 408 | trace!( |
| 409 | "created sparse DFA, memory usage: {} (dense memory usage: {})" , |
| 410 | new.memory_usage(), |
| 411 | dfa.memory_usage(), |
| 412 | ); |
| 413 | Ok(new) |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | impl<T: AsRef<[u8]>> DFA<T> { |
| 418 | /// Cheaply return a borrowed version of this sparse DFA. Specifically, the |
| 419 | /// DFA returned always uses `&[u8]` for its transitions. |
| 420 | pub fn as_ref<'a>(&'a self) -> DFA<&'a [u8]> { |
| 421 | DFA { |
| 422 | trans: self.trans.as_ref(), |
| 423 | starts: self.starts.as_ref(), |
| 424 | special: self.special, |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | /// Return an owned version of this sparse DFA. Specifically, the DFA |
| 429 | /// returned always uses `Vec<u8>` for its transitions. |
| 430 | /// |
| 431 | /// Effectively, this returns a sparse DFA whose transitions live on the |
| 432 | /// heap. |
| 433 | #[cfg (feature = "alloc" )] |
| 434 | pub fn to_owned(&self) -> DFA<Vec<u8>> { |
| 435 | DFA { |
| 436 | trans: self.trans.to_owned(), |
| 437 | starts: self.starts.to_owned(), |
| 438 | special: self.special, |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | /// Returns the memory usage, in bytes, of this DFA. |
| 443 | /// |
| 444 | /// The memory usage is computed based on the number of bytes used to |
| 445 | /// represent this DFA. |
| 446 | /// |
| 447 | /// This does **not** include the stack size used up by this DFA. To |
| 448 | /// compute that, use `std::mem::size_of::<sparse::DFA>()`. |
| 449 | pub fn memory_usage(&self) -> usize { |
| 450 | self.trans.memory_usage() + self.starts.memory_usage() |
| 451 | } |
| 452 | |
| 453 | /// Returns true only if this DFA has starting states for each pattern. |
| 454 | /// |
| 455 | /// When a DFA has starting states for each pattern, then a search with the |
| 456 | /// DFA can be configured to only look for anchored matches of a specific |
| 457 | /// pattern. Specifically, APIs like [`Automaton::find_earliest_fwd_at`] |
| 458 | /// can accept a non-None `pattern_id` if and only if this method returns |
| 459 | /// true. Otherwise, calling `find_earliest_fwd_at` will panic. |
| 460 | /// |
| 461 | /// Note that if the DFA is empty, this always returns false. |
| 462 | pub fn has_starts_for_each_pattern(&self) -> bool { |
| 463 | self.starts.patterns > 0 |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | /// Routines for converting a sparse DFA to other representations, such as raw |
| 468 | /// bytes suitable for persistent storage. |
| 469 | impl<T: AsRef<[u8]>> DFA<T> { |
| 470 | /// Serialize this DFA as raw bytes to a `Vec<u8>` in little endian |
| 471 | /// format. |
| 472 | /// |
| 473 | /// The written bytes are guaranteed to be deserialized correctly and |
| 474 | /// without errors in a semver compatible release of this crate by a |
| 475 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 476 | /// deserialization APIs has been satisfied): |
| 477 | /// |
| 478 | /// * [`DFA::from_bytes`] |
| 479 | /// * [`DFA::from_bytes_unchecked`] |
| 480 | /// |
| 481 | /// Note that unlike a [`dense::DFA`](crate::dfa::dense::DFA)'s |
| 482 | /// serialization methods, this does not add any initial padding to the |
| 483 | /// returned bytes. Padding isn't required for sparse DFAs since they have |
| 484 | /// no alignment requirements. |
| 485 | /// |
| 486 | /// # Example |
| 487 | /// |
| 488 | /// This example shows how to serialize and deserialize a DFA: |
| 489 | /// |
| 490 | /// ``` |
| 491 | /// use regex_automata::{ |
| 492 | /// dfa::{Automaton, sparse::DFA}, |
| 493 | /// HalfMatch, |
| 494 | /// }; |
| 495 | /// |
| 496 | /// // Compile our original DFA. |
| 497 | /// let original_dfa = DFA::new("foo[0-9]+")?; |
| 498 | /// |
| 499 | /// // N.B. We use native endianness here to make the example work, but |
| 500 | /// // using to_bytes_little_endian would work on a little endian target. |
| 501 | /// let buf = original_dfa.to_bytes_native_endian(); |
| 502 | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
| 503 | /// // ignore it. |
| 504 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf)?.0; |
| 505 | /// |
| 506 | /// let expected = HalfMatch::must(0, 8); |
| 507 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?); |
| 508 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 509 | /// ``` |
| 510 | #[cfg (feature = "alloc" )] |
| 511 | pub fn to_bytes_little_endian(&self) -> Vec<u8> { |
| 512 | self.to_bytes::<bytes::LE>() |
| 513 | } |
| 514 | |
| 515 | /// Serialize this DFA as raw bytes to a `Vec<u8>` in big endian |
| 516 | /// format. |
| 517 | /// |
| 518 | /// The written bytes are guaranteed to be deserialized correctly and |
| 519 | /// without errors in a semver compatible release of this crate by a |
| 520 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 521 | /// deserialization APIs has been satisfied): |
| 522 | /// |
| 523 | /// * [`DFA::from_bytes`] |
| 524 | /// * [`DFA::from_bytes_unchecked`] |
| 525 | /// |
| 526 | /// Note that unlike a [`dense::DFA`](crate::dfa::dense::DFA)'s |
| 527 | /// serialization methods, this does not add any initial padding to the |
| 528 | /// returned bytes. Padding isn't required for sparse DFAs since they have |
| 529 | /// no alignment requirements. |
| 530 | /// |
| 531 | /// # Example |
| 532 | /// |
| 533 | /// This example shows how to serialize and deserialize a DFA: |
| 534 | /// |
| 535 | /// ``` |
| 536 | /// use regex_automata::{ |
| 537 | /// dfa::{Automaton, sparse::DFA}, |
| 538 | /// HalfMatch, |
| 539 | /// }; |
| 540 | /// |
| 541 | /// // Compile our original DFA. |
| 542 | /// let original_dfa = DFA::new("foo[0-9]+")?; |
| 543 | /// |
| 544 | /// // N.B. We use native endianness here to make the example work, but |
| 545 | /// // using to_bytes_big_endian would work on a big endian target. |
| 546 | /// let buf = original_dfa.to_bytes_native_endian(); |
| 547 | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
| 548 | /// // ignore it. |
| 549 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf)?.0; |
| 550 | /// |
| 551 | /// let expected = HalfMatch::must(0, 8); |
| 552 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?); |
| 553 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 554 | /// ``` |
| 555 | #[cfg (feature = "alloc" )] |
| 556 | pub fn to_bytes_big_endian(&self) -> Vec<u8> { |
| 557 | self.to_bytes::<bytes::BE>() |
| 558 | } |
| 559 | |
| 560 | /// Serialize this DFA as raw bytes to a `Vec<u8>` in native endian |
| 561 | /// format. |
| 562 | /// |
| 563 | /// The written bytes are guaranteed to be deserialized correctly and |
| 564 | /// without errors in a semver compatible release of this crate by a |
| 565 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 566 | /// deserialization APIs has been satisfied): |
| 567 | /// |
| 568 | /// * [`DFA::from_bytes`] |
| 569 | /// * [`DFA::from_bytes_unchecked`] |
| 570 | /// |
| 571 | /// Note that unlike a [`dense::DFA`](crate::dfa::dense::DFA)'s |
| 572 | /// serialization methods, this does not add any initial padding to the |
| 573 | /// returned bytes. Padding isn't required for sparse DFAs since they have |
| 574 | /// no alignment requirements. |
| 575 | /// |
| 576 | /// Generally speaking, native endian format should only be used when |
| 577 | /// you know that the target you're compiling the DFA for matches the |
| 578 | /// endianness of the target on which you're compiling DFA. For example, |
| 579 | /// if serialization and deserialization happen in the same process or on |
| 580 | /// the same machine. Otherwise, when serializing a DFA for use in a |
| 581 | /// portable environment, you'll almost certainly want to serialize _both_ |
| 582 | /// a little endian and a big endian version and then load the correct one |
| 583 | /// based on the target's configuration. |
| 584 | /// |
| 585 | /// # Example |
| 586 | /// |
| 587 | /// This example shows how to serialize and deserialize a DFA: |
| 588 | /// |
| 589 | /// ``` |
| 590 | /// use regex_automata::{ |
| 591 | /// dfa::{Automaton, sparse::DFA}, |
| 592 | /// HalfMatch, |
| 593 | /// }; |
| 594 | /// |
| 595 | /// // Compile our original DFA. |
| 596 | /// let original_dfa = DFA::new("foo[0-9]+")?; |
| 597 | /// |
| 598 | /// let buf = original_dfa.to_bytes_native_endian(); |
| 599 | /// // Even if buf has initial padding, DFA::from_bytes will automatically |
| 600 | /// // ignore it. |
| 601 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf)?.0; |
| 602 | /// |
| 603 | /// let expected = HalfMatch::must(0, 8); |
| 604 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345")?); |
| 605 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 606 | /// ``` |
| 607 | #[cfg (feature = "alloc" )] |
| 608 | pub fn to_bytes_native_endian(&self) -> Vec<u8> { |
| 609 | self.to_bytes::<bytes::NE>() |
| 610 | } |
| 611 | |
| 612 | /// The implementation of the public `to_bytes` serialization methods, |
| 613 | /// which is generic over endianness. |
| 614 | #[cfg (feature = "alloc" )] |
| 615 | fn to_bytes<E: Endian>(&self) -> Vec<u8> { |
| 616 | let mut buf = vec![0; self.write_to_len()]; |
| 617 | // This should always succeed since the only possible serialization |
| 618 | // error is providing a buffer that's too small, but we've ensured that |
| 619 | // `buf` is big enough here. |
| 620 | self.write_to::<E>(&mut buf).unwrap(); |
| 621 | buf |
| 622 | } |
| 623 | |
| 624 | /// Serialize this DFA as raw bytes to the given slice, in little endian |
| 625 | /// format. Upon success, the total number of bytes written to `dst` is |
| 626 | /// returned. |
| 627 | /// |
| 628 | /// The written bytes are guaranteed to be deserialized correctly and |
| 629 | /// without errors in a semver compatible release of this crate by a |
