| 1 | //! Parallel iterator types for [slices][std::slice] |
| 2 | //! |
| 3 | //! You will rarely need to interact with this module directly unless you need |
| 4 | //! to name one of the iterator types. |
| 5 | //! |
| 6 | //! [std::slice]: https://doc.rust-lang.org/stable/std/slice/ |
| 7 | |
| 8 | mod chunks; |
| 9 | mod mergesort; |
| 10 | mod quicksort; |
| 11 | mod rchunks; |
| 12 | |
| 13 | mod test; |
| 14 | |
| 15 | use self::mergesort::par_mergesort; |
| 16 | use self::quicksort::par_quicksort; |
| 17 | use crate::iter::plumbing::*; |
| 18 | use crate::iter::*; |
| 19 | use crate::split_producer::*; |
| 20 | use std::cmp; |
| 21 | use std::cmp::Ordering; |
| 22 | use std::fmt::{self, Debug}; |
| 23 | use std::mem; |
| 24 | |
| 25 | pub use self::chunks::{Chunks, ChunksExact, ChunksExactMut, ChunksMut}; |
| 26 | pub use self::rchunks::{RChunks, RChunksExact, RChunksExactMut, RChunksMut}; |
| 27 | |
| 28 | /// Parallel extensions for slices. |
| 29 | pub trait ParallelSlice<T: Sync> { |
| 30 | /// Returns a plain slice, which is used to implement the rest of the |
| 31 | /// parallel methods. |
| 32 | fn as_parallel_slice(&self) -> &[T]; |
| 33 | |
| 34 | /// Returns a parallel iterator over subslices separated by elements that |
| 35 | /// match the separator. |
| 36 | /// |
| 37 | /// # Examples |
| 38 | /// |
| 39 | /// ``` |
| 40 | /// use rayon::prelude::*; |
| 41 | /// let smallest = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9] |
| 42 | /// .par_split(|i| *i == 0) |
| 43 | /// .map(|numbers| numbers.iter().min().unwrap()) |
| 44 | /// .min(); |
| 45 | /// assert_eq!(Some(&1), smallest); |
| 46 | /// ``` |
| 47 | fn par_split<P>(&self, separator: P) -> Split<'_, T, P> |
| 48 | where |
| 49 | P: Fn(&T) -> bool + Sync + Send, |
| 50 | { |
| 51 | Split { |
| 52 | slice: self.as_parallel_slice(), |
| 53 | separator, |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | /// Returns a parallel iterator over all contiguous windows of length |
| 58 | /// `window_size`. The windows overlap. |
| 59 | /// |
| 60 | /// # Examples |
| 61 | /// |
| 62 | /// ``` |
| 63 | /// use rayon::prelude::*; |
| 64 | /// let windows: Vec<_> = [1, 2, 3].par_windows(2).collect(); |
| 65 | /// assert_eq!(vec![[1, 2], [2, 3]], windows); |
| 66 | /// ``` |
| 67 | fn par_windows(&self, window_size: usize) -> Windows<'_, T> { |
| 68 | Windows { |
| 69 | window_size, |
| 70 | slice: self.as_parallel_slice(), |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | /// Returns a parallel iterator over at most `chunk_size` elements of |
| 75 | /// `self` at a time. The chunks do not overlap. |
| 76 | /// |
| 77 | /// If the number of elements in the iterator is not divisible by |
| 78 | /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All |
| 79 | /// other chunks will have that exact length. |
| 80 | /// |
| 81 | /// # Examples |
| 82 | /// |
| 83 | /// ``` |
| 84 | /// use rayon::prelude::*; |
| 85 | /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_chunks(2).collect(); |
| 86 | /// assert_eq!(chunks, vec![&[1, 2][..], &[3, 4], &[5]]); |
| 87 | /// ``` |
| 88 | #[track_caller ] |
| 89 | fn par_chunks(&self, chunk_size: usize) -> Chunks<'_, T> { |
| 90 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
| 91 | Chunks::new(chunk_size, self.as_parallel_slice()) |
| 92 | } |
| 93 | |
| 94 | /// Returns a parallel iterator over `chunk_size` elements of |
| 95 | /// `self` at a time. The chunks do not overlap. |
| 96 | /// |
| 97 | /// If `chunk_size` does not divide the length of the slice, then the |
| 98 | /// last up to `chunk_size-1` elements will be omitted and can be |
| 99 | /// retrieved from the remainder function of the iterator. |
| 100 | /// |
| 101 | /// # Examples |
| 102 | /// |
| 103 | /// ``` |
| 104 | /// use rayon::prelude::*; |
| 105 | /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_chunks_exact(2).collect(); |
| 106 | /// assert_eq!(chunks, vec![&[1, 2][..], &[3, 4]]); |
| 107 | /// ``` |
| 108 | #[track_caller ] |
| 109 | fn par_chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> { |
| 110 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
| 111 | ChunksExact::new(chunk_size, self.as_parallel_slice()) |
| 112 | } |
| 113 | |
| 114 | /// Returns a parallel iterator over at most `chunk_size` elements of `self` at a time, |
| 115 | /// starting at the end. The chunks do not overlap. |
| 116 | /// |
| 117 | /// If the number of elements in the iterator is not divisible by |
| 118 | /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All |
| 119 | /// other chunks will have that exact length. |
| 120 | /// |
| 121 | /// # Examples |
| 122 | /// |
| 123 | /// ``` |
| 124 | /// use rayon::prelude::*; |
| 125 | /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_rchunks(2).collect(); |
| 126 | /// assert_eq!(chunks, vec![&[4, 5][..], &[2, 3], &[1]]); |
| 127 | /// ``` |
| 128 | #[track_caller ] |
| 129 | fn par_rchunks(&self, chunk_size: usize) -> RChunks<'_, T> { |
