| 1 | // This file is part of ICU4X. For terms of use, please see the file |
| 2 | // called LICENSE at the top level of the ICU4X source tree |
| 3 | // (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ). |
| 4 | |
| 5 | use crate::ule::*; |
| 6 | use crate::varzerovec::VarZeroVecFormat; |
| 7 | use crate::{VarZeroSlice, VarZeroVec, ZeroSlice, ZeroVec}; |
| 8 | use alloc::borrow::{Cow, ToOwned}; |
| 9 | use alloc::boxed::Box; |
| 10 | use alloc::string::String; |
| 11 | use alloc::{vec, vec::Vec}; |
| 12 | use core::mem; |
| 13 | |
| 14 | /// Allows types to be encoded as VarULEs. This is highly useful for implementing VarULE on |
| 15 | /// custom DSTs where the type cannot be obtained as a reference to some other type. |
| 16 | /// |
| 17 | /// [`Self::encode_var_ule_as_slices()`] should be implemented by providing an encoded slice for each field |
| 18 | /// of the VarULE type to the callback, in order. For an implementation to be safe, the slices |
| 19 | /// to the callback must, when concatenated, be a valid instance of the VarULE type. |
| 20 | /// |
| 21 | /// See the [custom VarULEdocumentation](crate::ule::custom) for examples. |
| 22 | /// |
| 23 | /// [`Self::encode_var_ule_as_slices()`] is only used to provide default implementations for [`Self::encode_var_ule_write()`] |
| 24 | /// and [`Self::encode_var_ule_len()`]. If you override the default implementations it is totally valid to |
| 25 | /// replace [`Self::encode_var_ule_as_slices()`]'s body with `unreachable!()`. This can be done for cases where |
| 26 | /// it is not possible to implement [`Self::encode_var_ule_as_slices()`] but the other methods still work. |
| 27 | /// |
| 28 | /// A typical implementation will take each field in the order found in the [`VarULE`] type, |
| 29 | /// convert it to ULE, call [`ULE::as_byte_slice()`] on them, and pass the slices to `cb` in order. |
| 30 | /// A trailing [`ZeroVec`](crate::ZeroVec) or [`VarZeroVec`](crate::VarZeroVec) can have their underlying |
| 31 | /// byte representation passed through. |
| 32 | /// |
| 33 | /// In case the compiler is not optimizing [`Self::encode_var_ule_len()`], it can be overridden. A typical |
| 34 | /// implementation will add up the sizes of each field on the [`VarULE`] type and then add in the byte length of the |
| 35 | /// dynamically-sized part. |
| 36 | /// |
| 37 | /// # Safety |
| 38 | /// |
| 39 | /// The safety invariants of [`Self::encode_var_ule_as_slices()`] are: |
| 40 | /// - It must call `cb` (only once) |
| 41 | /// - The slices passed to `cb`, if concatenated, should be a valid instance of the `T` [`VarULE`] type |
| 42 | /// (i.e. if fed to [`VarULE::validate_byte_slice()`] they must produce a successful result) |
| 43 | /// - It must return the return value of `cb` to the caller |
| 44 | /// |
| 45 | /// One or more of [`Self::encode_var_ule_len()`] and [`Self::encode_var_ule_write()`] may be provided. |
| 46 | /// If both are, then `zerovec` code is guaranteed to not call [`Self::encode_var_ule_as_slices()`], and it may be replaced |
| 47 | /// with `unreachable!()`. |
| 48 | /// |
| 49 | /// The safety invariants of [`Self::encode_var_ule_len()`] are: |
| 50 | /// - It must return the length of the corresponding VarULE type |
| 51 | /// |
| 52 | /// The safety invariants of [`Self::encode_var_ule_write()`] are: |
