| 1 | //! Parallel merge sort. |
| 2 | //! |
| 3 | //! This implementation is copied verbatim from `std::slice::sort` and then parallelized. |
| 4 | //! The only difference from the original is that the sequential `mergesort` returns |
| 5 | //! `MergesortResult` and leaves descending arrays intact. |
| 6 | |
| 7 | use crate::iter::*; |
| 8 | use crate::slice::ParallelSliceMut; |
| 9 | use crate::SendPtr; |
| 10 | use std::mem; |
| 11 | use std::mem::size_of; |
| 12 | use std::ptr; |
| 13 | use std::slice; |
| 14 | |
| 15 | unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T { |
| 16 | let old: *mut T = *ptr; |
| 17 | *ptr = ptr.offset(count:1); |
| 18 | old |
| 19 | } |
| 20 | |
| 21 | unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T { |
| 22 | *ptr = ptr.offset(count:-1); |
| 23 | *ptr |
| 24 | } |
| 25 | |
| 26 | /// When dropped, copies from `src` into `dest` a sequence of length `len`. |
| 27 | struct CopyOnDrop<T> { |
| 28 | src: *const T, |
| 29 | dest: *mut T, |
| 30 | len: usize, |
| 31 | } |
| 32 | |
| 33 | impl<T> Drop for CopyOnDrop<T> { |
| 34 | fn drop(&mut self) { |
| 35 | unsafe { |
| 36 | ptr::copy_nonoverlapping(self.src, self.dest, self.len); |
| 37 | } |
| 38 | } |
| 39 | } |
| 40 | |
| 41 | /// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted. |
| 42 | /// |
| 43 | /// This is the integral subroutine of insertion sort. |
| 44 | fn insert_head<T, F>(v: &mut [T], is_less: &F) |
| 45 | where |
| 46 | F: Fn(&T, &T) -> bool, |
| 47 | { |
| 48 | if v.len() >= 2 && is_less(&v[1], &v[0]) { |
| 49 | unsafe { |
| 50 | // There are three ways to implement insertion here: |
| 51 | // |
| 52 | // 1. Swap adjacent elements until the first one gets to its final destination. |
| 53 | // However, this way we copy data around more than is necessary. If elements are big |
| 54 | // structures (costly to copy), this method will be slow. |
| 55 | // |
| 56 | // 2. Iterate until the right place for the first element is found. Then shift the |
| 57 | // elements succeeding it to make room for it and finally place it into the |
| 58 | // remaining hole. This is a good method. |
| 59 | // |
| 60 | // 3. Copy the first element into a temporary variable. Iterate until the right place |
| 61 | // for it is found. As we go along, copy every traversed element into the slot |
| 62 | // preceding it. Finally, copy data from the temporary variable into the remaining |
| 63 | // hole. This method is very good. Benchmarks demonstrated slightly better |
| 64 | // performance than with the 2nd method. |
| 65 | // |
| 66 | // All methods were benchmarked, and the 3rd showed best results. So we chose that one. |
| 67 | let tmp = mem::ManuallyDrop::new(ptr::read(&v[0])); |
| 68 | |
| 69 | // Intermediate state of the insertion process is always tracked by `hole`, which |
| 70 | // serves two purposes: |
| 71 | // 1. Protects integrity of `v` from panics in `is_less`. |
| 72 | // 2. Fills the remaining hole in `v` in the end. |
| 73 | // |
| 74 | // Panic safety: |
| 75 | // |
| 76 | // If `is_less` panics at any point during the process, `hole` will get dropped and |
| 77 | // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it |
| 78 | // initially held exactly once. |
| 79 | let mut hole = InsertionHole { |
| 80 | src: &*tmp, |
| 81 | dest: &mut v[1], |
| 82 | }; |
| 83 | ptr::copy_nonoverlapping(&v[1], &mut v[0], 1); |
| 84 | |
| 85 | for i in 2..v.len() { |
| 86 | if !is_less(&v[i], &*tmp) { |
| 87 | break; |
| 88 | } |
| 89 | ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1); |
| 90 | hole.dest = &mut v[i]; |
| 91 | } |
| 92 | // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`. |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | // When dropped, copies from `src` into `dest`. |
