1 | use crate::*; |
2 | use anyhow::{anyhow, bail}; |
3 | use indexmap::IndexSet; |
4 | use std::mem; |
5 | use std::{collections::HashMap, io::Read}; |
6 | use wasmparser::Chunk; |
7 | use wasmparser::{ |
8 | component_types::{ |
9 | ComponentAnyTypeId, ComponentDefinedType, ComponentEntityType, ComponentFuncType, |
10 | ComponentInstanceType, ComponentType, ComponentValType, |
11 | }, |
12 | names::{ComponentName, ComponentNameKind}, |
13 | types, |
14 | types::Types, |
15 | ComponentExternalKind, Parser, Payload, PrimitiveValType, ValidPayload, Validator, |
16 | WasmFeatures, |
17 | }; |
18 | |
19 | /// Represents information about a decoded WebAssembly component. |
20 | struct ComponentInfo { |
21 | /// Wasmparser-defined type information learned after a component is fully |
22 | /// validated. |
23 | types: types::Types, |
24 | /// List of all imports and exports from this component. |
25 | externs: Vec<(String, Extern)>, |
26 | /// Decoded package metadata |
27 | package_metadata: Option<PackageMetadata>, |
28 | } |
29 | |
30 | struct DecodingExport { |
31 | name: String, |
32 | kind: ComponentExternalKind, |
33 | index: u32, |
34 | } |
35 | |
36 | enum Extern { |
37 | Import(String), |
38 | Export(DecodingExport), |
39 | } |
40 | |
41 | #[derive (Debug, Clone, Copy, PartialEq, Eq)] |
42 | enum WitEncodingVersion { |
43 | V1, |
44 | V2, |
45 | } |
46 | |
47 | impl ComponentInfo { |
48 | /// Creates a new component info by parsing the given WebAssembly component bytes. |
49 | |
50 | fn from_reader(mut reader: impl Read) -> Result<Self> { |
51 | let mut validator = Validator::new_with_features(WasmFeatures::all()); |
52 | let mut externs = Vec::new(); |
53 | let mut depth = 1; |
54 | let mut types = None; |
55 | let mut _package_metadata = None; |
56 | let mut cur = Parser::new(0); |
57 | let mut eof = false; |
58 | let mut stack = Vec::new(); |
59 | let mut buffer = Vec::new(); |
60 | |
61 | loop { |
62 | let chunk = cur.parse(&buffer, eof)?; |
63 | let (payload, consumed) = match chunk { |
64 | Chunk::NeedMoreData(hint) => { |
65 | assert!(!eof); // otherwise an error would be returned |
66 | |
67 | // Use the hint to preallocate more space, then read |
68 | // some more data into our buffer. |
69 | // |
70 | // Note that the buffer management here is not ideal, |
71 | // but it's compact enough to fit in an example! |
72 | let len = buffer.len(); |
73 | buffer.extend((0..hint).map(|_| 0u8)); |
74 | let n = reader.read(&mut buffer[len..])?; |
75 | buffer.truncate(len + n); |
76 | eof = n == 0; |
77 | continue; |
78 | } |
79 | |
80 | Chunk::Parsed { consumed, payload } => (payload, consumed), |
81 | }; |
82 | match validator.payload(&payload)? { |
83 | ValidPayload::Ok => {} |
84 | ValidPayload::Parser(_) => depth += 1, |
85 | ValidPayload::End(t) => { |
86 | depth -= 1; |
87 | if depth == 0 { |
88 | types = Some(t); |
89 | } |
90 | } |
91 | ValidPayload::Func(..) => {} |
92 | } |
93 | |
94 | match payload { |
95 | Payload::ComponentImportSection(s) if depth == 1 => { |
96 | for import in s { |
97 | let import = import?; |
98 | externs.push(( |
99 | import.name.0.to_string(), |
100 | Extern::Import(import.name.0.to_string()), |
101 | )); |
102 | } |
103 | } |
104 | Payload::ComponentExportSection(s) if depth == 1 => { |
105 | for export in s { |
106 | let export = export?; |
107 | externs.push(( |
108 | export.name.0.to_string(), |
109 | Extern::Export(DecodingExport { |
110 | name: export.name.0.to_string(), |
111 | kind: export.kind, |
112 | index: export.index, |
113 | }), |
114 | )); |
115 | } |
116 | } |
117 | #[cfg (feature = "serde" )] |
118 | Payload::CustomSection(s) if s.name() == PackageMetadata::SECTION_NAME => { |
119 | if _package_metadata.is_some() { |
120 | bail!("multiple {:?} sections" , PackageMetadata::SECTION_NAME); |
121 | } |
122 | _package_metadata = Some(PackageMetadata::decode(s.data())?); |
123 | } |
124 | Payload::ModuleSection { parser, .. } |
125 | | Payload::ComponentSection { parser, .. } => { |
126 | stack.push(cur.clone()); |
127 | cur = parser.clone(); |
128 | } |
129 | Payload::End(_) => { |
130 | if let Some(parent_parser) = stack.pop() { |
131 | cur = parent_parser.clone(); |
132 | } else { |
133 | break; |
134 | } |
135 | } |
136 | _ => {} |
137 | } |
138 | |
139 | // once we're done processing the payload we can forget the |
140 | // original. |
141 | buffer.drain(..consumed); |
142 | } |
143 | |
144 | Ok(Self { |
145 | types: types.unwrap(), |
146 | externs, |
147 | package_metadata: _package_metadata, |
148 | }) |
149 | } |
150 | |
151 | fn is_wit_package(&self) -> Option<WitEncodingVersion> { |
152 | // all wit package exports must be component types, and there must be at |
153 | // least one |
154 | if self.externs.is_empty() { |
155 | return None; |
156 | } |
157 | |
158 | if !self.externs.iter().all(|(_, item)| { |
159 | let export = match item { |
160 | Extern::Export(e) => e, |
161 | _ => return false, |
162 | }; |
163 | match export.kind { |
164 | ComponentExternalKind::Type => matches!( |
165 | self.types.as_ref().component_any_type_at(export.index), |
166 | ComponentAnyTypeId::Component(_) |
167 | ), |
168 | _ => false, |
169 | } |
170 | }) { |
171 | return None; |
172 | } |
173 | |
174 | // The distinction between v1 and v2 encoding formats is the structure of the export |
175 | // strings for each component. The v1 format uses "<namespace>:<package>/wit" as the name |
176 | // for the top-level exports, while the v2 format uses the unqualified name of the encoded |
177 | // entity. |
178 | match ComponentName::new(&self.externs[0].0, 0).ok()?.kind() { |
179 | ComponentNameKind::Interface(name) if name.interface().as_str() == "wit" => { |
180 | Some(WitEncodingVersion::V1) |
181 | } |
182 | ComponentNameKind::Label(_) => Some(WitEncodingVersion::V2), |
183 | _ => None, |
184 | } |
185 | } |
186 | |
187 | fn decode_wit_v1_package(&self) -> Result<(Resolve, PackageId)> { |
188 | let mut decoder = WitPackageDecoder::new(&self.types); |
189 | |
190 | let mut pkg = None; |
191 | for (name, item) in self.externs.iter() { |
192 | let export = match item { |
193 | Extern::Export(e) => e, |
194 | _ => unreachable!(), |
195 | }; |
196 | let id = self.types.as_ref().component_type_at(export.index); |
197 | let ty = &self.types[id]; |
198 | if pkg.is_some() { |
199 | bail!("more than one top-level exported component type found" ); |
200 | } |
201 | let name = ComponentName::new(name, 0).unwrap(); |
202 | pkg = Some( |
203 | decoder |
204 | .decode_v1_package(&name, ty) |
205 | .with_context(|| format!("failed to decode document ` {name}`" ))?, |
206 | ); |
207 | } |
208 | |
209 | let pkg = pkg.ok_or_else(|| anyhow!("no exported component type found" ))?; |
210 | let (mut resolve, package) = decoder.finish(pkg); |
211 | if let Some(package_metadata) = &self.package_metadata { |
212 | package_metadata.inject(&mut resolve, package)?; |
213 | } |
214 | Ok((resolve, package)) |
215 | } |
216 | |
217 | fn decode_wit_v2_package(&self) -> Result<(Resolve, PackageId)> { |
218 | let mut decoder = WitPackageDecoder::new(&self.types); |
219 | |
220 | let mut pkg_name = None; |
221 | |
222 | let mut interfaces = IndexMap::new(); |
223 | let mut worlds = IndexMap::new(); |
224 | let mut fields = PackageFields { |
225 | interfaces: &mut interfaces, |
226 | worlds: &mut worlds, |
227 | }; |
228 | |
229 | for (_, item) in self.externs.iter() { |
230 | let export = match item { |
231 | Extern::Export(e) => e, |
232 | _ => unreachable!(), |
233 | }; |
234 | |
235 | let index = export.index; |
236 | let id = self.types.as_ref().component_type_at(index); |
237 | let component = &self.types[id]; |
238 | |
239 | // The single export of this component will determine if it's a world or an interface: |
240 | // worlds export a component, while interfaces export an instance. |
241 | if component.exports.len() != 1 { |
242 | bail!( |
243 | "Expected a single export, but found {} instead" , |
244 | component.exports.len() |
245 | ); |
246 | } |
247 | |
248 | let name = component.exports.keys().nth(0).unwrap(); |
249 | |
250 | let name = match component.exports[name] { |
251 | ComponentEntityType::Component(ty) => { |
252 | let package_name = |
253 | decoder.decode_world(name.as_str(), &self.types[ty], &mut fields)?; |
