| 1 | //! Common context that is passed around during parsing and codegen. |
| 2 | |
| 3 | use super::super::time::Timer; |
| 4 | use super::analysis::{ |
| 5 | analyze, as_cannot_derive_set, CannotDerive, DeriveTrait, |
| 6 | HasDestructorAnalysis, HasFloat, HasTypeParameterInArray, |
| 7 | HasVtableAnalysis, HasVtableResult, SizednessAnalysis, SizednessResult, |
| 8 | UsedTemplateParameters, |
| 9 | }; |
| 10 | use super::derive::{ |
| 11 | CanDerive, CanDeriveCopy, CanDeriveDebug, CanDeriveDefault, CanDeriveEq, |
| 12 | CanDeriveHash, CanDeriveOrd, CanDerivePartialEq, CanDerivePartialOrd, |
| 13 | }; |
| 14 | use super::function::Function; |
| 15 | use super::int::IntKind; |
| 16 | use super::item::{IsOpaque, Item, ItemAncestors, ItemSet}; |
| 17 | use super::item_kind::ItemKind; |
| 18 | use super::module::{Module, ModuleKind}; |
| 19 | use super::template::{TemplateInstantiation, TemplateParameters}; |
| 20 | use super::traversal::{self, Edge, ItemTraversal}; |
| 21 | use super::ty::{FloatKind, Type, TypeKind}; |
| 22 | use crate::clang::{self, ABIKind, Cursor}; |
| 23 | use crate::codegen::CodegenError; |
| 24 | use crate::BindgenOptions; |
| 25 | use crate::{Entry, HashMap, HashSet}; |
| 26 | |
| 27 | use proc_macro2::{Ident, Span, TokenStream}; |
| 28 | use quote::ToTokens; |
| 29 | use std::borrow::Cow; |
| 30 | use std::cell::{Cell, RefCell}; |
| 31 | use std::collections::{BTreeSet, HashMap as StdHashMap}; |
| 32 | use std::fs::OpenOptions; |
| 33 | use std::io::Write; |
| 34 | use std::mem; |
| 35 | use std::path::Path; |
| 36 | |
| 37 | /// An identifier for some kind of IR item. |
| 38 | #[derive (Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)] |
| 39 | pub(crate) struct ItemId(usize); |
| 40 | |
| 41 | /// Declare a newtype around `ItemId` with conversion methods. |
| 42 | macro_rules! item_id_newtype { |
| 43 | ( |
| 44 | $( #[$attr:meta] )* |
| 45 | pub(crate) struct $name:ident(ItemId) |
| 46 | where |
| 47 | $( #[$checked_attr:meta] )* |
| 48 | checked = $checked:ident with $check_method:ident, |
| 49 | $( #[$expected_attr:meta] )* |
| 50 | expected = $expected:ident, |
| 51 | $( #[$unchecked_attr:meta] )* |
| 52 | unchecked = $unchecked:ident; |
| 53 | ) => { |
| 54 | $( #[$attr] )* |
| 55 | #[derive(Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)] |
| 56 | pub(crate) struct $name(ItemId); |
| 57 | |
| 58 | impl $name { |
| 59 | /// Create an `ItemResolver` from this ID. |
| 60 | #[allow(dead_code)] |
| 61 | pub(crate) fn into_resolver(self) -> ItemResolver { |
| 62 | let id: ItemId = self.into(); |
| 63 | id.into() |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | impl<T> ::std::cmp::PartialEq<T> for $name |
| 68 | where |
| 69 | T: Copy + Into<ItemId> |
| 70 | { |
| 71 | fn eq(&self, rhs: &T) -> bool { |
| 72 | let rhs: ItemId = (*rhs).into(); |
| 73 | self.0 == rhs |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | impl From<$name> for ItemId { |
| 78 | fn from(id: $name) -> ItemId { |
| 79 | id.0 |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | impl<'a> From<&'a $name> for ItemId { |
| 84 | fn from(id: &'a $name) -> ItemId { |
| 85 | id.0 |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | #[allow(dead_code)] |
| 90 | impl ItemId { |
| 91 | $( #[$checked_attr] )* |
| 92 | pub(crate) fn $checked(&self, ctx: &BindgenContext) -> Option<$name> { |
| 93 | if ctx.resolve_item(*self).kind().$check_method() { |
| 94 | Some($name(*self)) |
| 95 | } else { |
| 96 | None |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | $( #[$expected_attr] )* |
| 101 | pub(crate) fn $expected(&self, ctx: &BindgenContext) -> $name { |
| 102 | self.$checked(ctx) |
| 103 | .expect(concat!( |
| 104 | stringify!($expected), |
| 105 | " called with ItemId that points to the wrong ItemKind" |
| 106 | )) |
| 107 | } |
| 108 | |
| 109 | $( #[$unchecked_attr] )* |
| 110 | pub(crate) fn $unchecked(&self) -> $name { |
| 111 | $name(*self) |
| 112 | } |
| 113 | } |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | item_id_newtype! { |
| 118 | /// An identifier for an `Item` whose `ItemKind` is known to be |
| 119 | /// `ItemKind::Type`. |
| 120 | pub(crate) struct TypeId(ItemId) |
| 121 | where |
| 122 | /// Convert this `ItemId` into a `TypeId` if its associated item is a type, |
| 123 | /// otherwise return `None`. |
| 124 | checked = as_type_id with is_type, |
| 125 | |
| 126 | /// Convert this `ItemId` into a `TypeId`. |
| 127 | /// |
| 128 | /// If this `ItemId` does not point to a type, then panic. |
| 129 | expected = expect_type_id, |
| 130 | |
| 131 | /// Convert this `ItemId` into a `TypeId` without actually checking whether |
| 132 | /// this ID actually points to a `Type`. |
| 133 | unchecked = as_type_id_unchecked; |
| 134 | } |
| 135 | |
| 136 | item_id_newtype! { |
| 137 | /// An identifier for an `Item` whose `ItemKind` is known to be |
| 138 | /// `ItemKind::Module`. |
| 139 | pub(crate) struct ModuleId(ItemId) |
| 140 | where |
| 141 | /// Convert this `ItemId` into a `ModuleId` if its associated item is a |
| 142 | /// module, otherwise return `None`. |
| 143 | checked = as_module_id with is_module, |
| 144 | |
| 145 | /// Convert this `ItemId` into a `ModuleId`. |
| 146 | /// |
| 147 | /// If this `ItemId` does not point to a module, then panic. |
| 148 | expected = expect_module_id, |
| 149 | |
| 150 | /// Convert this `ItemId` into a `ModuleId` without actually checking |
| 151 | /// whether this ID actually points to a `Module`. |
| 152 | unchecked = as_module_id_unchecked; |
| 153 | } |
| 154 | |
| 155 | item_id_newtype! { |
| 156 | /// An identifier for an `Item` whose `ItemKind` is known to be |
| 157 | /// `ItemKind::Var`. |
| 158 | pub(crate) struct VarId(ItemId) |
| 159 | where |
| 160 | /// Convert this `ItemId` into a `VarId` if its associated item is a var, |
| 161 | /// otherwise return `None`. |
| 162 | checked = as_var_id with is_var, |
| 163 | |
| 164 | /// Convert this `ItemId` into a `VarId`. |
| 165 | /// |
| 166 | /// If this `ItemId` does not point to a var, then panic. |
| 167 | expected = expect_var_id, |
| 168 | |
| 169 | /// Convert this `ItemId` into a `VarId` without actually checking whether |
| 170 | /// this ID actually points to a `Var`. |
| 171 | unchecked = as_var_id_unchecked; |
| 172 | } |
| 173 | |
| 174 | item_id_newtype! { |
| 175 | /// An identifier for an `Item` whose `ItemKind` is known to be |
| 176 | /// `ItemKind::Function`. |
| 177 | pub(crate) struct FunctionId(ItemId) |
| 178 | where |
| 179 | /// Convert this `ItemId` into a `FunctionId` if its associated item is a function, |
| 180 | /// otherwise return `None`. |
| 181 | checked = as_function_id with is_function, |
| 182 | |
| 183 | /// Convert this `ItemId` into a `FunctionId`. |
| 184 | /// |
| 185 | /// If this `ItemId` does not point to a function, then panic. |
| 186 | expected = expect_function_id, |
| 187 | |
| 188 | /// Convert this `ItemId` into a `FunctionId` without actually checking whether |
| 189 | /// this ID actually points to a `Function`. |
| 190 | unchecked = as_function_id_unchecked; |
| 191 | } |
| 192 | |
| 193 | impl From<ItemId> for usize { |
| 194 | fn from(id: ItemId) -> usize { |
| 195 | id.0 |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | impl ItemId { |
| 200 | /// Get a numeric representation of this ID. |
| 201 | pub(crate) fn as_usize(&self) -> usize { |
| 202 | (*self).into() |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | impl<T> ::std::cmp::PartialEq<T> for ItemId |
| 207 | where |
| 208 | T: Copy + Into<ItemId>, |
| 209 | { |
| 210 | fn eq(&self, rhs: &T) -> bool { |
| 211 | let rhs: ItemId = (*rhs).into(); |
| 212 | self.0 == rhs.0 |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | impl<T> CanDeriveDebug for T |
| 217 | where |
| 218 | T: Copy + Into<ItemId>, |
| 219 | { |
| 220 | fn can_derive_debug(&self, ctx: &BindgenContext) -> bool { |
| 221 | ctx.options().derive_debug && ctx.lookup_can_derive_debug(*self) |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | impl<T> CanDeriveDefault for T |
| 226 | where |
| 227 | T: Copy + Into<ItemId>, |
| 228 | { |
| 229 | fn can_derive_default(&self, ctx: &BindgenContext) -> bool { |
| 230 | ctx.options().derive_default && ctx.lookup_can_derive_default(*self) |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | impl<T> CanDeriveCopy for T |
| 235 | where |
| 236 | T: Copy + Into<ItemId>, |
| 237 | { |
| 238 | fn can_derive_copy(&self, ctx: &BindgenContext) -> bool { |
| 239 | ctx.options().derive_copy && ctx.lookup_can_derive_copy(*self) |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | impl<T> CanDeriveHash for T |
| 244 | where |
| 245 | T: Copy + Into<ItemId>, |
| 246 | { |
| 247 | fn can_derive_hash(&self, ctx: &BindgenContext) -> bool { |
| 248 | ctx.options().derive_hash && ctx.lookup_can_derive_hash(*self) |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | impl<T> CanDerivePartialOrd for T |
| 253 | where |
| 254 | T: Copy + Into<ItemId>, |
| 255 | { |
| 256 | fn can_derive_partialord(&self, ctx: &BindgenContext) -> bool { |
| 257 | ctx.options().derive_partialord && |
| 258 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
| 259 | CanDerive::Yes |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | impl<T> CanDerivePartialEq for T |
| 264 | where |
| 265 | T: Copy + Into<ItemId>, |
| 266 | { |
| 267 | fn can_derive_partialeq(&self, ctx: &BindgenContext) -> bool { |
| 268 | ctx.options().derive_partialeq && |
| 269 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
| 270 | CanDerive::Yes |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | impl<T> CanDeriveEq for T |
| 275 | where |
| 276 | T: Copy + Into<ItemId>, |
| 277 | { |
| 278 | fn can_derive_eq(&self, ctx: &BindgenContext) -> bool { |
| 279 | ctx.options().derive_eq && |
| 280 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
| 281 | CanDerive::Yes && |
| 282 | !ctx.lookup_has_float(*self) |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | impl<T> CanDeriveOrd for T |
| 287 | where |
| 288 | T: Copy + Into<ItemId>, |
| 289 | { |
| 290 | fn can_derive_ord(&self, ctx: &BindgenContext) -> bool { |
| 291 | ctx.options().derive_ord && |
| 292 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
| 293 | CanDerive::Yes && |
| 294 | !ctx.lookup_has_float(*self) |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | /// A key used to index a resolved type, so we only process it once. |
| 299 | /// |
| 300 | /// This is almost always a USR string (an unique identifier generated by |
| 301 | /// clang), but it can also be the canonical declaration if the type is unnamed, |
| 302 | /// in which case clang may generate the same USR for multiple nested unnamed |
| 303 | /// types. |
| 304 | #[derive (Eq, PartialEq, Hash, Debug)] |
| 305 | enum TypeKey { |
| 306 | Usr(String), |
| 307 | Declaration(Cursor), |
| 308 | } |
| 309 | |
| 310 | /// A context used during parsing and generation of structs. |
| 311 | #[derive (Debug)] |
| 312 | pub(crate) struct BindgenContext { |
| 313 | /// The map of all the items parsed so far, keyed off ItemId. |
| 314 | items: Vec<Option<Item>>, |
| 315 | |
| 316 | /// Clang USR to type map. This is needed to be able to associate types with |
| 317 | /// item ids during parsing. |
| 318 | types: HashMap<TypeKey, TypeId>, |
| 319 | |
| 320 | /// Maps from a cursor to the item ID of the named template type parameter |
| 321 | /// for that cursor. |
| 322 | type_params: HashMap<clang::Cursor, TypeId>, |
| 323 | |
| 324 | /// A cursor to module map. Similar reason than above. |
| 325 | modules: HashMap<Cursor, ModuleId>, |
| 326 | |
| 327 | /// The root module, this is guaranteed to be an item of kind Module. |
| 328 | root_module: ModuleId, |
| 329 | |
| 330 | /// Current module being traversed. |
| 331 | current_module: ModuleId, |
| 332 | |
| 333 | /// A HashMap keyed on a type definition, and whose value is the parent ID |
| 334 | /// of the declaration. |
| 335 | /// |
| 336 | /// This is used to handle the cases where the semantic and the lexical |
| 337 | /// parents of the cursor differ, like when a nested class is defined |
| 338 | /// outside of the parent class. |
| 339 | semantic_parents: HashMap<clang::Cursor, ItemId>, |
