| 1 | /*! |
| 2 | This module provides a regular expression printer for `Hir`. |
| 3 | */ |
| 4 | |
| 5 | use core::fmt; |
| 6 | |
| 7 | use crate::{ |
| 8 | hir::{ |
| 9 | self, |
| 10 | visitor::{self, Visitor}, |
| 11 | Hir, HirKind, |
| 12 | }, |
| 13 | is_meta_character, |
| 14 | }; |
| 15 | |
| 16 | /// A builder for constructing a printer. |
| 17 | /// |
| 18 | /// Note that since a printer doesn't have any configuration knobs, this type |
| 19 | /// remains unexported. |
| 20 | #[derive (Clone, Debug)] |
| 21 | struct PrinterBuilder { |
| 22 | _priv: (), |
| 23 | } |
| 24 | |
| 25 | impl Default for PrinterBuilder { |
| 26 | fn default() -> PrinterBuilder { |
| 27 | PrinterBuilder::new() |
| 28 | } |
| 29 | } |
| 30 | |
| 31 | impl PrinterBuilder { |
| 32 | fn new() -> PrinterBuilder { |
| 33 | PrinterBuilder { _priv: () } |
| 34 | } |
| 35 | |
| 36 | fn build(&self) -> Printer { |
| 37 | Printer { _priv: () } |
| 38 | } |
| 39 | } |
| 40 | |
| 41 | /// A printer for a regular expression's high-level intermediate |
| 42 | /// representation. |
| 43 | /// |
| 44 | /// A printer converts a high-level intermediate representation (HIR) to a |
| 45 | /// regular expression pattern string. This particular printer uses constant |
| 46 | /// stack space and heap space proportional to the size of the HIR. |
| 47 | /// |
| 48 | /// Since this printer is only using the HIR, the pattern it prints will likely |
| 49 | /// not resemble the original pattern at all. For example, a pattern like |
| 50 | /// `\pL` will have its entire class written out. |
| 51 | /// |
| 52 | /// The purpose of this printer is to provide a means to mutate an HIR and then |
| 53 | /// build a regular expression from the result of that mutation. (A regex |
| 54 | /// library could provide a constructor from this HIR explicitly, but that |
| 55 | /// creates an unnecessary public coupling between the regex library and this |
| 56 | /// specific HIR representation.) |
| 57 | #[derive (Debug)] |
| 58 | pub struct Printer { |
| 59 | _priv: (), |
| 60 | } |
| 61 | |
| 62 | impl Printer { |
| 63 | /// Create a new printer. |
| 64 | pub fn new() -> Printer { |
| 65 | PrinterBuilder::new().build() |
| 66 | } |
| 67 | |
| 68 | /// Print the given `Ast` to the given writer. The writer must implement |
| 69 | /// `fmt::Write`. Typical implementations of `fmt::Write` that can be used |
| 70 | /// here are a `fmt::Formatter` (which is available in `fmt::Display` |
| 71 | /// implementations) or a `&mut String`. |
| 72 | pub fn print<W: fmt::Write>(&mut self, hir: &Hir, wtr: W) -> fmt::Result { |
| 73 | visitor::visit(hir, visitor:Writer { wtr }) |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | #[derive (Debug)] |
| 78 | struct Writer<W> { |
| 79 | wtr: W, |
| 80 | } |
| 81 | |
| 82 | impl<W: fmt::Write> Visitor for Writer<W> { |
| 83 | type Output = (); |
| 84 | type Err = fmt::Error; |
| 85 | |
| 86 | fn finish(self) -> fmt::Result { |
| 87 | Ok(()) |
| 88 | } |
| 89 | |
| 90 | fn visit_pre(&mut self, hir: &Hir) -> fmt::Result { |
| 91 | match *hir.kind() { |
| 92 | HirKind::Empty => { |
| 93 | // Technically an empty sub-expression could be "printed" by |
