| 1 | //! A library to help grow the stack when it runs out of space. |
| 2 | //! |
| 3 | //! This is an implementation of manually instrumented segmented stacks where points in a program's |
| 4 | //! control flow are annotated with "maybe grow the stack here". Each point of annotation indicates |
| 5 | //! how far away from the end of the stack it's allowed to be, plus the amount of stack to allocate |
| 6 | //! if it does reach the end. |
| 7 | //! |
| 8 | //! Once a program has reached the end of its stack, a temporary stack on the heap is allocated and |
| 9 | //! is switched to for the duration of a closure. |
| 10 | //! |
| 11 | //! For a set of lower-level primitives, consider the `psm` crate. |
| 12 | //! |
| 13 | //! # Examples |
| 14 | //! |
| 15 | //! ``` |
| 16 | //! // Grow the stack if we are within the "red zone" of 32K, and if we allocate |
| 17 | //! // a new stack allocate 1MB of stack space. |
| 18 | //! // |
| 19 | //! // If we're already in bounds, just run the provided closure on current stack. |
| 20 | //! stacker::maybe_grow(32 * 1024, 1024 * 1024, || { |
| 21 | //! // guaranteed to have at least 32K of stack |
| 22 | //! }); |
| 23 | //! ``` |
| 24 | |
| 25 | #![allow (improper_ctypes)] |
| 26 | |
| 27 | #[macro_use ] |
| 28 | extern crate cfg_if; |
| 29 | extern crate libc; |
| 30 | #[cfg (windows)] |
| 31 | extern crate windows_sys; |
| 32 | #[macro_use ] |
| 33 | extern crate psm; |
| 34 | |
| 35 | use std::cell::Cell; |
| 36 | |
| 37 | /// Grows the call stack if necessary. |
| 38 | /// |
| 39 | /// This function is intended to be called at manually instrumented points in a program where |
| 40 | /// recursion is known to happen quite a bit. This function will check to see if we're within |
| 41 | /// `red_zone` bytes of the end of the stack, and if so it will allocate a new stack of at least |
| 42 | /// `stack_size` bytes. |
| 43 | /// |
| 44 | /// The closure `f` is guaranteed to run on a stack with at least `red_zone` bytes, and it will be |
| 45 | /// run on the current stack if there's space available. |
| 46 | #[inline (always)] |
| 47 | pub fn maybe_grow<R, F: FnOnce() -> R>(red_zone: usize, stack_size: usize, callback: F) -> R { |
| 48 | // if we can't guess the remaining stack (unsupported on some platforms) we immediately grow |
| 49 | // the stack and then cache the new stack size (which we do know now because we allocated it. |
| 50 | let enough_space: bool = match remaining_stack() { |
| 51 | Some(remaining: usize) => remaining >= red_zone, |
| 52 | None => false, |
| 53 | }; |
| 54 | if enough_space { |
| 55 | callback() |
| 56 | } else { |
| 57 | grow(stack_size, callback) |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | /// Always creates a new stack for the passed closure to run on. |
| 62 | /// The closure will still be on the same thread as the caller of `grow`. |
| 63 | /// This will allocate a new stack with at least `stack_size` bytes. |
| 64 | pub fn grow<R, F: FnOnce() -> R>(stack_size: usize, callback: F) -> R { |
| 65 | // To avoid monomorphizing `_grow()` and everything it calls, |
| 66 | // we convert the generic callback to a dynamic one. |
| 67 | let mut opt_callback: Option = Some(callback); |
| 68 | let mut ret: Option = None; |
| 69 | let ret_ref: &mut Option = &mut ret; |