254 | package_name |
255 | } |
256 | ComponentEntityType::Instance(ty) => { |
257 | let package_name = decoder.decode_interface( |
258 | name.as_str(), |
259 | &component.imports, |
260 | &self.types[ty], |
261 | &mut fields, |
262 | )?; |
263 | package_name |
264 | } |
265 | _ => unreachable!(), |
266 | }; |
267 | |
268 | if let Some(pkg_name) = pkg_name.as_ref() { |
269 | // TODO: when we have fully switched to the v2 format, we should switch to parsing |
270 | // multiple wit documents instead of bailing. |
271 | if pkg_name != &name { |
272 | bail!("item defined with mismatched package name" ) |
273 | } |
274 | } else { |
275 | pkg_name.replace(name); |
276 | } |
277 | } |
278 | |
279 | let pkg = if let Some(name) = pkg_name { |
280 | Package { |
281 | name, |
282 | docs: Docs::default(), |
283 | interfaces, |
284 | worlds, |
285 | } |
286 | } else { |
287 | bail!("no exported component type found" ); |
288 | }; |
289 | |
290 | let (mut resolve, package) = decoder.finish(pkg); |
291 | if let Some(package_metadata) = &self.package_metadata { |
292 | package_metadata.inject(&mut resolve, package)?; |
293 | } |
294 | Ok((resolve, package)) |
295 | } |
296 | |
297 | fn decode_component(&self) -> Result<(Resolve, WorldId)> { |
298 | assert!(self.is_wit_package().is_none()); |
299 | let mut decoder = WitPackageDecoder::new(&self.types); |
300 | // Note that this name is arbitrarily chosen. We may one day perhaps |
301 | // want to encode this in the component binary format itself, but for |
302 | // now it shouldn't be an issue to have a defaulted name here. |
303 | let world_name = "root" ; |
304 | let world = decoder.resolve.worlds.alloc(World { |
305 | name: world_name.to_string(), |
306 | docs: Default::default(), |
307 | imports: Default::default(), |
308 | exports: Default::default(), |
309 | package: None, |
310 | includes: Default::default(), |
311 | include_names: Default::default(), |
312 | stability: Default::default(), |
313 | }); |
314 | let mut package = Package { |
315 | // Similar to `world_name` above this is arbitrarily chosen as it's |
316 | // not otherwise encoded in a binary component. This theoretically |
317 | // shouldn't cause issues, however. |
318 | name: PackageName { |
319 | namespace: "root" .to_string(), |
320 | version: None, |
321 | name: "component" .to_string(), |
322 | }, |
323 | docs: Default::default(), |
324 | worlds: [(world_name.to_string(), world)].into_iter().collect(), |
325 | interfaces: Default::default(), |
326 | }; |
327 | |
328 | let mut fields = PackageFields { |
329 | worlds: &mut package.worlds, |
330 | interfaces: &mut package.interfaces, |
331 | }; |
332 | |
333 | for (_name, item) in self.externs.iter() { |
334 | match item { |
335 | Extern::Import(import) => { |
336 | decoder.decode_component_import(import, world, &mut fields)? |
337 | } |
338 | Extern::Export(export) => { |
339 | decoder.decode_component_export(export, world, &mut fields)? |
340 | } |
341 | } |
342 | } |
343 | |
344 | let (resolve, _) = decoder.finish(package); |
345 | Ok((resolve, world)) |
346 | } |
347 | } |
348 | |
349 | /// Result of the [`decode`] function. |
350 | pub enum DecodedWasm { |
351 | /// The input to [`decode`] was one or more binary-encoded WIT package(s). |
352 | /// |
353 | /// The full resolve graph is here plus the identifier of the packages that |
354 | /// were encoded. Note that other packages may be within the resolve if any |
355 | /// of the main packages refer to other, foreign packages. |
356 | WitPackage(Resolve, PackageId), |
357 | |
358 | /// The input to [`decode`] was a component and its interface is specified |
359 | /// by the world here. |
360 | Component(Resolve, WorldId), |
361 | } |
362 | |
363 | impl DecodedWasm { |
364 | /// Returns the [`Resolve`] for WIT types contained. |
365 | pub fn resolve(&self) -> &Resolve { |
366 | match self { |
367 | DecodedWasm::WitPackage(resolve: &Resolve, _) => resolve, |
368 | DecodedWasm::Component(resolve: &Resolve, _) => resolve, |
369 | } |
370 | } |
371 | |
372 | /// Returns the main packages of what was decoded. |
373 | pub fn package(&self) -> PackageId { |
374 | match self { |
375 | DecodedWasm::WitPackage(_, id: &Id) => *id, |
376 | DecodedWasm::Component(resolve: &Resolve, world: &Id) => resolve.worlds[*world].package.unwrap(), |
377 | } |
378 | } |
379 | } |
380 | |
381 | /// Decode for incremental reading |
382 | pub fn decode_reader(reader: impl Read) -> Result<DecodedWasm> { |
383 | let info: ComponentInfo = ComponentInfo::from_reader(reader)?; |
384 | |
385 | if let Some(version: WitEncodingVersion) = info.is_wit_package() { |
386 | match version { |
387 | WitEncodingVersion::V1 => { |
388 | log::debug!("decoding a v1 WIT package encoded as wasm" ); |
389 | let (resolve: Resolve, pkg: Id) = info.decode_wit_v1_package()?; |
390 | Ok(DecodedWasm::WitPackage(resolve, pkg)) |
391 | } |
392 | WitEncodingVersion::V2 => { |
393 | log::debug!("decoding a v2 WIT package encoded as wasm" ); |
394 | let (resolve: Resolve, pkg: Id) = info.decode_wit_v2_package()?; |
395 | Ok(DecodedWasm::WitPackage(resolve, pkg)) |
396 | } |
397 | } |
398 | } else { |
399 | log::debug!("inferring the WIT of a concrete component" ); |
400 | let (resolve: Resolve, world: Id) = info.decode_component()?; |
401 | Ok(DecodedWasm::Component(resolve, world)) |
402 | } |
403 | } |
404 | |
405 | /// Decodes an in-memory WebAssembly binary into a WIT [`Resolve`] and |
406 | /// associated metadata. |
407 | /// |
408 | /// The WebAssembly binary provided here can either be a |
409 | /// WIT-package-encoded-as-binary or an actual component itself. A [`Resolve`] |
410 | /// is always created and the return value indicates which was detected. |
411 | pub fn decode(bytes: &[u8]) -> Result<DecodedWasm> { |
412 | decode_reader(bytes) |
413 | } |
414 | |
415 | /// Decodes the single component type `world` specified as a WIT world. |
416 | /// |
417 | /// The `world` should be an exported component type. The `world` must have been |
418 | /// previously created via `encode_world` meaning that it is a component that |
419 | /// itself imports nothing and exports a single component, and the single |
420 | /// component export represents the world. The name of the export is also the |
421 | /// name of the package/world/etc. |
422 | pub fn decode_world(wasm: &[u8]) -> Result<(Resolve, WorldId)> { |
423 | let mut validator = Validator::new(); |
424 | let mut exports = Vec::new(); |
425 | let mut depth = 1; |
426 | let mut types = None; |
427 | |
428 | for payload in Parser::new(0).parse_all(wasm) { |
429 | let payload = payload?; |
430 | |
431 | match validator.payload(&payload)? { |
432 | ValidPayload::Ok => {} |
433 | ValidPayload::Parser(_) => depth += 1, |
434 | ValidPayload::End(t) => { |
435 | depth -= 1; |
436 | if depth == 0 { |
437 | types = Some(t); |
438 | } |
439 | } |
440 | ValidPayload::Func(..) => {} |
441 | } |
442 | |
443 | match payload { |
444 | Payload::ComponentExportSection(s) if depth == 1 => { |
445 | for export in s { |
446 | exports.push(export?); |
447 | } |
448 | } |
449 | _ => {} |
450 | } |
451 | } |
452 | |
453 | if exports.len() != 1 { |
454 | bail!("expected one export in component" ); |
455 | } |
456 | if exports[0].kind != ComponentExternalKind::Type { |
457 | bail!("expected an export of a type" ); |
458 | } |
459 | if exports[0].ty.is_some() { |
460 | bail!("expected an un-ascribed exported type" ); |
461 | } |
462 | let types = types.as_ref().unwrap(); |
463 | let world = match types.as_ref().component_any_type_at(exports[0].index) { |
464 | ComponentAnyTypeId::Component(c) => c, |
465 | _ => bail!("expected an exported component type" ), |
466 | }; |
467 | |
468 | let mut decoder = WitPackageDecoder::new(types); |
469 | let mut interfaces = IndexMap::new(); |
470 | let mut worlds = IndexMap::new(); |
471 | let ty = &types[world]; |
472 | assert_eq!(ty.imports.len(), 0); |
473 | assert_eq!(ty.exports.len(), 1); |
474 | let name = ty.exports.keys().nth(0).unwrap(); |
475 | let ty = match ty.exports[0] { |
476 | ComponentEntityType::Component(ty) => ty, |
477 | _ => unreachable!(), |
478 | }; |
479 | let name = decoder.decode_world( |
480 | name, |
481 | &types[ty], |
482 | &mut PackageFields { |