| 94 | // just ignoring it, but in practice, you could have a |
| 95 | // repetition operator attached to an empty expression, and you |
| 96 | // really need something in the concrete syntax to make that |
| 97 | // work as you'd expect. |
| 98 | self.wtr.write_str(r"(?:)" )?; |
| 99 | } |
| 100 | // Repetition operators are strictly suffix oriented. |
| 101 | HirKind::Repetition(_) => {} |
| 102 | HirKind::Literal(hir::Literal(ref bytes)) => { |
| 103 | // See the comment on the 'Concat' and 'Alternation' case below |
| 104 | // for why we put parens here. Literals are, conceptually, |
| 105 | // a special case of concatenation where each element is a |
| 106 | // character. The HIR flattens this into a Box<[u8]>, but we |
| 107 | // still need to treat it like a concatenation for correct |
| 108 | // printing. As a special case, we don't write parens if there |
| 109 | // is only one character. One character means there is no |
| 110 | // concat so we don't need parens. Adding parens would still be |
| 111 | // correct, but we drop them here because it tends to create |
| 112 | // rather noisy regexes even in simple cases. |
| 113 | let result = core::str::from_utf8(bytes); |
| 114 | let len = result.map_or(bytes.len(), |s| s.chars().count()); |
| 115 | if len > 1 { |
| 116 | self.wtr.write_str(r"(?:" )?; |
| 117 | } |
| 118 | match result { |
| 119 | Ok(string) => { |
| 120 | for c in string.chars() { |
| 121 | self.write_literal_char(c)?; |
| 122 | } |
| 123 | } |
| 124 | Err(_) => { |
| 125 | for &b in bytes.iter() { |
| 126 | self.write_literal_byte(b)?; |
| 127 | } |
| 128 | } |
| 129 | } |
| 130 | if len > 1 { |
| 131 | self.wtr.write_str(r")" )?; |
| 132 | } |
| 133 | } |
| 134 | HirKind::Class(hir::Class::Unicode(ref cls)) => { |
| 135 | if cls.ranges().is_empty() { |
| 136 | return self.wtr.write_str("[a&&b]" ); |
| 137 | } |
| 138 | self.wtr.write_str("[" )?; |
| 139 | for range in cls.iter() { |
| 140 | if range.start() == range.end() { |
| 141 | self.write_literal_char(range.start())?; |
| 142 | } else if u32::from(range.start()) + 1 |
| 143 | == u32::from(range.end()) |
| 144 | { |
| 145 | self.write_literal_char(range.start())?; |
| 146 | self.write_literal_char(range.end())?; |
| 147 | } else { |
| 148 | self.write_literal_char(range.start())?; |
| 149 | self.wtr.write_str("-" )?; |
| 150 | self.write_literal_char(range.end())?; |
| 151 | } |
| 152 | } |
| 153 | self.wtr.write_str("]" )?; |
| 154 | } |
| 155 | HirKind::Class(hir::Class::Bytes(ref cls)) => { |
| 156 | if cls.ranges().is_empty() { |
| 157 | return self.wtr.write_str("[a&&b]" ); |
| 158 | } |
| 159 | self.wtr.write_str("(?-u:[" )?; |
| 160 | for range in cls.iter() { |
| 161 | if range.start() == range.end() { |
| 162 | self.write_literal_class_byte(range.start())?; |
| 163 | } else if range.start() + 1 == range.end() { |
| 164 | self.write_literal_class_byte(range.start())?; |
| 165 | self.write_literal_class_byte(range.end())?; |
| 166 | } else { |
| 167 | self.write_literal_class_byte(range.start())?; |
| 168 | self.wtr.write_str("-" )?; |
| 169 | self.write_literal_class_byte(range.end())?; |
| 170 | } |
| 171 | } |