| 130 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
| 131 | RChunks::new(chunk_size, self.as_parallel_slice()) |
| 132 | } |
| 133 | |
| 134 | /// Returns a parallel iterator over `chunk_size` elements of `self` at a time, |
| 135 | /// starting at the end. The chunks do not overlap. |
| 136 | /// |
| 137 | /// If `chunk_size` does not divide the length of the slice, then the |
| 138 | /// last up to `chunk_size-1` elements will be omitted and can be |
| 139 | /// retrieved from the remainder function of the iterator. |
| 140 | /// |
| 141 | /// # Examples |
| 142 | /// |
| 143 | /// ``` |
| 144 | /// use rayon::prelude::*; |
| 145 | /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_rchunks_exact(2).collect(); |
| 146 | /// assert_eq!(chunks, vec![&[4, 5][..], &[2, 3]]); |
| 147 | /// ``` |
| 148 | #[track_caller ] |
| 149 | fn par_rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> { |
| 150 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
| 151 | RChunksExact::new(chunk_size, self.as_parallel_slice()) |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | impl<T: Sync> ParallelSlice<T> for [T] { |
| 156 | #[inline ] |
| 157 | fn as_parallel_slice(&self) -> &[T] { |
| 158 | self |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | /// Parallel extensions for mutable slices. |
| 163 | pub trait ParallelSliceMut<T: Send> { |
| 164 | /// Returns a plain mutable slice, which is used to implement the rest of |
| 165 | /// the parallel methods. |
| 166 | fn as_parallel_slice_mut(&mut self) -> &mut [T]; |
| 167 | |
| 168 | /// Returns a parallel iterator over mutable subslices separated by |
| 169 | /// elements that match the separator. |
| 170 | /// |
| 171 | /// # Examples |
| 172 | /// |
| 173 | /// ``` |
| 174 | /// use rayon::prelude::*; |
| 175 | /// let mut array = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9]; |
| 176 | /// array.par_split_mut(|i| *i == 0) |
| 177 | /// .for_each(|slice| slice.reverse()); |
| 178 | /// assert_eq!(array, [3, 2, 1, 0, 8, 4, 2, 0, 9, 6, 3]); |
| 179 | /// ``` |
| 180 | fn par_split_mut<P>(&mut self, separator: P) -> SplitMut<'_, T, P> |
| 181 | where |
| 182 | P: Fn(&T) -> bool + Sync + Send, |
| 183 | { |
| 184 | SplitMut { |
| 185 | slice: self.as_parallel_slice_mut(), |
| 186 | separator, |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | /// Returns a parallel iterator over at most `chunk_size` elements of |
| 191 | /// `self` at a time. The chunks are mutable and do not overlap. |
| 192 | /// |
| 193 | /// If the number of elements in the iterator is not divisible by |
| 194 | /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All |
| 195 | /// other chunks will have that exact length. |
| 196 | /// |
| 197 | /// # Examples |
| 198 | /// |
| 199 | /// ``` |
| 200 | /// use rayon::prelude::*; |
| 201 | /// let mut array = [1, 2, 3, 4, 5]; |
| 202 | /// array.par_chunks_mut(2) |
| 203 | /// .for_each(|slice| slice.reverse()); |
| 204 | /// assert_eq!(array, [2, 1, 4, 3, 5]); |
| 205 | /// ``` |
| 206 | #[track_caller ] |
| 207 | fn par_chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> { |
| 208 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
| 209 | ChunksMut::new(chunk_size, self.as_parallel_slice_mut()) |
| 210 | } |
| 211 | |
| 212 | /// Returns a parallel iterator over `chunk_size` elements of |
| 213 | /// `self` at a time. The chunks are mutable and do not overlap. |
| 214 | /// |
| 215 | /// If `chunk_size` does not divide the length of the slice, then the |
| 216 | /// last up to `chunk_size-1` elements will be omitted and can be |
| 217 | /// retrieved from the remainder function of the iterator. |
| 218 | /// |
| 219 | /// # Examples |
| 220 | /// |
| 221 | /// ``` |
| 222 | /// use rayon::prelude::*; |
| 223 | /// let mut array = [1, 2, 3, 4, 5]; |
| 224 | /// array.par_chunks_exact_mut(3) |
| 225 | /// .for_each(|slice| slice.reverse()); |
| 226 | /// assert_eq!(array, [3, 2, 1, 4, 5]); |
| 227 | /// ``` |
| 228 | #[track_caller ] |
| 229 | fn par_chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> { |
| 230 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
| 231 | ChunksExactMut::new(chunk_size, self.as_parallel_slice_mut()) |
| 232 | } |
| 233 | |
| 234 | /// Returns a parallel iterator over at most `chunk_size` elements of `self` at a time, |
| 235 | /// starting at the end. The chunks are mutable and do not overlap. |
| 236 | /// |
| 237 | /// If the number of elements in the iterator is not divisible by |
| 238 | /// `chunk_size`, the last chunk may be shorter than `chunk_size`. All |
| 239 | /// other chunks will have that exact length. |
| 240 | /// |
| 241 | /// # Examples |
| 242 | /// |
| 243 | /// ``` |
| 244 | /// use rayon::prelude::*; |
| 245 | /// let mut array = [1, 2, 3, 4, 5]; |
| 246 | /// array.par_rchunks_mut(2) |
| 247 | /// .for_each(|slice| slice.reverse()); |
| 248 | /// assert_eq!(array, [1, 3, 2, 5, 4]); |
| 249 | /// ``` |
| 250 | #[track_caller ] |
| 251 | fn par_rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> { |
