| 1 | use crate::decoding::bit_reader::BitReader; |
| 2 | use crate::decoding::bit_reader_reverse::{BitReaderReversed, GetBitsError}; |
| 3 | use alloc::vec::Vec; |
| 4 | |
| 5 | /// FSE decoding involves a decoding table that describes the probabilities of |
| 6 | /// all literals from 0 to the highest present one |
| 7 | /// |
| 8 | /// <https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#fse-table-description> |
| 9 | pub struct FSETable { |
| 10 | /// The maximum symbol in the table (inclusive). Limits the probabilities length to max_symbol + 1. |
| 11 | max_symbol: u8, |
| 12 | /// The actual table containing the decoded symbol and the compression data |
| 13 | /// connected to that symbol. |
| 14 | pub decode: Vec<Entry>, //used to decode symbols, and calculate the next state |
| 15 | /// The size of the table is stored in logarithm base 2 format, |
| 16 | /// with the **size of the table** being equal to `(1 << accuracy_log)`. |
| 17 | /// This value is used so that the decoder knows how many bits to read from the bitstream. |
| 18 | pub accuracy_log: u8, |
| 19 | /// In this context, probability refers to the likelihood that a symbol occurs in the given data. |
| 20 | /// Given this info, the encoder can assign shorter codes to symbols that appear more often, |
| 21 | /// and longer codes that appear less often, then the decoder can use the probability |
| 22 | /// to determine what code was assigned to what symbol. |
| 23 | /// |
| 24 | /// The probability of a single symbol is a value representing the proportion of times the symbol |
| 25 | /// would fall within the data. |
| 26 | /// |
| 27 | /// If a symbol probability is set to `-1`, it means that the probability of a symbol |
| 28 | /// occurring in the data is less than one. |
| 29 | pub symbol_probabilities: Vec<i32>, //used while building the decode Vector |
| 30 | /// The number of times each symbol occurs (The first entry being 0x0, the second being 0x1) and so on |
| 31 | /// up until the highest possible symbol (255). |
| 32 | symbol_counter: Vec<u32>, |
| 33 | } |
| 34 | |
| 35 | #[derive (Debug)] |
| 36 | #[non_exhaustive ] |
| 37 | pub enum FSETableError { |
| 38 | AccLogIsZero, |
| 39 | AccLogTooBig { |
| 40 | got: u8, |
| 41 | max: u8, |
| 42 | }, |
| 43 | GetBitsError(GetBitsError), |
| 44 | ProbabilityCounterMismatch { |
| 45 | got: u32, |
| 46 | expected_sum: u32, |
| 47 | symbol_probabilities: Vec<i32>, |
| 48 | }, |
| 49 | TooManySymbols { |
| 50 | got: usize, |
| 51 | }, |
| 52 | } |
| 53 | |
| 54 | #[cfg (feature = "std" )] |
| 55 | impl std::error::Error for FSETableError { |
| 56 | fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { |
| 57 | match self { |
| 58 | FSETableError::GetBitsError(source: &GetBitsError) => Some(source), |
| 59 | _ => None, |
| 60 | } |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | impl core::fmt::Display for FSETableError { |
| 65 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| 66 | match self { |
| 67 | FSETableError::AccLogIsZero => write!(f, "Acclog must be at least 1" ), |
| 68 | FSETableError::AccLogTooBig { got, max } => { |
| 69 | write!( |
| 70 | f, |
| 71 | "Found FSE acc_log: {0} bigger than allowed maximum in this case: {1}" , |
| 72 | got, max |
| 73 | ) |
| 74 | } |
| 75 | FSETableError::GetBitsError(e) => write!(f, " {:?}" , e), |
| 76 | FSETableError::ProbabilityCounterMismatch { |
| 77 | got, |
| 78 | expected_sum, |
| 79 | symbol_probabilities, |
| 80 | } => { |
| 81 | write!(f, |
| 82 | "The counter ( {}) exceeded the expected sum: {}. This means an error or corrupted data \n {:?}" , |
| 83 | got, |
| 84 | expected_sum, |
| 85 | symbol_probabilities, |
| 86 | ) |
| 87 | } |