| 97 | struct InsertionHole<T> { |
| 98 | src: *const T, |
| 99 | dest: *mut T, |
| 100 | } |
| 101 | |
| 102 | impl<T> Drop for InsertionHole<T> { |
| 103 | fn drop(&mut self) { |
| 104 | unsafe { |
| 105 | ptr::copy_nonoverlapping(self.src, self.dest, 1); |
| 106 | } |
| 107 | } |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | /// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and |
| 112 | /// stores the result into `v[..]`. |
| 113 | /// |
| 114 | /// # Safety |
| 115 | /// |
| 116 | /// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough |
| 117 | /// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type. |
| 118 | unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &F) |
| 119 | where |
| 120 | F: Fn(&T, &T) -> bool, |
| 121 | { |
| 122 | let len = v.len(); |
| 123 | let v = v.as_mut_ptr(); |
| 124 | let v_mid = v.add(mid); |
| 125 | let v_end = v.add(len); |
| 126 | |
| 127 | // The merge process first copies the shorter run into `buf`. Then it traces the newly copied |
| 128 | // run and the longer run forwards (or backwards), comparing their next unconsumed elements and |
| 129 | // copying the lesser (or greater) one into `v`. |
| 130 | // |
| 131 | // As soon as the shorter run is fully consumed, the process is done. If the longer run gets |
| 132 | // consumed first, then we must copy whatever is left of the shorter run into the remaining |
| 133 | // hole in `v`. |
| 134 | // |
| 135 | // Intermediate state of the process is always tracked by `hole`, which serves two purposes: |
| 136 | // 1. Protects integrity of `v` from panics in `is_less`. |
| 137 | // 2. Fills the remaining hole in `v` if the longer run gets consumed first. |
| 138 | // |
| 139 | // Panic safety: |
| 140 | // |
| 141 | // If `is_less` panics at any point during the process, `hole` will get dropped and fill the |
| 142 | // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every |
| 143 | // object it initially held exactly once. |
| 144 | let mut hole; |
| 145 | |
| 146 | if mid <= len - mid { |
| 147 | // The left run is shorter. |
| 148 | ptr::copy_nonoverlapping(v, buf, mid); |
| 149 | hole = MergeHole { |
| 150 | start: buf, |
| 151 | end: buf.add(mid), |
| 152 | dest: v, |
| 153 | }; |
| 154 | |
| 155 | // Initially, these pointers point to the beginnings of their arrays. |
| 156 | let left = &mut hole.start; |
| 157 | let mut right = v_mid; |
| 158 | let out = &mut hole.dest; |
| 159 | |
| 160 | while *left < hole.end && right < v_end { |
| 161 | // Consume the lesser side. |
| 162 | // If equal, prefer the left run to maintain stability. |
| 163 | let to_copy = if is_less(&*right, &**left) { |
| 164 | get_and_increment(&mut right) |
| 165 | } else { |
| 166 | get_and_increment(left) |
| 167 | }; |
| 168 | ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1); |
| 169 | } |
| 170 | } else { |
| 171 | // The right run is shorter. |
| 172 | ptr::copy_nonoverlapping(v_mid, buf, len - mid); |
| 173 | hole = MergeHole { |
| 174 | start: buf, |
| 175 | end: buf.add(len - mid), |
| 176 | dest: v_mid, |
| 177 | }; |
| 178 | |
| 179 | // Initially, these pointers point past the ends of their arrays. |
| 180 | let left = &mut hole.dest; |
| 181 | let right = &mut hole.end; |
| 182 | let mut out = v_end; |
| 183 | |
| 184 | while v < *left && buf < *right { |
| 185 | // Consume the greater side. |
| 186 | // If equal, prefer the right run to maintain stability. |
| 187 | let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) { |
| 188 | decrement_and_get(left) |
| 189 | } else { |
| 190 | decrement_and_get(right) |
| 191 | }; |
| 192 | ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1); |
| 193 | } |
| 194 | } |
