1 | use crate::encoding::types::{FunctionKey, ValtypeEncoder}; |
2 | use anyhow::Result; |
3 | use indexmap::IndexSet; |
4 | use std::collections::HashMap; |
5 | use std::mem; |
6 | use wasm_encoder::*; |
7 | use wit_parser::*; |
8 | |
9 | /// Encodes the given `package` within `resolve` to a binary WebAssembly |
10 | /// representation. |
11 | /// |
12 | /// This function is the root of the implementation of serializing a WIT package |
13 | /// into a WebAssembly representation. The wasm representation serves two |
14 | /// purposes: |
15 | /// |
16 | /// * One is to be a binary encoding of a WIT document which is ideally more |
17 | /// stable than the WIT textual format itself. |
18 | /// * Another is to provide a clear mapping of all WIT features into the |
19 | /// component model through use of its binary representation. |
20 | /// |
21 | /// The `resolve` provided is a set of packages and types and such and the |
22 | /// `package` argument is an ID within the world provided. The documents within |
23 | /// `package` will all be encoded into the binary returned. |
24 | /// |
25 | /// The binary returned can be [`decode`d](crate::decode) to recover the WIT |
26 | /// package provided. |
27 | pub fn encode(resolve: &Resolve, package: PackageId) -> Result<Vec<u8>> { |
28 | let mut component: ComponentBuilder = encode_component(resolve, package)?; |
29 | component.raw_custom_section(&crate::base_producers().raw_custom_section()); |
30 | Ok(component.finish()) |
31 | } |
32 | |
33 | /// Encodes the given `package` within `resolve` to a binary WebAssembly |
34 | /// representation. |
35 | /// |
36 | /// This function is the root of the implementation of serializing a WIT package |
37 | /// into a WebAssembly representation. The wasm representation serves two |
38 | /// purposes: |
39 | /// |
40 | /// * One is to be a binary encoding of a WIT document which is ideally more |
41 | /// stable than the WIT textual format itself. |
42 | /// * Another is to provide a clear mapping of all WIT features into the |
43 | /// component model through use of its binary representation. |
44 | /// |
45 | /// The `resolve` provided is a set of packages and types and such and the |
46 | /// `package` argument is an ID within the world provided. The documents within |
47 | /// `package` will all be encoded into the binary returned. |
48 | /// |
49 | /// The binary returned can be [`decode`d](crate::decode) to recover the WIT |
50 | /// package provided. |
51 | pub fn encode_component(resolve: &Resolve, package: PackageId) -> Result<ComponentBuilder> { |
52 | let mut encoder: Encoder<'_> = Encoder { |
53 | component: ComponentBuilder::default(), |
54 | resolve, |
55 | package, |
56 | }; |
57 | encoder.run()?; |
58 | |
59 | let package_metadata: PackageMetadata = PackageMetadata::extract(resolve, package); |
60 | encoder.component.custom_section(&CustomSection { |
61 | name: PackageMetadata::SECTION_NAME.into(), |
62 | data: package_metadata.encode()?.into(), |
63 | }); |
64 | |
65 | Ok(encoder.component) |
66 | } |
67 | |
68 | /// Encodes a `world` as a component type. |
69 | pub fn encode_world(resolve: &Resolve, world_id: WorldId) -> Result<ComponentType> { |
70 | let mut component = InterfaceEncoder::new(resolve); |
71 | let world = &resolve.worlds[world_id]; |
72 | log::trace!("encoding world {}" , world.name); |
73 | |
74 | // This sort is similar in purpose to the sort below in |
75 | // `encode_instance`, but different in its sort. The purpose here is |
76 | // to ensure that when a document is either printed as WIT or |
77 | // encoded as wasm that decoding from those artifacts produces the |
78 | // same WIT package. Namely both encoding processes should encode |
79 | // things in the same order. |
80 | // |
81 | // When printing worlds in WIT freestanding function imports are |
82 | // printed first, then types. Resource functions are attached to |
83 | // types which means that they all come last. Sort all |
84 | // resource-related functions here to the back of the `imports` list |
85 | // while keeping everything else in front, using a stable sort to |
86 | // preserve preexisting ordering. |