| 340 | |
| 341 | /// A stack with the current type declarations and types we're parsing. This |
| 342 | /// is needed to avoid infinite recursion when parsing a type like: |
| 343 | /// |
| 344 | /// struct c { struct c* next; }; |
| 345 | /// |
| 346 | /// This means effectively, that a type has a potential ID before knowing if |
| 347 | /// it's a correct type. But that's not important in practice. |
| 348 | /// |
| 349 | /// We could also use the `types` HashMap, but my intention with it is that |
| 350 | /// only valid types and declarations end up there, and this could |
| 351 | /// potentially break that assumption. |
| 352 | currently_parsed_types: Vec<PartialType>, |
| 353 | |
| 354 | /// A map with all the already parsed macro names. This is done to avoid |
| 355 | /// hard errors while parsing duplicated macros, as well to allow macro |
| 356 | /// expression parsing. |
| 357 | /// |
| 358 | /// This needs to be an std::HashMap because the cexpr API requires it. |
| 359 | parsed_macros: StdHashMap<Vec<u8>, cexpr::expr::EvalResult>, |
| 360 | |
| 361 | /// A map with all include locations. |
| 362 | /// |
| 363 | /// This is needed so that items are created in the order they are defined in. |
| 364 | /// |
| 365 | /// The key is the included file, the value is a pair of the source file and |
| 366 | /// the position of the `#include` directive in the source file. |
| 367 | includes: StdHashMap<String, (String, usize)>, |
| 368 | |
| 369 | /// A set of all the included filenames. |
| 370 | deps: BTreeSet<Box<str>>, |
| 371 | |
| 372 | /// The active replacements collected from replaces="xxx" annotations. |
| 373 | replacements: HashMap<Vec<String>, ItemId>, |
| 374 | |
| 375 | collected_typerefs: bool, |
| 376 | |
| 377 | in_codegen: bool, |
| 378 | |
| 379 | /// The translation unit for parsing. |
| 380 | translation_unit: clang::TranslationUnit, |
| 381 | |
| 382 | /// The translation unit for macro fallback parsing. |
| 383 | fallback_tu: Option<clang::FallbackTranslationUnit>, |
| 384 | |
| 385 | /// Target information that can be useful for some stuff. |
| 386 | target_info: clang::TargetInfo, |
| 387 | |
| 388 | /// The options given by the user via cli or other medium. |
| 389 | options: BindgenOptions, |
| 390 | |
| 391 | /// Whether a bindgen complex was generated |
| 392 | generated_bindgen_complex: Cell<bool>, |
| 393 | |
| 394 | /// Whether a bindgen float16 was generated |
| 395 | generated_bindgen_float16: Cell<bool>, |
| 396 | |
| 397 | /// The set of `ItemId`s that are allowlisted. This the very first thing |
| 398 | /// computed after parsing our IR, and before running any of our analyses. |
| 399 | allowlisted: Option<ItemSet>, |
| 400 | |
| 401 | /// Cache for calls to `ParseCallbacks::blocklisted_type_implements_trait` |
| 402 | blocklisted_types_implement_traits: |
| 403 | RefCell<HashMap<DeriveTrait, HashMap<ItemId, CanDerive>>>, |
| 404 | |
| 405 | /// The set of `ItemId`s that are allowlisted for code generation _and_ that |
| 406 | /// we should generate accounting for the codegen options. |
| 407 | /// |
| 408 | /// It's computed right after computing the allowlisted items. |
| 409 | codegen_items: Option<ItemSet>, |
| 410 | |
| 411 | /// Map from an item's ID to the set of template parameter items that it |
| 412 | /// uses. See `ir::named` for more details. Always `Some` during the codegen |
| 413 | /// phase. |
| 414 | used_template_parameters: Option<HashMap<ItemId, ItemSet>>, |
| 415 | |
| 416 | /// The set of `TypeKind::Comp` items found during parsing that need their |
| 417 | /// bitfield allocation units computed. Drained in `compute_bitfield_units`. |
| 418 | need_bitfield_allocation: Vec<ItemId>, |
| 419 | |
| 420 | /// The set of enums that are defined by a pair of `enum` and `typedef`, |
| 421 | /// which is legal in C (but not C++). |
| 422 | /// |
| 423 | /// ```c++ |
| 424 | /// // in either order |
| 425 | /// enum Enum { Variants... }; |
| 426 | /// typedef int16_t Enum; |
| 427 | /// ``` |
| 428 | /// |
| 429 | /// The stored `ItemId` is that of the `TypeKind::Enum`, not of the |
| 430 | /// `TypeKind::Alias`. |
| 431 | /// |
| 432 | /// This is populated when we enter codegen by `compute_enum_typedef_combos` |
| 433 | /// and is always `None` before that and `Some` after. |
| 434 | enum_typedef_combos: Option<HashSet<ItemId>>, |
| 435 | |
| 436 | /// The set of (`ItemId`s of) types that can't derive debug. |
| 437 | /// |
| 438 | /// This is populated when we enter codegen by `compute_cannot_derive_debug` |
| 439 | /// and is always `None` before that and `Some` after. |
| 440 | cannot_derive_debug: Option<HashSet<ItemId>>, |
| 441 | |
| 442 | /// The set of (`ItemId`s of) types that can't derive default. |
| 443 | /// |
| 444 | /// This is populated when we enter codegen by `compute_cannot_derive_default` |
| 445 | /// and is always `None` before that and `Some` after. |
| 446 | cannot_derive_default: Option<HashSet<ItemId>>, |
| 447 | |
| 448 | /// The set of (`ItemId`s of) types that can't derive copy. |
| 449 | /// |
| 450 | /// This is populated when we enter codegen by `compute_cannot_derive_copy` |
| 451 | /// and is always `None` before that and `Some` after. |
| 452 | cannot_derive_copy: Option<HashSet<ItemId>>, |
| 453 | |
| 454 | /// The set of (`ItemId`s of) types that can't derive hash. |
| 455 | /// |
| 456 | /// This is populated when we enter codegen by `compute_can_derive_hash` |
| 457 | /// and is always `None` before that and `Some` after. |
| 458 | cannot_derive_hash: Option<HashSet<ItemId>>, |
| 459 | |
| 460 | /// The map why specified `ItemId`s of) types that can't derive hash. |
| 461 | /// |
| 462 | /// This is populated when we enter codegen by |
| 463 | /// `compute_cannot_derive_partialord_partialeq_or_eq` and is always `None` |
| 464 | /// before that and `Some` after. |
| 465 | cannot_derive_partialeq_or_partialord: Option<HashMap<ItemId, CanDerive>>, |
| 466 | |
| 467 | /// The sizedness of types. |
| 468 | /// |
| 469 | /// This is populated by `compute_sizedness` and is always `None` before |
| 470 | /// that function is invoked and `Some` afterwards. |
| 471 | sizedness: Option<HashMap<TypeId, SizednessResult>>, |
| 472 | |
| 473 | /// The set of (`ItemId's of`) types that has vtable. |
| 474 | /// |
| 475 | /// Populated when we enter codegen by `compute_has_vtable`; always `None` |
| 476 | /// before that and `Some` after. |
| 477 | have_vtable: Option<HashMap<ItemId, HasVtableResult>>, |
| 478 | |
| 479 | /// The set of (`ItemId's of`) types that has destructor. |
| 480 | /// |
| 481 | /// Populated when we enter codegen by `compute_has_destructor`; always `None` |
| 482 | /// before that and `Some` after. |
| 483 | have_destructor: Option<HashSet<ItemId>>, |
| 484 | |
| 485 | /// The set of (`ItemId's of`) types that has array. |
| 486 | /// |
| 487 | /// Populated when we enter codegen by `compute_has_type_param_in_array`; always `None` |
| 488 | /// before that and `Some` after. |
| 489 | has_type_param_in_array: Option<HashSet<ItemId>>, |
| 490 | |
| 491 | /// The set of (`ItemId's of`) types that has float. |
| 492 | /// |
| 493 | /// Populated when we enter codegen by `compute_has_float`; always `None` |
| 494 | /// before that and `Some` after. |
| 495 | has_float: Option<HashSet<ItemId>>, |
| 496 | } |
| 497 | |
| 498 | /// A traversal of allowlisted items. |
| 499 | struct AllowlistedItemsTraversal<'ctx> { |
| 500 | ctx: &'ctx BindgenContext, |
| 501 | traversal: ItemTraversal<'ctx, ItemSet, Vec<ItemId>>, |
| 502 | } |
| 503 | |
| 504 | impl<'ctx> Iterator for AllowlistedItemsTraversal<'ctx> { |
| 505 | type Item = ItemId; |
| 506 | |
| 507 | fn next(&mut self) -> Option<ItemId> { |
| 508 | loop { |
| 509 | let id: ItemId = self.traversal.next()?; |
| 510 | |
| 511 | if self.ctx.resolve_item(id).is_blocklisted(self.ctx) { |
| 512 | continue; |
| 513 | } |
| 514 | |
| 515 | return Some(id); |
| 516 | } |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | impl<'ctx> AllowlistedItemsTraversal<'ctx> { |
| 521 | /// Construct a new allowlisted items traversal. |
| 522 | pub(crate) fn new<R>( |
| 523 | ctx: &'ctx BindgenContext, |
| 524 | roots: R, |
| 525 | predicate: for<'a> fn(&'a BindgenContext, Edge) -> bool, |
| 526 | ) -> Self |
| 527 | where |
| 528 | R: IntoIterator<Item = ItemId>, |
| 529 | { |
| 530 | AllowlistedItemsTraversal { |
| 531 | ctx, |
| 532 | traversal: ItemTraversal::new(ctx, roots, predicate), |
| 533 | } |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | impl BindgenContext { |
| 538 | /// Construct the context for the given `options`. |
| 539 | pub(crate) fn new( |
| 540 | options: BindgenOptions, |
| 541 | input_unsaved_files: &[clang::UnsavedFile], |
| 542 | ) -> Self { |
| 543 | // TODO(emilio): Use the CXTargetInfo here when available. |
| 544 | // |
| 545 | // see: https://reviews.llvm.org/D32389 |
| 546 | let index = clang::Index::new(false, true); |
| 547 | |
| 548 | let parse_options = |
| 549 | clang_sys::CXTranslationUnit_DetailedPreprocessingRecord; |
| 550 | |
| 551 | let translation_unit = { |
| 552 | let _t = |
| 553 | Timer::new("translation_unit" ).with_output(options.time_phases); |
| 554 | |
| 555 | clang::TranslationUnit::parse( |
| 556 | &index, |
| 557 | "" , |
| 558 | &options.clang_args, |
| 559 | input_unsaved_files, |
| 560 | parse_options, |
| 561 | ).expect("libclang error; possible causes include: |
| 562 | - Invalid flag syntax |
| 563 | - Unrecognized flags |
| 564 | - Invalid flag arguments |
| 565 | - File I/O errors |
| 566 | - Host vs. target architecture mismatch |
| 567 | If you encounter an error missing from this list, please file an issue or a PR!" ) |
| 568 | }; |
| 569 | |
| 570 | let target_info = clang::TargetInfo::new(&translation_unit); |
| 571 | let root_module = Self::build_root_module(ItemId(0)); |
| 572 | let root_module_id = root_module.id().as_module_id_unchecked(); |
| 573 | |
| 574 | // depfiles need to include the explicitly listed headers too |
| 575 | let deps = options.input_headers.iter().cloned().collect(); |
| 576 | |
| 577 | BindgenContext { |
| 578 | items: vec![Some(root_module)], |
| 579 | includes: Default::default(), |
| 580 | deps, |
| 581 | types: Default::default(), |
| 582 | type_params: Default::default(), |
| 583 | modules: Default::default(), |
| 584 | root_module: root_module_id, |
| 585 | current_module: root_module_id, |
| 586 | semantic_parents: Default::default(), |
| 587 | currently_parsed_types: vec![], |
| 588 | parsed_macros: Default::default(), |
| 589 | replacements: Default::default(), |
| 590 | collected_typerefs: false, |
| 591 | in_codegen: false, |
| 592 | translation_unit, |
| 593 | fallback_tu: None, |
| 594 | target_info, |
| 595 | options, |
| 596 | generated_bindgen_complex: Cell::new(false), |
| 597 | generated_bindgen_float16: Cell::new(false), |
| 598 | allowlisted: None, |
| 599 | blocklisted_types_implement_traits: Default::default(), |
| 600 | codegen_items: None, |
| 601 | used_template_parameters: None, |
| 602 | need_bitfield_allocation: Default::default(), |
| 603 | enum_typedef_combos: None, |
| 604 | cannot_derive_debug: None, |
| 605 | cannot_derive_default: None, |
| 606 | cannot_derive_copy: None, |
| 607 | cannot_derive_hash: None, |
| 608 | cannot_derive_partialeq_or_partialord: None, |
| 609 | sizedness: None, |
| 610 | have_vtable: None, |
| 611 | have_destructor: None, |
| 612 | has_type_param_in_array: None, |
| 613 | has_float: None, |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | /// Returns `true` if the target architecture is wasm32 |
| 618 | pub(crate) fn is_target_wasm32(&self) -> bool { |
| 619 | self.target_info.triple.starts_with("wasm32-" ) |
| 620 | } |
| 621 | |
| 622 | /// Creates a timer for the current bindgen phase. If time_phases is `true`, |
| 623 | /// the timer will print to stderr when it is dropped, otherwise it will do |
| 624 | /// nothing. |
| 625 | pub(crate) fn timer<'a>(&self, name: &'a str) -> Timer<'a> { |
| 626 | Timer::new(name).with_output(self.options.time_phases) |
| 627 | } |
| 628 | |
| 629 | /// Returns the pointer width to use for the target for the current |