| 195 | // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of |
| 196 | // it will now be copied into the hole in `v`. |
| 197 | |
| 198 | // When dropped, copies the range `start..end` into `dest..`. |
| 199 | struct MergeHole<T> { |
| 200 | start: *mut T, |
| 201 | end: *mut T, |
| 202 | dest: *mut T, |
| 203 | } |
| 204 | |
| 205 | impl<T> Drop for MergeHole<T> { |
| 206 | fn drop(&mut self) { |
| 207 | // `T` is not a zero-sized type, so it's okay to divide by its size. |
| 208 | unsafe { |
| 209 | let len = self.end.offset_from(self.start) as usize; |
| 210 | ptr::copy_nonoverlapping(self.start, self.dest, len); |
| 211 | } |
| 212 | } |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | /// The result of merge sort. |
| 217 | #[must_use ] |
| 218 | #[derive (Clone, Copy, PartialEq, Eq)] |
| 219 | enum MergesortResult { |
| 220 | /// The slice has already been sorted. |
| 221 | NonDescending, |
| 222 | /// The slice has been descending and therefore it was left intact. |
| 223 | Descending, |
| 224 | /// The slice was sorted. |
| 225 | Sorted, |
| 226 | } |
| 227 | |
| 228 | /// A sorted run that starts at index `start` and is of length `len`. |
| 229 | #[derive (Clone, Copy)] |
| 230 | struct Run { |
| 231 | start: usize, |
| 232 | len: usize, |
| 233 | } |
| 234 | |
| 235 | /// Examines the stack of runs and identifies the next pair of runs to merge. More specifically, |
| 236 | /// if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the |
| 237 | /// algorithm should continue building a new run instead, `None` is returned. |
| 238 | /// |
| 239 | /// TimSort is infamous for its buggy implementations, as described here: |
| 240 | /// http://envisage-project.eu/timsort-specification-and-verification/ |
| 241 | /// |
| 242 | /// The gist of the story is: we must enforce the invariants on the top four runs on the stack. |
| 243 | /// Enforcing them on just top three is not sufficient to ensure that the invariants will still |
| 244 | /// hold for *all* runs in the stack. |
| 245 | /// |
| 246 | /// This function correctly checks invariants for the top four runs. Additionally, if the top |
| 247 | /// run starts at index 0, it will always demand a merge operation until the stack is fully |
| 248 | /// collapsed, in order to complete the sort. |
| 249 | #[inline ] |
| 250 | fn collapse(runs: &[Run]) -> Option<usize> { |
| 251 | let n: usize = runs.len(); |
| 252 | |
| 253 | if n >= 2 |
| 254 | && (runs[n - 1].start == 0 |
| 255 | || runs[n - 2].len <= runs[n - 1].len |
| 256 | || (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len) |
| 257 | || (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len)) |
| 258 | { |
| 259 | if n >= 3 && runs[n - 3].len < runs[n - 1].len { |
| 260 | Some(n - 3) |
| 261 | } else { |
| 262 | Some(n - 2) |
| 263 | } |
| 264 | } else { |
| 265 | None |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | /// Sorts a slice using merge sort, unless it is already in descending order. |
| 270 | /// |
| 271 | /// This function doesn't modify the slice if it is already non-descending or descending. |
| 272 | /// Otherwise, it sorts the slice into non-descending order. |
| 273 | /// |
| 274 | /// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail |
| 275 | /// [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt). |
| 276 | /// |
| 277 | /// The algorithm identifies strictly descending and non-descending subsequences, which are called |
| 278 | /// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed |
| 279 | /// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are |
| 280 | /// satisfied: |
| 281 | /// |
| 282 | /// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len` |
| 283 | /// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len` |