| 70 | |
| 71 | // This wrapper around `callback` achieves two things: |
| 72 | // * It converts the `impl FnOnce` to a `dyn FnMut`. |
| 73 | // `dyn` because we want it to not be generic, and |
| 74 | // `FnMut` because we can't pass a `dyn FnOnce` around without boxing it. |
| 75 | // * It eliminates the generic return value, by writing it to the stack of this function. |
| 76 | // Otherwise the closure would have to return an unsized value, which isn't possible. |
| 77 | let dyn_callback: &mut dyn FnMut() = &mut || { |
| 78 | let taken_callback: F = opt_callback.take().unwrap(); |
| 79 | *ret_ref = Some(taken_callback()); |
| 80 | }; |
| 81 | |
| 82 | _grow(stack_size, dyn_callback); |
| 83 | ret.unwrap() |
| 84 | } |
| 85 | |
| 86 | /// Queries the amount of remaining stack as interpreted by this library. |
| 87 | /// |
| 88 | /// This function will return the amount of stack space left which will be used |
| 89 | /// to determine whether a stack switch should be made or not. |
| 90 | pub fn remaining_stack() -> Option<usize> { |
| 91 | let current_ptr: usize = current_stack_ptr(); |
| 92 | get_stack_limit().map(|limit: usize| current_ptr - limit) |
| 93 | } |
| 94 | |
| 95 | psm_stack_information!( |
| 96 | yes { |
| 97 | fn current_stack_ptr() -> usize { |
| 98 | psm::stack_pointer() as usize |
| 99 | } |
| 100 | } |
| 101 | no { |
| 102 | #[inline(always)] |
| 103 | fn current_stack_ptr() -> usize { |
| 104 | unsafe { |
| 105 | let mut x = std::mem::MaybeUninit::<u8>::uninit(); |
| 106 | // Unlikely to be ever exercised. As a fallback we execute a volatile read to a |
| 107 | // local (to hopefully defeat the optimisations that would make this local a static |
| 108 | // global) and take its address. This way we get a very approximate address of the |
| 109 | // current frame. |
| 110 | x.as_mut_ptr().write_volatile(42); |
| 111 | x.as_ptr() as usize |
| 112 | } |
| 113 | } |
| 114 | } |
| 115 | ); |
| 116 | |
| 117 | thread_local! { |
| 118 | static STACK_LIMIT: Cell<Option<usize>> = Cell::new(unsafe { |
| 119 | guess_os_stack_limit() |
| 120 | }) |
| 121 | } |
| 122 | |
| 123 | #[inline (always)] |
| 124 | fn get_stack_limit() -> Option<usize> { |
| 125 | STACK_LIMIT.with(|s: &Cell| s.get()) |
| 126 | } |
| 127 | |
| 128 | #[inline (always)] |
| 129 | #[allow (unused)] |
| 130 | fn set_stack_limit(l: Option<usize>) { |
| 131 | STACK_LIMIT.with(|s: &Cell| s.set(val:l)) |
| 132 | } |
| 133 | |
| 134 | psm_stack_manipulation! { |
| 135 | yes { |
| 136 | struct StackRestoreGuard { |
| 137 | new_stack: *mut std::ffi::c_void, |
| 138 | stack_bytes: usize, |
| 139 | old_stack_limit: Option<usize>, |
| 140 | } |
| 141 | |
| 142 | impl StackRestoreGuard { |
| 143 | #[cfg (target_arch = "wasm32" )] |
| 144 | unsafe fn new(stack_bytes: usize, _page_size: usize) -> StackRestoreGuard { |
| 145 | let layout = std::alloc::Layout::from_size_align(stack_bytes, 16).unwrap(); |
| 146 | let ptr = std::alloc::alloc(layout); |
| 147 | assert!(!ptr.is_null(), "unable to allocate stack" ); |
| 148 | StackRestoreGuard { |
| 149 | new_stack: ptr as *mut _, |
| 150 | stack_bytes, |
| 151 | old_stack_limit: get_stack_limit(), |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | #[cfg (not(target_arch = "wasm32" ))] |