| 630 | /// translation. |
| 631 | pub(crate) fn target_pointer_size(&self) -> usize { |
| 632 | self.target_info.pointer_width / 8 |
| 633 | } |
| 634 | |
| 635 | /// Returns the ABI, which is mostly useful for determining the mangling kind. |
| 636 | pub(crate) fn abi_kind(&self) -> ABIKind { |
| 637 | self.target_info.abi |
| 638 | } |
| 639 | |
| 640 | /// Get the stack of partially parsed types that we are in the middle of |
| 641 | /// parsing. |
| 642 | pub(crate) fn currently_parsed_types(&self) -> &[PartialType] { |
| 643 | &self.currently_parsed_types[..] |
| 644 | } |
| 645 | |
| 646 | /// Begin parsing the given partial type, and push it onto the |
| 647 | /// `currently_parsed_types` stack so that we won't infinite recurse if we |
| 648 | /// run into a reference to it while parsing it. |
| 649 | pub(crate) fn begin_parsing(&mut self, partial_ty: PartialType) { |
| 650 | self.currently_parsed_types.push(partial_ty); |
| 651 | } |
| 652 | |
| 653 | /// Finish parsing the current partial type, pop it off the |
| 654 | /// `currently_parsed_types` stack, and return it. |
| 655 | pub(crate) fn finish_parsing(&mut self) -> PartialType { |
| 656 | self.currently_parsed_types.pop().expect( |
| 657 | "should have been parsing a type, if we finished parsing a type" , |
| 658 | ) |
| 659 | } |
| 660 | |
| 661 | /// Add the location of the `#include` directive for the `included_file`. |
| 662 | pub(crate) fn add_include( |
| 663 | &mut self, |
| 664 | source_file: String, |
| 665 | included_file: String, |
| 666 | offset: usize, |
| 667 | ) { |
| 668 | self.includes |
| 669 | .entry(included_file) |
| 670 | .or_insert((source_file, offset)); |
| 671 | } |
| 672 | |
| 673 | /// Get the location of the first `#include` directive for the `included_file`. |
| 674 | pub(crate) fn included_file_location( |
| 675 | &self, |
| 676 | included_file: &str, |
| 677 | ) -> Option<(String, usize)> { |
| 678 | self.includes.get(included_file).cloned() |
| 679 | } |
| 680 | |
| 681 | /// Add an included file. |
| 682 | pub(crate) fn add_dep(&mut self, dep: Box<str>) { |
| 683 | self.deps.insert(dep); |
| 684 | } |
| 685 | |
| 686 | /// Get any included files. |
| 687 | pub(crate) fn deps(&self) -> &BTreeSet<Box<str>> { |
| 688 | &self.deps |
| 689 | } |
| 690 | |
| 691 | /// Define a new item. |
| 692 | /// |
| 693 | /// This inserts it into the internal items set, and its type into the |
| 694 | /// internal types set. |
| 695 | pub(crate) fn add_item( |
| 696 | &mut self, |
| 697 | item: Item, |
| 698 | declaration: Option<Cursor>, |
| 699 | location: Option<Cursor>, |
| 700 | ) { |
| 701 | debug!( |
| 702 | "BindgenContext::add_item( {:?}, declaration: {:?}, loc: {:?}" , |
| 703 | item, declaration, location |
| 704 | ); |
| 705 | debug_assert!( |
| 706 | declaration.is_some() || |
| 707 | !item.kind().is_type() || |
| 708 | item.kind().expect_type().is_builtin_or_type_param() || |
| 709 | item.kind().expect_type().is_opaque(self, &item) || |
| 710 | item.kind().expect_type().is_unresolved_ref(), |
| 711 | "Adding a type without declaration?" |
| 712 | ); |
| 713 | |
| 714 | let id = item.id(); |
| 715 | let is_type = item.kind().is_type(); |
| 716 | let is_unnamed = is_type && item.expect_type().name().is_none(); |
| 717 | let is_template_instantiation = |
| 718 | is_type && item.expect_type().is_template_instantiation(); |
| 719 | |
| 720 | if item.id() != self.root_module { |
| 721 | self.add_item_to_module(&item); |
| 722 | } |
| 723 | |
| 724 | if is_type && item.expect_type().is_comp() { |
| 725 | self.need_bitfield_allocation.push(id); |
| 726 | } |
| 727 | |
| 728 | let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
| 729 | assert!( |
| 730 | old_item.is_none(), |
| 731 | "should not have already associated an item with the given id" |
| 732 | ); |
| 733 | |
| 734 | // Unnamed items can have an USR, but they can't be referenced from |
| 735 | // other sites explicitly and the USR can match if the unnamed items are |
| 736 | // nested, so don't bother tracking them. |
| 737 | if !is_type || is_template_instantiation { |
| 738 | return; |
| 739 | } |
| 740 | if let Some(mut declaration) = declaration { |
| 741 | if !declaration.is_valid() { |
| 742 | if let Some(location) = location { |
| 743 | if location.is_template_like() { |
| 744 | declaration = location; |
| 745 | } |
| 746 | } |
| 747 | } |
| 748 | declaration = declaration.canonical(); |
| 749 | if !declaration.is_valid() { |
| 750 | // This could happen, for example, with types like `int*` or |
| 751 | // similar. |
| 752 | // |
| 753 | // Fortunately, we don't care about those types being |
| 754 | // duplicated, so we can just ignore them. |
| 755 | debug!( |
| 756 | "Invalid declaration {:?} found for type {:?}" , |
| 757 | declaration, |
| 758 | self.resolve_item_fallible(id) |
| 759 | .unwrap() |
| 760 | .kind() |
| 761 | .expect_type() |
| 762 | ); |
| 763 | return; |
| 764 | } |
| 765 | |
| 766 | let key = if is_unnamed { |
| 767 | TypeKey::Declaration(declaration) |
| 768 | } else if let Some(usr) = declaration.usr() { |
| 769 | TypeKey::Usr(usr) |
| 770 | } else { |
| 771 | warn!( |
| 772 | "Valid declaration with no USR: {:?}, {:?}" , |
| 773 | declaration, location |
| 774 | ); |
| 775 | TypeKey::Declaration(declaration) |
| 776 | }; |
| 777 | |
| 778 | let old = self.types.insert(key, id.as_type_id_unchecked()); |
| 779 | debug_assert_eq!(old, None); |
| 780 | } |
| 781 | } |
| 782 | |
| 783 | /// Ensure that every item (other than the root module) is in a module's |
| 784 | /// children list. This is to make sure that every allowlisted item get's |
| 785 | /// codegen'd, even if its parent is not allowlisted. See issue #769 for |
| 786 | /// details. |
| 787 | fn add_item_to_module(&mut self, item: &Item) { |
| 788 | assert!(item.id() != self.root_module); |
| 789 | assert!(self.resolve_item_fallible(item.id()).is_none()); |
| 790 | |
| 791 | if let Some(ref mut parent) = self.items[item.parent_id().0] { |
| 792 | if let Some(module) = parent.as_module_mut() { |
| 793 | debug!( |
| 794 | "add_item_to_module: adding {:?} as child of parent module {:?}" , |
| 795 | item.id(), |
| 796 | item.parent_id() |
| 797 | ); |
| 798 | |
| 799 | module.children_mut().insert(item.id()); |
| 800 | return; |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | debug!( |
| 805 | "add_item_to_module: adding {:?} as child of current module {:?}" , |
| 806 | item.id(), |
| 807 | self.current_module |
| 808 | ); |
| 809 | |
| 810 | self.items[(self.current_module.0).0] |
| 811 | .as_mut() |
| 812 | .expect("Should always have an item for self.current_module" ) |
| 813 | .as_module_mut() |
| 814 | .expect("self.current_module should always be a module" ) |
| 815 | .children_mut() |
| 816 | .insert(item.id()); |
| 817 | } |
| 818 | |
| 819 | /// Add a new named template type parameter to this context's item set. |
| 820 | pub(crate) fn add_type_param( |
| 821 | &mut self, |
| 822 | item: Item, |
| 823 | definition: clang::Cursor, |
| 824 | ) { |
| 825 | debug!( |
| 826 | "BindgenContext::add_type_param: item = {:?}; definition = {:?}" , |
| 827 | item, definition |
| 828 | ); |
| 829 | |
| 830 | assert!( |
| 831 | item.expect_type().is_type_param(), |
| 832 | "Should directly be a named type, not a resolved reference or anything" |
| 833 | ); |
| 834 | assert_eq!( |
| 835 | definition.kind(), |
| 836 | clang_sys::CXCursor_TemplateTypeParameter |
| 837 | ); |
| 838 | |
| 839 | self.add_item_to_module(&item); |
| 840 | |
| 841 | let id = item.id(); |
| 842 | let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
| 843 | assert!( |
| 844 | old_item.is_none(), |
| 845 | "should not have already associated an item with the given id" |
| 846 | ); |
| 847 | |
| 848 | let old_named_ty = self |
| 849 | .type_params |
| 850 | .insert(definition, id.as_type_id_unchecked()); |
| 851 | assert!( |
| 852 | old_named_ty.is_none(), |
| 853 | "should not have already associated a named type with this id" |
| 854 | ); |
| 855 | } |
| 856 | |
| 857 | /// Get the named type defined at the given cursor location, if we've |
| 858 | /// already added one. |
| 859 | pub(crate) fn get_type_param( |
| 860 | &self, |
| 861 | definition: &clang::Cursor, |
| 862 | ) -> Option<TypeId> { |
| 863 | assert_eq!( |
| 864 | definition.kind(), |
| 865 | clang_sys::CXCursor_TemplateTypeParameter |
| 866 | ); |
| 867 | self.type_params.get(definition).cloned() |
| 868 | } |
| 869 | |
| 870 | // TODO: Move all this syntax crap to other part of the code. |
| 871 | |
| 872 | /// Mangles a name so it doesn't conflict with any keyword. |
| 873 | #[rustfmt::skip] |
| 874 | pub(crate) fn rust_mangle<'a>(&self, name: &'a str) -> Cow<'a, str> { |
| 875 | if name.contains('@' ) || |
| 876 | name.contains('?' ) || |
| 877 | name.contains('$' ) || |
| 878 | matches!( |
| 879 | name, |
| 880 | "abstract" | "alignof" | "as" | "async" | "await" | "become" | |
| 881 | "box" | "break" | "const" | "continue" | "crate" | "do" | |
| 882 | "dyn" | "else" | "enum" | "extern" | "false" | "final" | |
| 883 | "fn" | "for" | "if" | "impl" | "in" | "let" | "loop" | |
| 884 | "macro" | "match" | "mod" | "move" | "mut" | "offsetof" | |
| 885 | "override" | "priv" | "proc" | "pub" | "pure" | "ref" | |
| 886 | "return" | "Self" | "self" | "sizeof" | "static" | |
| 887 | "struct" | "super" | "trait" | "true" | "try" | "type" | "typeof" | |
| 888 | "unsafe" | "unsized" | "use" | "virtual" | "where" | |
| 889 | "while" | "yield" | "str" | "bool" | "f32" | "f64" | |
| 890 | "usize" | "isize" | "u128" | "i128" | "u64" | "i64" | |
| 891 | "u32" | "i32" | "u16" | "i16" | "u8" | "i8" | "_" |
| 892 | ) |
| 893 | { |
| 894 | let mut s = name.to_owned(); |
| 895 | s = s.replace('@' , "_" ); |
| 896 | s = s.replace('?' , "_" ); |
| 897 | s = s.replace('$' , "_" ); |
| 898 | s.push('_' ); |
| 899 | return Cow::Owned(s); |
| 900 | } |
| 901 | Cow::Borrowed(name) |
| 902 | } |
| 903 | |
| 904 | /// Returns a mangled name as a rust identifier. |
| 905 | pub(crate) fn rust_ident<S>(&self, name: S) -> Ident |
| 906 | where |
| 907 | S: AsRef<str>, |
| 908 | { |
| 909 | self.rust_ident_raw(self.rust_mangle(name.as_ref())) |
| 910 | } |
| 911 | |
| 912 | /// Returns a mangled name as a rust identifier. |
| 913 | pub(crate) fn rust_ident_raw<T>(&self, name: T) -> Ident |
| 914 | where |
| 915 | T: AsRef<str>, |
| 916 | { |
| 917 | Ident::new(name.as_ref(), Span::call_site()) |
| 918 | } |
| 919 | |
| 920 | /// Iterate over all items that have been defined. |
| 921 | pub(crate) fn items(&self) -> impl Iterator<Item = (ItemId, &Item)> { |
| 922 | self.items.iter().enumerate().filter_map(|(index, item)| { |
| 923 | let item = item.as_ref()?; |
| 924 | Some((ItemId(index), item)) |
| 925 | }) |
| 926 | } |
| 927 | |
| 928 | /// Have we collected all unresolved type references yet? |
| 929 | pub(crate) fn collected_typerefs(&self) -> bool { |
| 930 | self.collected_typerefs |
| 931 | } |
| 932 | |
| 933 | /// Gather all the unresolved type references. |
| 934 | fn collect_typerefs( |
| 935 | &mut self, |
| 936 | ) -> Vec<(ItemId, clang::Type, clang::Cursor, Option<ItemId>)> { |
| 937 | debug_assert!(!self.collected_typerefs); |
| 938 | self.collected_typerefs = true; |
| 939 | let mut typerefs = vec![]; |
| 940 | |
| 941 | for (id, item) in self.items() { |
| 942 | let kind = item.kind(); |
| 943 | let ty = match kind.as_type() { |
| 944 | Some(ty) => ty, |
| 945 | None => continue, |
| 946 | }; |
| 947 | |
| 948 | if let TypeKind::UnresolvedTypeRef(ref ty, loc, parent_id) = |
| 949 | *ty.kind() |
| 950 | { |
| 951 | typerefs.push((id, *ty, loc, parent_id)); |
| 952 | }; |
| 953 | } |
| 954 | typerefs |
| 955 | } |
| 956 | |
| 957 | /// Collect all of our unresolved type references and resolve them. |
| 958 | fn resolve_typerefs(&mut self) { |
| 959 | let _t = self.timer("resolve_typerefs" ); |
| 960 | |
| 961 | let typerefs = self.collect_typerefs(); |
| 962 | |
| 963 | for (id, ty, loc, parent_id) in typerefs { |
| 964 | let _resolved = |
| 965 | { |
| 966 | let resolved = Item::from_ty(&ty, loc, parent_id, self) |
| 967 | .unwrap_or_else(|_| { |
| 968 | warn!("Could not resolve type reference, falling back \ |
| 969 | to opaque blob" ); |