| 172 | self.wtr.write_str("])" )?; |
| 173 | } |
| 174 | HirKind::Look(ref look) => match *look { |
| 175 | hir::Look::Start => { |
| 176 | self.wtr.write_str(r"\A" )?; |
| 177 | } |
| 178 | hir::Look::End => { |
| 179 | self.wtr.write_str(r"\z" )?; |
| 180 | } |
| 181 | hir::Look::StartLF => { |
| 182 | self.wtr.write_str("(?m:^)" )?; |
| 183 | } |
| 184 | hir::Look::EndLF => { |
| 185 | self.wtr.write_str("(?m:$)" )?; |
| 186 | } |
| 187 | hir::Look::StartCRLF => { |
| 188 | self.wtr.write_str("(?mR:^)" )?; |
| 189 | } |
| 190 | hir::Look::EndCRLF => { |
| 191 | self.wtr.write_str("(?mR:$)" )?; |
| 192 | } |
| 193 | hir::Look::WordAscii => { |
| 194 | self.wtr.write_str(r"(?-u:\b)" )?; |
| 195 | } |
| 196 | hir::Look::WordAsciiNegate => { |
| 197 | self.wtr.write_str(r"(?-u:\B)" )?; |
| 198 | } |
| 199 | hir::Look::WordUnicode => { |
| 200 | self.wtr.write_str(r"\b" )?; |
| 201 | } |
| 202 | hir::Look::WordUnicodeNegate => { |
| 203 | self.wtr.write_str(r"\B" )?; |
| 204 | } |
| 205 | hir::Look::WordStartAscii => { |
| 206 | self.wtr.write_str(r"(?-u:\b{start})" )?; |
| 207 | } |
| 208 | hir::Look::WordEndAscii => { |
| 209 | self.wtr.write_str(r"(?-u:\b{end})" )?; |
| 210 | } |
| 211 | hir::Look::WordStartUnicode => { |
| 212 | self.wtr.write_str(r"\b{start}" )?; |
| 213 | } |
| 214 | hir::Look::WordEndUnicode => { |
| 215 | self.wtr.write_str(r"\b{end}" )?; |
| 216 | } |
| 217 | hir::Look::WordStartHalfAscii => { |
| 218 | self.wtr.write_str(r"(?-u:\b{start-half})" )?; |
| 219 | } |
| 220 | hir::Look::WordEndHalfAscii => { |
| 221 | self.wtr.write_str(r"(?-u:\b{end-half})" )?; |
| 222 | } |
| 223 | hir::Look::WordStartHalfUnicode => { |
| 224 | self.wtr.write_str(r"\b{start-half}" )?; |
| 225 | } |
| 226 | hir::Look::WordEndHalfUnicode => { |
| 227 | self.wtr.write_str(r"\b{end-half}" )?; |
| 228 | } |
| 229 | }, |
| 230 | HirKind::Capture(hir::Capture { ref name, .. }) => { |
| 231 | self.wtr.write_str("(" )?; |
| 232 | if let Some(ref name) = *name { |
| 233 | write!(self.wtr, "?P< {}>" , name)?; |
| 234 | } |
| 235 | } |
| 236 | // Why do this? Wrapping concats and alts in non-capturing groups |
| 237 | // is not *always* necessary, but is sometimes necessary. For |
| 238 | // example, 'concat(a, alt(b, c))' should be written as 'a(?:b|c)' |
| 239 | // and not 'ab|c'. The former is clearly the intended meaning, but |
| 240 | // the latter is actually 'alt(concat(a, b), c)'. |
| 241 | // |
| 242 | // It would be possible to only group these things in cases where |
| 243 | // it's strictly necessary, but it requires knowing the parent |
| 244 | // expression. And since this technique is simpler and always |
| 245 | // correct, we take this route. More to the point, it is a non-goal |
| 246 | // of an HIR printer to show a nice easy-to-read regex. Indeed, |
| 247 | // its construction forbids it from doing so. Therefore, inserting |
| 248 | // extra groups where they aren't necessary is perfectly okay. |
| 249 | HirKind::Concat(_) | HirKind::Alternation(_) => { |
| 250 | self.wtr.write_str(r"(?:" )?; |
| 251 | } |
| 252 | } |
| 253 | Ok(()) |
| 254 | } |
| 255 | |
| 256 | fn visit_post(&mut self, hir: &Hir) -> fmt::Result { |