| 156 | unsafe fn new(stack_bytes: usize, page_size: usize) -> StackRestoreGuard { |
| 157 | let new_stack = libc::mmap( |
| 158 | std::ptr::null_mut(), |
| 159 | stack_bytes, |
| 160 | libc::PROT_NONE, |
| 161 | libc::MAP_PRIVATE | |
| 162 | libc::MAP_ANON, |
| 163 | -1, // Some implementations assert fd = -1 if MAP_ANON is specified |
| 164 | 0 |
| 165 | ); |
| 166 | if new_stack == libc::MAP_FAILED { |
| 167 | let error = std::io::Error::last_os_error(); |
| 168 | panic!("allocating stack failed with: {}" , error) |
| 169 | } |
| 170 | let guard = StackRestoreGuard { |
| 171 | new_stack, |
| 172 | stack_bytes, |
| 173 | old_stack_limit: get_stack_limit(), |
| 174 | }; |
| 175 | let above_guard_page = new_stack.add(page_size); |
| 176 | #[cfg (not(target_os = "openbsd" ))] |
| 177 | let result = libc::mprotect( |
| 178 | above_guard_page, |
| 179 | stack_bytes - page_size, |
| 180 | libc::PROT_READ | libc::PROT_WRITE |
| 181 | ); |
| 182 | #[cfg (target_os = "openbsd" )] |
| 183 | let result = if libc::mmap( |
| 184 | above_guard_page, |
| 185 | stack_bytes - page_size, |
| 186 | libc::PROT_READ | libc::PROT_WRITE, |
| 187 | libc::MAP_FIXED | libc::MAP_PRIVATE | libc::MAP_ANON | libc::MAP_STACK, |
| 188 | -1, |
| 189 | 0) == above_guard_page { |
| 190 | 0 |
| 191 | } else { |
| 192 | -1 |
| 193 | }; |
| 194 | if result == -1 { |
| 195 | let error = std::io::Error::last_os_error(); |
| 196 | drop(guard); |
| 197 | panic!("setting stack permissions failed with: {}" , error) |
| 198 | } |
| 199 | guard |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | impl Drop for StackRestoreGuard { |
| 204 | fn drop(&mut self) { |
| 205 | #[cfg (target_arch = "wasm32" )] |
| 206 | unsafe { |
| 207 | std::alloc::dealloc( |
| 208 | self.new_stack as *mut u8, |
| 209 | std::alloc::Layout::from_size_align_unchecked(self.stack_bytes, 16), |
| 210 | ); |
| 211 | } |
| 212 | #[cfg (not(target_arch = "wasm32" ))] |
| 213 | unsafe { |
| 214 | // FIXME: check the error code and decide what to do with it. |
| 215 | // Perhaps a debug_assertion? |
| 216 | libc::munmap(self.new_stack, self.stack_bytes); |
| 217 | } |
| 218 | set_stack_limit(self.old_stack_limit); |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | fn _grow(stack_size: usize, callback: &mut dyn FnMut()) { |
| 223 | // Calculate a number of pages we want to allocate for the new stack. |
| 224 | // For maximum portability we want to produce a stack that is aligned to a page and has |
| 225 | // a size that’s a multiple of page size. Furthermore we want to allocate two extras pages |
| 226 | // for the stack guard. To achieve that we do our calculations in number of pages and |
| 227 | // convert to bytes last. |
| 228 | let page_size = page_size(); |
| 229 | let requested_pages = stack_size |
| 230 | .checked_add(page_size - 1) |
| 231 | .expect("unreasonably large stack requested" ) / page_size; |
| 232 | let stack_pages = std::cmp::max(1, requested_pages) + 2; |
| 233 | let stack_bytes = stack_pages.checked_mul(page_size) |
| 234 | .expect("unreasonably large stack requested" ); |
| 235 | |
| 236 | // Next, there are a couple of approaches to how we allocate the new stack. We take the |
| 237 | // most obvious path and use `mmap`. We also `mprotect` a guard page into our |
| 238 | // allocation. |
| 239 | // |