| 970 | Item::new_opaque_type(self.next_item_id(), &ty, self) |
| 971 | }); |
| 972 | |
| 973 | let item = self.items[id.0].as_mut().unwrap(); |
| 974 | *item.kind_mut().as_type_mut().unwrap().kind_mut() = |
| 975 | TypeKind::ResolvedTypeRef(resolved); |
| 976 | resolved |
| 977 | }; |
| 978 | |
| 979 | // Something in the STL is trolling me. I don't need this assertion |
| 980 | // right now, but worth investigating properly once this lands. |
| 981 | // |
| 982 | // debug_assert!(self.items.get(&resolved).is_some(), "How?"); |
| 983 | // |
| 984 | // if let Some(parent_id) = parent_id { |
| 985 | // assert_eq!(self.items[&resolved].parent_id(), parent_id); |
| 986 | // } |
| 987 | } |
| 988 | } |
| 989 | |
| 990 | /// Temporarily loan `Item` with the given `ItemId`. This provides means to |
| 991 | /// mutably borrow `Item` while having a reference to `BindgenContext`. |
| 992 | /// |
| 993 | /// `Item` with the given `ItemId` is removed from the context, given |
| 994 | /// closure is executed and then `Item` is placed back. |
| 995 | /// |
| 996 | /// # Panics |
| 997 | /// |
| 998 | /// Panics if attempt to resolve given `ItemId` inside the given |
| 999 | /// closure is made. |
| 1000 | fn with_loaned_item<F, T>(&mut self, id: ItemId, f: F) -> T |
| 1001 | where |
| 1002 | F: (FnOnce(&BindgenContext, &mut Item) -> T), |
| 1003 | { |
| 1004 | let mut item = self.items[id.0].take().unwrap(); |
| 1005 | |
| 1006 | let result = f(self, &mut item); |
| 1007 | |
| 1008 | let existing = mem::replace(&mut self.items[id.0], Some(item)); |
| 1009 | assert!(existing.is_none()); |
| 1010 | |
| 1011 | result |
| 1012 | } |
| 1013 | |
| 1014 | /// Compute the bitfield allocation units for all `TypeKind::Comp` items we |
| 1015 | /// parsed. |
| 1016 | fn compute_bitfield_units(&mut self) { |
| 1017 | let _t = self.timer("compute_bitfield_units" ); |
| 1018 | |
| 1019 | assert!(self.collected_typerefs()); |
| 1020 | |
| 1021 | let need_bitfield_allocation = |
| 1022 | mem::take(&mut self.need_bitfield_allocation); |
| 1023 | for id in need_bitfield_allocation { |
| 1024 | self.with_loaned_item(id, |ctx, item| { |
| 1025 | let ty = item.kind_mut().as_type_mut().unwrap(); |
| 1026 | let layout = ty.layout(ctx); |
| 1027 | ty.as_comp_mut() |
| 1028 | .unwrap() |
| 1029 | .compute_bitfield_units(ctx, layout.as_ref()); |
| 1030 | }); |
| 1031 | } |
| 1032 | } |
| 1033 | |
| 1034 | /// Assign a new generated name for each anonymous field. |
| 1035 | fn deanonymize_fields(&mut self) { |
| 1036 | let _t = self.timer("deanonymize_fields" ); |
| 1037 | |
| 1038 | let comp_item_ids: Vec<ItemId> = self |
| 1039 | .items() |
| 1040 | .filter_map(|(id, item)| { |
| 1041 | if item.kind().as_type()?.is_comp() { |
| 1042 | return Some(id); |
| 1043 | } |
| 1044 | None |
| 1045 | }) |
| 1046 | .collect(); |
| 1047 | |
| 1048 | for id in comp_item_ids { |
| 1049 | self.with_loaned_item(id, |ctx, item| { |
| 1050 | item.kind_mut() |
| 1051 | .as_type_mut() |
| 1052 | .unwrap() |
| 1053 | .as_comp_mut() |
| 1054 | .unwrap() |
| 1055 | .deanonymize_fields(ctx); |
| 1056 | }); |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | /// Iterate over all items and replace any item that has been named in a |
| 1061 | /// `replaces="SomeType"` annotation with the replacement type. |
| 1062 | fn process_replacements(&mut self) { |
| 1063 | let _t = self.timer("process_replacements" ); |
| 1064 | if self.replacements.is_empty() { |
| 1065 | debug!("No replacements to process" ); |
| 1066 | return; |
| 1067 | } |
| 1068 | |
| 1069 | // FIXME: This is linear, but the replaces="xxx" annotation was already |
| 1070 | // there, and for better or worse it's useful, sigh... |
| 1071 | // |
| 1072 | // We leverage the ResolvedTypeRef thing, though, which is cool :P. |
| 1073 | |
| 1074 | let mut replacements = vec![]; |
| 1075 | |
| 1076 | for (id, item) in self.items() { |
| 1077 | if item.annotations().use_instead_of().is_some() { |
| 1078 | continue; |
| 1079 | } |
| 1080 | |
| 1081 | // Calls to `canonical_name` are expensive, so eagerly filter out |
| 1082 | // items that cannot be replaced. |
| 1083 | let ty = match item.kind().as_type() { |
| 1084 | Some(ty) => ty, |
| 1085 | None => continue, |
| 1086 | }; |
| 1087 | |
| 1088 | match *ty.kind() { |
| 1089 | TypeKind::Comp(..) | |
| 1090 | TypeKind::TemplateAlias(..) | |
| 1091 | TypeKind::Enum(..) | |
| 1092 | TypeKind::Alias(..) => {} |
| 1093 | _ => continue, |
| 1094 | } |
| 1095 | |
| 1096 | let path = item.path_for_allowlisting(self); |
| 1097 | let replacement = self.replacements.get(&path[1..]); |
| 1098 | |
| 1099 | if let Some(replacement) = replacement { |
| 1100 | if *replacement != id { |
| 1101 | // We set this just after parsing the annotation. It's |
| 1102 | // very unlikely, but this can happen. |
| 1103 | if self.resolve_item_fallible(*replacement).is_some() { |
| 1104 | replacements.push(( |
| 1105 | id.expect_type_id(self), |
| 1106 | replacement.expect_type_id(self), |
| 1107 | )); |
| 1108 | } |
| 1109 | } |
| 1110 | } |
| 1111 | } |
| 1112 | |
| 1113 | for (id, replacement_id) in replacements { |
| 1114 | debug!("Replacing {:?} with {:?}" , id, replacement_id); |
| 1115 | let new_parent = { |
| 1116 | let item_id: ItemId = id.into(); |
| 1117 | let item = self.items[item_id.0].as_mut().unwrap(); |
| 1118 | *item.kind_mut().as_type_mut().unwrap().kind_mut() = |
| 1119 | TypeKind::ResolvedTypeRef(replacement_id); |
| 1120 | item.parent_id() |
| 1121 | }; |
| 1122 | |
| 1123 | // Relocate the replacement item from where it was declared, to |
| 1124 | // where the thing it is replacing was declared. |
| 1125 | // |
| 1126 | // First, we'll make sure that its parent ID is correct. |
| 1127 | |
| 1128 | let old_parent = self.resolve_item(replacement_id).parent_id(); |
| 1129 | if new_parent == old_parent { |
| 1130 | // Same parent and therefore also same containing |
| 1131 | // module. Nothing to do here. |
| 1132 | continue; |
| 1133 | } |
| 1134 | |
| 1135 | let replacement_item_id: ItemId = replacement_id.into(); |
| 1136 | self.items[replacement_item_id.0] |
| 1137 | .as_mut() |
| 1138 | .unwrap() |
| 1139 | .set_parent_for_replacement(new_parent); |
| 1140 | |
| 1141 | // Second, make sure that it is in the correct module's children |
| 1142 | // set. |
| 1143 | |
| 1144 | let old_module = { |
| 1145 | let immut_self = &*self; |
| 1146 | old_parent |
| 1147 | .ancestors(immut_self) |
| 1148 | .chain(Some(immut_self.root_module.into())) |
| 1149 | .find(|id| { |
| 1150 | let item = immut_self.resolve_item(*id); |
| 1151 | item.as_module().map_or(false, |m| { |
| 1152 | m.children().contains(&replacement_id.into()) |
| 1153 | }) |
| 1154 | }) |
| 1155 | }; |
| 1156 | let old_module = old_module |
| 1157 | .expect("Every replacement item should be in a module" ); |
| 1158 | |
| 1159 | let new_module = { |
| 1160 | let immut_self = &*self; |
| 1161 | new_parent |
| 1162 | .ancestors(immut_self) |
| 1163 | .find(|id| immut_self.resolve_item(*id).is_module()) |
| 1164 | }; |
| 1165 | let new_module = |
| 1166 | new_module.unwrap_or_else(|| self.root_module.into()); |
| 1167 | |
| 1168 | if new_module == old_module { |
| 1169 | // Already in the correct module. |
| 1170 | continue; |
| 1171 | } |
| 1172 | |
| 1173 | self.items[old_module.0] |
| 1174 | .as_mut() |
| 1175 | .unwrap() |
| 1176 | .as_module_mut() |
| 1177 | .unwrap() |
| 1178 | .children_mut() |
| 1179 | .remove(&replacement_id.into()); |
| 1180 | |
| 1181 | self.items[new_module.0] |
| 1182 | .as_mut() |
| 1183 | .unwrap() |
| 1184 | .as_module_mut() |
| 1185 | .unwrap() |
| 1186 | .children_mut() |
| 1187 | .insert(replacement_id.into()); |
| 1188 | } |
| 1189 | } |
| 1190 | |
| 1191 | /// Enter the code generation phase, invoke the given callback `cb`, and |
| 1192 | /// leave the code generation phase. |
| 1193 | pub(crate) fn gen<F, Out>( |
| 1194 | mut self, |
| 1195 | cb: F, |
| 1196 | ) -> Result<(Out, BindgenOptions), CodegenError> |
| 1197 | where |
| 1198 | F: FnOnce(&Self) -> Result<Out, CodegenError>, |
| 1199 | { |
| 1200 | self.in_codegen = true; |
| 1201 | |
| 1202 | self.resolve_typerefs(); |
| 1203 | self.compute_bitfield_units(); |
| 1204 | self.process_replacements(); |
| 1205 | |
| 1206 | self.deanonymize_fields(); |
| 1207 | |
| 1208 | self.assert_no_dangling_references(); |
| 1209 | |
| 1210 | // Compute the allowlisted set after processing replacements and |
| 1211 | // resolving type refs, as those are the final mutations of the IR |
| 1212 | // graph, and their completion means that the IR graph is now frozen. |
| 1213 | self.compute_allowlisted_and_codegen_items(); |
| 1214 | |
| 1215 | // Make sure to do this after processing replacements, since that messes |
| 1216 | // with the parentage and module children, and we want to assert that it |
| 1217 | // messes with them correctly. |
| 1218 | self.assert_every_item_in_a_module(); |
| 1219 | |
| 1220 | self.compute_has_vtable(); |
| 1221 | self.compute_sizedness(); |
| 1222 | self.compute_has_destructor(); |
| 1223 | self.find_used_template_parameters(); |
| 1224 | self.compute_enum_typedef_combos(); |
| 1225 | self.compute_cannot_derive_debug(); |
| 1226 | self.compute_cannot_derive_default(); |
| 1227 | self.compute_cannot_derive_copy(); |
| 1228 | self.compute_has_type_param_in_array(); |
| 1229 | self.compute_has_float(); |
| 1230 | self.compute_cannot_derive_hash(); |
| 1231 | self.compute_cannot_derive_partialord_partialeq_or_eq(); |
| 1232 | |
| 1233 | let ret = cb(&self)?; |
| 1234 | Ok((ret, self.options)) |
| 1235 | } |
| 1236 | |
| 1237 | /// When the `__testing_only_extra_assertions` feature is enabled, this |
| 1238 | /// function walks the IR graph and asserts that we do not have any edges |
| 1239 | /// referencing an ItemId for which we do not have an associated IR item. |
| 1240 | fn assert_no_dangling_references(&self) { |
| 1241 | if cfg!(feature = "__testing_only_extra_assertions" ) { |
| 1242 | for _ in self.assert_no_dangling_item_traversal() { |
| 1243 | // The iterator's next method does the asserting for us. |
| 1244 | } |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | fn assert_no_dangling_item_traversal( |
| 1249 | &self, |
| 1250 | ) -> traversal::AssertNoDanglingItemsTraversal { |
| 1251 | assert!(self.in_codegen_phase()); |
| 1252 | assert!(self.current_module == self.root_module); |
| 1253 | |
| 1254 | let roots = self.items().map(|(id, _)| id); |
| 1255 | traversal::AssertNoDanglingItemsTraversal::new( |
| 1256 | self, |
| 1257 | roots, |
| 1258 | traversal::all_edges, |
| 1259 | ) |
| 1260 | } |
| 1261 | |
| 1262 | /// When the `__testing_only_extra_assertions` feature is enabled, walk over |
| 1263 | /// every item and ensure that it is in the children set of one of its |
| 1264 | /// module ancestors. |
| 1265 | fn assert_every_item_in_a_module(&self) { |
| 1266 | if cfg!(feature = "__testing_only_extra_assertions" ) { |
| 1267 | assert!(self.in_codegen_phase()); |
| 1268 | assert!(self.current_module == self.root_module); |
| 1269 | |
| 1270 | for (id, _item) in self.items() { |
| 1271 | if id == self.root_module { |
| 1272 | continue; |
| 1273 | } |
| 1274 | |
| 1275 | assert!( |
| 1276 | { |
| 1277 | let id = id |
| 1278 | .into_resolver() |
| 1279 | .through_type_refs() |
| 1280 | .through_type_aliases() |
| 1281 | .resolve(self) |
| 1282 | .id(); |
| 1283 | id.ancestors(self) |
| 1284 | .chain(Some(self.root_module.into())) |
| 1285 | .any(|ancestor| { |
| 1286 | debug!( |
| 1287 | "Checking if {:?} is a child of {:?}" , |
| 1288 | id, ancestor |
| 1289 | ); |
| 1290 | self.resolve_item(ancestor) |
| 1291 | .as_module() |
| 1292 | .map_or(false, |m| { |
| 1293 | m.children().contains(&id) |
| 1294 | }) |
| 1295 | }) |
| 1296 | }, |
| 1297 | " {:?} should be in some ancestor module's children set" , |
| 1298 | id |
| 1299 | ); |
| 1300 | } |
| 1301 | } |
| 1302 | } |
| 1303 | |
| 1304 | /// Compute for every type whether it is sized or not, and whether it is |
| 1305 | /// sized or not as a base class. |
| 1306 | fn compute_sizedness(&mut self) { |
| 1307 | let _t = self.timer("compute_sizedness" ); |
| 1308 | assert!(self.sizedness.is_none()); |