| 284 | /// |
| 285 | /// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case. |
| 286 | /// |
| 287 | /// # Safety |
| 288 | /// |
| 289 | /// The argument `buf` is used as a temporary buffer and must be at least as long as `v`. |
| 290 | unsafe fn mergesort<T, F>(v: &mut [T], buf: *mut T, is_less: &F) -> MergesortResult |
| 291 | where |
| 292 | T: Send, |
| 293 | F: Fn(&T, &T) -> bool + Sync, |
| 294 | { |
| 295 | // Very short runs are extended using insertion sort to span at least this many elements. |
| 296 | const MIN_RUN: usize = 10; |
| 297 | |
| 298 | let len = v.len(); |
| 299 | |
| 300 | // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a |
| 301 | // strange decision, but consider the fact that merges more often go in the opposite direction |
| 302 | // (forwards). According to benchmarks, merging forwards is slightly faster than merging |
| 303 | // backwards. To conclude, identifying runs by traversing backwards improves performance. |
| 304 | let mut runs = vec![]; |
| 305 | let mut end = len; |
| 306 | while end > 0 { |
| 307 | // Find the next natural run, and reverse it if it's strictly descending. |
| 308 | let mut start = end - 1; |
| 309 | |
| 310 | if start > 0 { |
| 311 | start -= 1; |
| 312 | |
| 313 | if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) { |
| 314 | while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) { |
| 315 | start -= 1; |
| 316 | } |
| 317 | |
| 318 | // If this descending run covers the whole slice, return immediately. |
| 319 | if start == 0 && end == len { |
| 320 | return MergesortResult::Descending; |
| 321 | } else { |
| 322 | v[start..end].reverse(); |
| 323 | } |
| 324 | } else { |
| 325 | while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) { |
| 326 | start -= 1; |
| 327 | } |
| 328 | |
| 329 | // If this non-descending run covers the whole slice, return immediately. |
| 330 | if end - start == len { |
| 331 | return MergesortResult::NonDescending; |
| 332 | } |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | // Insert some more elements into the run if it's too short. Insertion sort is faster than |
| 337 | // merge sort on short sequences, so this significantly improves performance. |
| 338 | while start > 0 && end - start < MIN_RUN { |
| 339 | start -= 1; |
| 340 | insert_head(&mut v[start..end], &is_less); |
| 341 | } |
| 342 | |
| 343 | // Push this run onto the stack. |
| 344 | runs.push(Run { |
| 345 | start, |
| 346 | len: end - start, |
| 347 | }); |
| 348 | end = start; |
| 349 | |
| 350 | // Merge some pairs of adjacent runs to satisfy the invariants. |
| 351 | while let Some(r) = collapse(&runs) { |
| 352 | let left = runs[r + 1]; |
| 353 | let right = runs[r]; |
| 354 | merge( |
| 355 | &mut v[left.start..right.start + right.len], |
| 356 | left.len, |
| 357 | buf, |
| 358 | &is_less, |
| 359 | ); |
| 360 | |
| 361 | runs[r] = Run { |
| 362 | start: left.start, |
| 363 | len: left.len + right.len, |
| 364 | }; |
| 365 | runs.remove(r + 1); |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | // Finally, exactly one run must remain in the stack. |
| 370 | debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len); |
| 371 | |
| 372 | // The original order of the slice was neither non-descending nor descending. |
| 373 | MergesortResult::Sorted |
| 374 | } |
| 375 | |
| 376 | //////////////////////////////////////////////////////////////////////////// |
| 377 | // Everything above this line is copied from `std::slice::sort` (with very minor tweaks). |
| 378 | // Everything below this line is parallelization. |
| 379 | //////////////////////////////////////////////////////////////////////////// |
| 380 | |
| 381 | /// Splits two sorted slices so that they can be merged in parallel. |