483 | interfaces: &mut interfaces, |
484 | worlds: &mut worlds, |
485 | }, |
486 | )?; |
487 | let (resolve, pkg) = decoder.finish(Package { |
488 | name, |
489 | interfaces, |
490 | worlds, |
491 | docs: Default::default(), |
492 | }); |
493 | // The package decoded here should only have a single world so extract that |
494 | // here to return. |
495 | let world = *resolve.packages[pkg].worlds.iter().next().unwrap().1; |
496 | Ok((resolve, world)) |
497 | } |
498 | |
499 | struct PackageFields<'a> { |
500 | interfaces: &'a mut IndexMap<String, InterfaceId>, |
501 | worlds: &'a mut IndexMap<String, WorldId>, |
502 | } |
503 | |
504 | struct WitPackageDecoder<'a> { |
505 | resolve: Resolve, |
506 | types: &'a Types, |
507 | foreign_packages: IndexMap<String, Package>, |
508 | iface_to_package_index: HashMap<InterfaceId, usize>, |
509 | named_interfaces: HashMap<String, InterfaceId>, |
510 | |
511 | /// A map which tracks named resources to what their corresponding `TypeId` |
512 | /// is. This first layer of key in this map is the owner scope of a |
513 | /// resource, more-or-less the `world` or `interface` that it's defined |
514 | /// within. The second layer of this map is keyed by name of the resource |
515 | /// and points to the actual ID of the resource. |
516 | /// |
517 | /// This map is populated in `register_type_export`. |
518 | resources: HashMap<TypeOwner, HashMap<String, TypeId>>, |
519 | |
520 | /// A map from a type id to what it's been translated to. |
521 | type_map: HashMap<ComponentAnyTypeId, TypeId>, |
522 | } |
523 | |
524 | impl WitPackageDecoder<'_> { |
525 | fn new<'a>(types: &'a Types) -> WitPackageDecoder<'a> { |
526 | WitPackageDecoder { |
527 | resolve: Resolve::default(), |
528 | types, |
529 | type_map: HashMap::new(), |
530 | foreign_packages: Default::default(), |
531 | iface_to_package_index: Default::default(), |
532 | named_interfaces: Default::default(), |
533 | resources: Default::default(), |
534 | } |
535 | } |
536 | |
537 | fn decode_v1_package(&mut self, name: &ComponentName, ty: &ComponentType) -> Result<Package> { |
538 | // Process all imports for this package first, where imports are |
539 | // importing from remote packages. |
540 | for (name, ty) in ty.imports.iter() { |
541 | let ty = match ty { |
542 | ComponentEntityType::Instance(idx) => &self.types[*idx], |
543 | _ => bail!("import ` {name}` is not an instance" ), |
544 | }; |
545 | self.register_import(name, ty) |
546 | .with_context(|| format!("failed to process import ` {name}`" ))?; |
547 | } |
548 | |
549 | let mut package = Package { |
550 | // The name encoded for packages must be of the form `foo:bar/wit` |
551 | // where "wit" is just a placeholder for now. The package name in |
552 | // this case would be `foo:bar`. |
553 | name: match name.kind() { |
554 | ComponentNameKind::Interface(name) if name.interface().as_str() == "wit" => { |
555 | name.to_package_name() |
556 | } |
557 | _ => bail!("package name is not a valid id: {name}" ), |
558 | }, |
559 | docs: Default::default(), |
560 | interfaces: Default::default(), |
561 | worlds: Default::default(), |
562 | }; |
563 | |
564 | let mut fields = PackageFields { |
565 | interfaces: &mut package.interfaces, |
566 | worlds: &mut package.worlds, |
567 | }; |
568 | |
569 | for (name, ty) in ty.exports.iter() { |
570 | match ty { |
571 | ComponentEntityType::Instance(idx) => { |
572 | let ty = &self.types[*idx]; |
573 | self.register_interface(name.as_str(), ty, &mut fields) |
574 | .with_context(|| format!("failed to process export ` {name}`" ))?; |
575 | } |
576 | ComponentEntityType::Component(idx) => { |
577 | let ty = &self.types[*idx]; |
578 | self.register_world(name.as_str(), ty, &mut fields) |
579 | .with_context(|| format!("failed to process export ` {name}`" ))?; |
580 | } |
581 | _ => bail!("component export ` {name}` is not an instance or component" ), |
582 | } |
583 | } |
584 | Ok(package) |
585 | } |
586 | |
587 | fn decode_interface<'a>( |
588 | &mut self, |
589 | name: &str, |
590 | imports: &wasmparser::collections::IndexMap<String, ComponentEntityType>, |
591 | ty: &ComponentInstanceType, |
592 | fields: &mut PackageFields<'a>, |
593 | ) -> Result<PackageName> { |
594 | let component_name = self |
595 | .parse_component_name(name) |
596 | .context("expected world name to have an ID form" )?; |
597 | |
598 | let package = match component_name.kind() { |
599 | ComponentNameKind::Interface(name) => name.to_package_name(), |
600 | _ => bail!("expected world name to be fully qualified" ), |
601 | }; |
602 | |
603 | for (name, ty) in imports.iter() { |
604 | let ty = match ty { |
605 | ComponentEntityType::Instance(idx) => &self.types[*idx], |
606 | _ => bail!("import ` {name}` is not an instance" ), |
607 | }; |
608 | self.register_import(name, ty) |
609 | .with_context(|| format!("failed to process import ` {name}`" ))?; |
610 | } |
611 | |
612 | let _ = self.register_interface(name, ty, fields)?; |
613 | |
614 | Ok(package) |
615 | } |
616 | |
617 | fn decode_world<'a>( |
618 | &mut self, |
619 | name: &str, |
620 | ty: &ComponentType, |
621 | fields: &mut PackageFields<'a>, |
622 | ) -> Result<PackageName> { |
623 | let kebab_name = self |
624 | .parse_component_name(name) |
625 | .context("expected world name to have an ID form" )?; |
626 | |
627 | let package = match kebab_name.kind() { |
628 | ComponentNameKind::Interface(name) => name.to_package_name(), |
629 | _ => bail!("expected world name to be fully qualified" ), |
630 | }; |
631 | |
632 | let _ = self.register_world(name, ty, fields)?; |
633 | |
634 | Ok(package) |
635 | } |
636 | |
637 | fn decode_component_import<'a>( |
638 | &mut self, |
639 | name: &str, |
640 | world: WorldId, |
641 | package: &mut PackageFields<'a>, |
642 | ) -> Result<()> { |
643 | log::debug!("decoding component import ` {name}`" ); |
644 | let ty = self |
645 | .types |
646 | .as_ref() |
647 | .component_entity_type_of_import(name) |
648 | .unwrap(); |
649 | let owner = TypeOwner::World(world); |
650 | let (name, item) = match ty { |
651 | ComponentEntityType::Instance(i) => { |
652 | let ty = &self.types[i]; |
653 | let (name, id) = if name.contains('/' ) { |
654 | let id = self.register_import(name, ty)?; |
655 | (WorldKey::Interface(id), id) |
656 | } else { |
657 | self.register_interface(name, ty, package) |
658 | .with_context(|| format!("failed to decode WIT from import ` {name}`" ))? |
659 | }; |
660 | ( |
661 | name, |
662 | WorldItem::Interface { |
663 | id, |
664 | stability: Default::default(), |
665 | }, |
666 | ) |
667 | } |
668 | ComponentEntityType::Func(i) => { |
669 | let ty = &self.types[i]; |
670 | let func = self |
671 | .convert_function(name, ty, owner) |
672 | .with_context(|| format!("failed to decode function from import ` {name}`" ))?; |
673 | (WorldKey::Name(name.to_string()), WorldItem::Function(func)) |
674 | } |
675 | ComponentEntityType::Type { |
676 | referenced, |
677 | created, |
678 | } => { |
679 | let id = self |
680 | .register_type_export(name, owner, referenced, created) |
681 | .with_context(|| format!("failed to decode type from export ` {name}`" ))?; |
682 | (WorldKey::Name(name.to_string()), WorldItem::Type(id)) |
683 | } |
684 | // All other imports do not form part of the component's world |
685 | _ => return Ok(()), |
686 | }; |
687 | self.resolve.worlds[world].imports.insert(name, item); |
688 | Ok(()) |
689 | } |
690 | |
691 | fn decode_component_export<'a>( |
692 | &mut self, |
693 | export: &DecodingExport, |
694 | world: WorldId, |
695 | package: &mut PackageFields<'a>, |
696 | ) -> Result<()> { |
697 | let name = &export.name; |
698 | log::debug!("decoding component export ` {name}`" ); |
699 | let types = self.types.as_ref(); |
700 | let ty = types.component_entity_type_of_export(name).unwrap(); |
701 | let (name, item) = match ty { |
702 | ComponentEntityType::Func(i) => { |
703 | let ty = &types[i]; |
704 | let func = self |
705 | .convert_function(name, ty, TypeOwner::World(world)) |
706 | .with_context(|| format!("failed to decode function from export ` {name}`" ))?; |
707 | |
708 | (WorldKey::Name(name.to_string()), WorldItem::Function(func)) |
709 | } |
710 | ComponentEntityType::Instance(i) => { |
711 | let ty = &types[i]; |
712 | let (name, id) = if name.contains('/' ) { |