87 | let mut imports = world.imports.iter().collect::<Vec<_>>(); |
88 | imports.sort_by_key(|(_name, import)| match import { |
89 | WorldItem::Function(f) => match f.kind { |
90 | FunctionKind::Freestanding => 0, |
91 | _ => 1, |
92 | }, |
93 | _ => 0, |
94 | }); |
95 | |
96 | // Encode the imports |
97 | for (name, import) in imports { |
98 | let name = resolve.name_world_key(name); |
99 | log::trace!("encoding import {name}" ); |
100 | let ty = match import { |
101 | WorldItem::Interface { id, .. } => { |
102 | component.interface = Some(*id); |
103 | let idx = component.encode_instance(*id)?; |
104 | ComponentTypeRef::Instance(idx) |
105 | } |
106 | WorldItem::Function(f) => { |
107 | component.interface = None; |
108 | let idx = component.encode_func_type(resolve, f)?; |
109 | ComponentTypeRef::Func(idx) |
110 | } |
111 | WorldItem::Type(t) => { |
112 | component.interface = None; |
113 | component.import_types = true; |
114 | component.encode_valtype(resolve, &Type::Id(*t))?; |
115 | component.import_types = false; |
116 | continue; |
117 | } |
118 | }; |
119 | component.outer.import(&name, ty); |
120 | } |
121 | // Encode the exports |
122 | for (name, export) in world.exports.iter() { |
123 | let name = resolve.name_world_key(name); |
124 | log::trace!("encoding export {name}" ); |
125 | let ty = match export { |
126 | WorldItem::Interface { id, .. } => { |
127 | component.interface = Some(*id); |
128 | let idx = component.encode_instance(*id)?; |
129 | ComponentTypeRef::Instance(idx) |
130 | } |
131 | WorldItem::Function(f) => { |
132 | component.interface = None; |
133 | let idx = component.encode_func_type(resolve, f)?; |
134 | ComponentTypeRef::Func(idx) |
135 | } |
136 | WorldItem::Type(_) => unreachable!(), |
137 | }; |
138 | component.outer.export(&name, ty); |
139 | } |
140 | |
141 | Ok(component.outer) |
142 | } |
143 | |
144 | struct Encoder<'a> { |
145 | component: ComponentBuilder, |
146 | resolve: &'a Resolve, |
147 | package: PackageId, |
148 | } |
149 | |
150 | impl Encoder<'_> { |
151 | fn run(&mut self) -> Result<()> { |
152 | // Encode all interfaces as component types and then export them. |
153 | for (name, &id) in self.resolve.packages[self.package].interfaces.iter() { |
154 | let component_ty = self.encode_interface(id)?; |
155 | let ty = self.component.type_component(&component_ty); |
156 | self.component |
157 | .export(name.as_ref(), ComponentExportKind::Type, ty, None); |
158 | } |
159 | |
160 | // For each `world` encode it directly as a component and then create a |
161 | // wrapper component that exports that component. |
162 | for (name, &world) in self.resolve.packages[self.package].worlds.iter() { |
163 | let component_ty = encode_world(self.resolve, world)?; |
164 | |
165 | let world = &self.resolve.worlds[world]; |
166 | let mut wrapper = ComponentType::new(); |
167 | wrapper.ty().component(&component_ty); |
168 | let pkg = &self.resolve.packages[world.package.unwrap()]; |
169 | wrapper.export(&pkg.name.interface_id(name), ComponentTypeRef::Component(0)); |
170 | |
171 | let ty = self.component.type_component(&wrapper); |
172 | self.component |
173 | .export(name.as_ref(), ComponentExportKind::Type, ty, None); |
174 | } |
175 | |
176 | Ok(()) |
177 | } |
178 | |
179 | fn encode_interface(&mut self, id: InterfaceId) -> Result<ComponentType> { |
180 | // Build a set of interfaces reachable from this document, including the |
181 | // interfaces in the document itself. This is used to import instances |
182 | // into the component type we're encoding. Note that entire interfaces |
183 | // are imported with all their types as opposed to just the needed types |
184 | // in an interface for this document. That's done to assist with the |
185 | // decoding process where everyone's view of a foreign document agrees |
186 | // notably on the order that types are defined in to assist with |
187 | // roundtripping. |
188 | let mut interfaces = IndexSet::new(); |
189 | self.add_live_interfaces(&mut interfaces, id); |
190 | |
191 | // Seed the set of used names with all exported interfaces to ensure |
192 | // that imported interfaces choose different names as the import names |
193 | // aren't used during decoding. |
