| 1 | //! Determining which types for which we cannot emit `#[derive(Trait)]`. |
| 2 | |
| 3 | use std::fmt; |
| 4 | |
| 5 | use super::{generate_dependencies, ConstrainResult, MonotoneFramework}; |
| 6 | use crate::ir::analysis::has_vtable::HasVtable; |
| 7 | use crate::ir::comp::CompKind; |
| 8 | use crate::ir::context::{BindgenContext, ItemId}; |
| 9 | use crate::ir::derive::CanDerive; |
| 10 | use crate::ir::function::FunctionSig; |
| 11 | use crate::ir::item::{IsOpaque, Item}; |
| 12 | use crate::ir::layout::Layout; |
| 13 | use crate::ir::template::TemplateParameters; |
| 14 | use crate::ir::traversal::{EdgeKind, Trace}; |
| 15 | use crate::ir::ty::RUST_DERIVE_IN_ARRAY_LIMIT; |
| 16 | use crate::ir::ty::{Type, TypeKind}; |
| 17 | use crate::{Entry, HashMap, HashSet}; |
| 18 | |
| 19 | /// Which trait to consider when doing the `CannotDerive` analysis. |
| 20 | #[derive (Debug, Copy, Clone, Hash, PartialEq, Eq)] |
| 21 | pub enum DeriveTrait { |
| 22 | /// The `Copy` trait. |
| 23 | Copy, |
| 24 | /// The `Debug` trait. |
| 25 | Debug, |
| 26 | /// The `Default` trait. |
| 27 | Default, |
| 28 | /// The `Hash` trait. |
| 29 | Hash, |
| 30 | /// The `PartialEq` and `PartialOrd` traits. |
| 31 | PartialEqOrPartialOrd, |
| 32 | } |
| 33 | |
| 34 | /// An analysis that finds for each IR item whether a trait cannot be derived. |
| 35 | /// |
| 36 | /// We use the monotone constraint function `cannot_derive`, defined as follows |
| 37 | /// for type T: |
| 38 | /// |
| 39 | /// * If T is Opaque and the layout of the type is known, get this layout as an |
| 40 | /// opaquetype and check whether it can derive using trivial checks. |
| 41 | /// |
| 42 | /// * If T is Array, a trait cannot be derived if the array is incomplete, |
| 43 | /// if the length of the array is larger than the limit (unless the trait |
| 44 | /// allows it), or the trait cannot be derived for the type of data the array |
| 45 | /// contains. |
| 46 | /// |
| 47 | /// * If T is Vector, a trait cannot be derived if the trait cannot be derived |
| 48 | /// for the type of data the vector contains. |
| 49 | /// |
| 50 | /// * If T is a type alias, a templated alias or an indirection to another type, |
| 51 | /// the trait cannot be derived if the trait cannot be derived for type T |
| 52 | /// refers to. |
| 53 | /// |
| 54 | /// * If T is a compound type, the trait cannot be derived if the trait cannot |
| 55 | /// be derived for any of its base members or fields. |
| 56 | /// |
| 57 | /// * If T is an instantiation of an abstract template definition, the trait |
| 58 | /// cannot be derived if any of the template arguments or template definition |
| 59 | /// cannot derive the trait. |
| 60 | /// |
| 61 | /// * For all other (simple) types, compiler and standard library limitations |
| 62 | /// dictate whether the trait is implemented. |
| 63 | #[derive (Debug, Clone)] |
| 64 | pub(crate) struct CannotDerive<'ctx> { |
| 65 | ctx: &'ctx BindgenContext, |
| 66 | |
| 67 | derive_trait: DeriveTrait, |
| 68 | |
| 69 | // The incremental result of this analysis's computation. |
| 70 | // Contains information whether particular item can derive `derive_trait` |