713 | let id = self.register_import(name, ty)?; |
714 | (WorldKey::Interface(id), id) |
715 | } else { |
716 | self.register_interface(name, ty, package) |
717 | .with_context(|| format!("failed to decode WIT from export ` {name}`" ))? |
718 | }; |
719 | ( |
720 | name, |
721 | WorldItem::Interface { |
722 | id, |
723 | stability: Default::default(), |
724 | }, |
725 | ) |
726 | } |
727 | _ => { |
728 | bail!("component export ` {name}` was not a function or instance" ) |
729 | } |
730 | }; |
731 | self.resolve.worlds[world].exports.insert(name, item); |
732 | Ok(()) |
733 | } |
734 | |
735 | /// Registers that the `name` provided is either imported interface from a |
736 | /// foreign package or referencing a previously defined interface in this |
737 | /// package. |
738 | /// |
739 | /// This function will internally ensure that `name` is well-structured and |
740 | /// will fill in any information as necessary. For example with a foreign |
741 | /// dependency the foreign package structure, types, etc, all need to be |
742 | /// created. For a local dependency it's instead ensured that all the types |
743 | /// line up with the previous definitions. |
744 | fn register_import(&mut self, name: &str, ty: &ComponentInstanceType) -> Result<InterfaceId> { |
745 | let (is_local, interface) = match self.named_interfaces.get(name) { |
746 | Some(id) => (true, *id), |
747 | None => (false, self.extract_dep_interface(name)?), |
748 | }; |
749 | let owner = TypeOwner::Interface(interface); |
750 | for (name, ty) in ty.exports.iter() { |
751 | log::debug!("decoding import instance export ` {name}`" ); |
752 | match *ty { |
753 | ComponentEntityType::Type { |
754 | referenced, |
755 | created, |
756 | } => { |
757 | match self.resolve.interfaces[interface] |
758 | .types |
759 | .get(name.as_str()) |
760 | .copied() |
761 | { |
762 | // If this name is already defined as a type in the |
763 | // specified interface then that's ok. For package-local |
764 | // interfaces that's expected since the interface was |
765 | // fully defined. For remote interfaces it means we're |
766 | // using something that was already used elsewhere. In |
767 | // both cases continue along. |
768 | // |
769 | // Notably for the remotely defined case this will also |
770 | // walk over the structure of the type and register |
771 | // internal wasmparser ids with wit-parser ids. This is |
772 | // necessary to ensure that anonymous types like |
773 | // `list<u8>` defined in original definitions are |
774 | // unified with anonymous types when duplicated inside |
775 | // of worlds. Overall this prevents, for example, extra |
776 | // `list<u8>` types from popping up when decoding. This |
777 | // is not strictly necessary but assists with |
778 | // roundtripping assertions during fuzzing. |
779 | Some(id) => { |
780 | log::debug!("type already exist" ); |
781 | match referenced { |
782 | ComponentAnyTypeId::Defined(ty) => { |
783 | self.register_defined(id, &self.types[ty])?; |
784 | } |
785 | ComponentAnyTypeId::Resource(_) => {} |
786 | _ => unreachable!(), |
787 | } |
788 | let prev = self.type_map.insert(created, id); |
789 | assert!(prev.is_none()); |
790 | } |
791 | |
792 | // If the name is not defined, however, then there's two |
793 | // possibilities: |
794 | // |
795 | // * For package-local interfaces this is an error |
796 | // because the package-local interface defined |
797 | // everything already and this is referencing |
798 | // something that isn't defined. |
799 | // |
800 | // * For remote interfaces they're never fully declared |
801 | // so it's lazily filled in here. This means that the |
802 | // view of remote interfaces ends up being the minimal |
803 | // slice needed for this resolve, which is what's |
804 | // intended. |
805 | None => { |
806 | if is_local { |
807 | bail!("instance type export ` {name}` not defined in interface" ); |
808 | } |
809 | let id = self.register_type_export( |
810 | name.as_str(), |
811 | owner, |
812 | referenced, |
813 | created, |
814 | )?; |
815 | let prev = self.resolve.interfaces[interface] |
816 | .types |
817 | .insert(name.to_string(), id); |
818 | assert!(prev.is_none()); |
819 | } |
820 | } |
821 | } |
822 | |
823 | // This has similar logic to types above where we lazily fill in |
824 | // functions for remote dependencies and otherwise assert |
825 | // they're already defined for local dependencies. |
826 | ComponentEntityType::Func(ty) => { |
827 | let def = &self.types[ty]; |
828 | if self.resolve.interfaces[interface] |
829 | .functions |
830 | .contains_key(name.as_str()) |
831 | { |
832 | // TODO: should ideally verify that function signatures |
833 | // match. |
834 | continue; |
835 | } |
836 | if is_local { |
837 | bail!("instance function export ` {name}` not defined in interface" ); |
838 | } |
839 | let func = self.convert_function(name.as_str(), def, owner)?; |
840 | let prev = self.resolve.interfaces[interface] |
841 | .functions |
842 | .insert(name.to_string(), func); |
843 | assert!(prev.is_none()); |
844 | } |
845 | |
846 | _ => bail!("instance type export ` {name}` is not a type" ), |
847 | } |
848 | } |
849 | |
850 | Ok(interface) |
851 | } |
852 | |
853 | fn find_alias(&self, id: ComponentAnyTypeId) -> Option<TypeId> { |
854 | // Consult `type_map` for `referenced` or anything in its |
855 | // chain of aliases to determine what it maps to. This may |
856 | // bottom out in `None` in the case that this type is |
857 | // just now being defined, but this should otherwise follow |
858 | // chains of aliases to determine what exactly this was a |
859 | // `use` of if it exists. |
860 | let mut prev = None; |
861 | let mut cur = id; |
862 | while prev.is_none() { |
863 | prev = self.type_map.get(&cur).copied(); |
864 | cur = match self.types.as_ref().peel_alias(cur) { |
865 | Some(next) => next, |
866 | None => break, |
867 | }; |
868 | } |
869 | prev |
870 | } |
871 | |
872 | /// This will parse the `name_string` as a component model ID string and |
873 | /// ensure that there's an `InterfaceId` corresponding to its components. |
874 | fn extract_dep_interface(&mut self, name_string: &str) -> Result<InterfaceId> { |
875 | let name = ComponentName::new(name_string, 0).unwrap(); |
876 | let name = match name.kind() { |
877 | ComponentNameKind::Interface(name) => name, |
878 | _ => bail!("package name is not a valid id: {name_string}" ), |
879 | }; |
880 | let package_name = name.to_package_name(); |
881 | // Lazily create a `Package` as necessary, along with the interface. |
882 | let package = self |
883 | .foreign_packages |
884 | .entry(package_name.to_string()) |
885 | .or_insert_with(|| Package { |
886 | name: package_name.clone(), |
887 | docs: Default::default(), |
888 | interfaces: Default::default(), |
889 | worlds: Default::default(), |
890 | }); |
891 | let interface = *package |
892 | .interfaces |
893 | .entry(name.interface().to_string()) |
894 | .or_insert_with(|| { |
895 | self.resolve.interfaces.alloc(Interface { |
896 | name: Some(name.interface().to_string()), |
897 | docs: Default::default(), |
898 | types: IndexMap::default(), |
899 | functions: IndexMap::new(), |
900 | package: None, |
901 | stability: Default::default(), |
902 | }) |
903 | }); |
904 | |
905 | // Record a mapping of which foreign package this interface belongs to |
906 | self.iface_to_package_index.insert( |
907 | interface, |
908 | self.foreign_packages |
909 | .get_full(&package_name.to_string()) |
910 | .unwrap() |
911 | .0, |
912 | ); |
913 | Ok(interface) |
914 | } |
915 | |
916 | /// A general-purpose helper function to translate a component instance |
917 | /// into a WIT interface. |
918 | /// |
919 | /// This is one of the main workhorses of this module. This handles |
920 | /// interfaces both at the type level, for concrete components, and |
921 | /// internally within worlds as well. |
922 | /// |
923 | /// The `name` provided is the contextual ID or name of the interface. This |
924 | /// could be a kebab-name in the case of a world import or export or it can |
925 | /// also be an ID. This is used to guide insertion into various maps. |
926 | /// |
927 | /// The `ty` provided is the actual component type being decoded. |
928 | /// |