| 257 | match *hir.kind() { |
| 258 | // Handled during visit_pre |
| 259 | HirKind::Empty |
| 260 | | HirKind::Literal(_) |
| 261 | | HirKind::Class(_) |
| 262 | | HirKind::Look(_) => {} |
| 263 | HirKind::Repetition(ref x) => { |
| 264 | match (x.min, x.max) { |
| 265 | (0, Some(1)) => { |
| 266 | self.wtr.write_str("?" )?; |
| 267 | } |
| 268 | (0, None) => { |
| 269 | self.wtr.write_str("*" )?; |
| 270 | } |
| 271 | (1, None) => { |
| 272 | self.wtr.write_str("+" )?; |
| 273 | } |
| 274 | (1, Some(1)) => { |
| 275 | // 'a{1}' and 'a{1}?' are exactly equivalent to 'a'. |
| 276 | return Ok(()); |
| 277 | } |
| 278 | (m, None) => { |
| 279 | write!(self.wtr, " {{{}, }}" , m)?; |
| 280 | } |
| 281 | (m, Some(n)) if m == n => { |
| 282 | write!(self.wtr, " {{{}}}" , m)?; |
| 283 | // a{m} and a{m}? are always exactly equivalent. |
| 284 | return Ok(()); |
| 285 | } |
| 286 | (m, Some(n)) => { |
| 287 | write!(self.wtr, " {{{}, {}}}" , m, n)?; |
| 288 | } |
| 289 | } |
| 290 | if !x.greedy { |
| 291 | self.wtr.write_str("?" )?; |
| 292 | } |
| 293 | } |
| 294 | HirKind::Capture(_) |
| 295 | | HirKind::Concat(_) |
| 296 | | HirKind::Alternation(_) => { |
| 297 | self.wtr.write_str(r")" )?; |
| 298 | } |
| 299 | } |
| 300 | Ok(()) |
| 301 | } |
| 302 | |
| 303 | fn visit_alternation_in(&mut self) -> fmt::Result { |
| 304 | self.wtr.write_str("|" ) |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | impl<W: fmt::Write> Writer<W> { |
| 309 | fn write_literal_char(&mut self, c: char) -> fmt::Result { |
| 310 | if is_meta_character(c) { |
| 311 | self.wtr.write_str(" \\" )?; |
| 312 | } |
| 313 | self.wtr.write_char(c) |
| 314 | } |
| 315 | |
| 316 | fn write_literal_byte(&mut self, b: u8) -> fmt::Result { |
| 317 | if b <= 0x7F && !b.is_ascii_control() && !b.is_ascii_whitespace() { |
| 318 | self.write_literal_char(char::try_from(b).unwrap()) |
| 319 | } else { |
| 320 | write!(self.wtr, "(?-u: \\x {:02X})" , b) |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | fn write_literal_class_byte(&mut self, b: u8) -> fmt::Result { |
| 325 | if b <= 0x7F && !b.is_ascii_control() && !b.is_ascii_whitespace() { |
| 326 | self.write_literal_char(char::try_from(b).unwrap()) |
| 327 | } else { |
| 328 | write!(self.wtr, " \\x {:02X}" , b) |
| 329 | } |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | #[cfg (test)] |
| 334 | mod tests { |
| 335 | use alloc::{ |
| 336 | boxed::Box, |
| 337 | string::{String, ToString}, |
| 338 | }; |
| 339 | |
| 340 | use crate::ParserBuilder; |
| 341 | |
| 342 | use super::*; |
| 343 | |
| 344 | fn roundtrip(given: &str, expected: &str) { |
| 345 | roundtrip_with(|b| b, given, expected); |
| 346 | } |
| 347 | |
| 348 | fn roundtrip_bytes(given: &str, expected: &str) { |
| 349 | roundtrip_with(|b| b.utf8(false), given, expected); |
| 350 | } |
| 351 | |
| 352 | fn roundtrip_with<F>(mut f: F, given: &str, expected: &str) |
| 353 | where |
| 354 | F: FnMut(&mut ParserBuilder) -> &mut ParserBuilder, |
| 355 | { |
| 356 | let mut builder = ParserBuilder::new(); |
| 357 | f(&mut builder); |
| 358 | let hir = builder.build().parse(given).unwrap(); |
| 359 | |
| 360 | let mut printer = Printer::new(); |