| 630 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 631 | /// deserialization APIs has been satisfied): |
| 632 | /// |
| 633 | /// * [`DFA::from_bytes`] |
| 634 | /// * [`DFA::from_bytes_unchecked`] |
| 635 | /// |
| 636 | /// # Errors |
| 637 | /// |
| 638 | /// This returns an error if the given destination slice is not big enough |
| 639 | /// to contain the full serialized DFA. If an error occurs, then nothing |
| 640 | /// is written to `dst`. |
| 641 | /// |
| 642 | /// # Example |
| 643 | /// |
| 644 | /// This example shows how to serialize and deserialize a DFA without |
| 645 | /// dynamic memory allocation. |
| 646 | /// |
| 647 | /// ``` |
| 648 | /// use regex_automata::{ |
| 649 | /// dfa::{Automaton, sparse::DFA}, |
| 650 | /// HalfMatch, |
| 651 | /// }; |
| 652 | /// |
| 653 | /// // Compile our original DFA. |
| 654 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 655 | /// |
| 656 | /// // Create a 4KB buffer on the stack to store our serialized DFA. |
| 657 | /// let mut buf = [0u8; 4 * (1<<10)]; |
| 658 | /// // N.B. We use native endianness here to make the example work, but |
| 659 | /// // using write_to_little_endian would work on a little endian target. |
| 660 | /// let written = original_dfa.write_to_native_endian(&mut buf)?; |
| 661 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf[..written])?.0; |
| 662 | /// |
| 663 | /// let expected = HalfMatch::must(0, 8); |
| 664 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 665 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 666 | /// ``` |
| 667 | pub fn write_to_little_endian( |
| 668 | &self, |
| 669 | dst: &mut [u8], |
| 670 | ) -> Result<usize, SerializeError> { |
| 671 | self.write_to::<bytes::LE>(dst) |
| 672 | } |
| 673 | |
| 674 | /// Serialize this DFA as raw bytes to the given slice, in big endian |
| 675 | /// format. Upon success, the total number of bytes written to `dst` is |
| 676 | /// returned. |
| 677 | /// |
| 678 | /// The written bytes are guaranteed to be deserialized correctly and |
| 679 | /// without errors in a semver compatible release of this crate by a |
| 680 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 681 | /// deserialization APIs has been satisfied): |
| 682 | /// |
| 683 | /// * [`DFA::from_bytes`] |
| 684 | /// * [`DFA::from_bytes_unchecked`] |
| 685 | /// |
| 686 | /// # Errors |
| 687 | /// |
| 688 | /// This returns an error if the given destination slice is not big enough |
| 689 | /// to contain the full serialized DFA. If an error occurs, then nothing |
| 690 | /// is written to `dst`. |
| 691 | /// |
| 692 | /// # Example |
| 693 | /// |
| 694 | /// This example shows how to serialize and deserialize a DFA without |
| 695 | /// dynamic memory allocation. |
| 696 | /// |
| 697 | /// ``` |
| 698 | /// use regex_automata::{ |
| 699 | /// dfa::{Automaton, sparse::DFA}, |
| 700 | /// HalfMatch, |
| 701 | /// }; |
| 702 | /// |
| 703 | /// // Compile our original DFA. |
| 704 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 705 | /// |
| 706 | /// // Create a 4KB buffer on the stack to store our serialized DFA. |
| 707 | /// let mut buf = [0u8; 4 * (1<<10)]; |
| 708 | /// // N.B. We use native endianness here to make the example work, but |
| 709 | /// // using write_to_big_endian would work on a big endian target. |
| 710 | /// let written = original_dfa.write_to_native_endian(&mut buf)?; |
| 711 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf[..written])?.0; |
| 712 | /// |
| 713 | /// let expected = HalfMatch::must(0, 8); |
| 714 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 715 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 716 | /// ``` |
| 717 | pub fn write_to_big_endian( |
| 718 | &self, |
| 719 | dst: &mut [u8], |
| 720 | ) -> Result<usize, SerializeError> { |
| 721 | self.write_to::<bytes::BE>(dst) |
| 722 | } |
| 723 | |
| 724 | /// Serialize this DFA as raw bytes to the given slice, in native endian |
| 725 | /// format. Upon success, the total number of bytes written to `dst` is |
| 726 | /// returned. |
| 727 | /// |
| 728 | /// The written bytes are guaranteed to be deserialized correctly and |
| 729 | /// without errors in a semver compatible release of this crate by a |
| 730 | /// `DFA`'s deserialization APIs (assuming all other criteria for the |
| 731 | /// deserialization APIs has been satisfied): |
| 732 | /// |
| 733 | /// * [`DFA::from_bytes`] |
| 734 | /// * [`DFA::from_bytes_unchecked`] |
| 735 | /// |
| 736 | /// Generally speaking, native endian format should only be used when |
| 737 | /// you know that the target you're compiling the DFA for matches the |
| 738 | /// endianness of the target on which you're compiling DFA. For example, |
| 739 | /// if serialization and deserialization happen in the same process or on |
| 740 | /// the same machine. Otherwise, when serializing a DFA for use in a |
| 741 | /// portable environment, you'll almost certainly want to serialize _both_ |
| 742 | /// a little endian and a big endian version and then load the correct one |
| 743 | /// based on the target's configuration. |
| 744 | /// |
| 745 | /// # Errors |
| 746 | /// |
| 747 | /// This returns an error if the given destination slice is not big enough |
| 748 | /// to contain the full serialized DFA. If an error occurs, then nothing |
| 749 | /// is written to `dst`. |
| 750 | /// |
| 751 | /// # Example |
| 752 | /// |
| 753 | /// This example shows how to serialize and deserialize a DFA without |
| 754 | /// dynamic memory allocation. |
| 755 | /// |
| 756 | /// ``` |
| 757 | /// use regex_automata::{ |
| 758 | /// dfa::{Automaton, sparse::DFA}, |
| 759 | /// HalfMatch, |
| 760 | /// }; |
| 761 | /// |
| 762 | /// // Compile our original DFA. |
| 763 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 764 | /// |
| 765 | /// // Create a 4KB buffer on the stack to store our serialized DFA. |
| 766 | /// let mut buf = [0u8; 4 * (1<<10)]; |
| 767 | /// let written = original_dfa.write_to_native_endian(&mut buf)?; |
| 768 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf[..written])?.0; |
| 769 | /// |
| 770 | /// let expected = HalfMatch::must(0, 8); |
| 771 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 772 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 773 | /// ``` |
| 774 | pub fn write_to_native_endian( |
| 775 | &self, |
| 776 | dst: &mut [u8], |
| 777 | ) -> Result<usize, SerializeError> { |
| 778 | self.write_to::<bytes::NE>(dst) |
| 779 | } |
| 780 | |
| 781 | /// The implementation of the public `write_to` serialization methods, |
| 782 | /// which is generic over endianness. |
| 783 | fn write_to<E: Endian>( |
| 784 | &self, |
| 785 | dst: &mut [u8], |
| 786 | ) -> Result<usize, SerializeError> { |
| 787 | let mut nw = 0; |
| 788 | nw += bytes::write_label(LABEL, &mut dst[nw..])?; |
| 789 | nw += bytes::write_endianness_check::<E>(&mut dst[nw..])?; |
| 790 | nw += bytes::write_version::<E>(VERSION, &mut dst[nw..])?; |
| 791 | nw += { |
| 792 | // Currently unused, intended for future flexibility |
| 793 | E::write_u32(0, &mut dst[nw..]); |
| 794 | size_of::<u32>() |
| 795 | }; |
| 796 | nw += self.trans.write_to::<E>(&mut dst[nw..])?; |
| 797 | nw += self.starts.write_to::<E>(&mut dst[nw..])?; |
| 798 | nw += self.special.write_to::<E>(&mut dst[nw..])?; |
| 799 | Ok(nw) |
| 800 | } |
| 801 | |
| 802 | /// Return the total number of bytes required to serialize this DFA. |
| 803 | /// |
| 804 | /// This is useful for determining the size of the buffer required to pass |
| 805 | /// to one of the serialization routines: |
| 806 | /// |
| 807 | /// * [`DFA::write_to_little_endian`] |
| 808 | /// * [`DFA::write_to_big_endian`] |
| 809 | /// * [`DFA::write_to_native_endian`] |
| 810 | /// |
| 811 | /// Passing a buffer smaller than the size returned by this method will |
| 812 | /// result in a serialization error. |
| 813 | /// |
| 814 | /// # Example |
| 815 | /// |
| 816 | /// This example shows how to dynamically allocate enough room to serialize |
| 817 | /// a sparse DFA. |
| 818 | /// |
| 819 | /// ``` |
| 820 | /// use regex_automata::{ |
| 821 | /// dfa::{Automaton, sparse::DFA}, |
| 822 | /// HalfMatch, |
| 823 | /// }; |
| 824 | /// |
| 825 | /// // Compile our original DFA. |
| 826 | /// let original_dfa = DFA::new("foo[0-9]+" )?; |
| 827 | /// |
| 828 | /// let mut buf = vec![0; original_dfa.write_to_len()]; |
| 829 | /// let written = original_dfa.write_to_native_endian(&mut buf)?; |
| 830 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&buf[..written])?.0; |
| 831 | /// |
| 832 | /// let expected = HalfMatch::must(0, 8); |
| 833 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 834 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 835 | /// ``` |
| 836 | pub fn write_to_len(&self) -> usize { |
| 837 | bytes::write_label_len(LABEL) |
| 838 | + bytes::write_endianness_check_len() |
| 839 | + bytes::write_version_len() |
| 840 | + size_of::<u32>() // unused, intended for future flexibility |
| 841 | + self.trans.write_to_len() |
| 842 | + self.starts.write_to_len() |
| 843 | + self.special.write_to_len() |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | impl<'a> DFA<&'a [u8]> { |
| 848 | /// Safely deserialize a sparse DFA with a specific state identifier |
| 849 | /// representation. Upon success, this returns both the deserialized DFA |
| 850 | /// and the number of bytes read from the given slice. Namely, the contents |
| 851 | /// of the slice beyond the DFA are not read. |
| 852 | /// |
| 853 | /// Deserializing a DFA using this routine will never allocate heap memory. |
| 854 | /// For safety purposes, the DFA's transitions will be verified such that |
| 855 | /// every transition points to a valid state. If this verification is too |
| 856 | /// costly, then a [`DFA::from_bytes_unchecked`] API is provided, which |
| 857 | /// will always execute in constant time. |