194 | let mut used_names = IndexSet::new(); |
195 | for id in interfaces.iter() { |
196 | let iface = &self.resolve.interfaces[*id]; |
197 | if iface.package == Some(self.package) { |
198 | let first = used_names.insert(iface.name.as_ref().unwrap().clone()); |
199 | assert!(first); |
200 | } |
201 | } |
202 | |
203 | let mut encoder = InterfaceEncoder::new(self.resolve); |
204 | for interface in interfaces { |
205 | encoder.interface = Some(interface); |
206 | let iface = &self.resolve.interfaces[interface]; |
207 | let name = self.resolve.id_of(interface).unwrap(); |
208 | if interface == id { |
209 | let idx = encoder.encode_instance(interface)?; |
210 | log::trace!("exporting self as {idx}" ); |
211 | encoder.outer.export(&name, ComponentTypeRef::Instance(idx)); |
212 | } else { |
213 | encoder.push_instance(); |
214 | for (_, id) in iface.types.iter() { |
215 | encoder.encode_valtype(self.resolve, &Type::Id(*id))?; |
216 | } |
217 | let instance = encoder.pop_instance(); |
218 | let idx = encoder.outer.type_count(); |
219 | encoder.outer.ty().instance(&instance); |
220 | encoder.import_map.insert(interface, encoder.instances); |
221 | encoder.instances += 1; |
222 | encoder.outer.import(&name, ComponentTypeRef::Instance(idx)); |
223 | } |
224 | } |
225 | |
226 | encoder.interface = None; |
227 | |
228 | Ok(encoder.outer) |
229 | } |
230 | |
231 | /// Recursively add all live interfaces reachable from `id` into the |
232 | /// `interfaces` set, and then add `id` to the set. |
233 | fn add_live_interfaces(&self, interfaces: &mut IndexSet<InterfaceId>, id: InterfaceId) { |
234 | if interfaces.contains(&id) { |
235 | return; |
236 | } |
237 | for id in self.resolve.interface_direct_deps(id) { |
238 | self.add_live_interfaces(interfaces, id); |
239 | } |
240 | assert!(interfaces.insert(id)); |
241 | } |
242 | } |
243 | |
244 | struct InterfaceEncoder<'a> { |
245 | resolve: &'a Resolve, |
246 | outer: ComponentType, |
247 | ty: Option<InstanceType>, |
248 | func_type_map: HashMap<FunctionKey<'a>, u32>, |
249 | type_map: HashMap<TypeId, u32>, |
250 | saved_types: Option<(HashMap<TypeId, u32>, HashMap<FunctionKey<'a>, u32>)>, |
251 | import_map: HashMap<InterfaceId, u32>, |
252 | outer_type_map: HashMap<TypeId, u32>, |
253 | instances: u32, |
254 | import_types: bool, |
255 | interface: Option<InterfaceId>, |
256 | } |
257 | |
258 | impl InterfaceEncoder<'_> { |
259 | fn new(resolve: &Resolve) -> InterfaceEncoder<'_> { |
260 | InterfaceEncoder { |
261 | resolve, |
262 | outer: ComponentType::new(), |
263 | ty: None, |
264 | type_map: Default::default(), |
265 | func_type_map: Default::default(), |
266 | import_map: Default::default(), |
267 | outer_type_map: Default::default(), |
268 | instances: 0, |
269 | saved_types: None, |
270 | import_types: false, |
271 | interface: None, |
272 | } |
273 | } |
274 | |
275 | fn encode_instance(&mut self, interface: InterfaceId) -> Result<u32> { |
276 | self.push_instance(); |
277 | let iface = &self.resolve.interfaces[interface]; |
278 | let mut type_order = IndexSet::new(); |
279 | for (_, id) in iface.types.iter() { |
280 | self.encode_valtype(self.resolve, &Type::Id(*id))?; |
281 | type_order.insert(*id); |
282 | } |
283 | |
284 | // Sort functions based on whether or not they're associated with |
285 | // resources. |
286 | // |
287 | // This is done here to ensure that when a WIT package is printed as WIT |
288 | // then decoded, or if it's printed as Wasm then decoded, the final |
289 | // result is the same. When printing via WIT resource methods are |
290 | // attached to the resource types themselves meaning that they'll appear |
291 | // intermingled with the rest of the types, namely first before all |
292 | // other functions. The purpose of this sort is to perform a stable sort |
293 | // over all functions by shuffling the resource-related functions first, |
294 | // in order of when their associated resource was encoded, and putting |
295 | // freestanding functions last. |
296 | // |
297 | // Note that this is not actually required for correctness, it's |
298 | // basically here to make fuzzing happy. |
299 | let mut funcs = iface.functions.iter().collect::<Vec<_>>(); |