| 1309 | self.sizedness = Some(analyze::<SizednessAnalysis>(self)); |
| 1310 | } |
| 1311 | |
| 1312 | /// Look up whether the type with the given ID is sized or not. |
| 1313 | pub(crate) fn lookup_sizedness(&self, id: TypeId) -> SizednessResult { |
| 1314 | assert!( |
| 1315 | self.in_codegen_phase(), |
| 1316 | "We only compute sizedness after we've entered codegen" |
| 1317 | ); |
| 1318 | |
| 1319 | self.sizedness |
| 1320 | .as_ref() |
| 1321 | .unwrap() |
| 1322 | .get(&id) |
| 1323 | .cloned() |
| 1324 | .unwrap_or(SizednessResult::ZeroSized) |
| 1325 | } |
| 1326 | |
| 1327 | /// Compute whether the type has vtable. |
| 1328 | fn compute_has_vtable(&mut self) { |
| 1329 | let _t = self.timer("compute_has_vtable" ); |
| 1330 | assert!(self.have_vtable.is_none()); |
| 1331 | self.have_vtable = Some(analyze::<HasVtableAnalysis>(self)); |
| 1332 | } |
| 1333 | |
| 1334 | /// Look up whether the item with `id` has vtable or not. |
| 1335 | pub(crate) fn lookup_has_vtable(&self, id: TypeId) -> HasVtableResult { |
| 1336 | assert!( |
| 1337 | self.in_codegen_phase(), |
| 1338 | "We only compute vtables when we enter codegen" |
| 1339 | ); |
| 1340 | |
| 1341 | // Look up the computed value for whether the item with `id` has a |
| 1342 | // vtable or not. |
| 1343 | self.have_vtable |
| 1344 | .as_ref() |
| 1345 | .unwrap() |
| 1346 | .get(&id.into()) |
| 1347 | .cloned() |
| 1348 | .unwrap_or(HasVtableResult::No) |
| 1349 | } |
| 1350 | |
| 1351 | /// Compute whether the type has a destructor. |
| 1352 | fn compute_has_destructor(&mut self) { |
| 1353 | let _t = self.timer("compute_has_destructor" ); |
| 1354 | assert!(self.have_destructor.is_none()); |
| 1355 | self.have_destructor = Some(analyze::<HasDestructorAnalysis>(self)); |
| 1356 | } |
| 1357 | |
| 1358 | /// Look up whether the item with `id` has a destructor. |
| 1359 | pub(crate) fn lookup_has_destructor(&self, id: TypeId) -> bool { |
| 1360 | assert!( |
| 1361 | self.in_codegen_phase(), |
| 1362 | "We only compute destructors when we enter codegen" |
| 1363 | ); |
| 1364 | |
| 1365 | self.have_destructor.as_ref().unwrap().contains(&id.into()) |
| 1366 | } |
| 1367 | |
| 1368 | fn find_used_template_parameters(&mut self) { |
| 1369 | let _t = self.timer("find_used_template_parameters" ); |
| 1370 | if self.options.allowlist_recursively { |
| 1371 | let used_params = analyze::<UsedTemplateParameters>(self); |
| 1372 | self.used_template_parameters = Some(used_params); |
| 1373 | } else { |
| 1374 | // If you aren't recursively allowlisting, then we can't really make |
| 1375 | // any sense of template parameter usage, and you're on your own. |
| 1376 | let mut used_params = HashMap::default(); |
| 1377 | for &id in self.allowlisted_items() { |
| 1378 | used_params.entry(id).or_insert_with(|| { |
| 1379 | id.self_template_params(self) |
| 1380 | .into_iter() |
| 1381 | .map(|p| p.into()) |
| 1382 | .collect() |
| 1383 | }); |
| 1384 | } |
| 1385 | self.used_template_parameters = Some(used_params); |
| 1386 | } |
| 1387 | } |
| 1388 | |
| 1389 | /// Return `true` if `item` uses the given `template_param`, `false` |
| 1390 | /// otherwise. |
| 1391 | /// |
| 1392 | /// This method may only be called during the codegen phase, because the |
| 1393 | /// template usage information is only computed as we enter the codegen |
| 1394 | /// phase. |
| 1395 | /// |
| 1396 | /// If the item is blocklisted, then we say that it always uses the template |
| 1397 | /// parameter. This is a little subtle. The template parameter usage |
| 1398 | /// analysis only considers allowlisted items, and if any blocklisted item |
| 1399 | /// shows up in the generated bindings, it is the user's responsibility to |
| 1400 | /// manually provide a definition for them. To give them the most |
| 1401 | /// flexibility when doing that, we assume that they use every template |
| 1402 | /// parameter and always pass template arguments through in instantiations. |
| 1403 | pub(crate) fn uses_template_parameter( |
| 1404 | &self, |
| 1405 | item: ItemId, |
| 1406 | template_param: TypeId, |
| 1407 | ) -> bool { |
| 1408 | assert!( |
| 1409 | self.in_codegen_phase(), |
| 1410 | "We only compute template parameter usage as we enter codegen" |
| 1411 | ); |
| 1412 | |
| 1413 | if self.resolve_item(item).is_blocklisted(self) { |
| 1414 | return true; |
| 1415 | } |
| 1416 | |
| 1417 | let template_param = template_param |
| 1418 | .into_resolver() |
| 1419 | .through_type_refs() |
| 1420 | .through_type_aliases() |
| 1421 | .resolve(self) |
| 1422 | .id(); |
| 1423 | |
| 1424 | self.used_template_parameters |
| 1425 | .as_ref() |
| 1426 | .expect("should have found template parameter usage if we're in codegen" ) |
| 1427 | .get(&item) |
| 1428 | .map_or(false, |items_used_params| items_used_params.contains(&template_param)) |
| 1429 | } |
| 1430 | |
| 1431 | /// Return `true` if `item` uses any unbound, generic template parameters, |
| 1432 | /// `false` otherwise. |
| 1433 | /// |
| 1434 | /// Has the same restrictions that `uses_template_parameter` has. |
| 1435 | pub(crate) fn uses_any_template_parameters(&self, item: ItemId) -> bool { |
| 1436 | assert!( |
| 1437 | self.in_codegen_phase(), |
| 1438 | "We only compute template parameter usage as we enter codegen" |
| 1439 | ); |
| 1440 | |
| 1441 | self.used_template_parameters |
| 1442 | .as_ref() |
| 1443 | .expect( |
| 1444 | "should have template parameter usage info in codegen phase" , |
| 1445 | ) |
| 1446 | .get(&item) |
| 1447 | .map_or(false, |used| !used.is_empty()) |
| 1448 | } |
| 1449 | |
| 1450 | // This deserves a comment. Builtin types don't get a valid declaration, so |
| 1451 | // we can't add it to the cursor->type map. |
| 1452 | // |
| 1453 | // That being said, they're not generated anyway, and are few, so the |
| 1454 | // duplication and special-casing is fine. |
| 1455 | // |
| 1456 | // If at some point we care about the memory here, probably a map TypeKind |
| 1457 | // -> builtin type ItemId would be the best to improve that. |
| 1458 | fn add_builtin_item(&mut self, item: Item) { |
| 1459 | debug!("add_builtin_item: item = {:?}" , item); |
| 1460 | debug_assert!(item.kind().is_type()); |
| 1461 | self.add_item_to_module(&item); |
| 1462 | let id = item.id(); |
| 1463 | let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
| 1464 | assert!(old_item.is_none(), "Inserted type twice?" ); |
| 1465 | } |
| 1466 | |
| 1467 | fn build_root_module(id: ItemId) -> Item { |
| 1468 | let module = Module::new(Some("root" .into()), ModuleKind::Normal); |
| 1469 | Item::new(id, None, None, id, ItemKind::Module(module), None) |
| 1470 | } |
| 1471 | |
| 1472 | /// Get the root module. |
| 1473 | pub(crate) fn root_module(&self) -> ModuleId { |
| 1474 | self.root_module |
| 1475 | } |
| 1476 | |
| 1477 | /// Resolve a type with the given ID. |
| 1478 | /// |
| 1479 | /// Panics if there is no item for the given `TypeId` or if the resolved |
| 1480 | /// item is not a `Type`. |
| 1481 | pub(crate) fn resolve_type(&self, type_id: TypeId) -> &Type { |
| 1482 | self.resolve_item(type_id).kind().expect_type() |
| 1483 | } |
| 1484 | |
| 1485 | /// Resolve a function with the given ID. |
| 1486 | /// |
| 1487 | /// Panics if there is no item for the given `FunctionId` or if the resolved |
| 1488 | /// item is not a `Function`. |
| 1489 | pub(crate) fn resolve_func(&self, func_id: FunctionId) -> &Function { |
| 1490 | self.resolve_item(func_id).kind().expect_function() |
| 1491 | } |
| 1492 | |
| 1493 | /// Resolve the given `ItemId` as a type, or `None` if there is no item with |
| 1494 | /// the given ID. |
| 1495 | /// |
| 1496 | /// Panics if the ID resolves to an item that is not a type. |
| 1497 | pub(crate) fn safe_resolve_type(&self, type_id: TypeId) -> Option<&Type> { |
| 1498 | self.resolve_item_fallible(type_id) |
| 1499 | .map(|t| t.kind().expect_type()) |
| 1500 | } |
| 1501 | |
| 1502 | /// Resolve the given `ItemId` into an `Item`, or `None` if no such item |
| 1503 | /// exists. |
| 1504 | pub(crate) fn resolve_item_fallible<Id: Into<ItemId>>( |
| 1505 | &self, |
| 1506 | id: Id, |
| 1507 | ) -> Option<&Item> { |
| 1508 | self.items.get(id.into().0)?.as_ref() |
| 1509 | } |
| 1510 | |
| 1511 | /// Resolve the given `ItemId` into an `Item`. |
| 1512 | /// |
| 1513 | /// Panics if the given ID does not resolve to any item. |
| 1514 | pub(crate) fn resolve_item<Id: Into<ItemId>>(&self, item_id: Id) -> &Item { |
| 1515 | let item_id = item_id.into(); |
| 1516 | match self.resolve_item_fallible(item_id) { |
| 1517 | Some(item) => item, |
| 1518 | None => panic!("Not an item: {:?}" , item_id), |
| 1519 | } |
| 1520 | } |
| 1521 | |
| 1522 | /// Get the current module. |
| 1523 | pub(crate) fn current_module(&self) -> ModuleId { |
| 1524 | self.current_module |
| 1525 | } |
| 1526 | |
| 1527 | /// Add a semantic parent for a given type definition. |
| 1528 | /// |
| 1529 | /// We do this from the type declaration, in order to be able to find the |
| 1530 | /// correct type definition afterwards. |
| 1531 | /// |
| 1532 | /// TODO(emilio): We could consider doing this only when |
| 1533 | /// declaration.lexical_parent() != definition.lexical_parent(), but it's |
| 1534 | /// not sure it's worth it. |
| 1535 | pub(crate) fn add_semantic_parent( |
| 1536 | &mut self, |
| 1537 | definition: clang::Cursor, |
| 1538 | parent_id: ItemId, |
| 1539 | ) { |
| 1540 | self.semantic_parents.insert(definition, parent_id); |
| 1541 | } |
| 1542 | |
| 1543 | /// Returns a known semantic parent for a given definition. |
| 1544 | pub(crate) fn known_semantic_parent( |
| 1545 | &self, |
| 1546 | definition: clang::Cursor, |
| 1547 | ) -> Option<ItemId> { |
| 1548 | self.semantic_parents.get(&definition).cloned() |
| 1549 | } |
| 1550 | |
| 1551 | /// Given a cursor pointing to the location of a template instantiation, |
| 1552 | /// return a tuple of the form `(declaration_cursor, declaration_id, |
| 1553 | /// num_expected_template_args)`. |
| 1554 | /// |
| 1555 | /// Note that `declaration_id` is not guaranteed to be in the context's item |
| 1556 | /// set! It is possible that it is a partial type that we are still in the |
| 1557 | /// middle of parsing. |
| 1558 | fn get_declaration_info_for_template_instantiation( |
| 1559 | &self, |
| 1560 | instantiation: &Cursor, |
| 1561 | ) -> Option<(Cursor, ItemId, usize)> { |
| 1562 | instantiation |
| 1563 | .cur_type() |
| 1564 | .canonical_declaration(Some(instantiation)) |
| 1565 | .and_then(|canon_decl| { |
| 1566 | self.get_resolved_type(&canon_decl).and_then( |
| 1567 | |template_decl_id| { |
| 1568 | let num_params = |
| 1569 | template_decl_id.num_self_template_params(self); |
| 1570 | if num_params == 0 { |
| 1571 | None |
| 1572 | } else { |
| 1573 | Some(( |
| 1574 | *canon_decl.cursor(), |
| 1575 | template_decl_id.into(), |
| 1576 | num_params, |
| 1577 | )) |
| 1578 | } |
| 1579 | }, |
| 1580 | ) |
| 1581 | }) |
| 1582 | .or_else(|| { |
| 1583 | // If we haven't already parsed the declaration of |
| 1584 | // the template being instantiated, then it *must* |
| 1585 | // be on the stack of types we are currently |
| 1586 | // parsing. If it wasn't then clang would have |
| 1587 | // already errored out before we started |
| 1588 | // constructing our IR because you can't instantiate |
| 1589 | // a template until it is fully defined. |
| 1590 | instantiation |
| 1591 | .referenced() |
| 1592 | .and_then(|referenced| { |
| 1593 | self.currently_parsed_types() |
| 1594 | .iter() |
| 1595 | .find(|partial_ty| *partial_ty.decl() == referenced) |
| 1596 | .cloned() |
| 1597 | }) |
| 1598 | .and_then(|template_decl| { |
| 1599 | let num_template_params = |
| 1600 | template_decl.num_self_template_params(self); |
| 1601 | if num_template_params == 0 { |
| 1602 | None |
| 1603 | } else { |
| 1604 | Some(( |
| 1605 | *template_decl.decl(), |
| 1606 | template_decl.id(), |
| 1607 | num_template_params, |
| 1608 | )) |
| 1609 | } |
| 1610 | }) |
| 1611 | }) |
| 1612 | } |
| 1613 | |
| 1614 | /// Parse a template instantiation, eg `Foo<int>`. |
| 1615 | /// |
| 1616 | /// This is surprisingly difficult to do with libclang, due to the fact that |