929 | /// The `package` is where to insert the final interface if `name` is an ID |
930 | /// meaning it's registered as a named standalone item within the package. |
931 | fn register_interface<'a>( |
932 | &mut self, |
933 | name: &str, |
934 | ty: &ComponentInstanceType, |
935 | package: &mut PackageFields<'a>, |
936 | ) -> Result<(WorldKey, InterfaceId)> { |
937 | // If this interface's name is already known then that means this is an |
938 | // interface that's both imported and exported. Use `register_import` |
939 | // to draw connections between types and this interface's types. |
940 | if self.named_interfaces.contains_key(name) { |
941 | let id = self.register_import(name, ty)?; |
942 | return Ok((WorldKey::Interface(id), id)); |
943 | } |
944 | |
945 | // If this is a bare kebab-name for an interface then the interface's |
946 | // listed name is `None` and the name goes out through the key. |
947 | // Otherwise this name is extracted from `name` interpreted as an ID. |
948 | let interface_name = self.extract_interface_name_from_component_name(name)?; |
949 | |
950 | let mut interface = Interface { |
951 | name: interface_name.clone(), |
952 | docs: Default::default(), |
953 | types: IndexMap::default(), |
954 | functions: IndexMap::new(), |
955 | package: None, |
956 | stability: Default::default(), |
957 | }; |
958 | |
959 | let owner = TypeOwner::Interface(self.resolve.interfaces.next_id()); |
960 | for (name, ty) in ty.exports.iter() { |
961 | match *ty { |
962 | ComponentEntityType::Type { |
963 | referenced, |
964 | created, |
965 | } => { |
966 | let ty = self |
967 | .register_type_export(name.as_str(), owner, referenced, created) |
968 | .with_context(|| format!("failed to register type export ' {name}'" ))?; |
969 | let prev = interface.types.insert(name.to_string(), ty); |
970 | assert!(prev.is_none()); |
971 | } |
972 | |
973 | ComponentEntityType::Func(ty) => { |
974 | let ty = &self.types[ty]; |
975 | let func = self |
976 | .convert_function(name.as_str(), ty, owner) |
977 | .with_context(|| format!("failed to convert function ' {name}'" ))?; |
978 | let prev = interface.functions.insert(name.to_string(), func); |
979 | assert!(prev.is_none()); |
980 | } |
981 | _ => bail!("instance type export ` {name}` is not a type or function" ), |
982 | }; |
983 | } |
984 | let id = self.resolve.interfaces.alloc(interface); |
985 | let key = match interface_name { |
986 | // If this interface is named then it's part of the package, so |
987 | // insert it. Additionally register it in `named_interfaces` so |
988 | // further use comes back to this original definition. |
989 | Some(interface_name) => { |
990 | let prev = package.interfaces.insert(interface_name, id); |
991 | assert!(prev.is_none(), "duplicate interface added for {name:?}" ); |
992 | let prev = self.named_interfaces.insert(name.to_string(), id); |
993 | assert!(prev.is_none()); |
994 | WorldKey::Interface(id) |
995 | } |
996 | |
997 | // If this interface isn't named then its key is always a |
998 | // kebab-name. |
999 | None => WorldKey::Name(name.to_string()), |
1000 | }; |
1001 | Ok((key, id)) |
1002 | } |
1003 | |
1004 | fn parse_component_name(&self, name: &str) -> Result<ComponentName> { |
1005 | ComponentName::new(name, 0) |
1006 | .with_context(|| format!("cannot extract item name from: {name}" )) |
1007 | } |
1008 | |
1009 | fn extract_interface_name_from_component_name(&self, name: &str) -> Result<Option<String>> { |
1010 | let component_name = self.parse_component_name(name)?; |
1011 | match component_name.kind() { |
1012 | ComponentNameKind::Interface(name) => Ok(Some(name.interface().to_string())), |
1013 | ComponentNameKind::Label(_name) => Ok(None), |
1014 | _ => bail!("cannot extract item name from: {name}" ), |
1015 | } |
1016 | } |
1017 | |
1018 | fn register_type_export( |
1019 | &mut self, |
1020 | name: &str, |
1021 | owner: TypeOwner, |
1022 | referenced: ComponentAnyTypeId, |
1023 | created: ComponentAnyTypeId, |
1024 | ) -> Result<TypeId> { |
1025 | let kind = match self.find_alias(referenced) { |
1026 | // If this `TypeId` points to a type which has |
1027 | // previously been defined, meaning we're aliasing a |
1028 | // prior definition. |
1029 | Some(prev) => { |
1030 | log::debug!("type export for ` {name}` is an alias" ); |
1031 | TypeDefKind::Type(Type::Id(prev)) |
1032 | } |
1033 | |
1034 | // ... or this `TypeId`'s source definition has never |
1035 | // been seen before, so declare the full type. |
1036 | None => { |
1037 | log::debug!("type export for ` {name}` is a new type" ); |
1038 | match referenced { |
1039 | ComponentAnyTypeId::Defined(ty) => self |
1040 | .convert_defined(&self.types[ty]) |
1041 | .context("failed to convert unaliased type" )?, |
1042 | ComponentAnyTypeId::Resource(_) => TypeDefKind::Resource, |
1043 | _ => unreachable!(), |
1044 | } |
1045 | } |
1046 | }; |
1047 | let ty = self.resolve.types.alloc(TypeDef { |
1048 | name: Some(name.to_string()), |
1049 | kind, |
1050 | docs: Default::default(), |
1051 | stability: Default::default(), |
1052 | owner, |
1053 | }); |
1054 | |
1055 | // If this is a resource then doubly-register it in `self.resources` so |
1056 | // the ID allocated here can be looked up via name later on during |
1057 | // `convert_function`. |
1058 | if let TypeDefKind::Resource = self.resolve.types[ty].kind { |
1059 | let prev = self |
1060 | .resources |
1061 | .entry(owner) |
1062 | .or_insert(HashMap::new()) |
1063 | .insert(name.to_string(), ty); |
1064 | assert!(prev.is_none()); |
1065 | } |
1066 | |
1067 | let prev = self.type_map.insert(created, ty); |
1068 | assert!(prev.is_none()); |
1069 | Ok(ty) |
1070 | } |
1071 | |
1072 | fn register_world<'a>( |
1073 | &mut self, |
1074 | name: &str, |
1075 | ty: &ComponentType, |
1076 | package: &mut PackageFields<'a>, |
1077 | ) -> Result<WorldId> { |
1078 | let name = self |
1079 | .extract_interface_name_from_component_name(name)? |
1080 | .context("expected world name to have an ID form" )?; |
1081 | let mut world = World { |
1082 | name: name.clone(), |
1083 | docs: Default::default(), |
1084 | imports: Default::default(), |
1085 | exports: Default::default(), |
1086 | includes: Default::default(), |
1087 | include_names: Default::default(), |
1088 | package: None, |
1089 | stability: Default::default(), |
1090 | }; |
1091 | |
1092 | let owner = TypeOwner::World(self.resolve.worlds.next_id()); |
1093 | for (name, ty) in ty.imports.iter() { |
1094 | let (name, item) = match ty { |
1095 | ComponentEntityType::Instance(idx) => { |
1096 | let ty = &self.types[*idx]; |
1097 | let (name, id) = if name.contains('/' ) { |
1098 | // If a name is an interface import then it is either to |
1099 | // a package-local or foreign interface, and both |
1100 | // situations are handled in `register_import`. |
1101 | let id = self.register_import(name, ty)?; |
1102 | (WorldKey::Interface(id), id) |
1103 | } else { |
1104 | // A plain kebab-name indicates an inline interface that |
1105 | // wasn't declared explicitly elsewhere with a name, and |
1106 | // `register_interface` will create a new `Interface` |
1107 | // with no name. |
1108 | self.register_interface(name, ty, package)? |
1109 | }; |
1110 | ( |
1111 | name, |
1112 | WorldItem::Interface { |
1113 | id, |
1114 | stability: Default::default(), |
1115 | }, |
1116 | ) |
1117 | } |
1118 | ComponentEntityType::Type { |
1119 | created, |
1120 | referenced, |
1121 | } => { |
1122 | let ty = |
1123 | self.register_type_export(name.as_str(), owner, *referenced, *created)?; |
1124 | (WorldKey::Name(name.to_string()), WorldItem::Type(ty)) |
1125 | } |
1126 | ComponentEntityType::Func(idx) => { |
1127 | let ty = &self.types[*idx]; |
1128 | let func = self.convert_function(name.as_str(), ty, owner)?; |
1129 | (WorldKey::Name(name.to_string()), WorldItem::Function(func)) |
1130 | } |
1131 | _ => bail!("component import ` {name}` is not an instance, func, or type" ), |
1132 | }; |
1133 | world.imports.insert(name, item); |
1134 | } |
1135 | |
1136 | for (name, ty) in ty.exports.iter() { |
1137 | let (name, item) = match ty { |
1138 | ComponentEntityType::Instance(idx) => { |
1139 | let ty = &self.types[*idx]; |
1140 | let (name, id) = if name.contains('/' ) { |
1141 | // Note that despite this being an export this is |