| 382 | /// |
| 383 | /// Returns two indices `(a, b)` so that slices `left[..a]` and `right[..b]` come before |
| 384 | /// `left[a..]` and `right[b..]`. |
| 385 | fn split_for_merge<T, F>(left: &[T], right: &[T], is_less: &F) -> (usize, usize) |
| 386 | where |
| 387 | F: Fn(&T, &T) -> bool, |
| 388 | { |
| 389 | let left_len = left.len(); |
| 390 | let right_len = right.len(); |
| 391 | |
| 392 | if left_len >= right_len { |
| 393 | let left_mid = left_len / 2; |
| 394 | |
| 395 | // Find the first element in `right` that is greater than or equal to `left[left_mid]`. |
| 396 | let mut a = 0; |
| 397 | let mut b = right_len; |
| 398 | while a < b { |
| 399 | let m = a + (b - a) / 2; |
| 400 | if is_less(&right[m], &left[left_mid]) { |
| 401 | a = m + 1; |
| 402 | } else { |
| 403 | b = m; |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | (left_mid, a) |
| 408 | } else { |
| 409 | let right_mid = right_len / 2; |
| 410 | |
| 411 | // Find the first element in `left` that is greater than `right[right_mid]`. |
| 412 | let mut a = 0; |
| 413 | let mut b = left_len; |
| 414 | while a < b { |
| 415 | let m = a + (b - a) / 2; |
| 416 | if is_less(&right[right_mid], &left[m]) { |
| 417 | b = m; |
| 418 | } else { |
| 419 | a = m + 1; |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | (a, right_mid) |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | /// Merges slices `left` and `right` in parallel and stores the result into `dest`. |
| 428 | /// |
| 429 | /// # Safety |
| 430 | /// |
| 431 | /// The `dest` pointer must have enough space to store the result. |
| 432 | /// |
| 433 | /// Even if `is_less` panics at any point during the merge process, this function will fully copy |
| 434 | /// all elements from `left` and `right` into `dest` (not necessarily in sorted order). |
| 435 | unsafe fn par_merge<T, F>(left: &mut [T], right: &mut [T], dest: *mut T, is_less: &F) |
| 436 | where |
| 437 | T: Send, |
| 438 | F: Fn(&T, &T) -> bool + Sync, |
| 439 | { |
| 440 | // Slices whose lengths sum up to this value are merged sequentially. This number is slightly |
| 441 | // larger than `CHUNK_LENGTH`, and the reason is that merging is faster than merge sorting, so |
| 442 | // merging needs a bit coarser granularity in order to hide the overhead of Rayon's task |
| 443 | // scheduling. |
| 444 | const MAX_SEQUENTIAL: usize = 5000; |
| 445 | |
| 446 | let left_len = left.len(); |
| 447 | let right_len = right.len(); |
| 448 | |
| 449 | // Intermediate state of the merge process, which serves two purposes: |
| 450 | // 1. Protects integrity of `dest` from panics in `is_less`. |
| 451 | // 2. Copies the remaining elements as soon as one of the two sides is exhausted. |
| 452 | // |
| 453 | // Panic safety: |
| 454 | // |
| 455 | // If `is_less` panics at any point during the merge process, `s` will get dropped and copy the |
| 456 | // remaining parts of `left` and `right` into `dest`. |
| 457 | let mut s = State { |
| 458 | left_start: left.as_mut_ptr(), |
| 459 | left_end: left.as_mut_ptr().add(left_len), |
| 460 | right_start: right.as_mut_ptr(), |
| 461 | right_end: right.as_mut_ptr().add(right_len), |
| 462 | dest, |
| 463 | }; |
| 464 | |
| 465 | if left_len == 0 || right_len == 0 || left_len + right_len < MAX_SEQUENTIAL { |
| 466 | while s.left_start < s.left_end && s.right_start < s.right_end { |
| 467 | // Consume the lesser side. |
| 468 | // If equal, prefer the left run to maintain stability. |
| 469 | let to_copy = if is_less(&*s.right_start, &*s.left_start) { |
| 470 | get_and_increment(&mut s.right_start) |
| 471 | } else { |
| 472 | get_and_increment(&mut s.left_start) |
| 473 | }; |
| 474 | ptr::copy_nonoverlapping(to_copy, get_and_increment(&mut s.dest), 1); |