| 88 | FSETableError::TooManySymbols { got } => { |
| 89 | write!( |
| 90 | f, |
| 91 | "There are too many symbols in this distribution: {}. Max: 256" , |
| 92 | got, |
| 93 | ) |
| 94 | } |
| 95 | } |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | impl From<GetBitsError> for FSETableError { |
| 100 | fn from(val: GetBitsError) -> Self { |
| 101 | Self::GetBitsError(val) |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | pub struct FSEDecoder<'table> { |
| 106 | /// An FSE state value represents an index in the FSE table. |
| 107 | pub state: Entry, |
| 108 | /// A reference to the table used for decoding. |
| 109 | table: &'table FSETable, |
| 110 | } |
| 111 | |
| 112 | #[derive (Debug)] |
| 113 | #[non_exhaustive ] |
| 114 | pub enum FSEDecoderError { |
| 115 | GetBitsError(GetBitsError), |
| 116 | TableIsUninitialized, |
| 117 | } |
| 118 | |
| 119 | #[cfg (feature = "std" )] |
| 120 | impl std::error::Error for FSEDecoderError { |
| 121 | fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { |
| 122 | match self { |
| 123 | FSEDecoderError::GetBitsError(source: &GetBitsError) => Some(source), |
| 124 | _ => None, |
| 125 | } |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | impl core::fmt::Display for FSEDecoderError { |
| 130 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| 131 | match self { |
| 132 | FSEDecoderError::GetBitsError(e: &GetBitsError) => write!(f, " {:?}" , e), |
| 133 | FSEDecoderError::TableIsUninitialized => { |
| 134 | write!(f, "Tried to use an uninitialized table!" ) |
| 135 | } |
| 136 | } |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | impl From<GetBitsError> for FSEDecoderError { |
| 141 | fn from(val: GetBitsError) -> Self { |
| 142 | Self::GetBitsError(val) |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | /// A single entry in an FSE table. |
| 147 | #[derive (Copy, Clone)] |
| 148 | pub struct Entry { |
| 149 | /// This value is used as an offset value, and it is added |
| 150 | /// to a value read from the stream to determine the next state value. |
| 151 | pub base_line: u32, |
| 152 | /// How many bits should be read from the stream when decoding this entry. |
| 153 | pub num_bits: u8, |
| 154 | /// The byte that should be put in the decode output when encountering this state. |
| 155 | pub symbol: u8, |
| 156 | } |
| 157 | |
| 158 | /// This value is added to the first 4 bits of the stream to determine the |
| 159 | /// `Accuracy_Log` |
| 160 | const ACC_LOG_OFFSET: u8 = 5; |
| 161 | |
| 162 | fn highest_bit_set(x: u32) -> u32 { |
| 163 | assert!(x > 0); |
| 164 | u32::BITS - x.leading_zeros() |
| 165 | } |
| 166 | |
| 167 | impl<'t> FSEDecoder<'t> { |
| 168 | /// Initialize a new Finite State Entropy decoder. |
| 169 | pub fn new(table: &'t FSETable) -> FSEDecoder<'t> { |
| 170 | FSEDecoder { |
| 171 | state: table.decode.first().copied().unwrap_or(Entry { |
| 172 | base_line: 0, |
| 173 | num_bits: 0, |
| 174 | symbol: 0, |
| 175 | }), |
| 176 | table, |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | /// Returns the byte associated with the symbol the internal cursor is pointing at. |
| 181 | pub fn decode_symbol(&self) -> u8 { |
| 182 | self.state.symbol |
| 183 | } |
| 184 | |
| 185 | /// Initialize internal state and prepare for decoding. After this, `decode_symbol` can be called |
| 186 | /// to read the first symbol and `update_state` can be called to prepare to read the next symbol. |
| 187 | pub fn init_state(&mut self, bits: &mut BitReaderReversed<'_>) -> Result<(), FSEDecoderError> { |
| 188 | if self.table.accuracy_log == 0 { |
| 189 | return Err(FSEDecoderError::TableIsUninitialized); |
| 190 | } |