| 858 | /// |
| 859 | /// The bytes given must be generated by one of the serialization APIs |
| 860 | /// of a `DFA` using a semver compatible release of this crate. Those |
| 861 | /// include: |
| 862 | /// |
| 863 | /// * [`DFA::to_bytes_little_endian`] |
| 864 | /// * [`DFA::to_bytes_big_endian`] |
| 865 | /// * [`DFA::to_bytes_native_endian`] |
| 866 | /// * [`DFA::write_to_little_endian`] |
| 867 | /// * [`DFA::write_to_big_endian`] |
| 868 | /// * [`DFA::write_to_native_endian`] |
| 869 | /// |
| 870 | /// The `to_bytes` methods allocate and return a `Vec<u8>` for you. The |
| 871 | /// `write_to` methods do not allocate and write to an existing slice |
| 872 | /// (which may be on the stack). Since deserialization always uses the |
| 873 | /// native endianness of the target platform, the serialization API you use |
| 874 | /// should match the endianness of the target platform. (It's often a good |
| 875 | /// idea to generate serialized DFAs for both forms of endianness and then |
| 876 | /// load the correct one based on endianness.) |
| 877 | /// |
| 878 | /// # Errors |
| 879 | /// |
| 880 | /// Generally speaking, it's easier to state the conditions in which an |
| 881 | /// error is _not_ returned. All of the following must be true: |
| 882 | /// |
| 883 | /// * The bytes given must be produced by one of the serialization APIs |
| 884 | /// on this DFA, as mentioned above. |
| 885 | /// * The endianness of the target platform matches the endianness used to |
| 886 | /// serialized the provided DFA. |
| 887 | /// |
| 888 | /// If any of the above are not true, then an error will be returned. |
| 889 | /// |
| 890 | /// Note that unlike deserializing a |
| 891 | /// [`dense::DFA`](crate::dfa::dense::DFA), deserializing a sparse DFA has |
| 892 | /// no alignment requirements. That is, an alignment of `1` is valid. |
| 893 | /// |
| 894 | /// # Panics |
| 895 | /// |
| 896 | /// This routine will never panic for any input. |
| 897 | /// |
| 898 | /// # Example |
| 899 | /// |
| 900 | /// This example shows how to serialize a DFA to raw bytes, deserialize it |
| 901 | /// and then use it for searching. |
| 902 | /// |
| 903 | /// ``` |
| 904 | /// use regex_automata::{ |
| 905 | /// dfa::{Automaton, sparse::DFA}, |
| 906 | /// HalfMatch, |
| 907 | /// }; |
| 908 | /// |
| 909 | /// let initial = DFA::new("foo[0-9]+" )?; |
| 910 | /// let bytes = initial.to_bytes_native_endian(); |
| 911 | /// let dfa: DFA<&[u8]> = DFA::from_bytes(&bytes)?.0; |
| 912 | /// |
| 913 | /// let expected = HalfMatch::must(0, 8); |
| 914 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 915 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 916 | /// ``` |
| 917 | /// |
| 918 | /// # Example: loading a DFA from static memory |
| 919 | /// |
| 920 | /// One use case this library supports is the ability to serialize a |
| 921 | /// DFA to disk and then use `include_bytes!` to store it in a compiled |
| 922 | /// Rust program. Those bytes can then be cheaply deserialized into a |
| 923 | /// `DFA` structure at runtime and used for searching without having to |
| 924 | /// re-compile the DFA (which can be quite costly). |
| 925 | /// |
| 926 | /// We can show this in two parts. The first part is serializing the DFA to |
| 927 | /// a file: |
| 928 | /// |
| 929 | /// ```no_run |
| 930 | /// use regex_automata::dfa::{Automaton, sparse::DFA}; |
| 931 | /// |
| 932 | /// let dfa = DFA::new("foo[0-9]+" )?; |
| 933 | /// |
| 934 | /// // Write a big endian serialized version of this DFA to a file. |
| 935 | /// let bytes = dfa.to_bytes_big_endian(); |
| 936 | /// std::fs::write("foo.bigendian.dfa" , &bytes)?; |
| 937 | /// |
| 938 | /// // Do it again, but this time for little endian. |
| 939 | /// let bytes = dfa.to_bytes_little_endian(); |
| 940 | /// std::fs::write("foo.littleendian.dfa" , &bytes)?; |
| 941 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 942 | /// ``` |
| 943 | /// |
| 944 | /// And now the second part is embedding the DFA into the compiled program |
| 945 | /// and deserializing it at runtime on first use. We use conditional |
| 946 | /// compilation to choose the correct endianness. As mentioned above, we |
| 947 | /// do not need to employ any special tricks to ensure a proper alignment, |
| 948 | /// since a sparse DFA has no alignment requirements. |
| 949 | /// |
| 950 | /// ```no_run |
| 951 | /// use regex_automata::{ |
| 952 | /// dfa::{Automaton, sparse}, |
| 953 | /// HalfMatch, |
| 954 | /// }; |
| 955 | /// |
| 956 | /// type DFA = sparse::DFA<&'static [u8]>; |
| 957 | /// |
| 958 | /// fn get_foo() -> &'static DFA { |
| 959 | /// use std::cell::Cell; |
| 960 | /// use std::mem::MaybeUninit; |
| 961 | /// use std::sync::Once; |
| 962 | /// |
| 963 | /// # const _: &str = stringify! { |
| 964 | /// #[cfg(target_endian = "big" )] |
| 965 | /// static BYTES: &[u8] = include_bytes!("foo.bigendian.dfa" ); |
| 966 | /// #[cfg(target_endian = "little" )] |
| 967 | /// static BYTES: &[u8] = include_bytes!("foo.littleendian.dfa" ); |
| 968 | /// # }; |
| 969 | /// # static BYTES: &[u8] = b"" ; |
| 970 | /// |
| 971 | /// struct Lazy(Cell<MaybeUninit<DFA>>); |
| 972 | /// // SAFETY: This is safe because DFA impls Sync. |
| 973 | /// unsafe impl Sync for Lazy {} |
| 974 | /// |
| 975 | /// static INIT: Once = Once::new(); |
| 976 | /// static DFA: Lazy = Lazy(Cell::new(MaybeUninit::uninit())); |
| 977 | /// |
| 978 | /// INIT.call_once(|| { |
| 979 | /// let (dfa, _) = DFA::from_bytes(BYTES) |
| 980 | /// .expect("serialized DFA should be valid" ); |
| 981 | /// // SAFETY: This is guaranteed to only execute once, and all |
| 982 | /// // we do with the pointer is write the DFA to it. |
| 983 | /// unsafe { |
| 984 | /// (*DFA.0.as_ptr()).as_mut_ptr().write(dfa); |
| 985 | /// } |
| 986 | /// }); |
| 987 | /// // SAFETY: DFA is guaranteed to by initialized via INIT and is |
| 988 | /// // stored in static memory. |
| 989 | /// unsafe { |
| 990 | /// let dfa = (*DFA.0.as_ptr()).as_ptr(); |
| 991 | /// std::mem::transmute::<*const DFA, &'static DFA>(dfa) |
| 992 | /// } |
| 993 | /// } |
| 994 | /// |
| 995 | /// let dfa = get_foo(); |
| 996 | /// let expected = HalfMatch::must(0, 8); |
| 997 | /// assert_eq!(Ok(Some(expected)), dfa.find_leftmost_fwd(b"foo12345" )); |
| 998 | /// ``` |
| 999 | /// |
| 1000 | /// Alternatively, consider using |
| 1001 | /// [`lazy_static`](https://crates.io/crates/lazy_static) |
| 1002 | /// or |
| 1003 | /// [`once_cell`](https://crates.io/crates/once_cell), |
| 1004 | /// which will guarantee safety for you. |
| 1005 | pub fn from_bytes( |
| 1006 | slice: &'a [u8], |
| 1007 | ) -> Result<(DFA<&'a [u8]>, usize), DeserializeError> { |
| 1008 | // SAFETY: This is safe because we validate both the sparse transitions |
| 1009 | // (by trying to decode every state) and start state ID list below. If |
| 1010 | // either validation fails, then we return an error. |
| 1011 | let (dfa, nread) = unsafe { DFA::from_bytes_unchecked(slice)? }; |
| 1012 | dfa.trans.validate()?; |
| 1013 | dfa.starts.validate(&dfa.trans)?; |
| 1014 | // N.B. dfa.special doesn't have a way to do unchecked deserialization, |
| 1015 | // so it has already been validated. |
| 1016 | Ok((dfa, nread)) |
| 1017 | } |
| 1018 | |
| 1019 | /// Deserialize a DFA with a specific state identifier representation in |
| 1020 | /// constant time by omitting the verification of the validity of the |
| 1021 | /// sparse transitions. |
| 1022 | /// |
| 1023 | /// This is just like [`DFA::from_bytes`], except it can potentially return |
| 1024 | /// a DFA that exhibits undefined behavior if its transitions contains |
| 1025 | /// invalid state identifiers. |
| 1026 | /// |
| 1027 | /// This routine is useful if you need to deserialize a DFA cheaply and |
| 1028 | /// cannot afford the transition validation performed by `from_bytes`. |
| 1029 | /// |
| 1030 | /// # Safety |
| 1031 | /// |
| 1032 | /// This routine is unsafe because it permits callers to provide |
| 1033 | /// arbitrary transitions with possibly incorrect state identifiers. While |
| 1034 | /// the various serialization routines will never return an incorrect |
| 1035 | /// DFA, there is no guarantee that the bytes provided here |
| 1036 | /// are correct. While `from_bytes_unchecked` will still do several forms |
| 1037 | /// of basic validation, this routine does not check that the transitions |
| 1038 | /// themselves are correct. Given an incorrect transition table, it is |
| 1039 | /// possible for the search routines to access out-of-bounds memory because |
| 1040 | /// of explicit bounds check elision. |
| 1041 | /// |
| 1042 | /// # Example |
| 1043 | /// |
| 1044 | /// ``` |
| 1045 | /// use regex_automata::{ |
| 1046 | /// dfa::{Automaton, sparse::DFA}, |
| 1047 | /// HalfMatch, |
| 1048 | /// }; |
| 1049 | /// |
| 1050 | /// let initial = DFA::new("foo[0-9]+" )?; |
| 1051 | /// let bytes = initial.to_bytes_native_endian(); |
| 1052 | /// // SAFETY: This is guaranteed to be safe since the bytes given come |
| 1053 | /// // directly from a compatible serialization routine. |
| 1054 | /// let dfa: DFA<&[u8]> = unsafe { DFA::from_bytes_unchecked(&bytes)?.0 }; |
| 1055 | /// |
| 1056 | /// let expected = HalfMatch::must(0, 8); |
| 1057 | /// assert_eq!(Some(expected), dfa.find_leftmost_fwd(b"foo12345" )?); |
| 1058 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1059 | /// ``` |
| 1060 | pub unsafe fn from_bytes_unchecked( |
| 1061 | slice: &'a [u8], |
| 1062 | ) -> Result<(DFA<&'a [u8]>, usize), DeserializeError> { |
| 1063 | let mut nr = 0; |
| 1064 | |
| 1065 | nr += bytes::read_label(&slice[nr..], LABEL)?; |
| 1066 | nr += bytes::read_endianness_check(&slice[nr..])?; |
| 1067 | nr += bytes::read_version(&slice[nr..], VERSION)?; |
| 1068 | |
| 1069 | let _unused = bytes::try_read_u32(&slice[nr..], "unused space" )?; |