| 240 | // We use a guard pattern to ensure we deallocate the allocated stack when we leave |
| 241 | // this function and also try to uphold various safety invariants required by `psm` |
| 242 | // (such as not unwinding from the callback we pass to it). |
| 243 | // |
| 244 | // Other than that this code has no meaningful gotchas. |
| 245 | unsafe { |
| 246 | let guard = StackRestoreGuard::new(stack_bytes, page_size); |
| 247 | let above_guard_page = guard.new_stack.add(page_size); |
| 248 | set_stack_limit(Some(above_guard_page as usize)); |
| 249 | let panic = psm::on_stack(above_guard_page as *mut _, stack_size, move || { |
| 250 | std::panic::catch_unwind(std::panic::AssertUnwindSafe(callback)).err() |
| 251 | }); |
| 252 | drop(guard); |
| 253 | if let Some(p) = panic { |
| 254 | std::panic::resume_unwind(p); |
| 255 | } |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | fn page_size() -> usize { |
| 260 | // FIXME: consider caching the page size. |
| 261 | #[cfg (not(target_arch = "wasm32" ))] |
| 262 | unsafe { libc::sysconf(libc::_SC_PAGE_SIZE) as usize } |
| 263 | #[cfg (target_arch = "wasm32" )] |
| 264 | { 65536 } |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | no { |
| 269 | #[cfg(not(windows))] |
| 270 | fn _grow(stack_size: usize, callback: &mut dyn FnMut()) { |
| 271 | let _ = stack_size; |
| 272 | callback(); |
| 273 | } |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | cfg_if! { |
| 278 | if #[cfg(miri)] { |
| 279 | // Miri doesn't have a stack limit |
| 280 | #[inline(always)] |
| 281 | unsafe fn guess_os_stack_limit() -> Option<usize> { |
| 282 | None |
| 283 | } |
| 284 | } else if #[cfg(windows)] { |
| 285 | use std::ptr; |
| 286 | use std::io; |
| 287 | use libc::c_void; |
| 288 | use windows_sys::Win32::System::Threading::{SwitchToFiber, IsThreadAFiber, ConvertThreadToFiber, |
| 289 | CreateFiber, DeleteFiber, ConvertFiberToThread, SetThreadStackGuarantee |
| 290 | }; |
| 291 | use windows_sys::Win32::Foundation::BOOL; |
| 292 | use windows_sys::Win32::System::Memory::VirtualQuery; |
| 293 | |
| 294 | // Make sure the libstacker.a (implemented in C) is linked. |
| 295 | // See https://github.com/rust-lang/rust/issues/65610 |
| 296 | #[link(name="stacker" )] |
| 297 | extern { |
| 298 | fn __stacker_get_current_fiber() -> *mut c_void; |
| 299 | } |
| 300 | |
| 301 | struct FiberInfo<F> { |
| 302 | callback: std::mem::MaybeUninit<F>, |
| 303 | panic: Option<Box<dyn std::any::Any + Send + 'static>>, |
| 304 | parent_fiber: *mut c_void, |
| 305 | } |
| 306 | |
| 307 | unsafe extern "system" fn fiber_proc<F: FnOnce()>(data: *mut c_void) { |
| 308 | // This function is the entry point to our inner fiber, and as argument we get an |
| 309 | // instance of `FiberInfo`. We will set-up the "runtime" for the callback and execute |
| 310 | // it. |
| 311 | let data = &mut *(data as *mut FiberInfo<F>); |
| 312 | let old_stack_limit = get_stack_limit(); |
| 313 | set_stack_limit(guess_os_stack_limit()); |
| 314 | let callback = data.callback.as_ptr(); |
| 315 | data.panic = std::panic::catch_unwind(std::panic::AssertUnwindSafe(callback.read())).err(); |
| 316 | |
| 317 | // Restore to the previous Fiber |
| 318 | set_stack_limit(old_stack_limit); |
| 319 | SwitchToFiber(data.parent_fiber); |
| 320 | } |