| 191 | self.state = self.table.decode[bits.get_bits(self.table.accuracy_log) as usize]; |
| 192 | |
| 193 | Ok(()) |
| 194 | } |
| 195 | |
| 196 | /// Advance the internal state to decode the next symbol in the bitstream. |
| 197 | pub fn update_state(&mut self, bits: &mut BitReaderReversed<'_>) { |
| 198 | let num_bits = self.state.num_bits; |
| 199 | let add = bits.get_bits(num_bits); |
| 200 | let base_line = self.state.base_line; |
| 201 | let new_state = base_line + add as u32; |
| 202 | self.state = self.table.decode[new_state as usize]; |
| 203 | |
| 204 | //println!("Update: {}, {} -> {}", base_line, add, self.state); |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | impl FSETable { |
| 209 | /// Initialize a new empty Finite State Entropy decoding table. |
| 210 | pub fn new(max_symbol: u8) -> FSETable { |
| 211 | FSETable { |
| 212 | max_symbol, |
| 213 | symbol_probabilities: Vec::with_capacity(256), //will never be more than 256 symbols because u8 |
| 214 | symbol_counter: Vec::with_capacity(256), //will never be more than 256 symbols because u8 |
| 215 | decode: Vec::new(), //depending on acc_log. |
| 216 | accuracy_log: 0, |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | /// Reset `self` and update `self`'s state to mirror the provided table. |
| 221 | pub fn reinit_from(&mut self, other: &Self) { |
| 222 | self.reset(); |
| 223 | self.symbol_counter.extend_from_slice(&other.symbol_counter); |
| 224 | self.symbol_probabilities |
| 225 | .extend_from_slice(&other.symbol_probabilities); |
| 226 | self.decode.extend_from_slice(&other.decode); |
| 227 | self.accuracy_log = other.accuracy_log; |
| 228 | } |
| 229 | |
| 230 | /// Empty the table and clear all internal state. |
| 231 | pub fn reset(&mut self) { |
| 232 | self.symbol_counter.clear(); |
| 233 | self.symbol_probabilities.clear(); |
| 234 | self.decode.clear(); |
| 235 | self.accuracy_log = 0; |
| 236 | } |
| 237 | |
| 238 | /// returns how many BYTEs (not bits) were read while building the decoder |
| 239 | pub fn build_decoder(&mut self, source: &[u8], max_log: u8) -> Result<usize, FSETableError> { |
| 240 | self.accuracy_log = 0; |
| 241 | |
| 242 | let bytes_read = self.read_probabilities(source, max_log)?; |
| 243 | self.build_decoding_table()?; |
| 244 | |
| 245 | Ok(bytes_read) |
| 246 | } |
| 247 | |
| 248 | /// Given the provided accuracy log, build a decoding table from that log. |
| 249 | pub fn build_from_probabilities( |
| 250 | &mut self, |
| 251 | acc_log: u8, |
| 252 | probs: &[i32], |
| 253 | ) -> Result<(), FSETableError> { |
| 254 | if acc_log == 0 { |
| 255 | return Err(FSETableError::AccLogIsZero); |
| 256 | } |
| 257 | self.symbol_probabilities = probs.to_vec(); |
| 258 | self.accuracy_log = acc_log; |
| 259 | self.build_decoding_table() |
| 260 | } |
| 261 | |
| 262 | /// Build the actual decoding table after probabilities have been read into the table. |
| 263 | /// After this function is called, the decoding process can begin. |
| 264 | fn build_decoding_table(&mut self) -> Result<(), FSETableError> { |
| 265 | if self.symbol_probabilities.len() > self.max_symbol as usize + 1 { |
| 266 | return Err(FSETableError::TooManySymbols { |
| 267 | got: self.symbol_probabilities.len(), |
| 268 | }); |
| 269 | } |
| 270 | |
| 271 | self.decode.clear(); |
| 272 | |
| 273 | let table_size = 1 << self.accuracy_log; |
| 274 | if self.decode.len() < table_size { |
| 275 | self.decode.reserve(table_size - self.decode.len()); |
| 276 | } |
| 277 | //fill with dummy entries |
| 278 | self.decode.resize( |
| 279 | table_size, |
| 280 | Entry { |
| 281 | base_line: 0, |
| 282 | num_bits: 0, |
| 283 | symbol: 0, |
| 284 | }, |
| 285 | ); |
| 286 | |