| 1070 | nr += size_of::<u32>(); |
| 1071 | |
| 1072 | let (trans, nread) = Transitions::from_bytes_unchecked(&slice[nr..])?; |
| 1073 | nr += nread; |
| 1074 | |
| 1075 | let (starts, nread) = StartTable::from_bytes_unchecked(&slice[nr..])?; |
| 1076 | nr += nread; |
| 1077 | |
| 1078 | let (special, nread) = Special::from_bytes(&slice[nr..])?; |
| 1079 | nr += nread; |
| 1080 | if special.max.as_usize() >= trans.sparse().len() { |
| 1081 | return Err(DeserializeError::generic( |
| 1082 | "max should not be greater than or equal to sparse bytes" , |
| 1083 | )); |
| 1084 | } |
| 1085 | |
| 1086 | Ok((DFA { trans, starts, special }, nr)) |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | impl<T: AsRef<[u8]>> fmt::Debug for DFA<T> { |
| 1091 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 1092 | writeln!(f, "sparse::DFA(" )?; |
| 1093 | for state: State<'_> in self.trans.states() { |
| 1094 | fmt_state_indicator(f, self, state.id())?; |
| 1095 | writeln!(f, " {:06?}: {:?}" , state.id(), state)?; |
| 1096 | } |
| 1097 | writeln!(f, "" )?; |
| 1098 | for (i: usize, (start_id: StateID, sty: Start, pid: Option)) in self.starts.iter().enumerate() { |
| 1099 | if i % self.starts.stride == 0 { |
| 1100 | match pid { |
| 1101 | None => writeln!(f, "START-GROUP(ALL)" )?, |
| 1102 | Some(pid: PatternID) => { |
| 1103 | writeln!(f, "START_GROUP(pattern: {:?})" , pid)? |
| 1104 | } |
| 1105 | } |
| 1106 | } |
| 1107 | writeln!(f, " {:?} => {:06?}" , sty, start_id.as_usize())?; |
| 1108 | } |
| 1109 | writeln!(f, "state count: {:?}" , self.trans.count)?; |
| 1110 | writeln!(f, ")" )?; |
| 1111 | Ok(()) |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | unsafe impl<T: AsRef<[u8]>> Automaton for DFA<T> { |
| 1116 | #[inline ] |
| 1117 | fn is_special_state(&self, id: StateID) -> bool { |
| 1118 | self.special.is_special_state(id) |
| 1119 | } |
| 1120 | |
| 1121 | #[inline ] |
| 1122 | fn is_dead_state(&self, id: StateID) -> bool { |
| 1123 | self.special.is_dead_state(id) |
| 1124 | } |
| 1125 | |
| 1126 | #[inline ] |
| 1127 | fn is_quit_state(&self, id: StateID) -> bool { |
| 1128 | self.special.is_quit_state(id) |
| 1129 | } |
| 1130 | |
| 1131 | #[inline ] |
| 1132 | fn is_match_state(&self, id: StateID) -> bool { |
| 1133 | self.special.is_match_state(id) |
| 1134 | } |
| 1135 | |
| 1136 | #[inline ] |
| 1137 | fn is_start_state(&self, id: StateID) -> bool { |
| 1138 | self.special.is_start_state(id) |
| 1139 | } |
| 1140 | |
| 1141 | #[inline ] |
| 1142 | fn is_accel_state(&self, id: StateID) -> bool { |
| 1143 | self.special.is_accel_state(id) |
| 1144 | } |
| 1145 | |
| 1146 | // This is marked as inline to help dramatically boost sparse searching, |
| 1147 | // which decodes each state it enters to follow the next transition. |
| 1148 | #[inline (always)] |
| 1149 | fn next_state(&self, current: StateID, input: u8) -> StateID { |
| 1150 | let input = self.trans.classes.get(input); |
| 1151 | self.trans.state(current).next(input) |
| 1152 | } |
| 1153 | |
| 1154 | #[inline ] |
| 1155 | unsafe fn next_state_unchecked( |
| 1156 | &self, |
| 1157 | current: StateID, |
| 1158 | input: u8, |
| 1159 | ) -> StateID { |
| 1160 | self.next_state(current, input) |
| 1161 | } |
| 1162 | |
| 1163 | #[inline ] |
| 1164 | fn next_eoi_state(&self, current: StateID) -> StateID { |
| 1165 | self.trans.state(current).next_eoi() |
| 1166 | } |
| 1167 | |
| 1168 | #[inline ] |
| 1169 | fn pattern_count(&self) -> usize { |
| 1170 | self.trans.patterns |
| 1171 | } |
| 1172 | |
| 1173 | #[inline ] |
| 1174 | fn match_count(&self, id: StateID) -> usize { |
| 1175 | self.trans.state(id).pattern_count() |
| 1176 | } |
| 1177 | |
| 1178 | #[inline ] |
| 1179 | fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID { |
| 1180 | // This is an optimization for the very common case of a DFA with a |
| 1181 | // single pattern. This conditional avoids a somewhat more costly path |
| 1182 | // that finds the pattern ID from the state machine, which requires |
| 1183 | // a bit of slicing/pointer-chasing. This optimization tends to only |
| 1184 | // matter when matches are frequent. |
| 1185 | if self.trans.patterns == 1 { |
| 1186 | return PatternID::ZERO; |
| 1187 | } |
| 1188 | self.trans.state(id).pattern_id(match_index) |
| 1189 | } |
| 1190 | |
| 1191 | #[inline ] |
| 1192 | fn start_state_forward( |
| 1193 | &self, |
| 1194 | pattern_id: Option<PatternID>, |
| 1195 | bytes: &[u8], |
| 1196 | start: usize, |
| 1197 | end: usize, |
| 1198 | ) -> StateID { |
| 1199 | let index = Start::from_position_fwd(bytes, start, end); |
| 1200 | self.starts.start(index, pattern_id) |
| 1201 | } |
| 1202 | |
| 1203 | #[inline ] |
| 1204 | fn start_state_reverse( |
| 1205 | &self, |
| 1206 | pattern_id: Option<PatternID>, |
| 1207 | bytes: &[u8], |
| 1208 | start: usize, |
| 1209 | end: usize, |
| 1210 | ) -> StateID { |
| 1211 | let index = Start::from_position_rev(bytes, start, end); |
| 1212 | self.starts.start(index, pattern_id) |
| 1213 | } |
| 1214 | |
| 1215 | #[inline ] |
| 1216 | fn accelerator(&self, id: StateID) -> &[u8] { |
| 1217 | self.trans.state(id).accelerator() |
| 1218 | } |
| 1219 | } |
| 1220 | |
| 1221 | /// The transition table portion of a sparse DFA. |
| 1222 | /// |
| 1223 | /// The transition table is the core part of the DFA in that it describes how |
| 1224 | /// to move from one state to another based on the input sequence observed. |
| 1225 | /// |
| 1226 | /// Unlike a typical dense table based DFA, states in a sparse transition |
| 1227 | /// table have variable size. That is, states with more transitions use more |
| 1228 | /// space than states with fewer transitions. This means that finding the next |
| 1229 | /// transition takes more work than with a dense DFA, but also typically uses |
| 1230 | /// much less space. |
| 1231 | #[derive (Clone)] |
| 1232 | struct Transitions<T> { |
| 1233 | /// The raw encoding of each state in this DFA. |
| 1234 | /// |
| 1235 | /// Each state has the following information: |
| 1236 | /// |
| 1237 | /// * A set of transitions to subsequent states. Transitions to the dead |
| 1238 | /// state are omitted. |
| 1239 | /// * If the state can be accelerated, then any additional accelerator |
| 1240 | /// information. |
| 1241 | /// * If the state is a match state, then the state contains all pattern |
| 1242 | /// IDs that match when in that state. |
| 1243 | /// |
| 1244 | /// To decode a state, use Transitions::state. |
| 1245 | /// |
| 1246 | /// In practice, T is either Vec<u8> or &[u8]. |
| 1247 | sparse: T, |
| 1248 | /// A set of equivalence classes, where a single equivalence class |
| 1249 | /// represents a set of bytes that never discriminate between a match |
| 1250 | /// and a non-match in the DFA. Each equivalence class corresponds to a |
| 1251 | /// single character in this DFA's alphabet, where the maximum number of |
| 1252 | /// characters is 257 (each possible value of a byte plus the special |
| 1253 | /// EOI transition). Consequently, the number of equivalence classes |
| 1254 | /// corresponds to the number of transitions for each DFA state. Note |
| 1255 | /// though that the *space* used by each DFA state in the transition table |
| 1256 | /// may be larger. The total space used by each DFA state is known as the |
| 1257 | /// stride and is documented above. |
| 1258 | /// |
| 1259 | /// The only time the number of equivalence classes is fewer than 257 is |
| 1260 | /// if the DFA's kind uses byte classes which is the default. Equivalence |
| 1261 | /// classes should generally only be disabled when debugging, so that |
| 1262 | /// the transitions themselves aren't obscured. Disabling them has no |
| 1263 | /// other benefit, since the equivalence class map is always used while |
| 1264 | /// searching. In the vast majority of cases, the number of equivalence |
| 1265 | /// classes is substantially smaller than 257, particularly when large |
| 1266 | /// Unicode classes aren't used. |
| 1267 | /// |
| 1268 | /// N.B. Equivalence classes aren't particularly useful in a sparse DFA |
| 1269 | /// in the current implementation, since equivalence classes generally tend |
| 1270 | /// to correspond to continuous ranges of bytes that map to the same |
| 1271 | /// transition. So in a sparse DFA, equivalence classes don't really lead |
| 1272 | /// to a space savings. In the future, it would be good to try and remove |
| 1273 | /// them from sparse DFAs entirely, but requires a bit of work since sparse |
| 1274 | /// DFAs are built from dense DFAs, which are in turn built on top of |
| 1275 | /// equivalence classes. |
| 1276 | classes: ByteClasses, |
| 1277 | /// The total number of states in this DFA. Note that a DFA always has at |
| 1278 | /// least one state---the dead state---even the empty DFA. In particular, |
| 1279 | /// the dead state always has ID 0 and is correspondingly always the first |
| 1280 | /// state. The dead state is never a match state. |
| 1281 | count: usize, |
| 1282 | /// The total number of unique patterns represented by these match states. |
| 1283 | patterns: usize, |
| 1284 | } |
| 1285 | |
| 1286 | impl<'a> Transitions<&'a [u8]> { |
| 1287 | unsafe fn from_bytes_unchecked( |
| 1288 | mut slice: &'a [u8], |
| 1289 | ) -> Result<(Transitions<&'a [u8]>, usize), DeserializeError> { |
| 1290 | let slice_start = slice.as_ptr() as usize; |
| 1291 | |
| 1292 | let (state_count, nr) = |
| 1293 | bytes::try_read_u32_as_usize(&slice, "state count" )?; |
| 1294 | slice = &slice[nr..]; |
| 1295 | |
| 1296 | let (pattern_count, nr) = |
| 1297 | bytes::try_read_u32_as_usize(&slice, "pattern count" )?; |
| 1298 | slice = &slice[nr..]; |
| 1299 | |
| 1300 | let (classes, nr) = ByteClasses::from_bytes(&slice)?; |
| 1301 | slice = &slice[nr..]; |
| 1302 | |
| 1303 | let (len, nr) = |