1142 | // calling `register_import`. With a URL this interface |
1143 | // must have been previously defined so this will |
1144 | // trigger the logic of either filling in a remotely |
1145 | // defined interface or connecting items to local |
1146 | // definitions of our own interface. |
1147 | let id = self.register_import(name, ty)?; |
1148 | (WorldKey::Interface(id), id) |
1149 | } else { |
1150 | self.register_interface(name, ty, package)? |
1151 | }; |
1152 | ( |
1153 | name, |
1154 | WorldItem::Interface { |
1155 | id, |
1156 | stability: Default::default(), |
1157 | }, |
1158 | ) |
1159 | } |
1160 | |
1161 | ComponentEntityType::Func(idx) => { |
1162 | let ty = &self.types[*idx]; |
1163 | let func = self.convert_function(name.as_str(), ty, owner)?; |
1164 | (WorldKey::Name(name.to_string()), WorldItem::Function(func)) |
1165 | } |
1166 | |
1167 | _ => bail!("component export ` {name}` is not an instance or function" ), |
1168 | }; |
1169 | world.exports.insert(name, item); |
1170 | } |
1171 | let id = self.resolve.worlds.alloc(world); |
1172 | let prev = package.worlds.insert(name, id); |
1173 | assert!(prev.is_none()); |
1174 | Ok(id) |
1175 | } |
1176 | |
1177 | fn convert_function( |
1178 | &mut self, |
1179 | name: &str, |
1180 | ty: &ComponentFuncType, |
1181 | owner: TypeOwner, |
1182 | ) -> Result<Function> { |
1183 | let name = ComponentName::new(name, 0).unwrap(); |
1184 | let params = ty |
1185 | .params |
1186 | .iter() |
1187 | .map(|(name, ty)| Ok((name.to_string(), self.convert_valtype(ty)?))) |
1188 | .collect::<Result<Vec<_>>>() |
1189 | .context("failed to convert params" )?; |
1190 | let results = if ty.results.len() == 1 && ty.results[0].0.is_none() { |
1191 | Results::Anon( |
1192 | self.convert_valtype(&ty.results[0].1) |
1193 | .context("failed to convert anonymous result type" )?, |
1194 | ) |
1195 | } else { |
1196 | Results::Named( |
1197 | ty.results |
1198 | .iter() |
1199 | .map(|(name, ty)| { |
1200 | Ok(( |
1201 | name.as_ref().unwrap().to_string(), |
1202 | self.convert_valtype(ty)?, |
1203 | )) |
1204 | }) |
1205 | .collect::<Result<Vec<_>>>() |
1206 | .context("failed to convert named result types" )?, |
1207 | ) |
1208 | }; |
1209 | Ok(Function { |
1210 | docs: Default::default(), |
1211 | stability: Default::default(), |
1212 | kind: match name.kind() { |
1213 | ComponentNameKind::Label(_) => FunctionKind::Freestanding, |
1214 | ComponentNameKind::Constructor(resource) => { |
1215 | FunctionKind::Constructor(self.resources[&owner][resource.as_str()]) |
1216 | } |
1217 | ComponentNameKind::Method(name) => { |
1218 | FunctionKind::Method(self.resources[&owner][name.resource().as_str()]) |
1219 | } |
1220 | ComponentNameKind::Static(name) => { |
1221 | FunctionKind::Static(self.resources[&owner][name.resource().as_str()]) |
1222 | } |
1223 | |
1224 | // Functions shouldn't have ID-based names at this time. |
1225 | ComponentNameKind::Interface(_) |
1226 | | ComponentNameKind::Url(_) |
1227 | | ComponentNameKind::Hash(_) |
1228 | | ComponentNameKind::Dependency(_) => unreachable!(), |
1229 | }, |
1230 | |
1231 | // Note that this name includes "name mangling" such as |
1232 | // `[method]foo.bar` which is intentional. The `FunctionKind` |
1233 | // discriminant calculated above indicates how to interpret this |
1234 | // name. |
1235 | name: name.to_string(), |
1236 | params, |
1237 | results, |
1238 | }) |
1239 | } |
1240 | |
1241 | fn convert_valtype(&mut self, ty: &ComponentValType) -> Result<Type> { |
1242 | let id = match ty { |
1243 | ComponentValType::Primitive(ty) => return Ok(self.convert_primitive(*ty)), |
1244 | ComponentValType::Type(id) => *id, |
1245 | }; |
1246 | |
1247 | // Don't create duplicate types for anything previously created. |
1248 | if let Some(ret) = self.type_map.get(&id.into()) { |
1249 | return Ok(Type::Id(*ret)); |
1250 | } |
1251 | |
1252 | // Otherwise create a new `TypeDef` without a name since this is an |
1253 | // anonymous valtype. Note that this is invalid for some types so return |
1254 | // errors on those types, but eventually the `bail!` here is |
1255 | // more-or-less unreachable due to expected validation to be added to |
1256 | // the component model binary format itself. |
1257 | let def = &self.types[id]; |
1258 | let kind = self.convert_defined(def)?; |
1259 | match &kind { |
1260 | TypeDefKind::Type(_) |
1261 | | TypeDefKind::List(_) |
1262 | | TypeDefKind::Tuple(_) |
1263 | | TypeDefKind::Option(_) |
1264 | | TypeDefKind::Result(_) |
1265 | | TypeDefKind::Handle(_) |
1266 | | TypeDefKind::Future(_) |
1267 | | TypeDefKind::Stream(_) |
1268 | | TypeDefKind::ErrorContext => {} |
1269 | |
1270 | TypeDefKind::Resource |
1271 | | TypeDefKind::Record(_) |
1272 | | TypeDefKind::Enum(_) |
1273 | | TypeDefKind::Variant(_) |
1274 | | TypeDefKind::Flags(_) => { |
1275 | bail!("unexpected unnamed type of kind ' {}'" , kind.as_str()); |
1276 | } |
1277 | TypeDefKind::Unknown => unreachable!(), |
1278 | } |
1279 | let ty = self.resolve.types.alloc(TypeDef { |
1280 | name: None, |
1281 | docs: Default::default(), |
1282 | stability: Default::default(), |
1283 | owner: TypeOwner::None, |
1284 | kind, |
1285 | }); |
1286 | let prev = self.type_map.insert(id.into(), ty); |
1287 | assert!(prev.is_none()); |
1288 | Ok(Type::Id(ty)) |
1289 | } |
1290 | |
1291 | /// Converts a wasmparser `ComponentDefinedType`, the definition of a type |
1292 | /// in the component model, to a WIT `TypeDefKind` to get inserted into the |
1293 | /// types arena by the caller. |
1294 | fn convert_defined(&mut self, ty: &ComponentDefinedType) -> Result<TypeDefKind> { |
1295 | match ty { |
1296 | ComponentDefinedType::Primitive(t) => Ok(TypeDefKind::Type(self.convert_primitive(*t))), |
1297 | |
1298 | ComponentDefinedType::List(t) => { |
1299 | let t = self.convert_valtype(t)?; |
1300 | Ok(TypeDefKind::List(t)) |
1301 | } |
1302 | |
1303 | ComponentDefinedType::Tuple(t) => { |
1304 | let types = t |
1305 | .types |
1306 | .iter() |
1307 | .map(|t| self.convert_valtype(t)) |
1308 | .collect::<Result<_>>()?; |
1309 | Ok(TypeDefKind::Tuple(Tuple { types })) |
1310 | } |
1311 | |
1312 | ComponentDefinedType::Option(t) => { |
1313 | let t = self.convert_valtype(t)?; |
1314 | Ok(TypeDefKind::Option(t)) |
1315 | } |
1316 | |
1317 | ComponentDefinedType::Result { ok, err } => { |
1318 | let ok = match ok { |
1319 | Some(t) => Some(self.convert_valtype(t)?), |
1320 | None => None, |
1321 | }; |
1322 | let err = match err { |
1323 | Some(t) => Some(self.convert_valtype(t)?), |
1324 | None => None, |
1325 | }; |
1326 | Ok(TypeDefKind::Result(Result_ { ok, err })) |
1327 | } |
1328 | |
1329 | ComponentDefinedType::Record(r) => { |
1330 | let fields = r |
1331 | .fields |
1332 | .iter() |
1333 | .map(|(name, ty)| { |
1334 | Ok(Field { |
1335 | name: name.to_string(), |
1336 | ty: self.convert_valtype(ty).with_context(|| { |
1337 | format!("failed to convert record field ' {name}'" ) |
1338 | })?, |
1339 | docs: Default::default(), |
1340 | }) |
1341 | }) |
1342 | .collect::<Result<_>>()?; |
1343 | Ok(TypeDefKind::Record(Record { fields })) |
1344 | } |
1345 | |
1346 | ComponentDefinedType::Variant(v) => { |
1347 | let cases = v |
1348 | .cases |
1349 | .iter() |
1350 | .map(|(name, case)| { |
1351 | if case.refines.is_some() { |
1352 | bail!("unimplemented support for `refines`" ); |
1353 | } |
1354 | Ok(Case { |
1355 | name: name.to_string(), |
1356 | ty: match &case.ty { |
1357 | Some(ty) => Some(self.convert_valtype(ty)?), |
1358 | None => None, |
1359 | }, |
1360 | docs: Default::default(), |
1361 | }) |
1362 | }) |
1363 | .collect::<Result<_>>()?; |
1364 | Ok(TypeDefKind::Variant(Variant { cases })) |
1365 | } |
1366 | |
1367 | ComponentDefinedType::Flags(f) => { |
1368 | let flags = f |
1369 | .iter() |
1370 | .map(|name| Flag { |
1371 | name: name.to_string(), |
1372 | docs: Default::default(), |
1373 | }) |
1374 | .collect(); |
1375 | Ok(TypeDefKind::Flags(Flags { flags })) |
1376 | } |
1377 | |
1378 | ComponentDefinedType::Enum(e) => { |
1379 | let cases = e |
1380 | .iter() |
1381 | .cloned() |
1382 | .map(|name| EnumCase { |
1383 | name: name.into(), |
1384 | docs: Default::default(), |
1385 | }) |
1386 | .collect(); |
1387 | Ok(TypeDefKind::Enum(Enum { cases })) |