| 71 | can_derive: HashMap<ItemId, CanDerive>, |
| 72 | |
| 73 | // Dependencies saying that if a key ItemId has been inserted into the |
| 74 | // `cannot_derive_partialeq_or_partialord` set, then each of the ids |
| 75 | // in Vec<ItemId> need to be considered again. |
| 76 | // |
| 77 | // This is a subset of the natural IR graph with reversed edges, where we |
| 78 | // only include the edges from the IR graph that can affect whether a type |
| 79 | // can derive `derive_trait`. |
| 80 | dependencies: HashMap<ItemId, Vec<ItemId>>, |
| 81 | } |
| 82 | |
| 83 | type EdgePredicate = fn(EdgeKind) -> bool; |
| 84 | |
| 85 | fn consider_edge_default(kind: EdgeKind) -> bool { |
| 86 | match kind { |
| 87 | // These are the only edges that can affect whether a type can derive |
| 88 | EdgeKind::BaseMember | |
| 89 | EdgeKind::Field | |
| 90 | EdgeKind::TypeReference | |
| 91 | EdgeKind::VarType | |
| 92 | EdgeKind::TemplateArgument | |
| 93 | EdgeKind::TemplateDeclaration | |
| 94 | EdgeKind::TemplateParameterDefinition => true, |
| 95 | |
| 96 | EdgeKind::Constructor | |
| 97 | EdgeKind::Destructor | |
| 98 | EdgeKind::FunctionReturn | |
| 99 | EdgeKind::FunctionParameter | |
| 100 | EdgeKind::InnerType | |
| 101 | EdgeKind::InnerVar | |
| 102 | EdgeKind::Method | |
| 103 | EdgeKind::Generic => false, |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | impl<'ctx> CannotDerive<'ctx> { |
| 108 | fn insert<Id: Into<ItemId>>( |
| 109 | &mut self, |
| 110 | id: Id, |
| 111 | can_derive: CanDerive, |
| 112 | ) -> ConstrainResult { |
| 113 | let id = id.into(); |
| 114 | trace!( |
| 115 | "inserting {:?} can_derive< {}>= {:?}" , |
| 116 | id, |
| 117 | self.derive_trait, |
| 118 | can_derive |
| 119 | ); |
| 120 | |
| 121 | if let CanDerive::Yes = can_derive { |
| 122 | return ConstrainResult::Same; |
| 123 | } |
| 124 | |
| 125 | match self.can_derive.entry(id) { |
| 126 | Entry::Occupied(mut entry) => { |
| 127 | if *entry.get() < can_derive { |
| 128 | entry.insert(can_derive); |
| 129 | ConstrainResult::Changed |
| 130 | } else { |
| 131 | ConstrainResult::Same |
| 132 | } |
| 133 | } |
| 134 | Entry::Vacant(entry) => { |
| 135 | entry.insert(can_derive); |
| 136 | ConstrainResult::Changed |
| 137 | } |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | fn constrain_type(&mut self, item: &Item, ty: &Type) -> CanDerive { |
| 142 | if !self.ctx.allowlisted_items().contains(&item.id()) { |
| 143 | let can_derive = self |
| 144 | .ctx |
| 145 | .blocklisted_type_implements_trait(item, self.derive_trait); |
| 146 | match can_derive { |
| 147 | CanDerive::Yes => trace!( |
| 148 | " blocklisted type explicitly implements {}" , |
| 149 | self.derive_trait |
| 150 | ), |
| 151 | CanDerive::Manually => trace!( |
| 152 | " blocklisted type requires manual implementation of {}" , |
| 153 | self.derive_trait |
| 154 | ), |
| 155 | CanDerive::No => trace!( |
| 156 | " cannot derive {} for blocklisted type" , |
| 157 | self.derive_trait |
| 158 | ), |
| 159 | } |
| 160 | return can_derive; |
| 161 | } |
| 162 | |
| 163 | if self.derive_trait.not_by_name(self.ctx, item) { |
| 164 | trace!( |