| 475 | } |
| 476 | } else { |
| 477 | // Function `split_for_merge` might panic. If that happens, `s` will get destructed and copy |
| 478 | // the whole `left` and `right` into `dest`. |
| 479 | let (left_mid, right_mid) = split_for_merge(left, right, is_less); |
| 480 | let (left_l, left_r) = left.split_at_mut(left_mid); |
| 481 | let (right_l, right_r) = right.split_at_mut(right_mid); |
| 482 | |
| 483 | // Prevent the destructor of `s` from running. Rayon will ensure that both calls to |
| 484 | // `par_merge` happen. If one of the two calls panics, they will ensure that elements still |
| 485 | // get copied into `dest_left` and `dest_right``. |
| 486 | mem::forget(s); |
| 487 | |
| 488 | // Wrap pointers in SendPtr so that they can be sent to another thread |
| 489 | // See the documentation of SendPtr for a full explanation |
| 490 | let dest_l = SendPtr(dest); |
| 491 | let dest_r = SendPtr(dest.add(left_l.len() + right_l.len())); |
| 492 | rayon_core::join( |
| 493 | move || par_merge(left_l, right_l, dest_l.get(), is_less), |
| 494 | move || par_merge(left_r, right_r, dest_r.get(), is_less), |
| 495 | ); |
| 496 | } |
| 497 | // Finally, `s` gets dropped if we used sequential merge, thus copying the remaining elements |
| 498 | // all at once. |
| 499 | |
| 500 | // When dropped, copies arrays `left_start..left_end` and `right_start..right_end` into `dest`, |
| 501 | // in that order. |
| 502 | struct State<T> { |
| 503 | left_start: *mut T, |
| 504 | left_end: *mut T, |
| 505 | right_start: *mut T, |
| 506 | right_end: *mut T, |
| 507 | dest: *mut T, |
| 508 | } |
| 509 | |
| 510 | impl<T> Drop for State<T> { |
| 511 | fn drop(&mut self) { |
| 512 | let size = size_of::<T>(); |
| 513 | let left_len = (self.left_end as usize - self.left_start as usize) / size; |
| 514 | let right_len = (self.right_end as usize - self.right_start as usize) / size; |
| 515 | |
| 516 | // Copy array `left`, followed by `right`. |
| 517 | unsafe { |
| 518 | ptr::copy_nonoverlapping(self.left_start, self.dest, left_len); |
| 519 | self.dest = self.dest.add(left_len); |
| 520 | ptr::copy_nonoverlapping(self.right_start, self.dest, right_len); |
| 521 | } |
| 522 | } |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | /// Recursively merges pre-sorted chunks inside `v`. |
| 527 | /// |
| 528 | /// Chunks of `v` are stored in `chunks` as intervals (inclusive left and exclusive right bound). |
| 529 | /// Argument `buf` is an auxiliary buffer that will be used during the procedure. |
| 530 | /// If `into_buf` is true, the result will be stored into `buf`, otherwise it will be in `v`. |
| 531 | /// |
| 532 | /// # Safety |
| 533 | /// |
| 534 | /// The number of chunks must be positive and they must be adjacent: the right bound of each chunk |
| 535 | /// must equal the left bound of the following chunk. |
| 536 | /// |
| 537 | /// The buffer must be at least as long as `v`. |
| 538 | unsafe fn recurse<T, F>( |
| 539 | v: *mut T, |
| 540 | buf: *mut T, |
| 541 | chunks: &[(usize, usize)], |
| 542 | into_buf: bool, |
| 543 | is_less: &F, |
| 544 | ) where |
| 545 | T: Send, |
| 546 | F: Fn(&T, &T) -> bool + Sync, |
| 547 | { |
| 548 | let len = chunks.len(); |
| 549 | debug_assert!(len > 0); |
| 550 | |
| 551 | // Base case of the algorithm. |
| 552 | // If only one chunk is remaining, there's no more work to split and merge. |
| 553 | if len == 1 { |
| 554 | if into_buf { |
| 555 | // Copy the chunk from `v` into `buf`. |
| 556 | let (start, end) = chunks[0]; |
| 557 | let src = v.add(start); |
| 558 | let dest = buf.add(start); |
| 559 | ptr::copy_nonoverlapping(src, dest, end - start); |
| 560 | } |
| 561 | return; |
| 562 | } |
| 563 | |