1388 | } |
1389 | |
1390 | ComponentDefinedType::Own(id) => { |
1391 | let id = self.type_map[&(*id).into()]; |
1392 | Ok(TypeDefKind::Handle(Handle::Own(id))) |
1393 | } |
1394 | |
1395 | ComponentDefinedType::Borrow(id) => { |
1396 | let id = self.type_map[&(*id).into()]; |
1397 | Ok(TypeDefKind::Handle(Handle::Borrow(id))) |
1398 | } |
1399 | |
1400 | ComponentDefinedType::Future(ty) => Ok(TypeDefKind::Future( |
1401 | ty.as_ref().map(|ty| self.convert_valtype(ty)).transpose()?, |
1402 | )), |
1403 | |
1404 | ComponentDefinedType::Stream(ty) => Ok(TypeDefKind::Stream(self.convert_valtype(ty)?)), |
1405 | |
1406 | ComponentDefinedType::ErrorContext => Ok(TypeDefKind::ErrorContext), |
1407 | } |
1408 | } |
1409 | |
1410 | fn convert_primitive(&self, ty: PrimitiveValType) -> Type { |
1411 | match ty { |
1412 | PrimitiveValType::U8 => Type::U8, |
1413 | PrimitiveValType::S8 => Type::S8, |
1414 | PrimitiveValType::U16 => Type::U16, |
1415 | PrimitiveValType::S16 => Type::S16, |
1416 | PrimitiveValType::U32 => Type::U32, |
1417 | PrimitiveValType::S32 => Type::S32, |
1418 | PrimitiveValType::U64 => Type::U64, |
1419 | PrimitiveValType::S64 => Type::S64, |
1420 | PrimitiveValType::Bool => Type::Bool, |
1421 | PrimitiveValType::Char => Type::Char, |
1422 | PrimitiveValType::String => Type::String, |
1423 | PrimitiveValType::F32 => Type::F32, |
1424 | PrimitiveValType::F64 => Type::F64, |
1425 | } |
1426 | } |
1427 | |
1428 | fn register_defined(&mut self, id: TypeId, def: &ComponentDefinedType) -> Result<()> { |
1429 | Registrar { |
1430 | types: &self.types, |
1431 | type_map: &mut self.type_map, |
1432 | resolve: &self.resolve, |
1433 | } |
1434 | .defined(id, def) |
1435 | } |
1436 | |
1437 | /// Completes the decoding of this resolve by finalizing all packages into |
1438 | /// their topological ordering within the returned `Resolve`. |
1439 | /// |
1440 | /// Takes the root package as an argument to insert. |
1441 | fn finish(mut self, package: Package) -> (Resolve, PackageId) { |
1442 | // Build a topological ordering is then calculated by visiting all the |
1443 | // transitive dependencies of packages. |
1444 | let mut order = IndexSet::new(); |
1445 | for i in 0..self.foreign_packages.len() { |
1446 | self.visit_package(i, &mut order); |
1447 | } |
1448 | |
1449 | // Using the topological ordering create a temporary map from |
1450 | // index-in-`foreign_packages` to index-in-`order` |
1451 | let mut idx_to_pos = vec![0; self.foreign_packages.len()]; |
1452 | for (pos, idx) in order.iter().enumerate() { |
1453 | idx_to_pos[*idx] = pos; |
1454 | } |
1455 | // .. and then using `idx_to_pos` sort the `foreign_packages` array based |
1456 | // on the position it's at in the topological ordering |
1457 | let mut deps = mem::take(&mut self.foreign_packages) |
1458 | .into_iter() |
1459 | .enumerate() |
1460 | .collect::<Vec<_>>(); |
1461 | deps.sort_by_key(|(idx, _)| idx_to_pos[*idx]); |
1462 | |
1463 | // .. and finally insert the packages, in their final topological |
1464 | // ordering, into the returned array. |
1465 | for (_idx, (_url, pkg)) in deps { |
1466 | self.insert_package(pkg); |
1467 | } |
1468 | |
1469 | let id = self.insert_package(package); |
1470 | assert!(self.resolve.worlds.iter().all(|(_, w)| w.package.is_some())); |
1471 | assert!(self |
1472 | .resolve |
1473 | .interfaces |
1474 | .iter() |
1475 | .all(|(_, i)| i.package.is_some())); |
1476 | (self.resolve, id) |
1477 | } |
1478 | |
1479 | fn insert_package(&mut self, package: Package) -> PackageId { |
1480 | let Package { |
1481 | name, |
1482 | interfaces, |
1483 | worlds, |
1484 | docs, |
1485 | } = package; |
1486 | |
1487 | // Most of the time the `package` being inserted is not already present |
1488 | // in `self.resolve`, but in the case of the top-level `decode_world` |
1489 | // function this isn't the case. This shouldn't in general be a problem |
1490 | // so union-up the packages here while asserting that nothing gets |
1491 | // replaced by accident which would indicate a bug. |
1492 | let pkg = self |
1493 | .resolve |
1494 | .package_names |
1495 | .get(&name) |
1496 | .copied() |
1497 | .unwrap_or_else(|| { |
1498 | let id = self.resolve.packages.alloc(Package { |
1499 | name: name.clone(), |
1500 | interfaces: Default::default(), |
1501 | worlds: Default::default(), |
1502 | docs, |
1503 | }); |
1504 | let prev = self.resolve.package_names.insert(name, id); |
1505 | assert!(prev.is_none()); |
1506 | id |
1507 | }); |
1508 | |
1509 | for (name, id) in interfaces { |
1510 | let prev = self.resolve.packages[pkg].interfaces.insert(name, id); |
1511 | assert!(prev.is_none()); |
1512 | self.resolve.interfaces[id].package = Some(pkg); |
1513 | } |
1514 | |
1515 | for (name, id) in worlds { |
1516 | let prev = self.resolve.packages[pkg].worlds.insert(name, id); |
1517 | assert!(prev.is_none()); |
1518 | let world = &mut self.resolve.worlds[id]; |
1519 | world.package = Some(pkg); |
1520 | for (name, item) in world.imports.iter().chain(world.exports.iter()) { |
1521 | if let WorldKey::Name(_) = name { |
1522 | if let WorldItem::Interface { id, .. } = item { |
1523 | self.resolve.interfaces[*id].package = Some(pkg); |
1524 | } |
1525 | } |
1526 | } |
1527 | } |
1528 | |
1529 | pkg |
1530 | } |
1531 | |
1532 | fn visit_package(&self, idx: usize, order: &mut IndexSet<usize>) { |
1533 | if order.contains(&idx) { |
1534 | return; |
1535 | } |
1536 | |
1537 | let (_name, pkg) = self.foreign_packages.get_index(idx).unwrap(); |
1538 | let interfaces = pkg.interfaces.values().copied().chain( |
1539 | pkg.worlds |
1540 | .values() |
1541 | .flat_map(|w| { |
1542 | let world = &self.resolve.worlds[*w]; |
1543 | world.imports.values().chain(world.exports.values()) |
1544 | }) |
1545 | .filter_map(|item| match item { |
1546 | WorldItem::Interface { id, .. } => Some(*id), |
1547 | WorldItem::Function(_) | WorldItem::Type(_) => None, |
1548 | }), |
1549 | ); |
1550 | for iface in interfaces { |
1551 | for dep in self.resolve.interface_direct_deps(iface) { |
1552 | let dep_idx = self.iface_to_package_index[&dep]; |
1553 | if dep_idx != idx { |
1554 | self.visit_package(dep_idx, order); |
1555 | } |
1556 | } |
1557 | } |
1558 | |
1559 | assert!(order.insert(idx)); |
1560 | } |
1561 | } |
1562 | |
1563 | /// Helper type to register the structure of a wasm-defined type against a |
1564 | /// wit-defined type. |
1565 | struct Registrar<'a> { |
1566 | types: &'a Types, |
1567 | type_map: &'a mut HashMap<ComponentAnyTypeId, TypeId>, |
1568 | resolve: &'a Resolve, |
1569 | } |
1570 | |
1571 | impl Registrar<'_> { |
1572 | /// Verifies that the wasm structure of `def` matches the wit structure of |
1573 | /// `id` and recursively registers types. |
1574 | fn defined(&mut self, id: TypeId, def: &ComponentDefinedType) -> Result<()> { |
1575 | match def { |
1576 | ComponentDefinedType::Primitive(_) => Ok(()), |
1577 | |
1578 | ComponentDefinedType::List(t) => { |
1579 | let ty = match &self.resolve.types[id].kind { |
1580 | TypeDefKind::List(r) => r, |
1581 | // Note that all cases below have this match and the general |
1582 | // idea is that once a type is named or otherwise identified |
1583 | // here there's no need to recurse. The purpose of this |
1584 | // registrar is to build connections for anonymous types |
1585 | // that don't otherwise have a name to ensure that they're |
1586 | // decoded to reuse the same constructs consistently. For |
1587 | // that reason once something is named we can bail out. |
1588 | TypeDefKind::Type(Type::Id(_)) => return Ok(()), |
1589 | _ => bail!("expected a list" ), |
1590 | }; |
1591 | self.valtype(t, ty) |
1592 | } |
1593 | |
1594 | ComponentDefinedType::Tuple(t) => { |
1595 | let ty = match &self.resolve.types[id].kind { |
1596 | TypeDefKind::Tuple(r) => r, |
1597 | TypeDefKind::Type(Type::Id(_)) => return Ok(()), |
1598 | _ => bail!("expected a tuple" ), |
1599 | }; |
1600 | if ty.types.len() != t.types.len() { |
1601 | bail!("mismatched number of tuple fields" ); |
1602 | } |
1603 | for (a, b) in t.types.iter().zip(ty.types.iter()) { |
1604 | self.valtype(a, b)?; |
1605 | } |
1606 | Ok(()) |
1607 | } |
1608 | |
1609 | ComponentDefinedType::Option(t) => { |
1610 | let ty = match &self.resolve.types[id].kind { |