| 252 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
| 253 | RChunksMut::new(chunk_size, self.as_parallel_slice_mut()) |
| 254 | } |
| 255 | |
| 256 | /// Returns a parallel iterator over `chunk_size` elements of `self` at a time, |
| 257 | /// starting at the end. The chunks are mutable and do not overlap. |
| 258 | /// |
| 259 | /// If `chunk_size` does not divide the length of the slice, then the |
| 260 | /// last up to `chunk_size-1` elements will be omitted and can be |
| 261 | /// retrieved from the remainder function of the iterator. |
| 262 | /// |
| 263 | /// # Examples |
| 264 | /// |
| 265 | /// ``` |
| 266 | /// use rayon::prelude::*; |
| 267 | /// let mut array = [1, 2, 3, 4, 5]; |
| 268 | /// array.par_rchunks_exact_mut(3) |
| 269 | /// .for_each(|slice| slice.reverse()); |
| 270 | /// assert_eq!(array, [1, 2, 5, 4, 3]); |
| 271 | /// ``` |
| 272 | #[track_caller ] |
| 273 | fn par_rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> { |
| 274 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
| 275 | RChunksExactMut::new(chunk_size, self.as_parallel_slice_mut()) |
| 276 | } |
| 277 | |
| 278 | /// Sorts the slice in parallel. |
| 279 | /// |
| 280 | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case. |
| 281 | /// |
| 282 | /// When applicable, unstable sorting is preferred because it is generally faster than stable |
| 283 | /// sorting and it doesn't allocate auxiliary memory. |
| 284 | /// See [`par_sort_unstable`](#method.par_sort_unstable). |
| 285 | /// |
| 286 | /// # Current implementation |
| 287 | /// |
| 288 | /// The current algorithm is an adaptive merge sort inspired by |
| 289 | /// [timsort](https://en.wikipedia.org/wiki/Timsort). |
| 290 | /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of |
| 291 | /// two or more sorted sequences concatenated one after another. |
| 292 | /// |
| 293 | /// Also, it allocates temporary storage the same size as `self`, but for very short slices a |
| 294 | /// non-allocating insertion sort is used instead. |
| 295 | /// |
| 296 | /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and |
| 297 | /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending |
| 298 | /// or descending runs are concatenated. Finally, the remaining chunks are merged together using |
| 299 | /// parallel subdivision of chunks and parallel merge operation. |
| 300 | /// |
| 301 | /// # Examples |
| 302 | /// |
| 303 | /// ``` |
| 304 | /// use rayon::prelude::*; |
| 305 | /// |
| 306 | /// let mut v = [-5, 4, 1, -3, 2]; |
| 307 | /// |
| 308 | /// v.par_sort(); |
| 309 | /// assert_eq!(v, [-5, -3, 1, 2, 4]); |
| 310 | /// ``` |
| 311 | fn par_sort(&mut self) |
| 312 | where |
| 313 | T: Ord, |
| 314 | { |
| 315 | par_mergesort(self.as_parallel_slice_mut(), T::lt); |
| 316 | } |
| 317 | |
| 318 | /// Sorts the slice in parallel with a comparator function. |
| 319 | /// |
| 320 | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case. |
| 321 | /// |
| 322 | /// The comparator function must define a total ordering for the elements in the slice. If |
| 323 | /// the ordering is not total, the order of the elements is unspecified. An order is a |
| 324 | /// total order if it is (for all `a`, `b` and `c`): |
| 325 | /// |
| 326 | /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and |
| 327 | /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. |
| 328 | /// |
| 329 | /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use |
| 330 | /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`. |
| 331 | /// |
| 332 | /// ``` |
| 333 | /// use rayon::prelude::*; |
| 334 | /// |
| 335 | /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0]; |
| 336 | /// floats.par_sort_by(|a, b| a.partial_cmp(b).unwrap()); |
| 337 | /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]); |
| 338 | /// ``` |
| 339 | /// |
| 340 | /// When applicable, unstable sorting is preferred because it is generally faster than stable |
| 341 | /// sorting and it doesn't allocate auxiliary memory. |
| 342 | /// See [`par_sort_unstable_by`](#method.par_sort_unstable_by). |
| 343 | /// |
| 344 | /// # Current implementation |
| 345 | /// |
| 346 | /// The current algorithm is an adaptive merge sort inspired by |
| 347 | /// [timsort](https://en.wikipedia.org/wiki/Timsort). |
| 348 | /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of |
| 349 | /// two or more sorted sequences concatenated one after another. |
| 350 | /// |
| 351 | /// Also, it allocates temporary storage the same size as `self`, but for very short slices a |
| 352 | /// non-allocating insertion sort is used instead. |
| 353 | /// |
| 354 | /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and |
| 355 | /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending |
| 356 | /// or descending runs are concatenated. Finally, the remaining chunks are merged together using |
| 357 | /// parallel subdivision of chunks and parallel merge operation. |
| 358 | /// |