| 165 | " cannot derive {} for explicitly excluded type" , |
| 166 | self.derive_trait |
| 167 | ); |
| 168 | return CanDerive::No; |
| 169 | } |
| 170 | |
| 171 | trace!("ty: {:?}" , ty); |
| 172 | if item.is_opaque(self.ctx, &()) { |
| 173 | if !self.derive_trait.can_derive_union() && |
| 174 | ty.is_union() && |
| 175 | self.ctx.options().untagged_union |
| 176 | { |
| 177 | trace!( |
| 178 | " cannot derive {} for Rust unions" , |
| 179 | self.derive_trait |
| 180 | ); |
| 181 | return CanDerive::No; |
| 182 | } |
| 183 | |
| 184 | let layout_can_derive = |
| 185 | ty.layout(self.ctx).map_or(CanDerive::Yes, |l| { |
| 186 | l.opaque().array_size_within_derive_limit(self.ctx) |
| 187 | }); |
| 188 | |
| 189 | match layout_can_derive { |
| 190 | CanDerive::Yes => { |
| 191 | trace!( |
| 192 | " we can trivially derive {} for the layout" , |
| 193 | self.derive_trait |
| 194 | ); |
| 195 | } |
| 196 | _ => { |
| 197 | trace!( |
| 198 | " we cannot derive {} for the layout" , |
| 199 | self.derive_trait |
| 200 | ); |
| 201 | } |
| 202 | }; |
| 203 | return layout_can_derive; |
| 204 | } |
| 205 | |
| 206 | match *ty.kind() { |
| 207 | // Handle the simple cases. These can derive traits without further |
| 208 | // information. |
| 209 | TypeKind::Void | |
| 210 | TypeKind::NullPtr | |
| 211 | TypeKind::Int(..) | |
| 212 | TypeKind::Complex(..) | |
| 213 | TypeKind::Float(..) | |
| 214 | TypeKind::Enum(..) | |
| 215 | TypeKind::TypeParam | |
| 216 | TypeKind::UnresolvedTypeRef(..) | |
| 217 | TypeKind::Reference(..) | |
| 218 | TypeKind::ObjCInterface(..) | |
| 219 | TypeKind::ObjCId | |
| 220 | TypeKind::ObjCSel => { |
| 221 | return self.derive_trait.can_derive_simple(ty.kind()); |
| 222 | } |
| 223 | TypeKind::Pointer(inner) => { |
| 224 | let inner_type = |
| 225 | self.ctx.resolve_type(inner).canonical_type(self.ctx); |
| 226 | if let TypeKind::Function(ref sig) = *inner_type.kind() { |
| 227 | self.derive_trait.can_derive_fnptr(sig) |
| 228 | } else { |
| 229 | self.derive_trait.can_derive_pointer() |
| 230 | } |
| 231 | } |
| 232 | TypeKind::Function(ref sig) => { |
| 233 | self.derive_trait.can_derive_fnptr(sig) |
| 234 | } |
| 235 | |
| 236 | // Complex cases need more information |
| 237 | TypeKind::Array(t, len) => { |
| 238 | let inner_type = |
| 239 | self.can_derive.get(&t.into()).cloned().unwrap_or_default(); |
| 240 | if inner_type != CanDerive::Yes { |
| 241 | trace!( |
| 242 | " arrays of T for which we cannot derive {} \ |
| 243 | also cannot derive {}" , |
| 244 | self.derive_trait, |
| 245 | self.derive_trait |
| 246 | ); |
| 247 | return CanDerive::No; |
| 248 | } |
| 249 | |
| 250 | if len == 0 && !self.derive_trait.can_derive_incomplete_array() |
| 251 | { |
| 252 | trace!( |
| 253 | " cannot derive {} for incomplete arrays" , |
| 254 | self.derive_trait |
| 255 | ); |
| 256 | return CanDerive::No; |
| 257 | } |
| 258 | |
| 259 | if self.derive_trait.can_derive_large_array(self.ctx) { |
| 260 | trace!(" array can derive {}" , self.derive_trait); |
| 261 | return CanDerive::Yes; |
| 262 | } |
| 263 | |
| 264 | if len > RUST_DERIVE_IN_ARRAY_LIMIT { |
| 265 | trace!( |