| 361 | let mut dst = String::new(); |
| 362 | printer.print(&hir, &mut dst).unwrap(); |
| 363 | |
| 364 | // Check that the result is actually valid. |
| 365 | builder.build().parse(&dst).unwrap(); |
| 366 | |
| 367 | assert_eq!(expected, dst); |
| 368 | } |
| 369 | |
| 370 | #[test ] |
| 371 | fn print_literal() { |
| 372 | roundtrip("a" , "a" ); |
| 373 | roundtrip(r"\xff" , " \u{FF}" ); |
| 374 | roundtrip_bytes(r"\xff" , " \u{FF}" ); |
| 375 | roundtrip_bytes(r"(?-u)\xff" , r"(?-u:\xFF)" ); |
| 376 | roundtrip("☃" , "☃" ); |
| 377 | } |
| 378 | |
| 379 | #[test ] |
| 380 | fn print_class() { |
| 381 | roundtrip(r"[a]" , r"a" ); |
| 382 | roundtrip(r"[ab]" , r"[ab]" ); |
| 383 | roundtrip(r"[a-z]" , r"[a-z]" ); |
| 384 | roundtrip(r"[a-z--b-c--x-y]" , r"[ad-wz]" ); |
| 385 | roundtrip(r"[^\x01-\u{10FFFF}]" , " \u{0}" ); |
| 386 | roundtrip(r"[-]" , r"\-" ); |
| 387 | roundtrip(r"[☃-⛄]" , r"[☃-⛄]" ); |
| 388 | |
| 389 | roundtrip(r"(?-u)[a]" , r"a" ); |
| 390 | roundtrip(r"(?-u)[ab]" , r"(?-u:[ab])" ); |
| 391 | roundtrip(r"(?-u)[a-z]" , r"(?-u:[a-z])" ); |
| 392 | roundtrip_bytes(r"(?-u)[a-\xFF]" , r"(?-u:[a-\xFF])" ); |
| 393 | |
| 394 | // The following test that the printer escapes meta characters |
| 395 | // in character classes. |
| 396 | roundtrip(r"[\[]" , r"\[" ); |
| 397 | roundtrip(r"[Z-_]" , r"[Z-_]" ); |
| 398 | roundtrip(r"[Z-_--Z]" , r"[\[-_]" ); |
| 399 | |
| 400 | // The following test that the printer escapes meta characters |
| 401 | // in byte oriented character classes. |
| 402 | roundtrip_bytes(r"(?-u)[\[]" , r"\[" ); |
| 403 | roundtrip_bytes(r"(?-u)[Z-_]" , r"(?-u:[Z-_])" ); |
| 404 | roundtrip_bytes(r"(?-u)[Z-_--Z]" , r"(?-u:[\[-_])" ); |
| 405 | |
| 406 | // This tests that an empty character class is correctly roundtripped. |
| 407 | #[cfg (feature = "unicode-gencat" )] |
| 408 | roundtrip(r"\P{any}" , r"[a&&b]" ); |
| 409 | roundtrip_bytes(r"(?-u)[^\x00-\xFF]" , r"[a&&b]" ); |
| 410 | } |
| 411 | |
| 412 | #[test ] |
| 413 | fn print_anchor() { |
| 414 | roundtrip(r"^" , r"\A" ); |
| 415 | roundtrip(r"$" , r"\z" ); |
| 416 | roundtrip(r"(?m)^" , r"(?m:^)" ); |
| 417 | roundtrip(r"(?m)$" , r"(?m:$)" ); |
| 418 | } |
| 419 | |
| 420 | #[test ] |
| 421 | fn print_word_boundary() { |
| 422 | roundtrip(r"\b" , r"\b" ); |
| 423 | roundtrip(r"\B" , r"\B" ); |
| 424 | roundtrip(r"(?-u)\b" , r"(?-u:\b)" ); |
| 425 | roundtrip_bytes(r"(?-u)\B" , r"(?-u:\B)" ); |
| 426 | } |
| 427 | |
| 428 | #[test ] |
| 429 | fn print_repetition() { |
| 430 | roundtrip("a?" , "a?" ); |
| 431 | roundtrip("a??" , "a??" ); |
| 432 | roundtrip("(?U)a?" , "a??" ); |
| 433 | |
| 434 | roundtrip("a*" , "a*" ); |
| 435 | roundtrip("a*?" , "a*?" ); |
| 436 | roundtrip("(?U)a*" , "a*?" ); |
| 437 | |
| 438 | roundtrip("a+" , "a+" ); |
| 439 | roundtrip("a+?" , "a+?" ); |
| 440 | roundtrip("(?U)a+" , "a+?" ); |
| 441 | |
| 442 | roundtrip("a{1}" , "a" ); |
| 443 | roundtrip("a{2}" , "a{2}" ); |
| 444 | roundtrip("a{1,}" , "a+" ); |
| 445 | roundtrip("a{1,5}" , "a{1,5}" ); |
| 446 | roundtrip("a{1}?" , "a" ); |
| 447 | roundtrip("a{2}?" , "a{2}" ); |
| 448 | roundtrip("a{1,}?" , "a+?" ); |
| 449 | roundtrip("a{1,5}?" , "a{1,5}?" ); |