| 1304 | bytes::try_read_u32_as_usize(&slice, "sparse transitions length" )?; |
| 1305 | slice = &slice[nr..]; |
| 1306 | |
| 1307 | bytes::check_slice_len(slice, len, "sparse states byte length" )?; |
| 1308 | let sparse = &slice[..len]; |
| 1309 | slice = &slice[len..]; |
| 1310 | |
| 1311 | let trans = Transitions { |
| 1312 | sparse, |
| 1313 | classes, |
| 1314 | count: state_count, |
| 1315 | patterns: pattern_count, |
| 1316 | }; |
| 1317 | Ok((trans, slice.as_ptr() as usize - slice_start)) |
| 1318 | } |
| 1319 | } |
| 1320 | |
| 1321 | impl<T: AsRef<[u8]>> Transitions<T> { |
| 1322 | /// Writes a serialized form of this transition table to the buffer given. |
| 1323 | /// If the buffer is too small, then an error is returned. To determine |
| 1324 | /// how big the buffer must be, use `write_to_len`. |
| 1325 | fn write_to<E: Endian>( |
| 1326 | &self, |
| 1327 | mut dst: &mut [u8], |
| 1328 | ) -> Result<usize, SerializeError> { |
| 1329 | let nwrite = self.write_to_len(); |
| 1330 | if dst.len() < nwrite { |
| 1331 | return Err(SerializeError::buffer_too_small( |
| 1332 | "sparse transition table" , |
| 1333 | )); |
| 1334 | } |
| 1335 | dst = &mut dst[..nwrite]; |
| 1336 | |
| 1337 | // write state count |
| 1338 | E::write_u32(u32::try_from(self.count).unwrap(), dst); |
| 1339 | dst = &mut dst[size_of::<u32>()..]; |
| 1340 | |
| 1341 | // write pattern count |
| 1342 | E::write_u32(u32::try_from(self.patterns).unwrap(), dst); |
| 1343 | dst = &mut dst[size_of::<u32>()..]; |
| 1344 | |
| 1345 | // write byte class map |
| 1346 | let n = self.classes.write_to(dst)?; |
| 1347 | dst = &mut dst[n..]; |
| 1348 | |
| 1349 | // write number of bytes in sparse transitions |
| 1350 | E::write_u32(u32::try_from(self.sparse().len()).unwrap(), dst); |
| 1351 | dst = &mut dst[size_of::<u32>()..]; |
| 1352 | |
| 1353 | // write actual transitions |
| 1354 | dst.copy_from_slice(self.sparse()); |
| 1355 | Ok(nwrite) |
| 1356 | } |
| 1357 | |
| 1358 | /// Returns the number of bytes the serialized form of this transition |
| 1359 | /// table will use. |
| 1360 | fn write_to_len(&self) -> usize { |
| 1361 | size_of::<u32>() // state count |
| 1362 | + size_of::<u32>() // pattern count |
| 1363 | + self.classes.write_to_len() |
| 1364 | + size_of::<u32>() // sparse transitions length |
| 1365 | + self.sparse().len() |
| 1366 | } |
| 1367 | |
| 1368 | /// Validates that every state ID in this transition table is valid. |
| 1369 | /// |
| 1370 | /// That is, every state ID can be used to correctly index a state in this |
| 1371 | /// table. |
| 1372 | fn validate(&self) -> Result<(), DeserializeError> { |
| 1373 | // In order to validate everything, we not only need to make sure we |
| 1374 | // can decode every state, but that every transition in every state |
| 1375 | // points to a valid state. There are many duplicative transitions, so |
| 1376 | // we record state IDs that we've verified so that we don't redo the |
| 1377 | // decoding work. |
| 1378 | // |
| 1379 | // Except, when in no_std mode, we don't have dynamic memory allocation |
| 1380 | // available to us, so we skip this optimization. It's not clear |
| 1381 | // whether doing something more clever is worth it just yet. If you're |
| 1382 | // profiling this code and need it to run faster, please file an issue. |
| 1383 | // |
| 1384 | // ---AG |
| 1385 | struct Seen { |
| 1386 | #[cfg (feature = "alloc" )] |
| 1387 | set: BTreeSet<StateID>, |
| 1388 | #[cfg (not(feature = "alloc" ))] |
| 1389 | set: core::marker::PhantomData<StateID>, |
| 1390 | } |
| 1391 | |
| 1392 | #[cfg (feature = "alloc" )] |
| 1393 | impl Seen { |
| 1394 | fn new() -> Seen { |
| 1395 | Seen { set: BTreeSet::new() } |
| 1396 | } |
| 1397 | fn insert(&mut self, id: StateID) { |
| 1398 | self.set.insert(id); |
| 1399 | } |
| 1400 | fn contains(&self, id: &StateID) -> bool { |
| 1401 | self.set.contains(id) |
| 1402 | } |
| 1403 | } |
| 1404 | |
| 1405 | #[cfg (not(feature = "alloc" ))] |
| 1406 | impl Seen { |
| 1407 | fn new() -> Seen { |
| 1408 | Seen { set: core::marker::PhantomData } |
| 1409 | } |
| 1410 | fn insert(&mut self, _id: StateID) {} |
| 1411 | fn contains(&self, _id: &StateID) -> bool { |
| 1412 | false |
| 1413 | } |
| 1414 | } |
| 1415 | |
| 1416 | let mut verified: Seen = Seen::new(); |
| 1417 | // We need to make sure that we decode the correct number of states. |
| 1418 | // Otherwise, an empty set of transitions would validate even if the |
| 1419 | // recorded state count is non-empty. |
| 1420 | let mut count = 0; |
| 1421 | // We can't use the self.states() iterator because it assumes the state |
| 1422 | // encodings are valid. It could panic if they aren't. |
| 1423 | let mut id = DEAD; |
| 1424 | while id.as_usize() < self.sparse().len() { |
| 1425 | let state = self.try_state(id)?; |
| 1426 | verified.insert(id); |
| 1427 | // The next ID should be the offset immediately following `state`. |
| 1428 | id = StateID::new(bytes::add( |
| 1429 | id.as_usize(), |
| 1430 | state.bytes_len(), |
| 1431 | "next state ID offset" , |
| 1432 | )?) |
| 1433 | .map_err(|err| { |
| 1434 | DeserializeError::state_id_error(err, "next state ID offset" ) |
| 1435 | })?; |
| 1436 | count += 1; |
| 1437 | |
| 1438 | // Now check that all transitions in this state are correct. |
| 1439 | for i in 0..state.ntrans { |
| 1440 | let to = state.next_at(i); |
| 1441 | if verified.contains(&to) { |
| 1442 | continue; |
| 1443 | } |
| 1444 | let _ = self.try_state(to)?; |
| 1445 | verified.insert(id); |
| 1446 | } |
| 1447 | } |
| 1448 | if count != self.count { |
| 1449 | return Err(DeserializeError::generic( |
| 1450 | "mismatching sparse state count" , |
| 1451 | )); |
| 1452 | } |
| 1453 | Ok(()) |
| 1454 | } |
| 1455 | |
| 1456 | /// Converts these transitions to a borrowed value. |
| 1457 | fn as_ref(&self) -> Transitions<&'_ [u8]> { |
| 1458 | Transitions { |
| 1459 | sparse: self.sparse(), |
| 1460 | classes: self.classes.clone(), |
| 1461 | count: self.count, |
| 1462 | patterns: self.patterns, |
| 1463 | } |
| 1464 | } |
| 1465 | |
| 1466 | /// Converts these transitions to an owned value. |
| 1467 | #[cfg (feature = "alloc" )] |
| 1468 | fn to_owned(&self) -> Transitions<Vec<u8>> { |
| 1469 | Transitions { |
| 1470 | sparse: self.sparse().to_vec(), |
| 1471 | classes: self.classes.clone(), |
| 1472 | count: self.count, |
| 1473 | patterns: self.patterns, |
| 1474 | } |
| 1475 | } |
| 1476 | |
| 1477 | /// Return a convenient representation of the given state. |
| 1478 | /// |
| 1479 | /// This panics if the state is invalid. |
| 1480 | /// |
| 1481 | /// This is marked as inline to help dramatically boost sparse searching, |
| 1482 | /// which decodes each state it enters to follow the next transition. Other |
| 1483 | /// functions involved are also inlined, which should hopefully eliminate |
| 1484 | /// a lot of the extraneous decoding that is never needed just to follow |
| 1485 | /// the next transition. |
| 1486 | #[inline (always)] |
| 1487 | fn state(&self, id: StateID) -> State<'_> { |
| 1488 | let mut state = &self.sparse()[id.as_usize()..]; |
| 1489 | let mut ntrans = bytes::read_u16(&state) as usize; |
| 1490 | let is_match = (1 << 15) & ntrans != 0; |
| 1491 | ntrans &= !(1 << 15); |
| 1492 | state = &state[2..]; |
| 1493 | |
| 1494 | let (input_ranges, state) = state.split_at(ntrans * 2); |
| 1495 | let (next, state) = state.split_at(ntrans * StateID::SIZE); |
| 1496 | let (pattern_ids, state) = if is_match { |
| 1497 | let npats = bytes::read_u32(&state) as usize; |
| 1498 | state[4..].split_at(npats * 4) |
| 1499 | } else { |
| 1500 | (&[][..], state) |
| 1501 | }; |
| 1502 | |
| 1503 | let accel_len = state[0] as usize; |
| 1504 | let accel = &state[1..accel_len + 1]; |
| 1505 | State { id, is_match, ntrans, input_ranges, next, pattern_ids, accel } |
| 1506 | } |
| 1507 | |
| 1508 | /// Like `state`, but will return an error if the state encoding is |
| 1509 | /// invalid. This is useful for verifying states after deserialization, |
| 1510 | /// which is required for a safe deserialization API. |
| 1511 | /// |
| 1512 | /// Note that this only verifies that this state is decodable and that |
| 1513 | /// all of its data is consistent. It does not verify that its state ID |
| 1514 | /// transitions point to valid states themselves, nor does it verify that |
| 1515 | /// every pattern ID is valid. |
| 1516 | fn try_state(&self, id: StateID) -> Result<State<'_>, DeserializeError> { |
| 1517 | if id.as_usize() > self.sparse().len() { |
| 1518 | return Err(DeserializeError::generic("invalid sparse state ID" )); |
| 1519 | } |
| 1520 | let mut state = &self.sparse()[id.as_usize()..]; |
| 1521 | // Encoding format starts with a u16 that stores the total number of |
| 1522 | // transitions in this state. |
| 1523 | let (mut ntrans, _) = |
| 1524 | bytes::try_read_u16_as_usize(state, "state transition count" )?; |
| 1525 | let is_match = ((1 << 15) & ntrans) != 0; |
| 1526 | ntrans &= !(1 << 15); |
| 1527 | state = &state[2..]; |
| 1528 | if ntrans > 257 || ntrans == 0 { |
| 1529 | return Err(DeserializeError::generic("invalid transition count" )); |
| 1530 | } |
| 1531 | |
| 1532 | // Each transition has two pieces: an inclusive range of bytes on which |
| 1533 | // it is defined, and the state ID that those bytes transition to. The |
| 1534 | // pairs come first, followed by a corresponding sequence of state IDs. |
| 1535 | let input_ranges_len = ntrans.checked_mul(2).unwrap(); |
| 1536 | bytes::check_slice_len(state, input_ranges_len, "sparse byte pairs" )?; |
| 1537 | let (input_ranges, state) = state.split_at(input_ranges_len); |
| 1538 | // Every range should be of the form A-B, where A<=B. |
| 1539 | for pair in input_ranges.chunks(2) { |
| 1540 | let (start, end) = (pair[0], pair[1]); |
| 1541 | if start > end { |
| 1542 | return Err(DeserializeError::generic("invalid input range" )); |