| 321 | |
| 322 | fn _grow(stack_size: usize, callback: &mut dyn FnMut()) { |
| 323 | // Fibers (or stackful coroutines) is the only official way to create new stacks on the |
| 324 | // same thread on Windows. So in order to extend the stack we create fiber and switch |
| 325 | // to it so we can use it's stack. After running `callback` within our fiber, we switch |
| 326 | // back to the current stack and destroy the fiber and its associated stack. |
| 327 | unsafe { |
| 328 | let was_fiber = IsThreadAFiber() == 1 as BOOL; |
| 329 | let mut data = FiberInfo { |
| 330 | callback: std::mem::MaybeUninit::new(callback), |
| 331 | panic: None, |
| 332 | parent_fiber: { |
| 333 | if was_fiber { |
| 334 | // Get a handle to the current fiber. We need to use a C implementation |
| 335 | // for this as GetCurrentFiber is an header only function. |
| 336 | __stacker_get_current_fiber() |
| 337 | } else { |
| 338 | // Convert the current thread to a fiber, so we are able to switch back |
| 339 | // to the current stack. Threads coverted to fibers still act like |
| 340 | // regular threads, but they have associated fiber data. We later |
| 341 | // convert it back to a regular thread and free the fiber data. |
| 342 | ConvertThreadToFiber(ptr::null_mut()) |
| 343 | } |
| 344 | }, |
| 345 | }; |
| 346 | |
| 347 | if data.parent_fiber.is_null() { |
| 348 | panic!("unable to convert thread to fiber: {}" , io::Error::last_os_error()); |
| 349 | } |
| 350 | |
| 351 | let fiber = CreateFiber( |
| 352 | stack_size as usize, |
| 353 | Some(fiber_proc::<&mut dyn FnMut()>), |
| 354 | &mut data as *mut FiberInfo<&mut dyn FnMut()> as *mut _, |
| 355 | ); |
| 356 | if fiber.is_null() { |
| 357 | panic!("unable to allocate fiber: {}" , io::Error::last_os_error()); |
| 358 | } |
| 359 | |
| 360 | // Switch to the fiber we created. This changes stacks and starts executing |
| 361 | // fiber_proc on it. fiber_proc will run `callback` and then switch back to run the |
| 362 | // next statement. |
| 363 | SwitchToFiber(fiber); |
| 364 | DeleteFiber(fiber); |
| 365 | |
| 366 | // Clean-up. |
| 367 | if !was_fiber && ConvertFiberToThread() == 0 { |
| 368 | // FIXME: Perhaps should not panic here? |
| 369 | panic!("unable to convert back to thread: {}" , io::Error::last_os_error()); |
| 370 | } |
| 371 | |
| 372 | if let Some(p) = data.panic { |
| 373 | std::panic::resume_unwind(p); |
| 374 | } |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | #[inline(always)] |
| 379 | fn get_thread_stack_guarantee() -> usize { |
| 380 | let min_guarantee = if cfg!(target_pointer_width = "32" ) { |
| 381 | 0x1000 |
| 382 | } else { |
| 383 | 0x2000 |
| 384 | }; |
| 385 | let mut stack_guarantee = 0; |
| 386 | unsafe { |
| 387 | // Read the current thread stack guarantee |
| 388 | // This is the stack reserved for stack overflow |
| 389 | // exception handling. |
| 390 | // This doesn't return the true value so we need |
| 391 | // some further logic to calculate the real stack |
| 392 | // guarantee. This logic is what is used on x86-32 and |
| 393 | // x86-64 Windows 10. Other versions and platforms may differ |
| 394 | SetThreadStackGuarantee(&mut stack_guarantee) |
| 395 | }; |
| 396 | std::cmp::max(stack_guarantee, min_guarantee) as usize + 0x1000 |
| 397 | } |
| 398 | |