| 450 | roundtrip("(?U)a{1}" , "a" ); |
| 451 | roundtrip("(?U)a{2}" , "a{2}" ); |
| 452 | roundtrip("(?U)a{1,}" , "a+?" ); |
| 453 | roundtrip("(?U)a{1,5}" , "a{1,5}?" ); |
| 454 | |
| 455 | // Test that various zero-length repetitions always translate to an |
| 456 | // empty regex. This is more a property of HIR's smart constructors |
| 457 | // than the printer though. |
| 458 | roundtrip("a{0}" , "(?:)" ); |
| 459 | roundtrip("(?:ab){0}" , "(?:)" ); |
| 460 | #[cfg (feature = "unicode-gencat" )] |
| 461 | { |
| 462 | roundtrip(r"\p{any}{0}" , "(?:)" ); |
| 463 | roundtrip(r"\P{any}{0}" , "(?:)" ); |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | #[test ] |
| 468 | fn print_group() { |
| 469 | roundtrip("()" , "((?:))" ); |
| 470 | roundtrip("(?P<foo>)" , "(?P<foo>(?:))" ); |
| 471 | roundtrip("(?:)" , "(?:)" ); |
| 472 | |
| 473 | roundtrip("(a)" , "(a)" ); |
| 474 | roundtrip("(?P<foo>a)" , "(?P<foo>a)" ); |
| 475 | roundtrip("(?:a)" , "a" ); |
| 476 | |
| 477 | roundtrip("((((a))))" , "((((a))))" ); |
| 478 | } |
| 479 | |
| 480 | #[test ] |
| 481 | fn print_alternation() { |
| 482 | roundtrip("|" , "(?:(?:)|(?:))" ); |
| 483 | roundtrip("||" , "(?:(?:)|(?:)|(?:))" ); |
| 484 | |
| 485 | roundtrip("a|b" , "[ab]" ); |
| 486 | roundtrip("ab|cd" , "(?:(?:ab)|(?:cd))" ); |
| 487 | roundtrip("a|b|c" , "[a-c]" ); |
| 488 | roundtrip("ab|cd|ef" , "(?:(?:ab)|(?:cd)|(?:ef))" ); |
| 489 | roundtrip("foo|bar|quux" , "(?:(?:foo)|(?:bar)|(?:quux))" ); |
| 490 | } |
| 491 | |
| 492 | // This is a regression test that stresses a peculiarity of how the HIR |
| 493 | // is both constructed and printed. Namely, it is legal for a repetition |
| 494 | // to directly contain a concatenation. This particular construct isn't |
| 495 | // really possible to build from the concrete syntax directly, since you'd |
| 496 | // be forced to put the concatenation into (at least) a non-capturing |
| 497 | // group. Concurrently, the printer doesn't consider this case and just |
| 498 | // kind of naively prints the child expression and tacks on the repetition |
| 499 | // operator. |
| 500 | // |
| 501 | // As a result, if you attached '+' to a 'concat(a, b)', the printer gives |
| 502 | // you 'ab+', but clearly it really should be '(?:ab)+'. |
| 503 | // |
| 504 | // This bug isn't easy to surface because most ways of building an HIR |
| 505 | // come directly from the concrete syntax, and as mentioned above, it just |
| 506 | // isn't possible to build this kind of HIR from the concrete syntax. |
| 507 | // Nevertheless, this is definitely a bug. |
| 508 | // |
| 509 | // See: https://github.com/rust-lang/regex/issues/731 |
| 510 | #[test ] |
| 511 | fn regression_repetition_concat() { |
| 512 | let expr = Hir::concat(alloc::vec![ |
| 513 | Hir::literal("x" .as_bytes()), |
| 514 | Hir::repetition(hir::Repetition { |
| 515 | min: 1, |
| 516 | max: None, |
| 517 | greedy: true, |
| 518 | sub: Box::new(Hir::literal("ab" .as_bytes())), |
| 519 | }), |
| 520 | Hir::literal("y" .as_bytes()), |
| 521 | ]); |
| 522 | assert_eq!(r"(?:x(?:ab)+y)" , expr.to_string()); |
| 523 | |
| 524 | let expr = Hir::concat(alloc::vec![ |
| 525 | Hir::look(hir::Look::Start), |