| 266 | " array is too large to derive {}, but it may be implemented" , self.derive_trait |
| 267 | ); |
| 268 | return CanDerive::Manually; |
| 269 | } |
| 270 | trace!( |
| 271 | " array is small enough to derive {}" , |
| 272 | self.derive_trait |
| 273 | ); |
| 274 | CanDerive::Yes |
| 275 | } |
| 276 | TypeKind::Vector(t, len) => { |
| 277 | let inner_type = |
| 278 | self.can_derive.get(&t.into()).cloned().unwrap_or_default(); |
| 279 | if inner_type != CanDerive::Yes { |
| 280 | trace!( |
| 281 | " vectors of T for which we cannot derive {} \ |
| 282 | also cannot derive {}" , |
| 283 | self.derive_trait, |
| 284 | self.derive_trait |
| 285 | ); |
| 286 | return CanDerive::No; |
| 287 | } |
| 288 | assert_ne!(len, 0, "vectors cannot have zero length" ); |
| 289 | self.derive_trait.can_derive_vector() |
| 290 | } |
| 291 | |
| 292 | TypeKind::Comp(ref info) => { |
| 293 | assert!( |
| 294 | !info.has_non_type_template_params(), |
| 295 | "The early ty.is_opaque check should have handled this case" |
| 296 | ); |
| 297 | |
| 298 | if !self.derive_trait.can_derive_compound_forward_decl() && |
| 299 | info.is_forward_declaration() |
| 300 | { |
| 301 | trace!( |
| 302 | " cannot derive {} for forward decls" , |
| 303 | self.derive_trait |
| 304 | ); |
| 305 | return CanDerive::No; |
| 306 | } |
| 307 | |
| 308 | // NOTE: Take into account that while unions in C and C++ are copied by |
| 309 | // default, the may have an explicit destructor in C++, so we can't |
| 310 | // defer this check just for the union case. |
| 311 | if !self.derive_trait.can_derive_compound_with_destructor() && |
| 312 | self.ctx.lookup_has_destructor( |
| 313 | item.id().expect_type_id(self.ctx), |
| 314 | ) |
| 315 | { |
| 316 | trace!( |
| 317 | " comp has destructor which cannot derive {}" , |
| 318 | self.derive_trait |
| 319 | ); |
| 320 | return CanDerive::No; |
| 321 | } |
| 322 | |
| 323 | if info.kind() == CompKind::Union { |
| 324 | if self.derive_trait.can_derive_union() { |
| 325 | if self.ctx.options().untagged_union && |
| 326 | // https://github.com/rust-lang/rust/issues/36640 |
| 327 | (!info.self_template_params(self.ctx).is_empty() || |
| 328 | !item.all_template_params(self.ctx).is_empty()) |
| 329 | { |
| 330 | trace!( |
| 331 | " cannot derive {} for Rust union because issue 36640" , self.derive_trait |
| 332 | ); |
| 333 | return CanDerive::No; |
| 334 | } |
| 335 | // fall through to be same as non-union handling |
| 336 | } else { |
| 337 | if self.ctx.options().untagged_union { |
| 338 | trace!( |
| 339 | " cannot derive {} for Rust unions" , |
| 340 | self.derive_trait |
| 341 | ); |
| 342 | return CanDerive::No; |
| 343 | } |
| 344 | |
| 345 | let layout_can_derive = |
| 346 | ty.layout(self.ctx).map_or(CanDerive::Yes, |l| { |
| 347 | l.opaque() |
| 348 | .array_size_within_derive_limit(self.ctx) |
| 349 | }); |
| 350 | match layout_can_derive { |
| 351 | CanDerive::Yes => { |
| 352 | trace!( |
| 353 | " union layout can trivially derive {}" , |
| 354 | self.derive_trait |
| 355 | ); |
| 356 | } |
| 357 | _ => { |
| 358 | trace!( |
| 359 | " union layout cannot derive {}" , |
| 360 | self.derive_trait |