1611 | TypeDefKind::Option(r) => r, |
1612 | TypeDefKind::Type(Type::Id(_)) => return Ok(()), |
1613 | _ => bail!("expected an option" ), |
1614 | }; |
1615 | self.valtype(t, ty) |
1616 | } |
1617 | |
1618 | ComponentDefinedType::Result { ok, err } => { |
1619 | let ty = match &self.resolve.types[id].kind { |
1620 | TypeDefKind::Result(r) => r, |
1621 | TypeDefKind::Type(Type::Id(_)) => return Ok(()), |
1622 | _ => bail!("expected a result" ), |
1623 | }; |
1624 | match (ok, &ty.ok) { |
1625 | (Some(a), Some(b)) => self.valtype(a, b)?, |
1626 | (None, None) => {} |
1627 | _ => bail!("disagreement on result structure" ), |
1628 | } |
1629 | match (err, &ty.err) { |
1630 | (Some(a), Some(b)) => self.valtype(a, b)?, |
1631 | (None, None) => {} |
1632 | _ => bail!("disagreement on result structure" ), |
1633 | } |
1634 | Ok(()) |
1635 | } |
1636 | |
1637 | ComponentDefinedType::Record(def) => { |
1638 | let ty = match &self.resolve.types[id].kind { |
1639 | TypeDefKind::Record(r) => r, |
1640 | TypeDefKind::Type(Type::Id(_)) => return Ok(()), |
1641 | _ => bail!("expected a record" ), |
1642 | }; |
1643 | if def.fields.len() != ty.fields.len() { |
1644 | bail!("mismatched number of record fields" ); |
1645 | } |
1646 | for ((name, ty), field) in def.fields.iter().zip(&ty.fields) { |
1647 | if name.as_str() != field.name { |
1648 | bail!("mismatched field order" ); |
1649 | } |
1650 | self.valtype(ty, &field.ty)?; |
1651 | } |
1652 | Ok(()) |
1653 | } |
1654 | |
1655 | ComponentDefinedType::Variant(def) => { |
1656 | let ty = match &self.resolve.types[id].kind { |
1657 | TypeDefKind::Variant(r) => r, |
1658 | TypeDefKind::Type(Type::Id(_)) => return Ok(()), |
1659 | _ => bail!("expected a variant" ), |
1660 | }; |
1661 | if def.cases.len() != ty.cases.len() { |
1662 | bail!("mismatched number of variant cases" ); |
1663 | } |
1664 | for ((name, ty), case) in def.cases.iter().zip(&ty.cases) { |
1665 | if name.as_str() != case.name { |
1666 | bail!("mismatched case order" ); |
1667 | } |
1668 | match (&ty.ty, &case.ty) { |
1669 | (Some(a), Some(b)) => self.valtype(a, b)?, |
1670 | (None, None) => {} |
1671 | _ => bail!("disagreement on case type" ), |
1672 | } |
1673 | } |
1674 | Ok(()) |
1675 | } |
1676 | |
1677 | ComponentDefinedType::Future(payload) => { |
1678 | let ty = match &self.resolve.types[id].kind { |
1679 | TypeDefKind::Future(p) => p, |
1680 | TypeDefKind::Type(Type::Id(_)) => return Ok(()), |
1681 | _ => bail!("expected a future" ), |
1682 | }; |
1683 | match (payload, ty) { |
1684 | (Some(a), Some(b)) => self.valtype(a, b), |
1685 | (None, None) => Ok(()), |
1686 | _ => bail!("disagreement on future payload" ), |
1687 | } |
1688 | } |
1689 | |
1690 | ComponentDefinedType::Stream(payload) => { |
1691 | let ty = match &self.resolve.types[id].kind { |
1692 | TypeDefKind::Stream(p) => p, |
1693 | TypeDefKind::Type(Type::Id(_)) => return Ok(()), |
1694 | _ => bail!("expected a stream" ), |
1695 | }; |
1696 | self.valtype(payload, ty) |
1697 | } |
1698 | |
1699 | // These have no recursive structure so they can bail out. |
1700 | ComponentDefinedType::Flags(_) |
1701 | | ComponentDefinedType::Enum(_) |
1702 | | ComponentDefinedType::Own(_) |
1703 | | ComponentDefinedType::Borrow(_) |
1704 | | ComponentDefinedType::ErrorContext => Ok(()), |
1705 | } |
1706 | } |
1707 | |
1708 | fn valtype(&mut self, wasm: &ComponentValType, wit: &Type) -> Result<()> { |
1709 | let wasm = match wasm { |
1710 | ComponentValType::Type(wasm) => *wasm, |
1711 | ComponentValType::Primitive(_wasm) => { |
1712 | assert!(!matches!(wit, Type::Id(_))); |
1713 | return Ok(()); |
1714 | } |
1715 | }; |
1716 | let wit = match wit { |
1717 | Type::Id(id) => *id, |
1718 | _ => bail!("expected id-based type" ), |
1719 | }; |
1720 | let prev = match self.type_map.insert(wasm.into(), wit) { |
1721 | Some(prev) => prev, |
1722 | None => { |
1723 | let wasm = &self.types[wasm]; |
1724 | return self.defined(wit, wasm); |
1725 | } |
1726 | }; |
1727 | // If `wit` matches `prev` then we've just rediscovered what we already |
1728 | // knew which is that the `wasm` id maps to the `wit` id. |
1729 | // |
1730 | // If, however, `wit` is not equal to `prev` then that's more |
1731 | // interesting. Consider a component such as: |
1732 | // |
1733 | // ```wasm |
1734 | // (component |
1735 | // (import (interface "a:b/name") (instance |
1736 | // (type $l (list string)) |
1737 | // (type $foo (variant (case "l" $l))) |
1738 | // (export "foo" (type (eq $foo))) |
1739 | // )) |
1740 | // (component $c |
1741 | // (type $l (list string)) |
1742 | // (type $bar (variant (case "n" u16) (case "l" $l))) |
1743 | // (export "bar" (type $bar)) |
1744 | // (type $foo (variant (case "l" $l))) |
1745 | // (export "foo" (type $foo)) |
1746 | // ) |
1747 | // (instance $i (instantiate $c)) |
1748 | // (export (interface "a:b/name") (instance $i)) |
1749 | // ) |
1750 | // ``` |
1751 | // |
1752 | // This roughly corresponds to: |
1753 | // |
1754 | // ```wit |
1755 | // package a:b |
1756 | // |
1757 | // interface name { |
1758 | // variant bar { |
1759 | // n(u16), |
1760 | // l(list<string>), |
1761 | // } |
1762 | // |
1763 | // variant foo { |
1764 | // l(list<string>), |
1765 | // } |
1766 | // } |
1767 | // |
1768 | // world module { |
1769 | // import name |
1770 | // export name |
1771 | // } |
1772 | // ``` |
1773 | // |
1774 | // In this situation first we'll see the `import` which records type |
1775 | // information for the `foo` type in `interface name`. Later on the full |
1776 | // picture of `interface name` becomes apparent with the export of a |
1777 | // component which has full type information. When walking over this |
1778 | // first `bar` is seen and its recursive structure. |
1779 | // |
1780 | // The problem arises when walking over the `foo` type. In this |
1781 | // situation the code path we're currently on will be hit because |
1782 | // there's a preexisting definition of `foo` from the import and it's |
1783 | // now going to be unified with what we've seen in the export. When |
1784 | // visiting the `list<string>` case of the `foo` variant this ends up |
1785 | // being different than the `list<string>` used by the `bar` variant. The |
1786 | // reason for this is that when visiting `bar` the wasm-defined `(list |
1787 | // string)` hasn't been seen before so a new type is allocated. Later |
1788 | // though this same wasm type is unified with the first `(list string)` |
1789 | // type in the `import`. |
1790 | // |
1791 | // All-in-all this ends up meaning that it's possible for `prev` to not |
1792 | // match `wit`. In this situation it means the decoded WIT interface |
1793 | // will have duplicate definitions of `list<string>`. This is, |
1794 | // theoretically, not that big of a problem because the same underlying |
1795 | // definition is still there and the meaning of the type is the same. |
1796 | // This can, however, perhaps be a problem for consumers where it's |
1797 | // assumed that all `list<string>` are equal and there's only one. For |
1798 | // example a bindings generator for C may assume that `list<string>` |
1799 | // will only appear once and generate a single name for it, but with two |
1800 | // different types in play here it may generate two types of the same |
1801 | // name (or something like that). |
1802 | // |
1803 | // For now though this is left for a future refactoring. Fixing this |
1804 | // issue would require tracking anonymous types during type translation |
1805 | // so the decoding process for the `bar` export would reuse the |
1806 | // `list<string>` type created from decoding the `foo` import. That's |
1807 | // somewhat nontrivial at this time, so it's left for a future |
1808 | // refactoring. |
1809 | let _ = prev; |
1810 | Ok(()) |
1811 | } |
1812 | } |
1813 | |
1814 | pub(crate) trait InterfaceNameExt { |
1815 | fn to_package_name(&self) -> PackageName; |
1816 | } |
1817 | |
1818 | impl InterfaceNameExt for wasmparser::names::InterfaceName<'_> { |
1819 | fn to_package_name(&self) -> PackageName { |
1820 | PackageName { |
1821 | namespace: self.namespace().to_string(), |
1822 | name: self.package().to_string(), |
1823 | version: self.version(), |
1824 | } |
1825 | } |
1826 | } |
1827 | |