| 526 | Hir::repetition(hir::Repetition { |
| 527 | min: 1, |
| 528 | max: None, |
| 529 | greedy: true, |
| 530 | sub: Box::new(Hir::concat(alloc::vec![ |
| 531 | Hir::look(hir::Look::Start), |
| 532 | Hir::look(hir::Look::End), |
| 533 | ])), |
| 534 | }), |
| 535 | Hir::look(hir::Look::End), |
| 536 | ]); |
| 537 | assert_eq!(r"(?:\A\A\z\z)" , expr.to_string()); |
| 538 | } |
| 539 | |
| 540 | // Just like regression_repetition_concat, but with the repetition using |
| 541 | // an alternation as a child expression instead. |
| 542 | // |
| 543 | // See: https://github.com/rust-lang/regex/issues/731 |
| 544 | #[test ] |
| 545 | fn regression_repetition_alternation() { |
| 546 | let expr = Hir::concat(alloc::vec![ |
| 547 | Hir::literal("ab" .as_bytes()), |
| 548 | Hir::repetition(hir::Repetition { |
| 549 | min: 1, |
| 550 | max: None, |
| 551 | greedy: true, |
| 552 | sub: Box::new(Hir::alternation(alloc::vec![ |
| 553 | Hir::literal("cd" .as_bytes()), |
| 554 | Hir::literal("ef" .as_bytes()), |
| 555 | ])), |
| 556 | }), |
| 557 | Hir::literal("gh" .as_bytes()), |
| 558 | ]); |
| 559 | assert_eq!(r"(?:(?:ab)(?:(?:cd)|(?:ef))+(?:gh))" , expr.to_string()); |
| 560 | |
| 561 | let expr = Hir::concat(alloc::vec![ |
| 562 | Hir::look(hir::Look::Start), |
| 563 | Hir::repetition(hir::Repetition { |
| 564 | min: 1, |
| 565 | max: None, |
| 566 | greedy: true, |
| 567 | sub: Box::new(Hir::alternation(alloc::vec![ |
| 568 | Hir::look(hir::Look::Start), |
| 569 | Hir::look(hir::Look::End), |
| 570 | ])), |
| 571 | }), |
| 572 | Hir::look(hir::Look::End), |
| 573 | ]); |
| 574 | assert_eq!(r"(?:\A(?:\A|\z)\z)" , expr.to_string()); |
| 575 | } |
| 576 | |
| 577 | // This regression test is very similar in flavor to |
| 578 | // regression_repetition_concat in that the root of the issue lies in a |
| 579 | // peculiarity of how the HIR is represented and how the printer writes it |
| 580 | // out. Like the other regression, this one is also rooted in the fact that |
| 581 | // you can't produce the peculiar HIR from the concrete syntax. Namely, you |
| 582 | // just can't have a 'concat(a, alt(b, c))' because the 'alt' will normally |
| 583 | // be in (at least) a non-capturing group. Why? Because the '|' has very |
| 584 | // low precedence (lower that concatenation), and so something like 'ab|c' |
| 585 | // is actually 'alt(ab, c)'. |
| 586 | // |
| 587 | // See: https://github.com/rust-lang/regex/issues/516 |
| 588 | #[test ] |
| 589 | fn regression_alternation_concat() { |
| 590 | let expr = Hir::concat(alloc::vec![ |
| 591 | Hir::literal("ab" .as_bytes()), |
| 592 | Hir::alternation(alloc::vec![ |
| 593 | Hir::literal("mn" .as_bytes()), |
| 594 | Hir::literal("xy" .as_bytes()), |
| 595 | ]), |
| 596 | ]); |
| 597 | assert_eq!(r"(?:(?:ab)(?:(?:mn)|(?:xy)))" , expr.to_string()); |
| 598 | |
| 599 | let expr = Hir::concat(alloc::vec![ |
| 600 | Hir::look(hir::Look::Start), |
| 601 | Hir::alternation(alloc::vec![ |
| 602 | Hir::look(hir::Look::Start), |
| 603 | Hir::look(hir::Look::End), |
| 604 | ]), |
| 605 | ]); |
| 606 | assert_eq!(r"(?:\A(?:\A|\z))" , expr.to_string()); |
| 607 | } |
| 608 | } |
| 609 | |