| 361 | ); |
| 362 | } |
| 363 | }; |
| 364 | return layout_can_derive; |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | if !self.derive_trait.can_derive_compound_with_vtable() && |
| 369 | item.has_vtable(self.ctx) |
| 370 | { |
| 371 | trace!( |
| 372 | " cannot derive {} for comp with vtable" , |
| 373 | self.derive_trait |
| 374 | ); |
| 375 | return CanDerive::No; |
| 376 | } |
| 377 | |
| 378 | // Bitfield units are always represented as arrays of u8, but |
| 379 | // they're not traced as arrays, so we need to check here |
| 380 | // instead. |
| 381 | if !self.derive_trait.can_derive_large_array(self.ctx) && |
| 382 | info.has_too_large_bitfield_unit() && |
| 383 | !item.is_opaque(self.ctx, &()) |
| 384 | { |
| 385 | trace!( |
| 386 | " cannot derive {} for comp with too large bitfield unit" , |
| 387 | self.derive_trait |
| 388 | ); |
| 389 | return CanDerive::No; |
| 390 | } |
| 391 | |
| 392 | let pred = self.derive_trait.consider_edge_comp(); |
| 393 | self.constrain_join(item, pred) |
| 394 | } |
| 395 | |
| 396 | TypeKind::ResolvedTypeRef(..) | |
| 397 | TypeKind::TemplateAlias(..) | |
| 398 | TypeKind::Alias(..) | |
| 399 | TypeKind::BlockPointer(..) => { |
| 400 | let pred = self.derive_trait.consider_edge_typeref(); |
| 401 | self.constrain_join(item, pred) |
| 402 | } |
| 403 | |
| 404 | TypeKind::TemplateInstantiation(..) => { |
| 405 | let pred = self.derive_trait.consider_edge_tmpl_inst(); |
| 406 | self.constrain_join(item, pred) |
| 407 | } |
| 408 | |
| 409 | TypeKind::Opaque => unreachable!( |
| 410 | "The early ty.is_opaque check should have handled this case" |
| 411 | ), |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | fn constrain_join( |
| 416 | &mut self, |
| 417 | item: &Item, |
| 418 | consider_edge: EdgePredicate, |
| 419 | ) -> CanDerive { |
| 420 | let mut candidate = None; |
| 421 | |
| 422 | item.trace( |
| 423 | self.ctx, |
| 424 | &mut |sub_id, edge_kind| { |
| 425 | // Ignore ourselves, since union with ourself is a |
| 426 | // no-op. Ignore edges that aren't relevant to the |
| 427 | // analysis. |
| 428 | if sub_id == item.id() || !consider_edge(edge_kind) { |
| 429 | return; |
| 430 | } |
| 431 | |
| 432 | let can_derive = self.can_derive |
| 433 | .get(&sub_id) |
| 434 | .cloned() |
| 435 | .unwrap_or_default(); |
| 436 | |
| 437 | match can_derive { |
| 438 | CanDerive::Yes => trace!(" member {:?} can derive {}" , sub_id, self.derive_trait), |
| 439 | CanDerive::Manually => trace!(" member {:?} cannot derive {}, but it may be implemented" , sub_id, self.derive_trait), |
| 440 | CanDerive::No => trace!(" member {:?} cannot derive {}" , sub_id, self.derive_trait), |
| 441 | } |
| 442 | |
| 443 | *candidate.get_or_insert(CanDerive::Yes) |= can_derive; |
| 444 | }, |
| 445 | &(), |
| 446 | ); |
| 447 | |
| 448 | if candidate.is_none() { |
| 449 | trace!( |
| 450 | " can derive {} because there are no members" , |
| 451 | self.derive_trait |
| 452 | ); |
| 453 | } |
| 454 | candidate.unwrap_or_default() |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | impl DeriveTrait { |
| 459 | fn not_by_name(&self, ctx: &BindgenContext, item: &Item) -> bool { |