| 1617 | /// it doesn't provide explicit template argument information, except for |
| 1618 | /// function template declarations(!?!??!). |
| 1619 | /// |
| 1620 | /// The only way to do this is manually inspecting the AST and looking for |
| 1621 | /// TypeRefs and TemplateRefs inside. This, unfortunately, doesn't work for |
| 1622 | /// more complex cases, see the comment on the assertion below. |
| 1623 | /// |
| 1624 | /// To add insult to injury, the AST itself has structure that doesn't make |
| 1625 | /// sense. Sometimes `Foo<Bar<int>>` has an AST with nesting like you might |
| 1626 | /// expect: `(Foo (Bar (int)))`. Other times, the AST we get is completely |
| 1627 | /// flat: `(Foo Bar int)`. |
| 1628 | /// |
| 1629 | /// To see an example of what this method handles: |
| 1630 | /// |
| 1631 | /// ```c++ |
| 1632 | /// template<typename T> |
| 1633 | /// class Incomplete { |
| 1634 | /// T p; |
| 1635 | /// }; |
| 1636 | /// |
| 1637 | /// template<typename U> |
| 1638 | /// class Foo { |
| 1639 | /// Incomplete<U> bar; |
| 1640 | /// }; |
| 1641 | /// ``` |
| 1642 | /// |
| 1643 | /// Finally, template instantiations are always children of the current |
| 1644 | /// module. They use their template's definition for their name, so the |
| 1645 | /// parent is only useful for ensuring that their layout tests get |
| 1646 | /// codegen'd. |
| 1647 | fn instantiate_template( |
| 1648 | &mut self, |
| 1649 | with_id: ItemId, |
| 1650 | template: TypeId, |
| 1651 | ty: &clang::Type, |
| 1652 | location: clang::Cursor, |
| 1653 | ) -> Option<TypeId> { |
| 1654 | let num_expected_args = |
| 1655 | self.resolve_type(template).num_self_template_params(self); |
| 1656 | if num_expected_args == 0 { |
| 1657 | warn!( |
| 1658 | "Tried to instantiate a template for which we could not \ |
| 1659 | determine any template parameters" |
| 1660 | ); |
| 1661 | return None; |
| 1662 | } |
| 1663 | |
| 1664 | let mut args = vec![]; |
| 1665 | let mut found_const_arg = false; |
| 1666 | let mut children = location.collect_children(); |
| 1667 | |
| 1668 | if children.iter().all(|c| !c.has_children()) { |
| 1669 | // This is insanity... If clang isn't giving us a properly nested |
| 1670 | // AST for which template arguments belong to which template we are |
| 1671 | // instantiating, we'll need to construct it ourselves. However, |
| 1672 | // there is an extra `NamespaceRef, NamespaceRef, ..., TemplateRef` |
| 1673 | // representing a reference to the outermost template declaration |
| 1674 | // that we need to filter out of the children. We need to do this |
| 1675 | // filtering because we already know which template declaration is |
| 1676 | // being specialized via the `location`'s type, and if we do not |
| 1677 | // filter it out, we'll add an extra layer of template instantiation |
| 1678 | // on accident. |
| 1679 | let idx = children |
| 1680 | .iter() |
| 1681 | .position(|c| c.kind() == clang_sys::CXCursor_TemplateRef); |
| 1682 | if let Some(idx) = idx { |
| 1683 | if children |
| 1684 | .iter() |
| 1685 | .take(idx) |
| 1686 | .all(|c| c.kind() == clang_sys::CXCursor_NamespaceRef) |
| 1687 | { |
| 1688 | children = children.into_iter().skip(idx + 1).collect(); |
| 1689 | } |
| 1690 | } |
| 1691 | } |
| 1692 | |
| 1693 | for child in children.iter().rev() { |
| 1694 | match child.kind() { |
| 1695 | clang_sys::CXCursor_TypeRef | |
| 1696 | clang_sys::CXCursor_TypedefDecl | |
| 1697 | clang_sys::CXCursor_TypeAliasDecl => { |
| 1698 | // The `with_id` ID will potentially end up unused if we give up |
| 1699 | // on this type (for example, because it has const value |
| 1700 | // template args), so if we pass `with_id` as the parent, it is |
| 1701 | // potentially a dangling reference. Instead, use the canonical |
| 1702 | // template declaration as the parent. It is already parsed and |
| 1703 | // has a known-resolvable `ItemId`. |
| 1704 | let ty = Item::from_ty_or_ref( |
| 1705 | child.cur_type(), |
| 1706 | *child, |
| 1707 | Some(template.into()), |
| 1708 | self, |
| 1709 | ); |
| 1710 | args.push(ty); |
| 1711 | } |
| 1712 | clang_sys::CXCursor_TemplateRef => { |
| 1713 | let ( |
| 1714 | template_decl_cursor, |
| 1715 | template_decl_id, |
| 1716 | num_expected_template_args, |
| 1717 | ) = self.get_declaration_info_for_template_instantiation( |
| 1718 | child, |
| 1719 | )?; |
| 1720 | |
| 1721 | if num_expected_template_args == 0 || |
| 1722 | child.has_at_least_num_children( |
| 1723 | num_expected_template_args, |
| 1724 | ) |
| 1725 | { |
| 1726 | // Do a happy little parse. See comment in the TypeRef |
| 1727 | // match arm about parent IDs. |
| 1728 | let ty = Item::from_ty_or_ref( |
| 1729 | child.cur_type(), |
| 1730 | *child, |
| 1731 | Some(template.into()), |
| 1732 | self, |
| 1733 | ); |
| 1734 | args.push(ty); |
| 1735 | } else { |
| 1736 | // This is the case mentioned in the doc comment where |
| 1737 | // clang gives us a flattened AST and we have to |
| 1738 | // reconstruct which template arguments go to which |
| 1739 | // instantiation :( |
| 1740 | let args_len = args.len(); |
| 1741 | if args_len < num_expected_template_args { |
| 1742 | warn!( |
| 1743 | "Found a template instantiation without \ |
| 1744 | enough template arguments" |
| 1745 | ); |
| 1746 | return None; |
| 1747 | } |
| 1748 | |
| 1749 | let mut sub_args: Vec<_> = args |
| 1750 | .drain(args_len - num_expected_template_args..) |
| 1751 | .collect(); |
| 1752 | sub_args.reverse(); |
| 1753 | |
| 1754 | let sub_name = Some(template_decl_cursor.spelling()); |
| 1755 | let sub_inst = TemplateInstantiation::new( |
| 1756 | // This isn't guaranteed to be a type that we've |
| 1757 | // already finished parsing yet. |
| 1758 | template_decl_id.as_type_id_unchecked(), |
| 1759 | sub_args, |
| 1760 | ); |
| 1761 | let sub_kind = |
| 1762 | TypeKind::TemplateInstantiation(sub_inst); |
| 1763 | let sub_ty = Type::new( |
| 1764 | sub_name, |
| 1765 | template_decl_cursor |
| 1766 | .cur_type() |
| 1767 | .fallible_layout(self) |
| 1768 | .ok(), |
| 1769 | sub_kind, |
| 1770 | false, |
| 1771 | ); |
| 1772 | let sub_id = self.next_item_id(); |
| 1773 | let sub_item = Item::new( |
| 1774 | sub_id, |
| 1775 | None, |
| 1776 | None, |
| 1777 | self.current_module.into(), |
| 1778 | ItemKind::Type(sub_ty), |
| 1779 | Some(child.location()), |
| 1780 | ); |
| 1781 | |
| 1782 | // Bypass all the validations in add_item explicitly. |
| 1783 | debug!( |
| 1784 | "instantiate_template: inserting nested \ |
| 1785 | instantiation item: {:?}" , |
| 1786 | sub_item |
| 1787 | ); |
| 1788 | self.add_item_to_module(&sub_item); |
| 1789 | debug_assert_eq!(sub_id, sub_item.id()); |
| 1790 | self.items[sub_id.0] = Some(sub_item); |
| 1791 | args.push(sub_id.as_type_id_unchecked()); |
| 1792 | } |
| 1793 | } |
| 1794 | _ => { |
| 1795 | warn!( |
| 1796 | "Found template arg cursor we can't handle: {:?}" , |
| 1797 | child |
| 1798 | ); |
| 1799 | found_const_arg = true; |
| 1800 | } |
| 1801 | } |
| 1802 | } |
| 1803 | |
| 1804 | if found_const_arg { |
| 1805 | // This is a dependently typed template instantiation. That is, an |
| 1806 | // instantiation of a template with one or more const values as |
| 1807 | // template arguments, rather than only types as template |
| 1808 | // arguments. For example, `Foo<true, 5>` versus `Bar<bool, int>`. |
| 1809 | // We can't handle these instantiations, so just punt in this |
| 1810 | // situation... |
| 1811 | warn!( |
| 1812 | "Found template instantiated with a const value; \ |
| 1813 | bindgen can't handle this kind of template instantiation!" |
| 1814 | ); |
| 1815 | return None; |
| 1816 | } |
| 1817 | |
| 1818 | if args.len() != num_expected_args { |
| 1819 | warn!( |
| 1820 | "Found a template with an unexpected number of template \ |
| 1821 | arguments" |
| 1822 | ); |
| 1823 | return None; |
| 1824 | } |
| 1825 | |
| 1826 | args.reverse(); |
| 1827 | let type_kind = TypeKind::TemplateInstantiation( |
| 1828 | TemplateInstantiation::new(template, args), |
| 1829 | ); |
| 1830 | let name = ty.spelling(); |
| 1831 | let name = if name.is_empty() { None } else { Some(name) }; |
| 1832 | let ty = Type::new( |
| 1833 | name, |
| 1834 | ty.fallible_layout(self).ok(), |
| 1835 | type_kind, |
| 1836 | ty.is_const(), |
| 1837 | ); |
| 1838 | let item = Item::new( |
| 1839 | with_id, |
| 1840 | None, |
| 1841 | None, |
| 1842 | self.current_module.into(), |
| 1843 | ItemKind::Type(ty), |
| 1844 | Some(location.location()), |
| 1845 | ); |
| 1846 | |
| 1847 | // Bypass all the validations in add_item explicitly. |
| 1848 | debug!("instantiate_template: inserting item: {:?}" , item); |
| 1849 | self.add_item_to_module(&item); |
| 1850 | debug_assert_eq!(with_id, item.id()); |
| 1851 | self.items[with_id.0] = Some(item); |
| 1852 | Some(with_id.as_type_id_unchecked()) |
| 1853 | } |
| 1854 | |
| 1855 | /// If we have already resolved the type for the given type declaration, |
| 1856 | /// return its `ItemId`. Otherwise, return `None`. |
| 1857 | pub(crate) fn get_resolved_type( |
| 1858 | &self, |
| 1859 | decl: &clang::CanonicalTypeDeclaration, |
| 1860 | ) -> Option<TypeId> { |
| 1861 | self.types |
| 1862 | .get(&TypeKey::Declaration(*decl.cursor())) |
| 1863 | .or_else(|| { |
| 1864 | decl.cursor() |
| 1865 | .usr() |
| 1866 | .and_then(|usr| self.types.get(&TypeKey::Usr(usr))) |
| 1867 | }) |
| 1868 | .cloned() |
| 1869 | } |
| 1870 | |
| 1871 | /// Looks up for an already resolved type, either because it's builtin, or |
| 1872 | /// because we already have it in the map. |
| 1873 | pub(crate) fn builtin_or_resolved_ty( |
| 1874 | &mut self, |
| 1875 | with_id: ItemId, |
| 1876 | parent_id: Option<ItemId>, |
| 1877 | ty: &clang::Type, |
| 1878 | location: Option<clang::Cursor>, |
| 1879 | ) -> Option<TypeId> { |
| 1880 | use clang_sys::{CXCursor_TypeAliasTemplateDecl, CXCursor_TypeRef}; |
| 1881 | debug!( |
| 1882 | "builtin_or_resolved_ty: {:?}, {:?}, {:?}, {:?}" , |
| 1883 | ty, location, with_id, parent_id |
| 1884 | ); |
| 1885 | |
| 1886 | if let Some(decl) = ty.canonical_declaration(location.as_ref()) { |
| 1887 | if let Some(id) = self.get_resolved_type(&decl) { |
| 1888 | debug!( |
| 1889 | "Already resolved ty {:?}, {:?}, {:?} {:?}" , |
| 1890 | id, decl, ty, location |
| 1891 | ); |
| 1892 | // If the declaration already exists, then either: |
| 1893 | // |
| 1894 | // * the declaration is a template declaration of some sort, |
| 1895 | // and we are looking at an instantiation or specialization |
| 1896 | // of it, or |
| 1897 | // * we have already parsed and resolved this type, and |
| 1898 | // there's nothing left to do. |
| 1899 | if let Some(location) = location { |
| 1900 | if decl.cursor().is_template_like() && |
| 1901 | *ty != decl.cursor().cur_type() |
| 1902 | { |
| 1903 | // For specialized type aliases, there's no way to get the |
| 1904 | // template parameters as of this writing (for a struct |
| 1905 | // specialization we wouldn't be in this branch anyway). |
| 1906 | // |
| 1907 | // Explicitly return `None` if there aren't any |
| 1908 | // unspecialized parameters (contains any `TypeRef`) so we |
| 1909 | // resolve the canonical type if there is one and it's |
| 1910 | // exposed. |
| 1911 | // |
| 1912 | // This is _tricky_, I know :( |
| 1913 | if decl.cursor().kind() == |
| 1914 | CXCursor_TypeAliasTemplateDecl && |
| 1915 | !location.contains_cursor(CXCursor_TypeRef) && |
| 1916 | ty.canonical_type().is_valid_and_exposed() |
| 1917 | { |
| 1918 | return None; |
| 1919 | } |
| 1920 | |
| 1921 | return self |
| 1922 | .instantiate_template(with_id, id, ty, location) |
| 1923 | .or(Some(id)); |
| 1924 | } |
| 1925 | } |
| 1926 | |
| 1927 | return Some(self.build_ty_wrapper(with_id, id, parent_id, ty)); |
| 1928 | } |
| 1929 | } |
| 1930 | |
| 1931 | debug!("Not resolved, maybe builtin?" ); |
| 1932 | self.build_builtin_ty(ty) |
| 1933 | } |
| 1934 | |
| 1935 | /// Make a new item that is a resolved type reference to the `wrapped_id`. |
| 1936 | /// |
| 1937 | /// This is unfortunately a lot of bloat, but is needed to properly track |
| 1938 | /// constness et al. |
| 1939 | /// |
| 1940 | /// We should probably make the constness tracking separate, so it doesn't |