| 564 | // Split the chunks into two halves. |
| 565 | let (start, _) = chunks[0]; |
| 566 | let (mid, _) = chunks[len / 2]; |
| 567 | let (_, end) = chunks[len - 1]; |
| 568 | let (left, right) = chunks.split_at(len / 2); |
| 569 | |
| 570 | // After recursive calls finish we'll have to merge chunks `(start, mid)` and `(mid, end)` from |
| 571 | // `src` into `dest`. If the current invocation has to store the result into `buf`, we'll |
| 572 | // merge chunks from `v` into `buf`, and vice versa. |
| 573 | // |
| 574 | // Recursive calls flip `into_buf` at each level of recursion. More concretely, `par_merge` |
| 575 | // merges chunks from `buf` into `v` at the first level, from `v` into `buf` at the second |
| 576 | // level etc. |
| 577 | let (src, dest) = if into_buf { (v, buf) } else { (buf, v) }; |
| 578 | |
| 579 | // Panic safety: |
| 580 | // |
| 581 | // If `is_less` panics at any point during the recursive calls, the destructor of `guard` will |
| 582 | // be executed, thus copying everything from `src` into `dest`. This way we ensure that all |
| 583 | // chunks are in fact copied into `dest`, even if the merge process doesn't finish. |
| 584 | let guard = CopyOnDrop { |
| 585 | src: src.add(start), |
| 586 | dest: dest.add(start), |
| 587 | len: end - start, |
| 588 | }; |
| 589 | |
| 590 | // Wrap pointers in SendPtr so that they can be sent to another thread |
| 591 | // See the documentation of SendPtr for a full explanation |
| 592 | let v = SendPtr(v); |
| 593 | let buf = SendPtr(buf); |
| 594 | rayon_core::join( |
| 595 | move || recurse(v.get(), buf.get(), left, !into_buf, is_less), |
| 596 | move || recurse(v.get(), buf.get(), right, !into_buf, is_less), |
| 597 | ); |
| 598 | |
| 599 | // Everything went all right - recursive calls didn't panic. |
| 600 | // Forget the guard in order to prevent its destructor from running. |
| 601 | mem::forget(guard); |
| 602 | |
| 603 | // Merge chunks `(start, mid)` and `(mid, end)` from `src` into `dest`. |
| 604 | let src_left = slice::from_raw_parts_mut(src.add(start), mid - start); |
| 605 | let src_right = slice::from_raw_parts_mut(src.add(mid), end - mid); |
| 606 | par_merge(src_left, src_right, dest.add(start), is_less); |
| 607 | } |
| 608 | |
| 609 | /// Sorts `v` using merge sort in parallel. |
| 610 | /// |
| 611 | /// The algorithm is stable, allocates memory, and `O(n log n)` worst-case. |
| 612 | /// The allocated temporary buffer is of the same length as is `v`. |
| 613 | pub(super) fn par_mergesort<T, F>(v: &mut [T], is_less: F) |
| 614 | where |
| 615 | T: Send, |
| 616 | F: Fn(&T, &T) -> bool + Sync, |
| 617 | { |
| 618 | // Slices of up to this length get sorted using insertion sort in order to avoid the cost of |
| 619 | // buffer allocation. |
| 620 | const MAX_INSERTION: usize = 20; |
| 621 | // The length of initial chunks. This number is as small as possible but so that the overhead |
| 622 | // of Rayon's task scheduling is still negligible. |
| 623 | const CHUNK_LENGTH: usize = 2000; |
| 624 | |
| 625 | // Sorting has no meaningful behavior on zero-sized types. |
| 626 | if size_of::<T>() == 0 { |
| 627 | return; |
| 628 | } |
| 629 | |
| 630 | let len = v.len(); |
| 631 | |
| 632 | // Short slices get sorted in-place via insertion sort to avoid allocations. |
| 633 | if len <= MAX_INSERTION { |
| 634 | if len >= 2 { |
| 635 | for i in (0..len - 1).rev() { |
| 636 | insert_head(&mut v[i..], &is_less); |
| 637 | } |
| 638 | } |
| 639 | return; |
| 640 | } |
| 641 | |
| 642 | // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it |
| 643 | // shallow copies of the contents of `v` without risking the dtors running on copies if |
| 644 | // `is_less` panics. |
| 645 | let mut buf = Vec::<T>::with_capacity(len); |