| 460 | match self { |
| 461 | DeriveTrait::Copy => ctx.no_copy_by_name(item), |
| 462 | DeriveTrait::Debug => ctx.no_debug_by_name(item), |
| 463 | DeriveTrait::Default => ctx.no_default_by_name(item), |
| 464 | DeriveTrait::Hash => ctx.no_hash_by_name(item), |
| 465 | DeriveTrait::PartialEqOrPartialOrd => { |
| 466 | ctx.no_partialeq_by_name(item) |
| 467 | } |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | fn consider_edge_comp(&self) -> EdgePredicate { |
| 472 | match self { |
| 473 | DeriveTrait::PartialEqOrPartialOrd => consider_edge_default, |
| 474 | _ => |kind| matches!(kind, EdgeKind::BaseMember | EdgeKind::Field), |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | fn consider_edge_typeref(&self) -> EdgePredicate { |
| 479 | match self { |
| 480 | DeriveTrait::PartialEqOrPartialOrd => consider_edge_default, |
| 481 | _ => |kind| kind == EdgeKind::TypeReference, |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | fn consider_edge_tmpl_inst(&self) -> EdgePredicate { |
| 486 | match self { |
| 487 | DeriveTrait::PartialEqOrPartialOrd => consider_edge_default, |
| 488 | _ => |kind| { |
| 489 | matches!( |
| 490 | kind, |
| 491 | EdgeKind::TemplateArgument | EdgeKind::TemplateDeclaration |
| 492 | ) |
| 493 | }, |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | fn can_derive_large_array(&self, ctx: &BindgenContext) -> bool { |
| 498 | if ctx.options().rust_features().larger_arrays { |
| 499 | !matches!(self, DeriveTrait::Default) |
| 500 | } else { |
| 501 | matches!(self, DeriveTrait::Copy) |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | fn can_derive_union(&self) -> bool { |
| 506 | matches!(self, DeriveTrait::Copy) |
| 507 | } |
| 508 | |
| 509 | fn can_derive_compound_with_destructor(&self) -> bool { |
| 510 | !matches!(self, DeriveTrait::Copy) |
| 511 | } |
| 512 | |
| 513 | fn can_derive_compound_with_vtable(&self) -> bool { |
| 514 | !matches!(self, DeriveTrait::Default) |
| 515 | } |
| 516 | |
| 517 | fn can_derive_compound_forward_decl(&self) -> bool { |
| 518 | matches!(self, DeriveTrait::Copy | DeriveTrait::Debug) |
| 519 | } |
| 520 | |
| 521 | fn can_derive_incomplete_array(&self) -> bool { |
| 522 | !matches!( |
| 523 | self, |
| 524 | DeriveTrait::Copy | |
| 525 | DeriveTrait::Hash | |
| 526 | DeriveTrait::PartialEqOrPartialOrd |
| 527 | ) |
| 528 | } |
| 529 | |
| 530 | fn can_derive_fnptr(&self, f: &FunctionSig) -> CanDerive { |
| 531 | match (self, f.function_pointers_can_derive()) { |
| 532 | (DeriveTrait::Copy, _) | (DeriveTrait::Default, _) | (_, true) => { |
| 533 | trace!(" function pointer can derive {}" , self); |
| 534 | CanDerive::Yes |
| 535 | } |
| 536 | (DeriveTrait::Debug, false) => { |
| 537 | trace!(" function pointer cannot derive {}, but it may be implemented" , self); |
| 538 | CanDerive::Manually |
| 539 | } |
| 540 | (_, false) => { |
| 541 | trace!(" function pointer cannot derive {}" , self); |
| 542 | CanDerive::No |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | fn can_derive_vector(&self) -> CanDerive { |
| 548 | match self { |
| 549 | DeriveTrait::PartialEqOrPartialOrd => { |