| 53 | /// - The slice written to `dst` must be a valid instance of the `T` [`VarULE`] type |
| 54 | pub unsafe trait EncodeAsVarULE<T: VarULE + ?Sized> { |
| 55 | /// Calls `cb` with a piecewise list of byte slices that when concatenated |
| 56 | /// produce the memory pattern of the corresponding instance of `T`. |
| 57 | /// |
| 58 | /// Do not call this function directly; instead use the other two. Some implementors |
| 59 | /// may define this function to panic. |
| 60 | fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R; |
| 61 | |
| 62 | /// Return the length, in bytes, of the corresponding [`VarULE`] type |
| 63 | fn encode_var_ule_len(&self) -> usize { |
| 64 | self.encode_var_ule_as_slices(|slices| slices.iter().map(|s| s.len()).sum()) |
| 65 | } |
| 66 | |
| 67 | /// Write the corresponding [`VarULE`] type to the `dst` buffer. `dst` should |
| 68 | /// be the size of [`Self::encode_var_ule_len()`] |
| 69 | fn encode_var_ule_write(&self, mut dst: &mut [u8]) { |
| 70 | debug_assert_eq!(self.encode_var_ule_len(), dst.len()); |
| 71 | self.encode_var_ule_as_slices(move |slices| { |
| 72 | #[allow (clippy::indexing_slicing)] // by debug_assert |
| 73 | for slice in slices { |
| 74 | dst[..slice.len()].copy_from_slice(slice); |
| 75 | dst = &mut dst[slice.len()..]; |
| 76 | } |
| 77 | }); |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | /// Given an [`EncodeAsVarULE`] type `S`, encode it into a `Box<T>` |
| 82 | /// |
| 83 | /// This is primarily useful for generating `Deserialize` impls for VarULE types |
| 84 | pub fn encode_varule_to_box<S: EncodeAsVarULE<T>, T: VarULE + ?Sized>(x: &S) -> Box<T> { |
| 85 | // zero-fill the vector to avoid uninitialized data UB |
| 86 | let mut vec: Vec<u8> = vec![0; x.encode_var_ule_len()]; |
| 87 | x.encode_var_ule_write(&mut vec); |
| 88 | let boxed: ManuallyDrop> = mem::ManuallyDrop::new(vec.into_boxed_slice()); |
| 89 | unsafe { |
| 90 | // Safety: `ptr` is a box, and `T` is a VarULE which guarantees it has the same memory layout as `[u8]` |
| 91 | // and can be recouped via from_byte_slice_unchecked() |
| 92 | let ptr: *mut T = T::from_byte_slice_unchecked(&boxed) as *const T as *mut T; |
| 93 | |
| 94 | // Safety: we can construct an owned version since we have mem::forgotten the older owner |
| 95 | Box::from_raw(ptr) |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for T { |
| 100 | fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { |
| 101 | cb(&[T::as_byte_slice(self)]) |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for &'_ T { |
| 106 | fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { |
| 107 | cb(&[T::as_byte_slice(self)]) |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for Cow<'_, T> |
| 112 | where |
| 113 | T: ToOwned, |
| 114 | { |
| 115 | fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { |
| 116 | cb(&[T::as_byte_slice(self.as_ref())]) |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for Box<T> { |
| 121 | fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { |
| 122 | cb(&[T::as_byte_slice(self)]) |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | unsafe impl EncodeAsVarULE<str> for String { |
| 127 | fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { |
| 128 | cb(&[self.as_bytes()]) |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | // Note: This impl could technically use `T: AsULE`, but we want users to prefer `ZeroSlice<T>` |