| 646 | let buf = buf.as_mut_ptr(); |
| 647 | |
| 648 | // If the slice is not longer than one chunk would be, do sequential merge sort and return. |
| 649 | if len <= CHUNK_LENGTH { |
| 650 | let res = unsafe { mergesort(v, buf, &is_less) }; |
| 651 | if res == MergesortResult::Descending { |
| 652 | v.reverse(); |
| 653 | } |
| 654 | return; |
| 655 | } |
| 656 | |
| 657 | // Split the slice into chunks and merge sort them in parallel. |
| 658 | // However, descending chunks will not be sorted - they will be simply left intact. |
| 659 | let mut iter = { |
| 660 | // Wrap pointer in SendPtr so that it can be sent to another thread |
| 661 | // See the documentation of SendPtr for a full explanation |
| 662 | let buf = SendPtr(buf); |
| 663 | let is_less = &is_less; |
| 664 | |
| 665 | v.par_chunks_mut(CHUNK_LENGTH) |
| 666 | .with_max_len(1) |
| 667 | .enumerate() |
| 668 | .map(move |(i, chunk)| { |
| 669 | let l = CHUNK_LENGTH * i; |
| 670 | let r = l + chunk.len(); |
| 671 | unsafe { |
| 672 | let buf = buf.get().add(l); |
| 673 | (l, r, mergesort(chunk, buf, is_less)) |
| 674 | } |
| 675 | }) |
| 676 | .collect::<Vec<_>>() |
| 677 | .into_iter() |
| 678 | .peekable() |
| 679 | }; |
| 680 | |
| 681 | // Now attempt to concatenate adjacent chunks that were left intact. |
| 682 | let mut chunks = Vec::with_capacity(iter.len()); |
| 683 | |
| 684 | while let Some((a, mut b, res)) = iter.next() { |
| 685 | // If this chunk was not modified by the sort procedure... |
| 686 | if res != MergesortResult::Sorted { |
| 687 | while let Some(&(x, y, r)) = iter.peek() { |
| 688 | // If the following chunk is of the same type and can be concatenated... |
| 689 | if r == res && (r == MergesortResult::Descending) == is_less(&v[x], &v[x - 1]) { |
| 690 | // Concatenate them. |
| 691 | b = y; |
| 692 | iter.next(); |
| 693 | } else { |
| 694 | break; |
| 695 | } |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | // Descending chunks must be reversed. |
| 700 | if res == MergesortResult::Descending { |
| 701 | v[a..b].reverse(); |
| 702 | } |
| 703 | |
| 704 | chunks.push((a, b)); |
| 705 | } |
| 706 | |
| 707 | // All chunks are properly sorted. |
| 708 | // Now we just have to merge them together. |
| 709 | unsafe { |
| 710 | recurse(v.as_mut_ptr(), buf, &chunks, false, &is_less); |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | #[cfg (test)] |
| 715 | mod tests { |
| 716 | use super::split_for_merge; |
| 717 | use rand::distributions::Uniform; |
| 718 | use rand::{thread_rng, Rng}; |
| 719 | |
| 720 | #[test ] |
| 721 | fn test_split_for_merge() { |
| 722 | fn check(left: &[u32], right: &[u32]) { |
| 723 | let (l, r) = split_for_merge(left, right, &|&a, &b| a < b); |
| 724 | assert!(left[..l] |
| 725 | .iter() |
| 726 | .all(|&x| right[r..].iter().all(|&y| x <= y))); |
| 727 | assert!(right[..r].iter().all(|&x| left[l..].iter().all(|&y| x < y))); |
| 728 | } |
| 729 | |
| 730 | check(&[1, 2, 2, 2, 2, 3], &[1, 2, 2, 2, 2, 3]); |
| 731 | check(&[1, 2, 2, 2, 2, 3], &[]); |
| 732 | check(&[], &[1, 2, 2, 2, 2, 3]); |
| 733 | |
| 734 | let rng = &mut thread_rng(); |
| 735 | |
| 736 | for _ in 0..100 { |
| 737 | let limit: u32 = rng.gen_range(1..21); |
| 738 | let left_len: usize = rng.gen_range(0..20); |
| 739 | let right_len: usize = rng.gen_range(0..20); |
| 740 | |
| 741 | let mut left = rng |
| 742 | .sample_iter(&Uniform::new(0, limit)) |
| 743 | .take(left_len) |
| 744 | .collect::<Vec<_>>(); |
| 745 | let mut right = rng |
| 746 | .sample_iter(&Uniform::new(0, limit)) |
| 747 | .take(right_len) |
| 748 | .collect::<Vec<_>>(); |
| 749 | |
| 750 | left.sort(); |
| 751 | right.sort(); |
| 752 | check(&left, &right); |
| 753 | } |
| 754 | } |
| 755 | } |
| 756 | |