| 550 | // FIXME: vectors always can derive PartialEq, but they should |
| 551 | // not derive PartialOrd: |
| 552 | // https://github.com/rust-lang-nursery/packed_simd/issues/48 |
| 553 | trace!(" vectors cannot derive PartialOrd" ); |
| 554 | CanDerive::No |
| 555 | } |
| 556 | _ => { |
| 557 | trace!(" vector can derive {}" , self); |
| 558 | CanDerive::Yes |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | fn can_derive_pointer(&self) -> CanDerive { |
| 564 | match self { |
| 565 | DeriveTrait::Default => { |
| 566 | trace!(" pointer cannot derive Default" ); |
| 567 | CanDerive::No |
| 568 | } |
| 569 | _ => { |
| 570 | trace!(" pointer can derive {}" , self); |
| 571 | CanDerive::Yes |
| 572 | } |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | fn can_derive_simple(&self, kind: &TypeKind) -> CanDerive { |
| 577 | match (self, kind) { |
| 578 | // === Default === |
| 579 | (DeriveTrait::Default, TypeKind::Void) | |
| 580 | (DeriveTrait::Default, TypeKind::NullPtr) | |
| 581 | (DeriveTrait::Default, TypeKind::Enum(..)) | |
| 582 | (DeriveTrait::Default, TypeKind::Reference(..)) | |
| 583 | (DeriveTrait::Default, TypeKind::TypeParam) | |
| 584 | (DeriveTrait::Default, TypeKind::ObjCInterface(..)) | |
| 585 | (DeriveTrait::Default, TypeKind::ObjCId) | |
| 586 | (DeriveTrait::Default, TypeKind::ObjCSel) => { |
| 587 | trace!(" types that always cannot derive Default" ); |
| 588 | CanDerive::No |
| 589 | } |
| 590 | (DeriveTrait::Default, TypeKind::UnresolvedTypeRef(..)) => { |
| 591 | unreachable!( |
| 592 | "Type with unresolved type ref can't reach derive default" |
| 593 | ) |
| 594 | } |
| 595 | // === Hash === |
| 596 | (DeriveTrait::Hash, TypeKind::Float(..)) | |
| 597 | (DeriveTrait::Hash, TypeKind::Complex(..)) => { |
| 598 | trace!(" float cannot derive Hash" ); |
| 599 | CanDerive::No |
| 600 | } |
| 601 | // === others === |
| 602 | _ => { |
| 603 | trace!(" simple type that can always derive {}" , self); |
| 604 | CanDerive::Yes |
| 605 | } |
| 606 | } |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | impl fmt::Display for DeriveTrait { |
| 611 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 612 | let s: &'static str = match self { |
| 613 | DeriveTrait::Copy => "Copy" , |
| 614 | DeriveTrait::Debug => "Debug" , |
| 615 | DeriveTrait::Default => "Default" , |
| 616 | DeriveTrait::Hash => "Hash" , |
| 617 | DeriveTrait::PartialEqOrPartialOrd => "PartialEq/PartialOrd" , |
| 618 | }; |
| 619 | s.fmt(f) |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | impl<'ctx> MonotoneFramework for CannotDerive<'ctx> { |
| 624 | type Node = ItemId; |
| 625 | type Extra = (&'ctx BindgenContext, DeriveTrait); |
| 626 | type Output = HashMap<ItemId, CanDerive>; |
| 627 | |
| 628 | fn new( |
| 629 | (ctx, derive_trait): (&'ctx BindgenContext, DeriveTrait), |
| 630 | ) -> CannotDerive<'ctx> { |
| 631 | let can_derive = HashMap::default(); |
| 632 | let dependencies = generate_dependencies(ctx, consider_edge_default); |
| 633 | |
| 634 | CannotDerive { |
| 635 | ctx, |
| 636 | derive_trait, |
| 637 | can_derive, |
| 638 | dependencies, |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | fn initial_worklist(&self) -> Vec<ItemId> { |