| 133 | // for cases where T is not a ULE. Therefore, we can use the more efficient `memcpy` impl here. |
| 134 | unsafe impl<T> EncodeAsVarULE<[T]> for Vec<T> |
| 135 | where |
| 136 | T: ULE, |
| 137 | { |
| 138 | fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R { |
| 139 | cb(&[<[T] as VarULE>::as_byte_slice(self)]) |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | unsafe impl<T> EncodeAsVarULE<ZeroSlice<T>> for &'_ [T] |
| 144 | where |
| 145 | T: AsULE + 'static, |
| 146 | { |
| 147 | fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { |
| 148 | // unnecessary if the other two are implemented |
| 149 | unreachable!() |
| 150 | } |
| 151 | |
| 152 | #[inline ] |
| 153 | fn encode_var_ule_len(&self) -> usize { |
| 154 | self.len() * core::mem::size_of::<T::ULE>() |
| 155 | } |
| 156 | |
| 157 | fn encode_var_ule_write(&self, dst: &mut [u8]) { |
| 158 | #[allow (non_snake_case)] |
| 159 | let S: usize = core::mem::size_of::<T::ULE>(); |
| 160 | debug_assert_eq!(self.len() * S, dst.len()); |
| 161 | for (item: &T, ref mut chunk: &mut &mut [u8]) in self.iter().zip(dst.chunks_mut(chunk_size:S)) { |
| 162 | let ule: ::ULE = item.to_unaligned(); |
| 163 | chunk.copy_from_slice(src:ULE::as_byte_slice(core::slice::from_ref(&ule))); |
| 164 | } |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | unsafe impl<T> EncodeAsVarULE<ZeroSlice<T>> for Vec<T> |
| 169 | where |
| 170 | T: AsULE + 'static, |
| 171 | { |
| 172 | fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { |
| 173 | // unnecessary if the other two are implemented |
| 174 | unreachable!() |
| 175 | } |
| 176 | |
| 177 | #[inline ] |
| 178 | fn encode_var_ule_len(&self) -> usize { |
| 179 | self.as_slice().encode_var_ule_len() |
| 180 | } |
| 181 | |
| 182 | #[inline ] |
| 183 | fn encode_var_ule_write(&self, dst: &mut [u8]) { |
| 184 | self.as_slice().encode_var_ule_write(dst) |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | unsafe impl<T> EncodeAsVarULE<ZeroSlice<T>> for ZeroVec<'_, T> |
| 189 | where |
| 190 | T: AsULE + 'static, |
| 191 | { |
| 192 | fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { |
| 193 | // unnecessary if the other two are implemented |
| 194 | unreachable!() |
| 195 | } |
| 196 | |
| 197 | #[inline ] |
| 198 | fn encode_var_ule_len(&self) -> usize { |
| 199 | self.as_bytes().len() |
| 200 | } |
| 201 | |
| 202 | fn encode_var_ule_write(&self, dst: &mut [u8]) { |
| 203 | debug_assert_eq!(self.as_bytes().len(), dst.len()); |
| 204 | dst.copy_from_slice(self.as_bytes()); |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | unsafe impl<T, E, F> EncodeAsVarULE<VarZeroSlice<T, F>> for &'_ [E] |
| 209 | where |
| 210 | T: VarULE + ?Sized, |
| 211 | E: EncodeAsVarULE<T>, |
| 212 | F: VarZeroVecFormat, |
| 213 | { |
| 214 | fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { |
| 215 | // unnecessary if the other two are implemented |
| 216 | unimplemented!() |
| 217 | } |
| 218 | |
| 219 | #[allow (clippy::unwrap_used)] // TODO(#1410): Rethink length errors in VZV. |
| 220 | fn encode_var_ule_len(&self) -> usize { |
| 221 | crate::varzerovec::components::compute_serializable_len::<T, E, F>(self).unwrap() as usize |
| 222 | } |
| 223 | |
| 224 | fn encode_var_ule_write(&self, dst: &mut [u8]) { |
| 225 | crate::varzerovec::components::write_serializable_bytes::<T, E, F>(self, output:dst) |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | unsafe impl<T, E, F> EncodeAsVarULE<VarZeroSlice<T, F>> for Vec<E> |