| 287 | let mut negative_idx = table_size; //will point to the highest index with is already occupied by a negative-probability-symbol |
| 288 | |
| 289 | //first scan for all -1 probabilities and place them at the top of the table |
| 290 | for symbol in 0..self.symbol_probabilities.len() { |
| 291 | if self.symbol_probabilities[symbol] == -1 { |
| 292 | negative_idx -= 1; |
| 293 | let entry = &mut self.decode[negative_idx]; |
| 294 | entry.symbol = symbol as u8; |
| 295 | entry.base_line = 0; |
| 296 | entry.num_bits = self.accuracy_log; |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | //then place in a semi-random order all of the other symbols |
| 301 | let mut position = 0; |
| 302 | for idx in 0..self.symbol_probabilities.len() { |
| 303 | let symbol = idx as u8; |
| 304 | if self.symbol_probabilities[idx] <= 0 { |
| 305 | continue; |
| 306 | } |
| 307 | |
| 308 | //for each probability point the symbol gets on slot |
| 309 | let prob = self.symbol_probabilities[idx]; |
| 310 | for _ in 0..prob { |
| 311 | let entry = &mut self.decode[position]; |
| 312 | entry.symbol = symbol; |
| 313 | |
| 314 | position = next_position(position, table_size); |
| 315 | while position >= negative_idx { |
| 316 | position = next_position(position, table_size); |
| 317 | //everything above negative_idx is already taken |
| 318 | } |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | // baselines and num_bits can only be calculated when all symbols have been spread |
| 323 | self.symbol_counter.clear(); |
| 324 | self.symbol_counter |
| 325 | .resize(self.symbol_probabilities.len(), 0); |
| 326 | for idx in 0..negative_idx { |
| 327 | let entry = &mut self.decode[idx]; |
| 328 | let symbol = entry.symbol; |
| 329 | let prob = self.symbol_probabilities[symbol as usize]; |
| 330 | |
| 331 | let symbol_count = self.symbol_counter[symbol as usize]; |
| 332 | let (bl, nb) = calc_baseline_and_numbits(table_size as u32, prob as u32, symbol_count); |
| 333 | |
| 334 | //println!("symbol: {:2}, table: {}, prob: {:3}, count: {:3}, bl: {:3}, nb: {:2}", symbol, table_size, prob, symbol_count, bl, nb); |
| 335 | |
| 336 | assert!(nb <= self.accuracy_log); |
| 337 | self.symbol_counter[symbol as usize] += 1; |
| 338 | |
| 339 | entry.base_line = bl; |
| 340 | entry.num_bits = nb; |
| 341 | } |
| 342 | Ok(()) |
| 343 | } |
| 344 | |
| 345 | /// Read the accuracy log and the probability table from the source and return the number of bytes |
| 346 | /// read. If the size of the table is larger than the provided `max_log`, return an error. |
| 347 | fn read_probabilities(&mut self, source: &[u8], max_log: u8) -> Result<usize, FSETableError> { |
| 348 | self.symbol_probabilities.clear(); //just clear, we will fill a probability for each entry anyways. No need to force new allocs here |
| 349 | |
| 350 | let mut br = BitReader::new(source); |
| 351 | self.accuracy_log = ACC_LOG_OFFSET + (br.get_bits(4)? as u8); |
| 352 | if self.accuracy_log > max_log { |
| 353 | return Err(FSETableError::AccLogTooBig { |
| 354 | got: self.accuracy_log, |
| 355 | max: max_log, |
| 356 | }); |
| 357 | } |
| 358 | if self.accuracy_log == 0 { |
| 359 | return Err(FSETableError::AccLogIsZero); |
| 360 | } |
| 361 | |
| 362 | let probability_sum = 1 << self.accuracy_log; |
| 363 | let mut probability_counter = 0; |
| 364 | |
| 365 | while probability_counter < probability_sum { |
| 366 | let max_remaining_value = probability_sum - probability_counter + 1; |
| 367 | let bits_to_read = highest_bit_set(max_remaining_value); |
| 368 | |
| 369 | let unchecked_value = br.get_bits(bits_to_read as usize)? as u32; |
| 370 | |
| 371 | let low_threshold = ((1 << bits_to_read) - 1) - (max_remaining_value); |