| 643 | // The transitive closure of all allowlisted items, including explicitly |
| 644 | // blocklisted items. |
| 645 | self.ctx |
| 646 | .allowlisted_items() |
| 647 | .iter() |
| 648 | .cloned() |
| 649 | .flat_map(|i| { |
| 650 | let mut reachable = vec![i]; |
| 651 | i.trace( |
| 652 | self.ctx, |
| 653 | &mut |s, _| { |
| 654 | reachable.push(s); |
| 655 | }, |
| 656 | &(), |
| 657 | ); |
| 658 | reachable |
| 659 | }) |
| 660 | .collect() |
| 661 | } |
| 662 | |
| 663 | fn constrain(&mut self, id: ItemId) -> ConstrainResult { |
| 664 | trace!("constrain: {:?}" , id); |
| 665 | |
| 666 | if let Some(CanDerive::No) = self.can_derive.get(&id).cloned() { |
| 667 | trace!(" already know it cannot derive {}" , self.derive_trait); |
| 668 | return ConstrainResult::Same; |
| 669 | } |
| 670 | |
| 671 | let item = self.ctx.resolve_item(id); |
| 672 | let can_derive = match item.as_type() { |
| 673 | Some(ty) => { |
| 674 | let mut can_derive = self.constrain_type(item, ty); |
| 675 | if let CanDerive::Yes = can_derive { |
| 676 | let is_reached_limit = |
| 677 | |l: Layout| l.align > RUST_DERIVE_IN_ARRAY_LIMIT; |
| 678 | if !self.derive_trait.can_derive_large_array(self.ctx) && |
| 679 | ty.layout(self.ctx).map_or(false, is_reached_limit) |
| 680 | { |
| 681 | // We have to be conservative: the struct *could* have enough |
| 682 | // padding that we emit an array that is longer than |
| 683 | // `RUST_DERIVE_IN_ARRAY_LIMIT`. If we moved padding calculations |
| 684 | // into the IR and computed them before this analysis, then we could |
| 685 | // be precise rather than conservative here. |
| 686 | can_derive = CanDerive::Manually; |
| 687 | } |
| 688 | } |
| 689 | can_derive |
| 690 | } |
| 691 | None => self.constrain_join(item, consider_edge_default), |
| 692 | }; |
| 693 | |
| 694 | self.insert(id, can_derive) |
| 695 | } |
| 696 | |
| 697 | fn each_depending_on<F>(&self, id: ItemId, mut f: F) |
| 698 | where |
| 699 | F: FnMut(ItemId), |
| 700 | { |
| 701 | if let Some(edges) = self.dependencies.get(&id) { |
| 702 | for item in edges { |
| 703 | trace!("enqueue {:?} into worklist" , item); |
| 704 | f(*item); |
| 705 | } |
| 706 | } |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | impl<'ctx> From<CannotDerive<'ctx>> for HashMap<ItemId, CanDerive> { |
| 711 | fn from(analysis: CannotDerive<'ctx>) -> Self { |
| 712 | extra_assert!(analysis |
| 713 | .can_derive |
| 714 | .values() |
| 715 | .all(|v| *v != CanDerive::Yes)); |
| 716 | |
| 717 | analysis.can_derive |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | /// Convert a `HashMap<ItemId, CanDerive>` into a `HashSet<ItemId>`. |
| 722 | /// |
| 723 | /// Elements that are not `CanDerive::Yes` are kept in the set, so that it |
| 724 | /// represents all items that cannot derive. |
| 725 | pub(crate) fn as_cannot_derive_set( |
| 726 | can_derive: HashMap<ItemId, CanDerive>, |
| 727 | ) -> HashSet<ItemId> { |
| 728 | can_deriveimpl Iterator |
| 729 | .into_iter() |
| 730 | .filter_map(|(k: ItemId, v: CanDerive)| if v != CanDerive::Yes { Some(k) } else { None }) |
| 731 | .collect() |
| 732 | } |
| 733 | |