| 359 | /// # Examples |
| 360 | /// |
| 361 | /// ``` |
| 362 | /// use rayon::prelude::*; |
| 363 | /// |
| 364 | /// let mut v = [5, 4, 1, 3, 2]; |
| 365 | /// v.par_sort_by(|a, b| a.cmp(b)); |
| 366 | /// assert_eq!(v, [1, 2, 3, 4, 5]); |
| 367 | /// |
| 368 | /// // reverse sorting |
| 369 | /// v.par_sort_by(|a, b| b.cmp(a)); |
| 370 | /// assert_eq!(v, [5, 4, 3, 2, 1]); |
| 371 | /// ``` |
| 372 | fn par_sort_by<F>(&mut self, compare: F) |
| 373 | where |
| 374 | F: Fn(&T, &T) -> Ordering + Sync, |
| 375 | { |
| 376 | par_mergesort(self.as_parallel_slice_mut(), |a, b| { |
| 377 | compare(a, b) == Ordering::Less |
| 378 | }); |
| 379 | } |
| 380 | |
| 381 | /// Sorts the slice in parallel with a key extraction function. |
| 382 | /// |
| 383 | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*)) |
| 384 | /// worst-case, where the key function is *O*(*m*). |
| 385 | /// |
| 386 | /// For expensive key functions (e.g. functions that are not simple property accesses or |
| 387 | /// basic operations), [`par_sort_by_cached_key`](#method.par_sort_by_cached_key) is likely to |
| 388 | /// be significantly faster, as it does not recompute element keys. |
| 389 | /// |
| 390 | /// When applicable, unstable sorting is preferred because it is generally faster than stable |
| 391 | /// sorting and it doesn't allocate auxiliary memory. |
| 392 | /// See [`par_sort_unstable_by_key`](#method.par_sort_unstable_by_key). |
| 393 | /// |
| 394 | /// # Current implementation |
| 395 | /// |
| 396 | /// The current algorithm is an adaptive merge sort inspired by |
| 397 | /// [timsort](https://en.wikipedia.org/wiki/Timsort). |
| 398 | /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of |
| 399 | /// two or more sorted sequences concatenated one after another. |
| 400 | /// |
| 401 | /// Also, it allocates temporary storage the same size as `self`, but for very short slices a |
| 402 | /// non-allocating insertion sort is used instead. |
| 403 | /// |
| 404 | /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and |
| 405 | /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending |
| 406 | /// or descending runs are concatenated. Finally, the remaining chunks are merged together using |
| 407 | /// parallel subdivision of chunks and parallel merge operation. |
| 408 | /// |
| 409 | /// # Examples |
| 410 | /// |
| 411 | /// ``` |
| 412 | /// use rayon::prelude::*; |
| 413 | /// |
| 414 | /// let mut v = [-5i32, 4, 1, -3, 2]; |
| 415 | /// |
| 416 | /// v.par_sort_by_key(|k| k.abs()); |
| 417 | /// assert_eq!(v, [1, 2, -3, 4, -5]); |
| 418 | /// ``` |
| 419 | fn par_sort_by_key<K, F>(&mut self, f: F) |
| 420 | where |
| 421 | K: Ord, |
| 422 | F: Fn(&T) -> K + Sync, |
| 423 | { |
| 424 | par_mergesort(self.as_parallel_slice_mut(), |a, b| f(a).lt(&f(b))); |
| 425 | } |
| 426 | |
| 427 | /// Sorts the slice in parallel with a key extraction function. |
| 428 | /// |
| 429 | /// During sorting, the key function is called at most once per element, by using |
| 430 | /// temporary storage to remember the results of key evaluation. |
| 431 | /// The key function is called in parallel, so the order of calls is completely unspecified. |
| 432 | /// |
| 433 | /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*)) |
| 434 | /// worst-case, where the key function is *O*(*m*). |
| 435 | /// |
| 436 | /// For simple key functions (e.g., functions that are property accesses or |
| 437 | /// basic operations), [`par_sort_by_key`](#method.par_sort_by_key) is likely to be |
| 438 | /// faster. |
| 439 | /// |
| 440 | /// # Current implementation |
| 441 | /// |
| 442 | /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, |
| 443 | /// which combines the fast average case of randomized quicksort with the fast worst case of |
| 444 | /// heapsort, while achieving linear time on slices with certain patterns. It uses some |
| 445 | /// randomization to avoid degenerate cases, but with a fixed seed to always provide |
| 446 | /// deterministic behavior. |
| 447 | /// |
| 448 | /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the |
| 449 | /// length of the slice. |
| 450 | /// |
| 451 | /// All quicksorts work in two stages: partitioning into two halves followed by recursive |
| 452 | /// calls. The partitioning phase is sequential, but the two recursive calls are performed in |
| 453 | /// parallel. Finally, after sorting the cached keys, the item positions are updated sequentially. |
| 454 | /// |
| 455 | /// [pdqsort]: https://github.com/orlp/pdqsort |
| 456 | /// |
| 457 | /// # Examples |
| 458 | /// |
| 459 | /// ``` |
| 460 | /// use rayon::prelude::*; |
| 461 | /// |
| 462 | /// let mut v = [-5i32, 4, 32, -3, 2]; |
| 463 | /// |
| 464 | /// v.par_sort_by_cached_key(|k| k.to_string()); |
| 465 | /// assert!(v == [-3, -5, 2, 32, 4]); |
| 466 | /// ``` |
| 467 | fn par_sort_by_cached_key<K, F>(&mut self, f: F) |
| 468 | where |
| 469 | F: Fn(&T) -> K + Sync, |
| 470 | K: Ord + Send, |
| 471 | { |