| 399 | #[inline(always)] |
| 400 | unsafe fn guess_os_stack_limit() -> Option<usize> { |
| 401 | // Query the allocation which contains our stack pointer in order |
| 402 | // to discover the size of the stack |
| 403 | // |
| 404 | // FIXME: we could read stack base from the TIB, specifically the 3rd element of it. |
| 405 | type QueryT = windows_sys::Win32::System::Memory::MEMORY_BASIC_INFORMATION; |
| 406 | let mut mi = std::mem::MaybeUninit::<QueryT>::uninit(); |
| 407 | VirtualQuery( |
| 408 | psm::stack_pointer() as *const _, |
| 409 | mi.as_mut_ptr(), |
| 410 | std::mem::size_of::<QueryT>() as usize, |
| 411 | ); |
| 412 | Some(mi.assume_init().AllocationBase as usize + get_thread_stack_guarantee() + 0x1000) |
| 413 | } |
| 414 | } else if #[cfg(any(target_os = "linux" , target_os="solaris" , target_os = "netbsd" ))] { |
| 415 | unsafe fn guess_os_stack_limit() -> Option<usize> { |
| 416 | let mut attr = std::mem::MaybeUninit::<libc::pthread_attr_t>::uninit(); |
| 417 | assert_eq!(libc::pthread_attr_init(attr.as_mut_ptr()), 0); |
| 418 | assert_eq!(libc::pthread_getattr_np(libc::pthread_self(), |
| 419 | attr.as_mut_ptr()), 0); |
| 420 | let mut stackaddr = std::ptr::null_mut(); |
| 421 | let mut stacksize = 0; |
| 422 | assert_eq!(libc::pthread_attr_getstack( |
| 423 | attr.as_ptr(), &mut stackaddr, &mut stacksize |
| 424 | ), 0); |
| 425 | assert_eq!(libc::pthread_attr_destroy(attr.as_mut_ptr()), 0); |
| 426 | Some(stackaddr as usize) |
| 427 | } |
| 428 | } else if #[cfg(any(target_os = "freebsd" , target_os = "dragonfly" , target_os = "illumos" ))] { |
| 429 | unsafe fn guess_os_stack_limit() -> Option<usize> { |
| 430 | let mut attr = std::mem::MaybeUninit::<libc::pthread_attr_t>::uninit(); |
| 431 | assert_eq!(libc::pthread_attr_init(attr.as_mut_ptr()), 0); |
| 432 | assert_eq!(libc::pthread_attr_get_np(libc::pthread_self(), attr.as_mut_ptr()), 0); |
| 433 | let mut stackaddr = std::ptr::null_mut(); |
| 434 | let mut stacksize = 0; |
| 435 | assert_eq!(libc::pthread_attr_getstack( |
| 436 | attr.as_ptr(), &mut stackaddr, &mut stacksize |
| 437 | ), 0); |
| 438 | assert_eq!(libc::pthread_attr_destroy(attr.as_mut_ptr()), 0); |
| 439 | Some(stackaddr as usize) |
| 440 | } |
| 441 | } else if #[cfg(target_os = "openbsd" )] { |
| 442 | unsafe fn guess_os_stack_limit() -> Option<usize> { |
| 443 | let mut stackinfo = std::mem::MaybeUninit::<libc::stack_t>::uninit(); |
| 444 | assert_eq!(libc::pthread_stackseg_np(libc::pthread_self(), stackinfo.as_mut_ptr()), 0); |
| 445 | Some(stackinfo.assume_init().ss_sp as usize - stackinfo.assume_init().ss_size) |
| 446 | } |
| 447 | } else if #[cfg(target_os = "macos" )] { |
| 448 | unsafe fn guess_os_stack_limit() -> Option<usize> { |
| 449 | Some(libc::pthread_get_stackaddr_np(libc::pthread_self()) as usize - |
| 450 | libc::pthread_get_stacksize_np(libc::pthread_self()) as usize) |
| 451 | } |
| 452 | } else { |
| 453 | // fallback for other platforms is to always increase the stack if we're on |
| 454 | // the root stack. After we increased the stack once, we know the new stack |
| 455 | // size and don't need this pessimization anymore |
| 456 | #[inline(always)] |
| 457 | unsafe fn guess_os_stack_limit() -> Option<usize> { |
| 458 | None |
| 459 | } |
| 460 | } |
| 461 | } |
| 462 | |