| 1543 | } |
| 1544 | } |
| 1545 | |
| 1546 | // And now extract the corresponding sequence of state IDs. We leave |
| 1547 | // this sequence as a &[u8] instead of a &[S] because sparse DFAs do |
| 1548 | // not have any alignment requirements. |
| 1549 | let next_len = ntrans |
| 1550 | .checked_mul(self.id_len()) |
| 1551 | .expect("state size * #trans should always fit in a usize" ); |
| 1552 | bytes::check_slice_len(state, next_len, "sparse trans state IDs" )?; |
| 1553 | let (next, state) = state.split_at(next_len); |
| 1554 | // We can at least verify that every state ID is in bounds. |
| 1555 | for idbytes in next.chunks(self.id_len()) { |
| 1556 | let (id, _) = |
| 1557 | bytes::read_state_id(idbytes, "sparse state ID in try_state" )?; |
| 1558 | bytes::check_slice_len( |
| 1559 | self.sparse(), |
| 1560 | id.as_usize(), |
| 1561 | "invalid sparse state ID" , |
| 1562 | )?; |
| 1563 | } |
| 1564 | |
| 1565 | // If this is a match state, then read the pattern IDs for this state. |
| 1566 | // Pattern IDs is a u32-length prefixed sequence of native endian |
| 1567 | // encoded 32-bit integers. |
| 1568 | let (pattern_ids, state) = if is_match { |
| 1569 | let (npats, nr) = |
| 1570 | bytes::try_read_u32_as_usize(state, "pattern ID count" )?; |
| 1571 | let state = &state[nr..]; |
| 1572 | |
| 1573 | let pattern_ids_len = |
| 1574 | bytes::mul(npats, 4, "sparse pattern ID byte length" )?; |
| 1575 | bytes::check_slice_len( |
| 1576 | state, |
| 1577 | pattern_ids_len, |
| 1578 | "sparse pattern IDs" , |
| 1579 | )?; |
| 1580 | let (pattern_ids, state) = state.split_at(pattern_ids_len); |
| 1581 | for patbytes in pattern_ids.chunks(PatternID::SIZE) { |
| 1582 | bytes::read_pattern_id( |
| 1583 | patbytes, |
| 1584 | "sparse pattern ID in try_state" , |
| 1585 | )?; |
| 1586 | } |
| 1587 | (pattern_ids, state) |
| 1588 | } else { |
| 1589 | (&[][..], state) |
| 1590 | }; |
| 1591 | |
| 1592 | // Now read this state's accelerator info. The first byte is the length |
| 1593 | // of the accelerator, which is typically 0 (for no acceleration) but |
| 1594 | // is no bigger than 3. The length indicates the number of bytes that |
| 1595 | // follow, where each byte corresponds to a transition out of this |
| 1596 | // state. |
| 1597 | if state.is_empty() { |
| 1598 | return Err(DeserializeError::generic("no accelerator length" )); |
| 1599 | } |
| 1600 | let (accel_len, state) = (state[0] as usize, &state[1..]); |
| 1601 | |
| 1602 | if accel_len > 3 { |
| 1603 | return Err(DeserializeError::generic( |
| 1604 | "sparse invalid accelerator length" , |
| 1605 | )); |
| 1606 | } |
| 1607 | bytes::check_slice_len( |
| 1608 | state, |
| 1609 | accel_len, |
| 1610 | "sparse corrupt accelerator length" , |
| 1611 | )?; |
| 1612 | let (accel, _) = (&state[..accel_len], &state[accel_len..]); |
| 1613 | |
| 1614 | Ok(State { |
| 1615 | id, |
| 1616 | is_match, |
| 1617 | ntrans, |
| 1618 | input_ranges, |
| 1619 | next, |
| 1620 | pattern_ids, |
| 1621 | accel, |
| 1622 | }) |
| 1623 | } |
| 1624 | |
| 1625 | /// Return an iterator over all of the states in this DFA. |
| 1626 | /// |
| 1627 | /// The iterator returned yields tuples, where the first element is the |
| 1628 | /// state ID and the second element is the state itself. |
| 1629 | fn states(&self) -> StateIter<'_, T> { |
| 1630 | StateIter { trans: self, id: DEAD.as_usize() } |
| 1631 | } |
| 1632 | |
| 1633 | /// Returns the sparse transitions as raw bytes. |
| 1634 | fn sparse(&self) -> &[u8] { |
| 1635 | self.sparse.as_ref() |
| 1636 | } |
| 1637 | |
| 1638 | /// Returns the number of bytes represented by a single state ID. |
| 1639 | fn id_len(&self) -> usize { |
| 1640 | StateID::SIZE |
| 1641 | } |
| 1642 | |
| 1643 | /// Return the memory usage, in bytes, of these transitions. |
| 1644 | /// |
| 1645 | /// This does not include the size of a `Transitions` value itself. |
| 1646 | fn memory_usage(&self) -> usize { |
| 1647 | self.sparse().len() |
| 1648 | } |
| 1649 | } |
| 1650 | |
| 1651 | #[cfg (feature = "alloc" )] |
| 1652 | impl<T: AsMut<[u8]>> Transitions<T> { |
| 1653 | /// Return a convenient mutable representation of the given state. |
| 1654 | /// This panics if the state is invalid. |
| 1655 | fn state_mut(&mut self, id: StateID) -> StateMut<'_> { |
| 1656 | let mut state = &mut self.sparse_mut()[id.as_usize()..]; |
| 1657 | let mut ntrans = bytes::read_u16(&state) as usize; |
| 1658 | let is_match = (1 << 15) & ntrans != 0; |
| 1659 | ntrans &= !(1 << 15); |
| 1660 | state = &mut state[2..]; |
| 1661 | |
| 1662 | let (input_ranges, state) = state.split_at_mut(ntrans * 2); |
| 1663 | let (next, state) = state.split_at_mut(ntrans * StateID::SIZE); |
| 1664 | let (pattern_ids, state) = if is_match { |
| 1665 | let npats = bytes::read_u32(&state) as usize; |
| 1666 | state[4..].split_at_mut(npats * 4) |
| 1667 | } else { |
| 1668 | (&mut [][..], state) |
| 1669 | }; |
| 1670 | |
| 1671 | let accel_len = state[0] as usize; |
| 1672 | let accel = &mut state[1..accel_len + 1]; |
| 1673 | StateMut { |
| 1674 | id, |
| 1675 | is_match, |
| 1676 | ntrans, |
| 1677 | input_ranges, |
| 1678 | next, |
| 1679 | pattern_ids, |
| 1680 | accel, |
| 1681 | } |
| 1682 | } |
| 1683 | |
| 1684 | /// Returns the sparse transitions as raw mutable bytes. |
| 1685 | fn sparse_mut(&mut self) -> &mut [u8] { |
| 1686 | self.sparse.as_mut() |
| 1687 | } |
| 1688 | } |
| 1689 | |
| 1690 | /// The set of all possible starting states in a DFA. |
| 1691 | /// |
| 1692 | /// See the eponymous type in the `dense` module for more details. This type |
| 1693 | /// is very similar to `dense::StartTable`, except that its underlying |
| 1694 | /// representation is `&[u8]` instead of `&[S]`. (The latter would require |
| 1695 | /// sparse DFAs to be aligned, which is explicitly something we do not require |
| 1696 | /// because we don't really need it.) |
| 1697 | #[derive (Clone)] |
| 1698 | struct StartTable<T> { |
| 1699 | /// The initial start state IDs as a contiguous table of native endian |
| 1700 | /// encoded integers, represented by `S`. |
| 1701 | /// |
| 1702 | /// In practice, T is either Vec<u8> or &[u8] and has no alignment |
| 1703 | /// requirements. |
| 1704 | /// |
| 1705 | /// The first `stride` (currently always 4) entries always correspond to |
| 1706 | /// the start states for the entire DFA. After that, there are |
| 1707 | /// `stride * patterns` state IDs, where `patterns` may be zero in the |
| 1708 | /// case of a DFA with no patterns or in the case where the DFA was built |
| 1709 | /// without enabling starting states for each pattern. |
| 1710 | table: T, |
| 1711 | /// The number of starting state IDs per pattern. |
| 1712 | stride: usize, |
| 1713 | /// The total number of patterns for which starting states are encoded. |
| 1714 | /// This may be zero for non-empty DFAs when the DFA was built without |
| 1715 | /// start states for each pattern. |
| 1716 | patterns: usize, |
| 1717 | } |
| 1718 | |
| 1719 | #[cfg (feature = "alloc" )] |
| 1720 | impl StartTable<Vec<u8>> { |
| 1721 | fn new(patterns: usize) -> StartTable<Vec<u8>> { |
| 1722 | let stride = Start::count(); |
| 1723 | // This is OK since the only way we're here is if a dense DFA could be |
| 1724 | // constructed successfully, which uses the same space. |
| 1725 | let len = stride |
| 1726 | .checked_mul(patterns) |
| 1727 | .unwrap() |
| 1728 | .checked_add(stride) |
| 1729 | .unwrap() |
| 1730 | .checked_mul(StateID::SIZE) |
| 1731 | .unwrap(); |
| 1732 | StartTable { table: vec![0; len], stride, patterns } |
| 1733 | } |
| 1734 | |
| 1735 | fn from_dense_dfa<T: AsRef<[u32]>>( |
| 1736 | dfa: &dense::DFA<T>, |
| 1737 | remap: &[StateID], |
| 1738 | ) -> Result<StartTable<Vec<u8>>, Error> { |
| 1739 | // Unless the DFA has start states compiled for each pattern, then |
| 1740 | // as far as the starting state table is concerned, there are zero |
| 1741 | // patterns to account for. It will instead only store starting states |
| 1742 | // for the entire DFA. |
| 1743 | let start_pattern_count = if dfa.has_starts_for_each_pattern() { |
| 1744 | dfa.pattern_count() |
| 1745 | } else { |
| 1746 | 0 |
| 1747 | }; |
| 1748 | let mut sl = StartTable::new(start_pattern_count); |
| 1749 | for (old_start_id, sty, pid) in dfa.starts() { |
| 1750 | let new_start_id = remap[dfa.to_index(old_start_id)]; |
| 1751 | sl.set_start(sty, pid, new_start_id); |
| 1752 | } |
| 1753 | Ok(sl) |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | impl<'a> StartTable<&'a [u8]> { |
| 1758 | unsafe fn from_bytes_unchecked( |
| 1759 | mut slice: &'a [u8], |
| 1760 | ) -> Result<(StartTable<&'a [u8]>, usize), DeserializeError> { |
| 1761 | let slice_start = slice.as_ptr() as usize; |
| 1762 | |
| 1763 | let (stride, nr) = |
| 1764 | bytes::try_read_u32_as_usize(slice, "sparse start table stride" )?; |
| 1765 | slice = &slice[nr..]; |
| 1766 | |
| 1767 | let (patterns, nr) = bytes::try_read_u32_as_usize( |
| 1768 | slice, |
| 1769 | "sparse start table patterns" , |
| 1770 | )?; |
| 1771 | slice = &slice[nr..]; |
| 1772 | |
| 1773 | if stride != Start::count() { |
| 1774 | return Err(DeserializeError::generic( |
| 1775 | "invalid sparse starting table stride" , |
| 1776 | )); |
| 1777 | } |
| 1778 | if patterns > PatternID::LIMIT { |
| 1779 | return Err(DeserializeError::generic( |
| 1780 | "sparse invalid number of patterns" , |
| 1781 | )); |
| 1782 | } |
| 1783 | let pattern_table_size = |
| 1784 | bytes::mul(stride, patterns, "sparse invalid pattern count" )?; |
| 1785 | // Our start states always start with a single stride of start states |
| 1786 | // for the entire automaton which permit it to match any pattern. What |
| 1787 | // follows it are an optional set of start states for each pattern. |
| 1788 | let start_state_count = bytes::add( |