| 472 | let slice = self.as_parallel_slice_mut(); |
| 473 | let len = slice.len(); |
| 474 | if len < 2 { |
| 475 | return; |
| 476 | } |
| 477 | |
| 478 | // Helper macro for indexing our vector by the smallest possible type, to reduce allocation. |
| 479 | macro_rules! sort_by_key { |
| 480 | ($t:ty) => {{ |
| 481 | let mut indices: Vec<_> = slice |
| 482 | .par_iter_mut() |
| 483 | .enumerate() |
| 484 | .map(|(i, x)| (f(&*x), i as $t)) |
| 485 | .collect(); |
| 486 | // The elements of `indices` are unique, as they are indexed, so any sort will be |
| 487 | // stable with respect to the original slice. We use `sort_unstable` here because |
| 488 | // it requires less memory allocation. |
| 489 | indices.par_sort_unstable(); |
| 490 | for i in 0..len { |
| 491 | let mut index = indices[i].1; |
| 492 | while (index as usize) < i { |
| 493 | index = indices[index as usize].1; |
| 494 | } |
| 495 | indices[i].1 = index; |
| 496 | slice.swap(i, index as usize); |
| 497 | } |
| 498 | }}; |
| 499 | } |
| 500 | |
| 501 | let sz_u8 = mem::size_of::<(K, u8)>(); |
| 502 | let sz_u16 = mem::size_of::<(K, u16)>(); |
| 503 | let sz_u32 = mem::size_of::<(K, u32)>(); |
| 504 | let sz_usize = mem::size_of::<(K, usize)>(); |
| 505 | |
| 506 | if sz_u8 < sz_u16 && len <= (std::u8::MAX as usize) { |
| 507 | return sort_by_key!(u8); |
| 508 | } |
| 509 | if sz_u16 < sz_u32 && len <= (std::u16::MAX as usize) { |
| 510 | return sort_by_key!(u16); |
| 511 | } |
| 512 | if sz_u32 < sz_usize && len <= (std::u32::MAX as usize) { |
| 513 | return sort_by_key!(u32); |
| 514 | } |
| 515 | sort_by_key!(usize) |
| 516 | } |
| 517 | |
| 518 | /// Sorts the slice in parallel, but might not preserve the order of equal elements. |
| 519 | /// |
| 520 | /// This sort is unstable (i.e., may reorder equal elements), in-place |
| 521 | /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case. |
| 522 | /// |
| 523 | /// # Current implementation |
| 524 | /// |
| 525 | /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, |
| 526 | /// which combines the fast average case of randomized quicksort with the fast worst case of |
| 527 | /// heapsort, while achieving linear time on slices with certain patterns. It uses some |
| 528 | /// randomization to avoid degenerate cases, but with a fixed seed to always provide |
| 529 | /// deterministic behavior. |
| 530 | /// |
| 531 | /// It is typically faster than stable sorting, except in a few special cases, e.g., when the |
| 532 | /// slice consists of several concatenated sorted sequences. |
| 533 | /// |
| 534 | /// All quicksorts work in two stages: partitioning into two halves followed by recursive |
| 535 | /// calls. The partitioning phase is sequential, but the two recursive calls are performed in |
| 536 | /// parallel. |
| 537 | /// |
| 538 | /// [pdqsort]: https://github.com/orlp/pdqsort |
| 539 | /// |
| 540 | /// # Examples |
| 541 | /// |
| 542 | /// ``` |
| 543 | /// use rayon::prelude::*; |
| 544 | /// |
| 545 | /// let mut v = [-5, 4, 1, -3, 2]; |
| 546 | /// |
| 547 | /// v.par_sort_unstable(); |
| 548 | /// assert_eq!(v, [-5, -3, 1, 2, 4]); |
| 549 | /// ``` |
| 550 | fn par_sort_unstable(&mut self) |
| 551 | where |
| 552 | T: Ord, |
| 553 | { |
| 554 | par_quicksort(self.as_parallel_slice_mut(), T::lt); |
| 555 | } |
| 556 | |
| 557 | /// Sorts the slice in parallel with a comparator function, but might not preserve the order of |
| 558 | /// equal elements. |
| 559 | /// |
| 560 | /// This sort is unstable (i.e., may reorder equal elements), in-place |
| 561 | /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case. |
| 562 | /// |
| 563 | /// The comparator function must define a total ordering for the elements in the slice. If |
| 564 | /// the ordering is not total, the order of the elements is unspecified. An order is a |
| 565 | /// total order if it is (for all `a`, `b` and `c`): |
| 566 | /// |
| 567 | /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and |
| 568 | /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. |
| 569 | /// |
| 570 | /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use |
| 571 | /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`. |
| 572 | /// |
| 573 | /// ``` |
| 574 | /// use rayon::prelude::*; |
| 575 | /// |
| 576 | /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0]; |
| 577 | /// floats.par_sort_unstable_by(|a, b| a.partial_cmp(b).unwrap()); |
| 578 | /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]); |
| 579 | /// ``` |
| 580 | /// |
| 581 | /// # Current implementation |
| 582 | /// |
| 583 | /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, |
| 584 | /// which combines the fast average case of randomized quicksort with the fast worst case of |
| 585 | /// heapsort, while achieving linear time on slices with certain patterns. It uses some |
| 586 | /// randomization to avoid degenerate cases, but with a fixed seed to always provide |
| 587 | /// deterministic behavior. |
| 588 | /// |