| 1941 | /// bloat that much, but hey, we already bloat the heck out of builtin |
| 1942 | /// types. |
| 1943 | pub(crate) fn build_ty_wrapper( |
| 1944 | &mut self, |
| 1945 | with_id: ItemId, |
| 1946 | wrapped_id: TypeId, |
| 1947 | parent_id: Option<ItemId>, |
| 1948 | ty: &clang::Type, |
| 1949 | ) -> TypeId { |
| 1950 | self.build_wrapper(with_id, wrapped_id, parent_id, ty, ty.is_const()) |
| 1951 | } |
| 1952 | |
| 1953 | /// A wrapper over a type that adds a const qualifier explicitly. |
| 1954 | /// |
| 1955 | /// Needed to handle const methods in C++, wrapping the type . |
| 1956 | pub(crate) fn build_const_wrapper( |
| 1957 | &mut self, |
| 1958 | with_id: ItemId, |
| 1959 | wrapped_id: TypeId, |
| 1960 | parent_id: Option<ItemId>, |
| 1961 | ty: &clang::Type, |
| 1962 | ) -> TypeId { |
| 1963 | self.build_wrapper( |
| 1964 | with_id, wrapped_id, parent_id, ty, /* is_const = */ true, |
| 1965 | ) |
| 1966 | } |
| 1967 | |
| 1968 | fn build_wrapper( |
| 1969 | &mut self, |
| 1970 | with_id: ItemId, |
| 1971 | wrapped_id: TypeId, |
| 1972 | parent_id: Option<ItemId>, |
| 1973 | ty: &clang::Type, |
| 1974 | is_const: bool, |
| 1975 | ) -> TypeId { |
| 1976 | let spelling = ty.spelling(); |
| 1977 | let layout = ty.fallible_layout(self).ok(); |
| 1978 | let location = ty.declaration().location(); |
| 1979 | let type_kind = TypeKind::ResolvedTypeRef(wrapped_id); |
| 1980 | let ty = Type::new(Some(spelling), layout, type_kind, is_const); |
| 1981 | let item = Item::new( |
| 1982 | with_id, |
| 1983 | None, |
| 1984 | None, |
| 1985 | parent_id.unwrap_or_else(|| self.current_module.into()), |
| 1986 | ItemKind::Type(ty), |
| 1987 | Some(location), |
| 1988 | ); |
| 1989 | self.add_builtin_item(item); |
| 1990 | with_id.as_type_id_unchecked() |
| 1991 | } |
| 1992 | |
| 1993 | /// Returns the next item ID to be used for an item. |
| 1994 | pub(crate) fn next_item_id(&mut self) -> ItemId { |
| 1995 | let ret = ItemId(self.items.len()); |
| 1996 | self.items.push(None); |
| 1997 | ret |
| 1998 | } |
| 1999 | |
| 2000 | fn build_builtin_ty(&mut self, ty: &clang::Type) -> Option<TypeId> { |
| 2001 | use clang_sys::*; |
| 2002 | let type_kind = match ty.kind() { |
| 2003 | CXType_NullPtr => TypeKind::NullPtr, |
| 2004 | CXType_Void => TypeKind::Void, |
| 2005 | CXType_Bool => TypeKind::Int(IntKind::Bool), |
| 2006 | CXType_Int => TypeKind::Int(IntKind::Int), |
| 2007 | CXType_UInt => TypeKind::Int(IntKind::UInt), |
| 2008 | CXType_Char_S => TypeKind::Int(IntKind::Char { is_signed: true }), |
| 2009 | CXType_Char_U => TypeKind::Int(IntKind::Char { is_signed: false }), |
| 2010 | CXType_SChar => TypeKind::Int(IntKind::SChar), |
| 2011 | CXType_UChar => TypeKind::Int(IntKind::UChar), |
| 2012 | CXType_Short => TypeKind::Int(IntKind::Short), |
| 2013 | CXType_UShort => TypeKind::Int(IntKind::UShort), |
| 2014 | CXType_WChar => TypeKind::Int(IntKind::WChar), |
| 2015 | CXType_Char16 => TypeKind::Int(IntKind::U16), |
| 2016 | CXType_Char32 => TypeKind::Int(IntKind::U32), |
| 2017 | CXType_Long => TypeKind::Int(IntKind::Long), |
| 2018 | CXType_ULong => TypeKind::Int(IntKind::ULong), |
| 2019 | CXType_LongLong => TypeKind::Int(IntKind::LongLong), |
| 2020 | CXType_ULongLong => TypeKind::Int(IntKind::ULongLong), |
| 2021 | CXType_Int128 => TypeKind::Int(IntKind::I128), |
| 2022 | CXType_UInt128 => TypeKind::Int(IntKind::U128), |
| 2023 | CXType_Float16 | CXType_Half => TypeKind::Float(FloatKind::Float16), |
| 2024 | CXType_Float => TypeKind::Float(FloatKind::Float), |
| 2025 | CXType_Double => TypeKind::Float(FloatKind::Double), |
| 2026 | CXType_LongDouble => TypeKind::Float(FloatKind::LongDouble), |
| 2027 | CXType_Float128 => TypeKind::Float(FloatKind::Float128), |
| 2028 | CXType_Complex => { |
| 2029 | let float_type = |
| 2030 | ty.elem_type().expect("Not able to resolve complex type?" ); |
| 2031 | let float_kind = match float_type.kind() { |
| 2032 | CXType_Float16 | CXType_Half => FloatKind::Float16, |
| 2033 | CXType_Float => FloatKind::Float, |
| 2034 | CXType_Double => FloatKind::Double, |
| 2035 | CXType_LongDouble => FloatKind::LongDouble, |
| 2036 | CXType_Float128 => FloatKind::Float128, |
| 2037 | _ => panic!( |
| 2038 | "Non floating-type complex? {:?}, {:?}" , |
| 2039 | ty, float_type, |
| 2040 | ), |
| 2041 | }; |
| 2042 | TypeKind::Complex(float_kind) |
| 2043 | } |
| 2044 | _ => return None, |
| 2045 | }; |
| 2046 | |
| 2047 | let spelling = ty.spelling(); |
| 2048 | let is_const = ty.is_const(); |
| 2049 | let layout = ty.fallible_layout(self).ok(); |
| 2050 | let location = ty.declaration().location(); |
| 2051 | let ty = Type::new(Some(spelling), layout, type_kind, is_const); |
| 2052 | let id = self.next_item_id(); |
| 2053 | let item = Item::new( |
| 2054 | id, |
| 2055 | None, |
| 2056 | None, |
| 2057 | self.root_module.into(), |
| 2058 | ItemKind::Type(ty), |
| 2059 | Some(location), |
| 2060 | ); |
| 2061 | self.add_builtin_item(item); |
| 2062 | Some(id.as_type_id_unchecked()) |
| 2063 | } |
| 2064 | |
| 2065 | /// Get the current Clang translation unit that is being processed. |
| 2066 | pub(crate) fn translation_unit(&self) -> &clang::TranslationUnit { |
| 2067 | &self.translation_unit |
| 2068 | } |
| 2069 | |
| 2070 | /// Initialize fallback translation unit if it does not exist and |
| 2071 | /// then return a mutable reference to the fallback translation unit. |
| 2072 | pub(crate) fn try_ensure_fallback_translation_unit( |
| 2073 | &mut self, |
| 2074 | ) -> Option<&mut clang::FallbackTranslationUnit> { |
| 2075 | if self.fallback_tu.is_none() { |
| 2076 | let file = format!( |
| 2077 | " {}/.macro_eval.c" , |
| 2078 | match self.options().clang_macro_fallback_build_dir { |
| 2079 | Some(ref path) => path.as_os_str().to_str()?, |
| 2080 | None => "." , |
| 2081 | } |
| 2082 | ); |
| 2083 | |
| 2084 | let index = clang::Index::new(false, false); |
| 2085 | |
| 2086 | let mut header_names_to_compile = Vec::new(); |
| 2087 | let mut header_paths = Vec::new(); |
| 2088 | let mut header_contents = String::new(); |
| 2089 | for input_header in self.options.input_headers.iter() { |
| 2090 | let path = Path::new(input_header.as_ref()); |
| 2091 | if let Some(header_path) = path.parent() { |
| 2092 | if header_path == Path::new("" ) { |
| 2093 | header_paths.push("." ); |
| 2094 | } else { |
| 2095 | header_paths.push(header_path.as_os_str().to_str()?); |
| 2096 | } |
| 2097 | } else { |
| 2098 | header_paths.push("." ); |
| 2099 | } |
| 2100 | let header_name = path.file_name()?.to_str()?; |
| 2101 | header_names_to_compile |
| 2102 | .push(header_name.split(".h" ).next()?.to_string()); |
| 2103 | header_contents += |
| 2104 | format!(" \n#include < {header_name}>" ).as_str(); |
| 2105 | } |
| 2106 | let header_to_precompile = format!( |
| 2107 | " {}/ {}" , |
| 2108 | match self.options().clang_macro_fallback_build_dir { |
| 2109 | Some(ref path) => path.as_os_str().to_str()?, |
| 2110 | None => "." , |
| 2111 | }, |
| 2112 | header_names_to_compile.join("-" ) + "-precompile.h" |
| 2113 | ); |
| 2114 | let pch = header_to_precompile.clone() + ".pch" ; |
| 2115 | |
| 2116 | let mut header_to_precompile_file = OpenOptions::new() |
| 2117 | .create(true) |
| 2118 | .truncate(true) |
| 2119 | .write(true) |
| 2120 | .open(&header_to_precompile) |
| 2121 | .ok()?; |
| 2122 | header_to_precompile_file |
| 2123 | .write_all(header_contents.as_bytes()) |
| 2124 | .ok()?; |
| 2125 | |
| 2126 | let mut c_args = Vec::new(); |
| 2127 | c_args.push("-x" .to_string().into_boxed_str()); |
| 2128 | c_args.push("c-header" .to_string().into_boxed_str()); |
| 2129 | for header_path in header_paths { |
| 2130 | c_args.push(format!("-I {header_path}" ).into_boxed_str()); |
| 2131 | } |
| 2132 | c_args.extend( |
| 2133 | self.options |
| 2134 | .clang_args |
| 2135 | .iter() |
| 2136 | .filter(|next| { |
| 2137 | !self.options.input_headers.contains(next) && |
| 2138 | next.as_ref() != "-include" |
| 2139 | }) |
| 2140 | .cloned(), |
| 2141 | ); |
| 2142 | let mut tu = clang::TranslationUnit::parse( |
| 2143 | &index, |
| 2144 | &header_to_precompile, |
| 2145 | &c_args, |
| 2146 | &[], |
| 2147 | clang_sys::CXTranslationUnit_ForSerialization, |
| 2148 | )?; |
| 2149 | tu.save(&pch).ok()?; |
| 2150 | |
| 2151 | let mut c_args = vec![ |
| 2152 | "-include-pch" .to_string().into_boxed_str(), |
| 2153 | pch.clone().into_boxed_str(), |
| 2154 | ]; |
| 2155 | c_args.extend( |
| 2156 | self.options |
| 2157 | .clang_args |
| 2158 | .clone() |
| 2159 | .iter() |
| 2160 | .filter(|next| { |
| 2161 | !self.options.input_headers.contains(next) && |
| 2162 | next.as_ref() != "-include" |
| 2163 | }) |
| 2164 | .cloned(), |
| 2165 | ); |
| 2166 | self.fallback_tu = Some(clang::FallbackTranslationUnit::new( |
| 2167 | file, |
| 2168 | header_to_precompile, |
| 2169 | pch, |
| 2170 | &c_args, |
| 2171 | )?); |
| 2172 | } |
| 2173 | |
| 2174 | self.fallback_tu.as_mut() |
| 2175 | } |
| 2176 | |
| 2177 | /// Have we parsed the macro named `macro_name` already? |
| 2178 | pub(crate) fn parsed_macro(&self, macro_name: &[u8]) -> bool { |
| 2179 | self.parsed_macros.contains_key(macro_name) |
| 2180 | } |
| 2181 | |
| 2182 | /// Get the currently parsed macros. |
| 2183 | pub(crate) fn parsed_macros( |
| 2184 | &self, |
| 2185 | ) -> &StdHashMap<Vec<u8>, cexpr::expr::EvalResult> { |
| 2186 | debug_assert!(!self.in_codegen_phase()); |
| 2187 | &self.parsed_macros |
| 2188 | } |
| 2189 | |
| 2190 | /// Mark the macro named `macro_name` as parsed. |
| 2191 | pub(crate) fn note_parsed_macro( |
| 2192 | &mut self, |
| 2193 | id: Vec<u8>, |
| 2194 | value: cexpr::expr::EvalResult, |
| 2195 | ) { |
| 2196 | self.parsed_macros.insert(id, value); |
| 2197 | } |
| 2198 | |
| 2199 | /// Are we in the codegen phase? |
| 2200 | pub(crate) fn in_codegen_phase(&self) -> bool { |
| 2201 | self.in_codegen |
| 2202 | } |
| 2203 | |
| 2204 | /// Mark the type with the given `name` as replaced by the type with ID |
| 2205 | /// `potential_ty`. |
| 2206 | /// |
| 2207 | /// Replacement types are declared using the `replaces="xxx"` annotation, |
| 2208 | /// and implies that the original type is hidden. |
| 2209 | pub(crate) fn replace(&mut self, name: &[String], potential_ty: ItemId) { |
| 2210 | match self.replacements.entry(name.into()) { |
| 2211 | Entry::Vacant(entry) => { |
| 2212 | debug!( |
| 2213 | "Defining replacement for {:?} as {:?}" , |
| 2214 | name, potential_ty |
| 2215 | ); |
| 2216 | entry.insert(potential_ty); |
| 2217 | } |
| 2218 | Entry::Occupied(occupied) => { |
| 2219 | warn!( |
| 2220 | "Replacement for {:?} already defined as {:?}; \ |
| 2221 | ignoring duplicate replacement definition as {:?}" , |
| 2222 | name, |
| 2223 | occupied.get(), |
| 2224 | potential_ty |
| 2225 | ); |
| 2226 | } |
| 2227 | } |
| 2228 | } |
| 2229 | |
| 2230 | /// Has the item with the given `name` and `id` been replaced by another |
| 2231 | /// type? |
| 2232 | pub(crate) fn is_replaced_type<Id: Into<ItemId>>( |
| 2233 | &self, |
| 2234 | path: &[String], |
| 2235 | id: Id, |
| 2236 | ) -> bool { |
| 2237 | let id = id.into(); |
| 2238 | matches!(self.replacements.get(path), Some(replaced_by) if *replaced_by != id) |
| 2239 | } |
| 2240 | |
| 2241 | /// Is the type with the given `name` marked as opaque? |
| 2242 | pub(crate) fn opaque_by_name(&self, path: &[String]) -> bool { |
| 2243 | debug_assert!( |
| 2244 | self.in_codegen_phase(), |
| 2245 | "You're not supposed to call this yet" |
| 2246 | ); |
| 2247 | self.options.opaque_types.matches(path[1..].join("::" )) |
| 2248 | } |
| 2249 | |
| 2250 | /// Get the options used to configure this bindgen context. |
| 2251 | pub(crate) fn options(&self) -> &BindgenOptions { |
| 2252 | &self.options |
| 2253 | } |
| 2254 | |
| 2255 | /// Tokenizes a namespace cursor in order to get the name and kind of the |
| 2256 | /// namespace. |
| 2257 | fn tokenize_namespace( |
| 2258 | &self, |
| 2259 | cursor: &clang::Cursor, |
| 2260 | ) -> (Option<String>, ModuleKind) { |
| 2261 | assert_eq!( |
| 2262 | cursor.kind(), |
| 2263 | ::clang_sys::CXCursor_Namespace, |
| 2264 | "Be a nice person" |
| 2265 | ); |
| 2266 | |
| 2267 | let mut module_name = None; |