| 372 | let mask = (1 << (bits_to_read - 1)) - 1; |
| 373 | let small_value = unchecked_value & mask; |
| 374 | |
| 375 | let value = if small_value < low_threshold { |
| 376 | br.return_bits(1); |
| 377 | small_value |
| 378 | } else if unchecked_value > mask { |
| 379 | unchecked_value - low_threshold |
| 380 | } else { |
| 381 | unchecked_value |
| 382 | }; |
| 383 | //println!("{}, {}, {}", self.symbol_probablilities.len(), unchecked_value, value); |
| 384 | |
| 385 | let prob = (value as i32) - 1; |
| 386 | |
| 387 | self.symbol_probabilities.push(prob); |
| 388 | if prob != 0 { |
| 389 | if prob > 0 { |
| 390 | probability_counter += prob as u32; |
| 391 | } else { |
| 392 | // probability -1 counts as 1 |
| 393 | assert!(prob == -1); |
| 394 | probability_counter += 1; |
| 395 | } |
| 396 | } else { |
| 397 | //fast skip further zero probabilities |
| 398 | loop { |
| 399 | let skip_amount = br.get_bits(2)? as usize; |
| 400 | |
| 401 | self.symbol_probabilities |
| 402 | .resize(self.symbol_probabilities.len() + skip_amount, 0); |
| 403 | if skip_amount != 3 { |
| 404 | break; |
| 405 | } |
| 406 | } |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | if probability_counter != probability_sum { |
| 411 | return Err(FSETableError::ProbabilityCounterMismatch { |
| 412 | got: probability_counter, |
| 413 | expected_sum: probability_sum, |
| 414 | symbol_probabilities: self.symbol_probabilities.clone(), |
| 415 | }); |
| 416 | } |
| 417 | if self.symbol_probabilities.len() > self.max_symbol as usize + 1 { |
| 418 | return Err(FSETableError::TooManySymbols { |
| 419 | got: self.symbol_probabilities.len(), |
| 420 | }); |
| 421 | } |
| 422 | |
| 423 | let bytes_read = if br.bits_read() % 8 == 0 { |
| 424 | br.bits_read() / 8 |
| 425 | } else { |
| 426 | (br.bits_read() / 8) + 1 |
| 427 | }; |
| 428 | |
| 429 | Ok(bytes_read) |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | //utility functions for building the decoding table from probabilities |
| 434 | /// Calculate the position of the next entry of the table given the current |
| 435 | /// position and size of the table. |
| 436 | fn next_position(mut p: usize, table_size: usize) -> usize { |
| 437 | p += (table_size >> 1) + (table_size >> 3) + 3; |
| 438 | p &= table_size - 1; |
| 439 | p |
| 440 | } |
| 441 | |
| 442 | fn calc_baseline_and_numbits( |
| 443 | num_states_total: u32, |
| 444 | num_states_symbol: u32, |
| 445 | state_number: u32, |
| 446 | ) -> (u32, u8) { |
| 447 | let num_state_slices: u32 = if 1 << (highest_bit_set(num_states_symbol) - 1) == num_states_symbol { |
| 448 | num_states_symbol |
| 449 | } else { |
| 450 | 1 << (highest_bit_set(num_states_symbol)) |
| 451 | }; //always power of two |
| 452 | |
| 453 | let num_double_width_state_slices: u32 = num_state_slices - num_states_symbol; //leftovers to the power of two need to be distributed |
| 454 | let num_single_width_state_slices: u32 = num_states_symbol - num_double_width_state_slices; //these will not receive a double width slice of states |
| 455 | let slice_width: u32 = num_states_total / num_state_slices; //size of a single width slice of states |
| 456 | let num_bits: u32 = highest_bit_set(slice_width) - 1; //number of bits needed to read for one slice |
| 457 | |
| 458 | if state_number < num_double_width_state_slices { |
| 459 | let baseline: u32 = num_single_width_state_slices * slice_width + state_number * slice_width * 2; |
| 460 | (baseline, num_bits as u8 + 1) |
| 461 | } else { |
| 462 | let index_shifted: u32 = state_number - num_double_width_state_slices; |
| 463 | ((index_shifted * slice_width), num_bits as u8) |
| 464 | } |
| 465 | } |
| 466 | |