| 589 | /// It is typically faster than stable sorting, except in a few special cases, e.g., when the |
| 590 | /// slice consists of several concatenated sorted sequences. |
| 591 | /// |
| 592 | /// All quicksorts work in two stages: partitioning into two halves followed by recursive |
| 593 | /// calls. The partitioning phase is sequential, but the two recursive calls are performed in |
| 594 | /// parallel. |
| 595 | /// |
| 596 | /// [pdqsort]: https://github.com/orlp/pdqsort |
| 597 | /// |
| 598 | /// # Examples |
| 599 | /// |
| 600 | /// ``` |
| 601 | /// use rayon::prelude::*; |
| 602 | /// |
| 603 | /// let mut v = [5, 4, 1, 3, 2]; |
| 604 | /// v.par_sort_unstable_by(|a, b| a.cmp(b)); |
| 605 | /// assert_eq!(v, [1, 2, 3, 4, 5]); |
| 606 | /// |
| 607 | /// // reverse sorting |
| 608 | /// v.par_sort_unstable_by(|a, b| b.cmp(a)); |
| 609 | /// assert_eq!(v, [5, 4, 3, 2, 1]); |
| 610 | /// ``` |
| 611 | fn par_sort_unstable_by<F>(&mut self, compare: F) |
| 612 | where |
| 613 | F: Fn(&T, &T) -> Ordering + Sync, |
| 614 | { |
| 615 | par_quicksort(self.as_parallel_slice_mut(), |a, b| { |
| 616 | compare(a, b) == Ordering::Less |
| 617 | }); |
| 618 | } |
| 619 | |
| 620 | /// Sorts the slice in parallel with a key extraction function, but might not preserve the order |
| 621 | /// of equal elements. |
| 622 | /// |
| 623 | /// This sort is unstable (i.e., may reorder equal elements), in-place |
| 624 | /// (i.e., does not allocate), and *O*(m \* *n* \* log(*n*)) worst-case, |
| 625 | /// where the key function is *O*(*m*). |
| 626 | /// |
| 627 | /// # Current implementation |
| 628 | /// |
| 629 | /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, |
| 630 | /// which combines the fast average case of randomized quicksort with the fast worst case of |
| 631 | /// heapsort, while achieving linear time on slices with certain patterns. It uses some |
| 632 | /// randomization to avoid degenerate cases, but with a fixed seed to always provide |
| 633 | /// deterministic behavior. |
| 634 | /// |
| 635 | /// Due to its key calling strategy, `par_sort_unstable_by_key` is likely to be slower than |
| 636 | /// [`par_sort_by_cached_key`](#method.par_sort_by_cached_key) in cases where the key function |
| 637 | /// is expensive. |
| 638 | /// |
| 639 | /// All quicksorts work in two stages: partitioning into two halves followed by recursive |
| 640 | /// calls. The partitioning phase is sequential, but the two recursive calls are performed in |
| 641 | /// parallel. |
| 642 | /// |
| 643 | /// [pdqsort]: https://github.com/orlp/pdqsort |
| 644 | /// |
| 645 | /// # Examples |
| 646 | /// |
| 647 | /// ``` |
| 648 | /// use rayon::prelude::*; |
| 649 | /// |
| 650 | /// let mut v = [-5i32, 4, 1, -3, 2]; |
| 651 | /// |
| 652 | /// v.par_sort_unstable_by_key(|k| k.abs()); |
| 653 | /// assert_eq!(v, [1, 2, -3, 4, -5]); |
| 654 | /// ``` |
| 655 | fn par_sort_unstable_by_key<K, F>(&mut self, f: F) |
| 656 | where |
| 657 | K: Ord, |
| 658 | F: Fn(&T) -> K + Sync, |
| 659 | { |
| 660 | par_quicksort(self.as_parallel_slice_mut(), |a, b| f(a).lt(&f(b))); |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | impl<T: Send> ParallelSliceMut<T> for [T] { |
| 665 | #[inline ] |
| 666 | fn as_parallel_slice_mut(&mut self) -> &mut [T] { |
| 667 | self |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | impl<'data, T: Sync + 'data> IntoParallelIterator for &'data [T] { |
| 672 | type Item = &'data T; |
| 673 | type Iter = Iter<'data, T>; |
| 674 | |
| 675 | fn into_par_iter(self) -> Self::Iter { |
| 676 | Iter { slice: self } |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | impl<'data, T: Send + 'data> IntoParallelIterator for &'data mut [T] { |
| 681 | type Item = &'data mut T; |
| 682 | type Iter = IterMut<'data, T>; |
| 683 | |
| 684 | fn into_par_iter(self) -> Self::Iter { |
| 685 | IterMut { slice: self } |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | /// Parallel iterator over immutable items in a slice |
| 690 | #[derive (Debug)] |
| 691 | pub struct Iter<'data, T: Sync> { |
| 692 | slice: &'data [T], |
| 693 | } |
| 694 | |
| 695 | impl<'data, T: Sync> Clone for Iter<'data, T> { |
| 696 | fn clone(&self) -> Self { |
| 697 | Iter { ..*self } |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | impl<'data, T: Sync + 'data> ParallelIterator for Iter<'data, T> { |
| 702 | type Item = &'data T; |
| 703 | |
| 704 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
| 705 | where |
| 706 | C: UnindexedConsumer<Self::Item>, |
| 707 | { |
| 708 | bridge(self, consumer) |
| 709 | } |
| 710 | |
| 711 | fn opt_len(&self) -> Option<usize> { |
| 712 | Some(self.len()) |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | impl<'data, T: Sync + 'data> IndexedParallelIterator for Iter<'data, T> { |
| 717 | fn drive<C>(self, consumer: C) -> C::Result |
| 718 | where |
| 719 | C: Consumer<Self::Item>, |
| 720 | { |
| 721 | bridge(self, consumer) |
| 722 | } |
| 723 | |
| 724 | fn len(&self) -> usize { |
| 725 | self.slice.len() |
| 726 | } |