| 230 | where |
| 231 | T: VarULE + ?Sized, |
| 232 | E: EncodeAsVarULE<T>, |
| 233 | F: VarZeroVecFormat, |
| 234 | { |
| 235 | fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { |
| 236 | // unnecessary if the other two are implemented |
| 237 | unreachable!() |
| 238 | } |
| 239 | |
| 240 | #[inline ] |
| 241 | fn encode_var_ule_len(&self) -> usize { |
| 242 | <_ as EncodeAsVarULE<VarZeroSlice<T, F>>>::encode_var_ule_len(&self.as_slice()) |
| 243 | } |
| 244 | |
| 245 | #[inline ] |
| 246 | fn encode_var_ule_write(&self, dst: &mut [u8]) { |
| 247 | <_ as EncodeAsVarULE<VarZeroSlice<T, F>>>::encode_var_ule_write(&self.as_slice(), dst) |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | unsafe impl<T, F> EncodeAsVarULE<VarZeroSlice<T, F>> for VarZeroVec<'_, T, F> |
| 252 | where |
| 253 | T: VarULE + ?Sized, |
| 254 | F: VarZeroVecFormat, |
| 255 | { |
| 256 | fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R { |
| 257 | // unnecessary if the other two are implemented |
| 258 | unreachable!() |
| 259 | } |
| 260 | |
| 261 | #[inline ] |
| 262 | fn encode_var_ule_len(&self) -> usize { |
| 263 | self.as_bytes().len() |
| 264 | } |
| 265 | |
| 266 | #[inline ] |
| 267 | fn encode_var_ule_write(&self, dst: &mut [u8]) { |
| 268 | debug_assert_eq!(self.as_bytes().len(), dst.len()); |
| 269 | dst.copy_from_slice(self.as_bytes()); |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | #[cfg (test)] |
| 274 | mod test { |
| 275 | use super::*; |
| 276 | |
| 277 | const STRING_ARRAY: [&str; 2] = ["hello" , "world" ]; |
| 278 | |
| 279 | const STRING_SLICE: &[&str] = &STRING_ARRAY; |
| 280 | |
| 281 | const U8_ARRAY: [u8; 8] = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07]; |
| 282 | |
| 283 | const U8_2D_ARRAY: [&[u8]; 2] = [&U8_ARRAY, &U8_ARRAY]; |
| 284 | |
| 285 | const U8_2D_SLICE: &[&[u8]] = &[&U8_ARRAY, &U8_ARRAY]; |
| 286 | |
| 287 | const U8_3D_ARRAY: [&[&[u8]]; 2] = [U8_2D_SLICE, U8_2D_SLICE]; |
| 288 | |
| 289 | const U8_3D_SLICE: &[&[&[u8]]] = &[U8_2D_SLICE, U8_2D_SLICE]; |
| 290 | |
| 291 | const U32_ARRAY: [u32; 4] = [0x00010203, 0x04050607, 0x08090A0B, 0x0C0D0E0F]; |
| 292 | |
| 293 | const U32_2D_ARRAY: [&[u32]; 2] = [&U32_ARRAY, &U32_ARRAY]; |
| 294 | |
| 295 | const U32_2D_SLICE: &[&[u32]] = &[&U32_ARRAY, &U32_ARRAY]; |
| 296 | |
| 297 | const U32_3D_ARRAY: [&[&[u32]]; 2] = [U32_2D_SLICE, U32_2D_SLICE]; |
| 298 | |
| 299 | const U32_3D_SLICE: &[&[&[u32]]] = &[U32_2D_SLICE, U32_2D_SLICE]; |
| 300 | |
| 301 | #[test ] |
| 302 | fn test_vzv_from() { |
| 303 | type VZV<'a, T> = VarZeroVec<'a, T>; |
| 304 | type ZS<T> = ZeroSlice<T>; |
| 305 | type VZS<T> = VarZeroSlice<T>; |
| 306 | |
| 307 | let u8_zerovec: ZeroVec<u8> = ZeroVec::from_slice_or_alloc(&U8_ARRAY); |
| 308 | let u8_2d_zerovec: [ZeroVec<u8>; 2] = [u8_zerovec.clone(), u8_zerovec.clone()]; |
| 309 | let u8_2d_vec: Vec<Vec<u8>> = vec![U8_ARRAY.into(), U8_ARRAY.into()]; |
| 310 | let u8_3d_vec: Vec<Vec<Vec<u8>>> = vec![u8_2d_vec.clone(), u8_2d_vec.clone()]; |
| 311 | |
| 312 | let u32_zerovec: ZeroVec<u32> = ZeroVec::from_slice_or_alloc(&U32_ARRAY); |
| 313 | let u32_2d_zerovec: [ZeroVec<u32>; 2] = [u32_zerovec.clone(), u32_zerovec.clone()]; |
| 314 | let u32_2d_vec: Vec<Vec<u32>> = vec![U32_ARRAY.into(), U32_ARRAY.into()]; |
| 315 | let u32_3d_vec: Vec<Vec<Vec<u32>>> = vec![u32_2d_vec.clone(), u32_2d_vec.clone()]; |