| 1789 | stride, |
| 1790 | pattern_table_size, |
| 1791 | "sparse invalid 'any' pattern starts size" , |
| 1792 | )?; |
| 1793 | let table_bytes_len = bytes::mul( |
| 1794 | start_state_count, |
| 1795 | StateID::SIZE, |
| 1796 | "sparse pattern table bytes length" , |
| 1797 | )?; |
| 1798 | bytes::check_slice_len( |
| 1799 | slice, |
| 1800 | table_bytes_len, |
| 1801 | "sparse start ID table" , |
| 1802 | )?; |
| 1803 | let table_bytes = &slice[..table_bytes_len]; |
| 1804 | slice = &slice[table_bytes_len..]; |
| 1805 | |
| 1806 | let sl = StartTable { table: table_bytes, stride, patterns }; |
| 1807 | Ok((sl, slice.as_ptr() as usize - slice_start)) |
| 1808 | } |
| 1809 | } |
| 1810 | |
| 1811 | impl<T: AsRef<[u8]>> StartTable<T> { |
| 1812 | fn write_to<E: Endian>( |
| 1813 | &self, |
| 1814 | mut dst: &mut [u8], |
| 1815 | ) -> Result<usize, SerializeError> { |
| 1816 | let nwrite = self.write_to_len(); |
| 1817 | if dst.len() < nwrite { |
| 1818 | return Err(SerializeError::buffer_too_small( |
| 1819 | "sparse starting table ids" , |
| 1820 | )); |
| 1821 | } |
| 1822 | dst = &mut dst[..nwrite]; |
| 1823 | |
| 1824 | // write stride |
| 1825 | E::write_u32(u32::try_from(self.stride).unwrap(), dst); |
| 1826 | dst = &mut dst[size_of::<u32>()..]; |
| 1827 | // write pattern count |
| 1828 | E::write_u32(u32::try_from(self.patterns).unwrap(), dst); |
| 1829 | dst = &mut dst[size_of::<u32>()..]; |
| 1830 | // write start IDs |
| 1831 | dst.copy_from_slice(self.table()); |
| 1832 | Ok(nwrite) |
| 1833 | } |
| 1834 | |
| 1835 | /// Returns the number of bytes the serialized form of this transition |
| 1836 | /// table will use. |
| 1837 | fn write_to_len(&self) -> usize { |
| 1838 | size_of::<u32>() // stride |
| 1839 | + size_of::<u32>() // # patterns |
| 1840 | + self.table().len() |
| 1841 | } |
| 1842 | |
| 1843 | /// Validates that every starting state ID in this table is valid. |
| 1844 | /// |
| 1845 | /// That is, every starting state ID can be used to correctly decode a |
| 1846 | /// state in the DFA's sparse transitions. |
| 1847 | fn validate( |
| 1848 | &self, |
| 1849 | trans: &Transitions<T>, |
| 1850 | ) -> Result<(), DeserializeError> { |
| 1851 | for (id, _, _) in self.iter() { |
| 1852 | let _ = trans.try_state(id)?; |
| 1853 | } |
| 1854 | Ok(()) |
| 1855 | } |
| 1856 | |
| 1857 | /// Converts this start list to a borrowed value. |
| 1858 | fn as_ref(&self) -> StartTable<&'_ [u8]> { |
| 1859 | StartTable { |
| 1860 | table: self.table(), |
| 1861 | stride: self.stride, |
| 1862 | patterns: self.patterns, |
| 1863 | } |
| 1864 | } |
| 1865 | |
| 1866 | /// Converts this start list to an owned value. |
| 1867 | #[cfg (feature = "alloc" )] |
| 1868 | fn to_owned(&self) -> StartTable<Vec<u8>> { |
| 1869 | StartTable { |
| 1870 | table: self.table().to_vec(), |
| 1871 | stride: self.stride, |
| 1872 | patterns: self.patterns, |
| 1873 | } |
| 1874 | } |
| 1875 | |
| 1876 | /// Return the start state for the given index and pattern ID. If the |
| 1877 | /// pattern ID is None, then the corresponding start state for the entire |
| 1878 | /// DFA is returned. If the pattern ID is not None, then the corresponding |
| 1879 | /// starting state for the given pattern is returned. If this start table |
| 1880 | /// does not have individual starting states for each pattern, then this |
| 1881 | /// panics. |
| 1882 | fn start(&self, index: Start, pattern_id: Option<PatternID>) -> StateID { |
| 1883 | let start_index = index.as_usize(); |
| 1884 | let index = match pattern_id { |
| 1885 | None => start_index, |
| 1886 | Some(pid) => { |
| 1887 | let pid = pid.as_usize(); |
| 1888 | assert!(pid < self.patterns, "invalid pattern ID {:?}" , pid); |
| 1889 | self.stride |
| 1890 | .checked_mul(pid) |
| 1891 | .unwrap() |
| 1892 | .checked_add(self.stride) |
| 1893 | .unwrap() |
| 1894 | .checked_add(start_index) |
| 1895 | .unwrap() |
| 1896 | } |
| 1897 | }; |
| 1898 | let start = index * StateID::SIZE; |
| 1899 | // This OK since we're allowed to assume that the start table contains |
| 1900 | // valid StateIDs. |
| 1901 | bytes::read_state_id_unchecked(&self.table()[start..]).0 |
| 1902 | } |
| 1903 | |
| 1904 | /// Return an iterator over all start IDs in this table. |
| 1905 | fn iter(&self) -> StartStateIter<'_, T> { |
| 1906 | StartStateIter { st: self, i: 0 } |
| 1907 | } |
| 1908 | |
| 1909 | /// Returns the total number of start state IDs in this table. |
| 1910 | fn len(&self) -> usize { |
| 1911 | self.table().len() / StateID::SIZE |
| 1912 | } |
| 1913 | |
| 1914 | /// Returns the table as a raw slice of bytes. |
| 1915 | fn table(&self) -> &[u8] { |
| 1916 | self.table.as_ref() |
| 1917 | } |
| 1918 | |
| 1919 | /// Return the memory usage, in bytes, of this start list. |
| 1920 | /// |
| 1921 | /// This does not include the size of a `StartTable` value itself. |
| 1922 | fn memory_usage(&self) -> usize { |
| 1923 | self.table().len() |
| 1924 | } |
| 1925 | } |
| 1926 | |
| 1927 | #[cfg (feature = "alloc" )] |
| 1928 | impl<T: AsMut<[u8]>> StartTable<T> { |
| 1929 | /// Set the start state for the given index and pattern. |
| 1930 | /// |
| 1931 | /// If the pattern ID or state ID are not valid, then this will panic. |
| 1932 | fn set_start( |
| 1933 | &mut self, |
| 1934 | index: Start, |
| 1935 | pattern_id: Option<PatternID>, |
| 1936 | id: StateID, |
| 1937 | ) { |
| 1938 | let start_index = index.as_usize(); |
| 1939 | let index = match pattern_id { |
| 1940 | None => start_index, |
| 1941 | Some(pid) => { |
| 1942 | let pid = pid.as_usize(); |
| 1943 | assert!(pid < self.patterns, "invalid pattern ID {:?}" , pid); |
| 1944 | self.stride |
| 1945 | .checked_mul(pid) |
| 1946 | .unwrap() |
| 1947 | .checked_add(self.stride) |
| 1948 | .unwrap() |
| 1949 | .checked_add(start_index) |
| 1950 | .unwrap() |
| 1951 | } |
| 1952 | }; |
| 1953 | let start = index * StateID::SIZE; |
| 1954 | let end = start + StateID::SIZE; |
| 1955 | bytes::write_state_id::<bytes::NE>( |
| 1956 | id, |
| 1957 | &mut self.table.as_mut()[start..end], |
| 1958 | ); |
| 1959 | } |
| 1960 | } |
| 1961 | |
| 1962 | /// An iterator over all state state IDs in a sparse DFA. |
| 1963 | struct StartStateIter<'a, T> { |
| 1964 | st: &'a StartTable<T>, |
| 1965 | i: usize, |
| 1966 | } |
| 1967 | |
| 1968 | impl<'a, T: AsRef<[u8]>> Iterator for StartStateIter<'a, T> { |
| 1969 | type Item = (StateID, Start, Option<PatternID>); |
| 1970 | |
| 1971 | fn next(&mut self) -> Option<(StateID, Start, Option<PatternID>)> { |
| 1972 | let i = self.i; |
| 1973 | if i >= self.st.len() { |
| 1974 | return None; |
| 1975 | } |
| 1976 | self.i += 1; |
| 1977 | |
| 1978 | // This unwrap is okay since the stride of any DFA must always match |
| 1979 | // the number of start state types. |
| 1980 | let start_type = Start::from_usize(i % self.st.stride).unwrap(); |
| 1981 | let pid = if i < self.st.stride { |
| 1982 | // This means we don't have start states for each pattern. |
| 1983 | None |
| 1984 | } else { |
| 1985 | // These unwraps are OK since we may assume our table and stride |
| 1986 | // is correct. |
| 1987 | let pid = i |
| 1988 | .checked_sub(self.st.stride) |
| 1989 | .unwrap() |
| 1990 | .checked_div(self.st.stride) |
| 1991 | .unwrap(); |
| 1992 | Some(PatternID::new(pid).unwrap()) |
| 1993 | }; |
| 1994 | let start = i * StateID::SIZE; |
| 1995 | let end = start + StateID::SIZE; |
| 1996 | let bytes = self.st.table()[start..end].try_into().unwrap(); |
| 1997 | // This is OK since we're allowed to assume that any IDs in this start |
| 1998 | // table are correct and valid for this DFA. |
| 1999 | let id = StateID::from_ne_bytes_unchecked(bytes); |
| 2000 | Some((id, start_type, pid)) |
| 2001 | } |
| 2002 | } |
| 2003 | |
| 2004 | impl<'a, T> fmt::Debug for StartStateIter<'a, T> { |
| 2005 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 2006 | f.debug_struct("StartStateIter" ).field(name:"i" , &self.i).finish() |
| 2007 | } |
| 2008 | } |
| 2009 | |
| 2010 | /// An iterator over all states in a sparse DFA. |
| 2011 | /// |
| 2012 | /// This iterator yields tuples, where the first element is the state ID and |
| 2013 | /// the second element is the state itself. |
| 2014 | struct StateIter<'a, T> { |
| 2015 | trans: &'a Transitions<T>, |
| 2016 | id: usize, |
| 2017 | } |
| 2018 | |
| 2019 | impl<'a, T: AsRef<[u8]>> Iterator for StateIter<'a, T> { |
| 2020 | type Item = State<'a>; |
| 2021 | |
| 2022 | fn next(&mut self) -> Option<State<'a>> { |
| 2023 | if self.id >= self.trans.sparse().len() { |
| 2024 | return None; |
| 2025 | } |
| 2026 | let state: State<'_> = self.trans.state(id:StateID::new_unchecked(self.id)); |
| 2027 | self.id = self.id + state.bytes_len(); |
| 2028 | Some(state) |
| 2029 | } |
| 2030 | } |
| 2031 | |
| 2032 | impl<'a, T> fmt::Debug for StateIter<'a, T> { |
| 2033 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 2034 | f.debug_struct("StateIter" ).field(name:"id" , &self.id).finish() |
| 2035 | } |
| 2036 | } |
| 2037 | |
| 2038 | /// A representation of a sparse DFA state that can be cheaply materialized |
| 2039 | /// from a state identifier. |
| 2040 | #[derive (Clone)] |
| 2041 | struct State<'a> { |
| 2042 | /// The identifier of this state. |
| 2043 | id: StateID, |
| 2044 | /// Whether this is a match state or not. |
| 2045 | is_match: bool, |
| 2046 | /// The number of transitions in this state. |
| 2047 | ntrans: usize, |
| 2048 | /// Pairs of input ranges, where there is one pair for each transition. |
| 2049 | /// Each pair specifies an inclusive start and end byte range for the |
| 2050 | /// corresponding transition. |
| 2051 | input_ranges: &'a [u8], |
| 2052 | /// Transitions to the next state. This slice contains native endian |
| 2053 | /// encoded state identifiers, with `S` as the representation. Thus, there |
| 2054 | /// are `ntrans * size_of::<S>()` bytes in this slice. |