| 727 | |
| 728 | fn with_producer<CB>(self, callback: CB) -> CB::Output |
| 729 | where |
| 730 | CB: ProducerCallback<Self::Item>, |
| 731 | { |
| 732 | callback.callback(producer:IterProducer { slice: self.slice }) |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | struct IterProducer<'data, T: Sync> { |
| 737 | slice: &'data [T], |
| 738 | } |
| 739 | |
| 740 | impl<'data, T: 'data + Sync> Producer for IterProducer<'data, T> { |
| 741 | type Item = &'data T; |
| 742 | type IntoIter = ::std::slice::Iter<'data, T>; |
| 743 | |
| 744 | fn into_iter(self) -> Self::IntoIter { |
| 745 | self.slice.iter() |
| 746 | } |
| 747 | |
| 748 | fn split_at(self, index: usize) -> (Self, Self) { |
| 749 | let (left: &[T], right: &[T]) = self.slice.split_at(mid:index); |
| 750 | (IterProducer { slice: left }, IterProducer { slice: right }) |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | /// Parallel iterator over immutable overlapping windows of a slice |
| 755 | #[derive (Debug)] |
| 756 | pub struct Windows<'data, T: Sync> { |
| 757 | window_size: usize, |
| 758 | slice: &'data [T], |
| 759 | } |
| 760 | |
| 761 | impl<'data, T: Sync> Clone for Windows<'data, T> { |
| 762 | fn clone(&self) -> Self { |
| 763 | Windows { ..*self } |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | impl<'data, T: Sync + 'data> ParallelIterator for Windows<'data, T> { |
| 768 | type Item = &'data [T]; |
| 769 | |
| 770 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
| 771 | where |
| 772 | C: UnindexedConsumer<Self::Item>, |
| 773 | { |
| 774 | bridge(self, consumer) |
| 775 | } |
| 776 | |
| 777 | fn opt_len(&self) -> Option<usize> { |
| 778 | Some(self.len()) |
| 779 | } |
| 780 | } |
| 781 | |
| 782 | impl<'data, T: Sync + 'data> IndexedParallelIterator for Windows<'data, T> { |
| 783 | fn drive<C>(self, consumer: C) -> C::Result |
| 784 | where |
| 785 | C: Consumer<Self::Item>, |
| 786 | { |
| 787 | bridge(self, consumer) |
| 788 | } |
| 789 | |
| 790 | fn len(&self) -> usize { |
| 791 | assert!(self.window_size >= 1); |
| 792 | self.slice.len().saturating_sub(self.window_size - 1) |
| 793 | } |
| 794 | |
| 795 | fn with_producer<CB>(self, callback: CB) -> CB::Output |
| 796 | where |
| 797 | CB: ProducerCallback<Self::Item>, |
| 798 | { |
| 799 | callback.callback(producer:WindowsProducer { |
| 800 | window_size: self.window_size, |
| 801 | slice: self.slice, |
| 802 | }) |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | struct WindowsProducer<'data, T: Sync> { |
| 807 | window_size: usize, |
| 808 | slice: &'data [T], |
| 809 | } |
| 810 | |
| 811 | impl<'data, T: 'data + Sync> Producer for WindowsProducer<'data, T> { |
| 812 | type Item = &'data [T]; |
| 813 | type IntoIter = ::std::slice::Windows<'data, T>; |
| 814 | |
| 815 | fn into_iter(self) -> Self::IntoIter { |
| 816 | self.slice.windows(self.window_size) |
| 817 | } |
| 818 | |
| 819 | fn split_at(self, index: usize) -> (Self, Self) { |
| 820 | let left_index: usize = cmp::min(self.slice.len(), v2:index + (self.window_size - 1)); |
| 821 | let left: &[T] = &self.slice[..left_index]; |
| 822 | let right: &[T] = &self.slice[index..]; |
| 823 | ( |
| 824 | WindowsProducer { |
| 825 | window_size: self.window_size, |
| 826 | slice: left, |
| 827 | }, |
| 828 | WindowsProducer { |
| 829 | window_size: self.window_size, |
| 830 | slice: right, |
| 831 | }, |
| 832 | ) |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | /// Parallel iterator over mutable items in a slice |
| 837 | #[derive (Debug)] |
| 838 | pub struct IterMut<'data, T: Send> { |
| 839 | slice: &'data mut [T], |
| 840 | } |
| 841 | |
| 842 | impl<'data, T: Send + 'data> ParallelIterator for IterMut<'data, T> { |
| 843 | type Item = &'data mut T; |
| 844 | |
| 845 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
| 846 | where |
| 847 | C: UnindexedConsumer<Self::Item>, |
| 848 | { |
| 849 | bridge(self, consumer) |
| 850 | } |
| 851 | |
| 852 | fn opt_len(&self) -> Option<usize> { |
| 853 | Some(self.len()) |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | impl<'data, T: Send + 'data> IndexedParallelIterator for IterMut<'data, T> { |
| 858 | fn drive<C>(self, consumer: C) -> C::Result |
| 859 | where |
| 860 | C: Consumer<Self::Item>, |
| 861 | { |
| 862 | bridge(self, consumer) |
| 863 | } |
| 864 | |
| 865 | fn len(&self) -> usize { |
| 866 | self.slice.len() |
| 867 | } |
| 868 | |
| 869 | fn with_producer<CB>(self, callback: CB) -> CB::Output |
| 870 | where |
| 871 | CB: ProducerCallback<Self::Item>, |
| 872 | { |
| 873 | callback.callback(producer:IterMutProducer { slice: self.slice }) |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | struct IterMutProducer<'data, T: Send> { |
| 878 | slice: &'data mut [T], |
| 879 | } |
| 880 | |
| 881 | impl<'data, T: 'data + Send> Producer for IterMutProducer<'data, T> { |
| 882 | type Item = &'data mut T; |
| 883 | type IntoIter = ::std::slice::IterMut<'data, T>; |
| 884 | |
| 885 | fn into_iter(self) -> Self::IntoIter { |