300 | funcs.sort_by_key(|(_name, func)| match func.kind { |
301 | FunctionKind::Freestanding => type_order.len(), |
302 | FunctionKind::Method(id) | FunctionKind::Constructor(id) | FunctionKind::Static(id) => { |
303 | type_order.get_index_of(&id).unwrap() |
304 | } |
305 | }); |
306 | |
307 | for (name, func) in funcs { |
308 | let ty = self.encode_func_type(self.resolve, func)?; |
309 | self.ty |
310 | .as_mut() |
311 | .unwrap() |
312 | .export(name, ComponentTypeRef::Func(ty)); |
313 | } |
314 | let instance = self.pop_instance(); |
315 | let idx = self.outer.type_count(); |
316 | self.outer.ty().instance(&instance); |
317 | self.import_map.insert(interface, self.instances); |
318 | self.instances += 1; |
319 | Ok(idx) |
320 | } |
321 | |
322 | fn push_instance(&mut self) { |
323 | assert!(self.ty.is_none()); |
324 | assert!(self.saved_types.is_none()); |
325 | self.saved_types = Some(( |
326 | mem::take(&mut self.type_map), |
327 | mem::take(&mut self.func_type_map), |
328 | )); |
329 | self.ty = Some(InstanceType::default()); |
330 | } |
331 | |
332 | fn pop_instance(&mut self) -> InstanceType { |
333 | let (types, funcs) = self.saved_types.take().unwrap(); |
334 | self.type_map = types; |
335 | self.func_type_map = funcs; |
336 | mem::take(&mut self.ty).unwrap() |
337 | } |
338 | } |
339 | |
340 | impl<'a> ValtypeEncoder<'a> for InterfaceEncoder<'a> { |
341 | fn defined_type(&mut self) -> (u32, ComponentDefinedTypeEncoder<'_>) { |
342 | match &mut self.ty { |
343 | Some(ty) => (ty.type_count(), ty.ty().defined_type()), |
344 | None => (self.outer.type_count(), self.outer.ty().defined_type()), |
345 | } |
346 | } |
347 | fn define_function_type(&mut self) -> (u32, ComponentFuncTypeEncoder<'_>) { |
348 | match &mut self.ty { |
349 | Some(ty) => (ty.type_count(), ty.ty().function()), |
350 | None => (self.outer.type_count(), self.outer.ty().function()), |
351 | } |
352 | } |
353 | fn export_type(&mut self, index: u32, name: &'a str) -> Option<u32> { |
354 | match &mut self.ty { |
355 | Some(ty) => { |
356 | assert!(!self.import_types); |
357 | let ret = ty.type_count(); |
358 | ty.export(name, ComponentTypeRef::Type(TypeBounds::Eq(index))); |
359 | Some(ret) |
360 | } |
361 | None => { |
362 | let ret = self.outer.type_count(); |
363 | if self.import_types { |
364 | self.outer |
365 | .import(name, ComponentTypeRef::Type(TypeBounds::Eq(index))); |
366 | } else { |
367 | self.outer |
368 | .export(name, ComponentTypeRef::Type(TypeBounds::Eq(index))); |
369 | } |
370 | Some(ret) |
371 | } |
372 | } |
373 | } |
374 | fn export_resource(&mut self, name: &'a str) -> u32 { |
375 | let type_ref = ComponentTypeRef::Type(TypeBounds::SubResource); |
376 | match &mut self.ty { |
377 | Some(ty) => { |
378 | assert!(!self.import_types); |
379 | ty.export(name, type_ref); |
380 | ty.type_count() - 1 |
381 | } |
382 | None => { |
383 | if self.import_types { |
384 | self.outer.import(name, type_ref); |
385 | } else { |
386 | self.outer.export(name, type_ref); |
387 | } |
388 | self.outer.type_count() - 1 |
389 | } |
390 | } |
391 | } |
392 | fn type_map(&mut self) -> &mut HashMap<TypeId, u32> { |
393 | &mut self.type_map |
394 | } |
395 | fn interface(&self) -> Option<InterfaceId> { |
396 | self.interface |
397 | } |
398 | fn import_type(&mut self, owner: InterfaceId, id: TypeId) -> u32 { |
399 | let ty = &self.resolve.types[id]; |
400 | let instance = self.import_map[&owner]; |
401 | let outer_idx = *self.outer_type_map.entry(id).or_insert_with(|| { |
402 | let ret = self.outer.type_count(); |
403 | self.outer.alias(Alias::InstanceExport { |
404 | instance, |
405 | name: ty.name.as_ref().unwrap(), |
406 | kind: ComponentExportKind::Type, |
407 | }); |
408 | ret |
409 | }); |
410 | match &mut self.ty { |
411 | Some(ty) => { |
412 | let ret = ty.type_count(); |
413 | ty.alias(Alias::Outer { |
414 | count: 1, |
415 | index: outer_idx, |
416 | kind: ComponentOuterAliasKind::Type, |
417 | }); |
418 | ret |
419 | } |
420 | None => outer_idx, |
421 | } |
422 | } |
423 | fn func_type_map(&mut self) -> &mut HashMap<FunctionKey<'a>, u32> { |
424 | &mut self.func_type_map |
425 | } |
426 | } |
427 | |