| 2055 | next: &'a [u8], |
| 2056 | /// If this is a match state, then this contains the pattern IDs that match |
| 2057 | /// when the DFA is in this state. |
| 2058 | /// |
| 2059 | /// This is a contiguous sequence of 32-bit native endian encoded integers. |
| 2060 | pattern_ids: &'a [u8], |
| 2061 | /// An accelerator for this state, if present. If this state has no |
| 2062 | /// accelerator, then this is an empty slice. When non-empty, this slice |
| 2063 | /// has length at most 3 and corresponds to the exhaustive set of bytes |
| 2064 | /// that must be seen in order to transition out of this state. |
| 2065 | accel: &'a [u8], |
| 2066 | } |
| 2067 | |
| 2068 | impl<'a> State<'a> { |
| 2069 | /// Searches for the next transition given an input byte. If no such |
| 2070 | /// transition could be found, then a dead state is returned. |
| 2071 | /// |
| 2072 | /// This is marked as inline to help dramatically boost sparse searching, |
| 2073 | /// which decodes each state it enters to follow the next transition. |
| 2074 | #[inline (always)] |
| 2075 | fn next(&self, input: u8) -> StateID { |
| 2076 | // This straight linear search was observed to be much better than |
| 2077 | // binary search on ASCII haystacks, likely because a binary search |
| 2078 | // visits the ASCII case last but a linear search sees it first. A |
| 2079 | // binary search does do a little better on non-ASCII haystacks, but |
| 2080 | // not by much. There might be a better trade off lurking here. |
| 2081 | for i in 0..(self.ntrans - 1) { |
| 2082 | let (start, end) = self.range(i); |
| 2083 | if start <= input && input <= end { |
| 2084 | return self.next_at(i); |
| 2085 | } |
| 2086 | // We could bail early with an extra branch: if input < b1, then |
| 2087 | // we know we'll never find a matching transition. Interestingly, |
| 2088 | // this extra branch seems to not help performance, or will even |
| 2089 | // hurt it. It's likely very dependent on the DFA itself and what |
| 2090 | // is being searched. |
| 2091 | } |
| 2092 | DEAD |
| 2093 | } |
| 2094 | |
| 2095 | /// Returns the next state ID for the special EOI transition. |
| 2096 | fn next_eoi(&self) -> StateID { |
| 2097 | self.next_at(self.ntrans - 1) |
| 2098 | } |
| 2099 | |
| 2100 | /// Returns the identifier for this state. |
| 2101 | fn id(&self) -> StateID { |
| 2102 | self.id |
| 2103 | } |
| 2104 | |
| 2105 | /// Returns the inclusive input byte range for the ith transition in this |
| 2106 | /// state. |
| 2107 | fn range(&self, i: usize) -> (u8, u8) { |
| 2108 | (self.input_ranges[i * 2], self.input_ranges[i * 2 + 1]) |
| 2109 | } |
| 2110 | |
| 2111 | /// Returns the next state for the ith transition in this state. |
| 2112 | fn next_at(&self, i: usize) -> StateID { |
| 2113 | let start = i * StateID::SIZE; |
| 2114 | let end = start + StateID::SIZE; |
| 2115 | let bytes = self.next[start..end].try_into().unwrap(); |
| 2116 | StateID::from_ne_bytes_unchecked(bytes) |
| 2117 | } |
| 2118 | |
| 2119 | /// Returns the pattern ID for the given match index. If the match index |
| 2120 | /// is invalid, then this panics. |
| 2121 | fn pattern_id(&self, match_index: usize) -> PatternID { |
| 2122 | let start = match_index * PatternID::SIZE; |
| 2123 | bytes::read_pattern_id_unchecked(&self.pattern_ids[start..]).0 |
| 2124 | } |
| 2125 | |
| 2126 | /// Returns the total number of pattern IDs for this state. This is always |
| 2127 | /// zero when `is_match` is false. |
| 2128 | fn pattern_count(&self) -> usize { |
| 2129 | assert_eq!(0, self.pattern_ids.len() % 4); |
| 2130 | self.pattern_ids.len() / 4 |
| 2131 | } |
| 2132 | |
| 2133 | /// Return the total number of bytes that this state consumes in its |
| 2134 | /// encoded form. |
| 2135 | fn bytes_len(&self) -> usize { |
| 2136 | let mut len = 2 |
| 2137 | + (self.ntrans * 2) |
| 2138 | + (self.ntrans * StateID::SIZE) |
| 2139 | + (1 + self.accel.len()); |
| 2140 | if self.is_match { |
| 2141 | len += size_of::<u32>() + self.pattern_ids.len(); |
| 2142 | } |
| 2143 | len |
| 2144 | } |
| 2145 | |
| 2146 | /// Return an accelerator for this state. |
| 2147 | fn accelerator(&self) -> &'a [u8] { |
| 2148 | self.accel |
| 2149 | } |
| 2150 | } |
| 2151 | |
| 2152 | impl<'a> fmt::Debug for State<'a> { |
| 2153 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2154 | let mut printed = false; |
| 2155 | for i in 0..(self.ntrans - 1) { |
| 2156 | let next = self.next_at(i); |
| 2157 | if next == DEAD { |
| 2158 | continue; |
| 2159 | } |
| 2160 | |
| 2161 | if printed { |
| 2162 | write!(f, ", " )?; |
| 2163 | } |
| 2164 | let (start, end) = self.range(i); |
| 2165 | if start == end { |
| 2166 | write!(f, " {:?} => {:?}" , DebugByte(start), next)?; |
| 2167 | } else { |
| 2168 | write!( |
| 2169 | f, |
| 2170 | " {:?}- {:?} => {:?}" , |
| 2171 | DebugByte(start), |
| 2172 | DebugByte(end), |
| 2173 | next, |
| 2174 | )?; |
| 2175 | } |
| 2176 | printed = true; |
| 2177 | } |
| 2178 | let eoi = self.next_at(self.ntrans - 1); |
| 2179 | if eoi != DEAD { |
| 2180 | if printed { |
| 2181 | write!(f, ", " )?; |
| 2182 | } |
| 2183 | write!(f, "EOI => {:?}" , eoi)?; |
| 2184 | } |
| 2185 | Ok(()) |
| 2186 | } |
| 2187 | } |
| 2188 | |
| 2189 | /// A representation of a mutable sparse DFA state that can be cheaply |
| 2190 | /// materialized from a state identifier. |
| 2191 | #[cfg (feature = "alloc" )] |
| 2192 | struct StateMut<'a> { |
| 2193 | /// The identifier of this state. |
| 2194 | id: StateID, |
| 2195 | /// Whether this is a match state or not. |
| 2196 | is_match: bool, |
| 2197 | /// The number of transitions in this state. |
| 2198 | ntrans: usize, |
| 2199 | /// Pairs of input ranges, where there is one pair for each transition. |
| 2200 | /// Each pair specifies an inclusive start and end byte range for the |
| 2201 | /// corresponding transition. |
| 2202 | input_ranges: &'a mut [u8], |
| 2203 | /// Transitions to the next state. This slice contains native endian |
| 2204 | /// encoded state identifiers, with `S` as the representation. Thus, there |
| 2205 | /// are `ntrans * size_of::<S>()` bytes in this slice. |
| 2206 | next: &'a mut [u8], |
| 2207 | /// If this is a match state, then this contains the pattern IDs that match |
| 2208 | /// when the DFA is in this state. |
| 2209 | /// |
| 2210 | /// This is a contiguous sequence of 32-bit native endian encoded integers. |
| 2211 | pattern_ids: &'a [u8], |
| 2212 | /// An accelerator for this state, if present. If this state has no |
| 2213 | /// accelerator, then this is an empty slice. When non-empty, this slice |
| 2214 | /// has length at most 3 and corresponds to the exhaustive set of bytes |
| 2215 | /// that must be seen in order to transition out of this state. |
| 2216 | accel: &'a mut [u8], |
| 2217 | } |
| 2218 | |
| 2219 | #[cfg (feature = "alloc" )] |
| 2220 | impl<'a> StateMut<'a> { |
| 2221 | /// Sets the ith transition to the given state. |
| 2222 | fn set_next_at(&mut self, i: usize, next: StateID) { |
| 2223 | let start = i * StateID::SIZE; |
| 2224 | let end = start + StateID::SIZE; |
| 2225 | bytes::write_state_id::<bytes::NE>(next, &mut self.next[start..end]); |
| 2226 | } |
| 2227 | } |
| 2228 | |
| 2229 | #[cfg (feature = "alloc" )] |
| 2230 | impl<'a> fmt::Debug for StateMut<'a> { |
| 2231 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 2232 | let state = State { |
| 2233 | id: self.id, |
| 2234 | is_match: self.is_match, |
| 2235 | ntrans: self.ntrans, |
| 2236 | input_ranges: self.input_ranges, |
| 2237 | next: self.next, |
| 2238 | pattern_ids: self.pattern_ids, |
| 2239 | accel: self.accel, |
| 2240 | }; |
| 2241 | fmt::Debug::fmt(&state, f) |
| 2242 | } |
| 2243 | } |
| 2244 | |
| 2245 | /// A binary search routine specialized specifically to a sparse DFA state's |
| 2246 | /// transitions. Specifically, the transitions are defined as a set of pairs |
| 2247 | /// of input bytes that delineate an inclusive range of bytes. If the input |
| 2248 | /// byte is in the range, then the corresponding transition is a match. |
| 2249 | /// |
| 2250 | /// This binary search accepts a slice of these pairs and returns the position |
| 2251 | /// of the matching pair (the ith transition), or None if no matching pair |
| 2252 | /// could be found. |
| 2253 | /// |
| 2254 | /// Note that this routine is not currently used since it was observed to |
| 2255 | /// either decrease performance when searching ASCII, or did not provide enough |
| 2256 | /// of a boost on non-ASCII haystacks to be worth it. However, we leave it here |
| 2257 | /// for posterity in case we can find a way to use it. |
| 2258 | /// |
| 2259 | /// In theory, we could use the standard library's search routine if we could |
| 2260 | /// cast a `&[u8]` to a `&[(u8, u8)]`, but I don't believe this is currently |
| 2261 | /// guaranteed to be safe and is thus UB (since I don't think the in-memory |
| 2262 | /// representation of `(u8, u8)` has been nailed down). One could define a |
| 2263 | /// repr(C) type, but the casting doesn't seem justified. |
| 2264 | #[allow (dead_code)] |
| 2265 | #[inline (always)] |
| 2266 | fn binary_search_ranges(ranges: &[u8], needle: u8) -> Option<usize> { |
| 2267 | debug_assert!(ranges.len() % 2 == 0, "ranges must have even length" ); |
| 2268 | debug_assert!(ranges.len() <= 512, "ranges should be short" ); |
| 2269 | |
| 2270 | let (mut left: usize, mut right: usize) = (0, ranges.len() / 2); |
| 2271 | while left < right { |
| 2272 | let mid: usize = (left + right) / 2; |
| 2273 | let (b1: u8, b2: u8) = (ranges[mid * 2], ranges[mid * 2 + 1]); |
| 2274 | if needle < b1 { |
| 2275 | right = mid; |
| 2276 | } else if needle > b2 { |
| 2277 | left = mid + 1; |
| 2278 | } else { |
| 2279 | return Some(mid); |
| 2280 | } |
| 2281 | } |
| 2282 | None |
| 2283 | } |
| 2284 | |