| 886 | self.slice.iter_mut() |
| 887 | } |
| 888 | |
| 889 | fn split_at(self, index: usize) -> (Self, Self) { |
| 890 | let (left: &mut [T], right: &mut [T]) = self.slice.split_at_mut(mid:index); |
| 891 | ( |
| 892 | IterMutProducer { slice: left }, |
| 893 | IterMutProducer { slice: right }, |
| 894 | ) |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | /// Parallel iterator over slices separated by a predicate |
| 899 | pub struct Split<'data, T, P> { |
| 900 | slice: &'data [T], |
| 901 | separator: P, |
| 902 | } |
| 903 | |
| 904 | impl<'data, T, P: Clone> Clone for Split<'data, T, P> { |
| 905 | fn clone(&self) -> Self { |
| 906 | Split { |
| 907 | separator: self.separator.clone(), |
| 908 | ..*self |
| 909 | } |
| 910 | } |
| 911 | } |
| 912 | |
| 913 | impl<'data, T: Debug, P> Debug for Split<'data, T, P> { |
| 914 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 915 | f.debug_struct("Split" ).field(name:"slice" , &self.slice).finish() |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | impl<'data, T, P> ParallelIterator for Split<'data, T, P> |
| 920 | where |
| 921 | P: Fn(&T) -> bool + Sync + Send, |
| 922 | T: Sync, |
| 923 | { |
| 924 | type Item = &'data [T]; |
| 925 | |
| 926 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
| 927 | where |
| 928 | C: UnindexedConsumer<Self::Item>, |
| 929 | { |
| 930 | let producer: SplitProducer<'_, P, &'data …> = SplitProducer::new(self.slice, &self.separator); |
| 931 | bridge_unindexed(producer, consumer) |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | /// Implement support for `SplitProducer`. |
| 936 | impl<'data, T, P> Fissile<P> for &'data [T] |
| 937 | where |
| 938 | P: Fn(&T) -> bool, |
| 939 | { |
| 940 | fn length(&self) -> usize { |
| 941 | self.len() |
| 942 | } |
| 943 | |
| 944 | fn midpoint(&self, end: usize) -> usize { |
| 945 | end / 2 |
| 946 | } |
| 947 | |
| 948 | fn find(&self, separator: &P, start: usize, end: usize) -> Option<usize> { |
| 949 | self[start..end].iter().position(separator) |
| 950 | } |
| 951 | |
| 952 | fn rfind(&self, separator: &P, end: usize) -> Option<usize> { |
| 953 | self[..end].iter().rposition(separator) |
| 954 | } |
| 955 | |
| 956 | fn split_once(self, index: usize) -> (Self, Self) { |
| 957 | let (left, right) = self.split_at(index); |
| 958 | (left, &right[1..]) // skip the separator |
| 959 | } |
| 960 | |
| 961 | fn fold_splits<F>(self, separator: &P, folder: F, skip_last: bool) -> F |
| 962 | where |
| 963 | F: Folder<Self>, |
| 964 | Self: Send, |
| 965 | { |
| 966 | let mut split = self.split(separator); |
| 967 | if skip_last { |
| 968 | split.next_back(); |
| 969 | } |
| 970 | folder.consume_iter(split) |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | /// Parallel iterator over mutable slices separated by a predicate |
| 975 | pub struct SplitMut<'data, T, P> { |
| 976 | slice: &'data mut [T], |
| 977 | separator: P, |
| 978 | } |
| 979 | |
| 980 | impl<'data, T: Debug, P> Debug for SplitMut<'data, T, P> { |
| 981 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 982 | f&mut DebugStruct<'_, '_>.debug_struct("SplitMut" ) |
| 983 | .field(name:"slice" , &self.slice) |
| 984 | .finish() |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | impl<'data, T, P> ParallelIterator for SplitMut<'data, T, P> |
| 989 | where |
| 990 | P: Fn(&T) -> bool + Sync + Send, |
| 991 | T: Send, |
| 992 | { |
| 993 | type Item = &'data mut [T]; |
| 994 | |
| 995 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
| 996 | where |
| 997 | C: UnindexedConsumer<Self::Item>, |
| 998 | { |
| 999 | let producer: SplitProducer<'_, P, &'data mut …> = SplitProducer::new(self.slice, &self.separator); |
| 1000 | bridge_unindexed(producer, consumer) |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | /// Implement support for `SplitProducer`. |
| 1005 | impl<'data, T, P> Fissile<P> for &'data mut [T] |
| 1006 | where |
| 1007 | P: Fn(&T) -> bool, |
| 1008 | { |
| 1009 | fn length(&self) -> usize { |
| 1010 | self.len() |
| 1011 | } |
| 1012 | |
| 1013 | fn midpoint(&self, end: usize) -> usize { |
| 1014 | end / 2 |
| 1015 | } |
| 1016 | |
| 1017 | fn find(&self, separator: &P, start: usize, end: usize) -> Option<usize> { |
| 1018 | self[start..end].iter().position(separator) |
| 1019 | } |
| 1020 | |
| 1021 | fn rfind(&self, separator: &P, end: usize) -> Option<usize> { |
| 1022 | self[..end].iter().rposition(separator) |
| 1023 | } |
| 1024 | |
| 1025 | fn split_once(self, index: usize) -> (Self, Self) { |
| 1026 | let (left, right) = self.split_at_mut(index); |
| 1027 | (left, &mut right[1..]) // skip the separator |
| 1028 | } |
| 1029 | |
| 1030 | fn fold_splits<F>(self, separator: &P, folder: F, skip_last: bool) -> F |
| 1031 | where |
| 1032 | F: Folder<Self>, |
| 1033 | Self: Send, |
| 1034 | { |
| 1035 | let mut split = self.split_mut(separator); |
| 1036 | if skip_last { |
| 1037 | split.next_back(); |
| 1038 | } |
| 1039 | folder.consume_iter(split) |
| 1040 | } |
| 1041 | } |
| 1042 | |