| 316 | |
| 317 | let a: VZV<str> = VarZeroVec::from(&STRING_ARRAY); |
| 318 | let b: VZV<str> = VarZeroVec::from(STRING_SLICE); |
| 319 | let c: VZV<str> = VarZeroVec::from(&Vec::from(STRING_SLICE)); |
| 320 | assert_eq!(a, STRING_SLICE); |
| 321 | assert_eq!(a, b); |
| 322 | assert_eq!(a, c); |
| 323 | |
| 324 | let a: VZV<[u8]> = VarZeroVec::from(&U8_2D_ARRAY); |
| 325 | let b: VZV<[u8]> = VarZeroVec::from(U8_2D_SLICE); |
| 326 | let c: VZV<[u8]> = VarZeroVec::from(&u8_2d_vec); |
| 327 | assert_eq!(a, U8_2D_SLICE); |
| 328 | assert_eq!(a, b); |
| 329 | assert_eq!(a, c); |
| 330 | let u8_3d_vzv_brackets = &[a.clone(), a.clone()]; |
| 331 | |
| 332 | let a: VZV<ZS<u8>> = VarZeroVec::from(&U8_2D_ARRAY); |
| 333 | let b: VZV<ZS<u8>> = VarZeroVec::from(U8_2D_SLICE); |
| 334 | let c: VZV<ZS<u8>> = VarZeroVec::from(&u8_2d_vec); |
| 335 | let d: VZV<ZS<u8>> = VarZeroVec::from(&u8_2d_zerovec); |
| 336 | assert_eq!(a, U8_2D_SLICE); |
| 337 | assert_eq!(a, b); |
| 338 | assert_eq!(a, c); |
| 339 | assert_eq!(a, d); |
| 340 | let u8_3d_vzv_zeroslice = &[a.clone(), a.clone()]; |
| 341 | |
| 342 | let a: VZV<VZS<[u8]>> = VarZeroVec::from(&U8_3D_ARRAY); |
| 343 | let b: VZV<VZS<[u8]>> = VarZeroVec::from(U8_3D_SLICE); |
| 344 | let c: VZV<VZS<[u8]>> = VarZeroVec::from(&u8_3d_vec); |
| 345 | let d: VZV<VZS<[u8]>> = VarZeroVec::from(u8_3d_vzv_brackets); |
| 346 | assert_eq!( |
| 347 | a.iter() |
| 348 | .map(|x| x.iter().map(|y| y.to_vec()).collect::<Vec<Vec<u8>>>()) |
| 349 | .collect::<Vec<Vec<Vec<u8>>>>(), |
| 350 | u8_3d_vec |
| 351 | ); |
| 352 | assert_eq!(a, b); |
| 353 | assert_eq!(a, c); |
| 354 | assert_eq!(a, d); |
| 355 | |
| 356 | let a: VZV<VZS<ZS<u8>>> = VarZeroVec::from(&U8_3D_ARRAY); |
| 357 | let b: VZV<VZS<ZS<u8>>> = VarZeroVec::from(U8_3D_SLICE); |
| 358 | let c: VZV<VZS<ZS<u8>>> = VarZeroVec::from(&u8_3d_vec); |
| 359 | let d: VZV<VZS<ZS<u8>>> = VarZeroVec::from(u8_3d_vzv_zeroslice); |
| 360 | assert_eq!( |
| 361 | a.iter() |
| 362 | .map(|x| x |
| 363 | .iter() |
| 364 | .map(|y| y.iter().collect::<Vec<u8>>()) |
| 365 | .collect::<Vec<Vec<u8>>>()) |
| 366 | .collect::<Vec<Vec<Vec<u8>>>>(), |
| 367 | u8_3d_vec |
| 368 | ); |
| 369 | assert_eq!(a, b); |
| 370 | assert_eq!(a, c); |
| 371 | assert_eq!(a, d); |
| 372 | |
| 373 | let a: VZV<ZS<u32>> = VarZeroVec::from(&U32_2D_ARRAY); |
| 374 | let b: VZV<ZS<u32>> = VarZeroVec::from(U32_2D_SLICE); |
| 375 | let c: VZV<ZS<u32>> = VarZeroVec::from(&u32_2d_vec); |
| 376 | let d: VZV<ZS<u32>> = VarZeroVec::from(&u32_2d_zerovec); |
| 377 | assert_eq!(a, u32_2d_zerovec); |
| 378 | assert_eq!(a, b); |
| 379 | assert_eq!(a, c); |
| 380 | assert_eq!(a, d); |
| 381 | let u32_3d_vzv = &[a.clone(), a.clone()]; |
| 382 | |
| 383 | let a: VZV<VZS<ZS<u32>>> = VarZeroVec::from(&U32_3D_ARRAY); |
| 384 | let b: VZV<VZS<ZS<u32>>> = VarZeroVec::from(U32_3D_SLICE); |
| 385 | let c: VZV<VZS<ZS<u32>>> = VarZeroVec::from(&u32_3d_vec); |
| 386 | let d: VZV<VZS<ZS<u32>>> = VarZeroVec::from(u32_3d_vzv); |
| 387 | assert_eq!( |
| 388 | a.iter() |
| 389 | .map(|x| x |
| 390 | .iter() |
| 391 | .map(|y| y.iter().collect::<Vec<u32>>()) |
| 392 | .collect::<Vec<Vec<u32>>>()) |
| 393 | .collect::<Vec<Vec<Vec<u32>>>>(), |
| 394 | u32_3d_vec |
| 395 | ); |
| 396 | assert_eq!(a, b); |
| 397 | assert_eq!(a, c); |
| 398 | assert_eq!(a, d); |
| 399 | } |
| 400 | } |
| 401 | |