| 2268 | let spelling = cursor.spelling(); |
| 2269 | if !spelling.is_empty() { |
| 2270 | module_name = Some(spelling) |
| 2271 | } |
| 2272 | |
| 2273 | let mut kind = ModuleKind::Normal; |
| 2274 | let mut looking_for_name = false; |
| 2275 | for token in cursor.tokens().iter() { |
| 2276 | match token.spelling() { |
| 2277 | b"inline" => { |
| 2278 | debug_assert!( |
| 2279 | kind != ModuleKind::Inline, |
| 2280 | "Multiple inline keywords?" |
| 2281 | ); |
| 2282 | kind = ModuleKind::Inline; |
| 2283 | // When hitting a nested inline namespace we get a spelling |
| 2284 | // that looks like ["inline", "foo"]. Deal with it properly. |
| 2285 | looking_for_name = true; |
| 2286 | } |
| 2287 | // The double colon allows us to handle nested namespaces like |
| 2288 | // namespace foo::bar { } |
| 2289 | // |
| 2290 | // libclang still gives us two namespace cursors, which is cool, |
| 2291 | // but the tokenization of the second begins with the double |
| 2292 | // colon. That's ok, so we only need to handle the weird |
| 2293 | // tokenization here. |
| 2294 | b"namespace" | b"::" => { |
| 2295 | looking_for_name = true; |
| 2296 | } |
| 2297 | b"{" => { |
| 2298 | // This should be an anonymous namespace. |
| 2299 | assert!(looking_for_name); |
| 2300 | break; |
| 2301 | } |
| 2302 | name => { |
| 2303 | if looking_for_name { |
| 2304 | if module_name.is_none() { |
| 2305 | module_name = Some( |
| 2306 | String::from_utf8_lossy(name).into_owned(), |
| 2307 | ); |
| 2308 | } |
| 2309 | break; |
| 2310 | } else { |
| 2311 | // This is _likely_, but not certainly, a macro that's |
| 2312 | // been placed just before the namespace keyword. |
| 2313 | // Unfortunately, clang tokens don't let us easily see |
| 2314 | // through the ifdef tokens, so we don't know what this |
| 2315 | // token should really be. Instead of panicking though, |
| 2316 | // we warn the user that we assumed the token was blank, |
| 2317 | // and then move on. |
| 2318 | // |
| 2319 | // See also https://github.com/rust-lang/rust-bindgen/issues/1676. |
| 2320 | warn!( |
| 2321 | "Ignored unknown namespace prefix ' {}' at {:?} in {:?}" , |
| 2322 | String::from_utf8_lossy(name), |
| 2323 | token, |
| 2324 | cursor |
| 2325 | ); |
| 2326 | } |
| 2327 | } |
| 2328 | } |
| 2329 | } |
| 2330 | |
| 2331 | (module_name, kind) |
| 2332 | } |
| 2333 | |
| 2334 | /// Given a CXCursor_Namespace cursor, return the item ID of the |
| 2335 | /// corresponding module, or create one on the fly. |
| 2336 | pub(crate) fn module(&mut self, cursor: clang::Cursor) -> ModuleId { |
| 2337 | use clang_sys::*; |
| 2338 | assert_eq!(cursor.kind(), CXCursor_Namespace, "Be a nice person" ); |
| 2339 | let cursor = cursor.canonical(); |
| 2340 | if let Some(id) = self.modules.get(&cursor) { |
| 2341 | return *id; |
| 2342 | } |
| 2343 | |
| 2344 | let (module_name, kind) = self.tokenize_namespace(&cursor); |
| 2345 | |
| 2346 | let module_id = self.next_item_id(); |
| 2347 | let module = Module::new(module_name, kind); |
| 2348 | let module = Item::new( |
| 2349 | module_id, |
| 2350 | None, |
| 2351 | None, |
| 2352 | self.current_module.into(), |
| 2353 | ItemKind::Module(module), |
| 2354 | Some(cursor.location()), |
| 2355 | ); |
| 2356 | |
| 2357 | let module_id = module.id().as_module_id_unchecked(); |
| 2358 | self.modules.insert(cursor, module_id); |
| 2359 | |
| 2360 | self.add_item(module, None, None); |
| 2361 | |
| 2362 | module_id |
| 2363 | } |
| 2364 | |
| 2365 | /// Start traversing the module with the given `module_id`, invoke the |
| 2366 | /// callback `cb`, and then return to traversing the original module. |
| 2367 | pub(crate) fn with_module<F>(&mut self, module_id: ModuleId, cb: F) |
| 2368 | where |
| 2369 | F: FnOnce(&mut Self), |
| 2370 | { |
| 2371 | debug_assert!(self.resolve_item(module_id).kind().is_module(), "Wat" ); |
| 2372 | |
| 2373 | let previous_id = self.current_module; |
| 2374 | self.current_module = module_id; |
| 2375 | |
| 2376 | cb(self); |
| 2377 | |
| 2378 | self.current_module = previous_id; |
| 2379 | } |
| 2380 | |
| 2381 | /// Iterate over all (explicitly or transitively) allowlisted items. |
| 2382 | /// |
| 2383 | /// If no items are explicitly allowlisted, then all items are considered |
| 2384 | /// allowlisted. |
| 2385 | pub(crate) fn allowlisted_items(&self) -> &ItemSet { |
| 2386 | assert!(self.in_codegen_phase()); |
| 2387 | assert!(self.current_module == self.root_module); |
| 2388 | |
| 2389 | self.allowlisted.as_ref().unwrap() |
| 2390 | } |
| 2391 | |
| 2392 | /// Check whether a particular blocklisted type implements a trait or not. |
| 2393 | /// Results may be cached. |
| 2394 | pub(crate) fn blocklisted_type_implements_trait( |
| 2395 | &self, |
| 2396 | item: &Item, |
| 2397 | derive_trait: DeriveTrait, |
| 2398 | ) -> CanDerive { |
| 2399 | assert!(self.in_codegen_phase()); |
| 2400 | assert!(self.current_module == self.root_module); |
| 2401 | |
| 2402 | *self |
| 2403 | .blocklisted_types_implement_traits |
| 2404 | .borrow_mut() |
| 2405 | .entry(derive_trait) |
| 2406 | .or_default() |
| 2407 | .entry(item.id()) |
| 2408 | .or_insert_with(|| { |
| 2409 | item.expect_type() |
| 2410 | .name() |
| 2411 | .and_then(|name| { |
| 2412 | if self.options.parse_callbacks.is_empty() { |
| 2413 | // Sized integer types from <stdint.h> get mapped to Rust primitive |
| 2414 | // types regardless of whether they are blocklisted, so ensure that |
| 2415 | // standard traits are considered derivable for them too. |
| 2416 | if self.is_stdint_type(name) { |
| 2417 | Some(CanDerive::Yes) |
| 2418 | } else { |
| 2419 | Some(CanDerive::No) |
| 2420 | } |
| 2421 | } else { |
| 2422 | self.options.last_callback(|cb| { |
| 2423 | cb.blocklisted_type_implements_trait( |
| 2424 | name, |
| 2425 | derive_trait, |
| 2426 | ) |
| 2427 | }) |
| 2428 | } |
| 2429 | }) |
| 2430 | .unwrap_or(CanDerive::No) |
| 2431 | }) |
| 2432 | } |
| 2433 | |
| 2434 | /// Is the given type a type from <stdint.h> that corresponds to a Rust primitive type? |
| 2435 | pub(crate) fn is_stdint_type(&self, name: &str) -> bool { |
| 2436 | match name { |
| 2437 | "int8_t" | "uint8_t" | "int16_t" | "uint16_t" | "int32_t" | |
| 2438 | "uint32_t" | "int64_t" | "uint64_t" | "uintptr_t" | |
| 2439 | "intptr_t" | "ptrdiff_t" => true, |
| 2440 | "size_t" | "ssize_t" => self.options.size_t_is_usize, |
| 2441 | _ => false, |
| 2442 | } |
| 2443 | } |
| 2444 | |
| 2445 | /// Get a reference to the set of items we should generate. |
| 2446 | pub(crate) fn codegen_items(&self) -> &ItemSet { |
| 2447 | assert!(self.in_codegen_phase()); |
| 2448 | assert!(self.current_module == self.root_module); |
| 2449 | self.codegen_items.as_ref().unwrap() |
| 2450 | } |
| 2451 | |
| 2452 | /// Compute the allowlisted items set and populate `self.allowlisted`. |
| 2453 | fn compute_allowlisted_and_codegen_items(&mut self) { |
| 2454 | assert!(self.in_codegen_phase()); |
| 2455 | assert!(self.current_module == self.root_module); |
| 2456 | assert!(self.allowlisted.is_none()); |
| 2457 | let _t = self.timer("compute_allowlisted_and_codegen_items" ); |
| 2458 | |
| 2459 | let roots = { |
| 2460 | let mut roots = self |
| 2461 | .items() |
| 2462 | // Only consider roots that are enabled for codegen. |
| 2463 | .filter(|&(_, item)| item.is_enabled_for_codegen(self)) |
| 2464 | .filter(|&(_, item)| { |
| 2465 | // If nothing is explicitly allowlisted, then everything is fair |
| 2466 | // game. |
| 2467 | if self.options().allowlisted_types.is_empty() && |
| 2468 | self.options().allowlisted_functions.is_empty() && |
| 2469 | self.options().allowlisted_vars.is_empty() && |
| 2470 | self.options().allowlisted_files.is_empty() && |
| 2471 | self.options().allowlisted_items.is_empty() |
| 2472 | { |
| 2473 | return true; |
| 2474 | } |
| 2475 | |
| 2476 | // If this is a type that explicitly replaces another, we assume |
| 2477 | // you know what you're doing. |
| 2478 | if item.annotations().use_instead_of().is_some() { |
| 2479 | return true; |
| 2480 | } |
| 2481 | |
| 2482 | // Items with a source location in an explicitly allowlisted file |
| 2483 | // are always included. |
| 2484 | if !self.options().allowlisted_files.is_empty() { |
| 2485 | if let Some(location) = item.location() { |
| 2486 | let (file, _, _, _) = location.location(); |
| 2487 | if let Some(filename) = file.name() { |
| 2488 | if self |
| 2489 | .options() |
| 2490 | .allowlisted_files |
| 2491 | .matches(filename) |
| 2492 | { |
| 2493 | return true; |
| 2494 | } |
| 2495 | } |
| 2496 | } |
| 2497 | } |
| 2498 | |
| 2499 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
| 2500 | debug!("allowlisted_items: testing {:?}" , name); |
| 2501 | |
| 2502 | if self.options().allowlisted_items.matches(&name) { |
| 2503 | return true; |
| 2504 | } |
| 2505 | |
| 2506 | match *item.kind() { |
| 2507 | ItemKind::Module(..) => true, |
| 2508 | ItemKind::Function(_) => { |
| 2509 | self.options().allowlisted_functions.matches(&name) |
| 2510 | } |
| 2511 | ItemKind::Var(_) => { |
| 2512 | self.options().allowlisted_vars.matches(&name) |
| 2513 | } |
| 2514 | ItemKind::Type(ref ty) => { |
| 2515 | if self.options().allowlisted_types.matches(&name) { |
| 2516 | return true; |
| 2517 | } |
| 2518 | |
| 2519 | // Auto-allowlist types that don't need code |
| 2520 | // generation if not allowlisting recursively, to |
| 2521 | // make the #[derive] analysis not be lame. |
| 2522 | if !self.options().allowlist_recursively { |
| 2523 | match *ty.kind() { |
| 2524 | TypeKind::Void | |
| 2525 | TypeKind::NullPtr | |
| 2526 | TypeKind::Int(..) | |
| 2527 | TypeKind::Float(..) | |
| 2528 | TypeKind::Complex(..) | |
| 2529 | TypeKind::Array(..) | |
| 2530 | TypeKind::Vector(..) | |
| 2531 | TypeKind::Pointer(..) | |
| 2532 | TypeKind::Reference(..) | |
| 2533 | TypeKind::Function(..) | |
| 2534 | TypeKind::ResolvedTypeRef(..) | |
| 2535 | TypeKind::Opaque | |
| 2536 | TypeKind::TypeParam => return true, |
| 2537 | _ => {} |
| 2538 | } |
| 2539 | if self.is_stdint_type(&name) { |
| 2540 | return true; |
| 2541 | } |
| 2542 | } |
| 2543 | |
| 2544 | // Unnamed top-level enums are special and we |
| 2545 | // allowlist them via the `allowlisted_vars` filter, |
| 2546 | // since they're effectively top-level constants, |
| 2547 | // and there's no way for them to be referenced |
| 2548 | // consistently. |
| 2549 | let parent = self.resolve_item(item.parent_id()); |
| 2550 | if !parent.is_module() { |
| 2551 | return false; |
| 2552 | } |
| 2553 | |
| 2554 | let enum_ = match *ty.kind() { |
| 2555 | TypeKind::Enum(ref e) => e, |
| 2556 | _ => return false, |
| 2557 | }; |
| 2558 | |
| 2559 | if ty.name().is_some() { |
| 2560 | return false; |
| 2561 | } |
| 2562 | |
| 2563 | let mut prefix_path = |
| 2564 | parent.path_for_allowlisting(self).clone(); |
| 2565 | enum_.variants().iter().any(|variant| { |
| 2566 | prefix_path.push( |
| 2567 | variant.name_for_allowlisting().into(), |
| 2568 | ); |
| 2569 | let name = prefix_path[1..].join("::" ); |
| 2570 | prefix_path.pop().unwrap(); |
| 2571 | self.options().allowlisted_vars.matches(&name) |
| 2572 | || self |
| 2573 | .options() |
| 2574 | .allowlisted_items |
| 2575 | .matches(name) |
| 2576 | }) |
| 2577 | } |
| 2578 | } |
| 2579 | }) |
| 2580 | .map(|(id, _)| id) |
| 2581 | .collect::<Vec<_>>(); |
| 2582 | |
| 2583 | // The reversal preserves the expected ordering of traversal, |
| 2584 | // resulting in more stable-ish bindgen-generated names for |
| 2585 | // anonymous types (like unions). |
| 2586 | roots.reverse(); |
| 2587 | roots |
| 2588 | }; |
| 2589 | |
| 2590 | let allowlisted_items_predicate = |
| 2591 | if self.options().allowlist_recursively { |
| 2592 | traversal::all_edges |
| 2593 | } else { |
| 2594 | // Only follow InnerType edges from the allowlisted roots. |
| 2595 | // Such inner types (e.g. anonymous structs/unions) are |
| 2596 | // always emitted by codegen, and they need to be allowlisted |
| 2597 | // to make sure they are processed by e.g. the derive analysis. |
| 2598 | traversal::only_inner_type_edges |
| 2599 | }; |
| 2600 | |
| 2601 | let allowlisted = AllowlistedItemsTraversal::new( |
| 2602 | self, |
| 2603 | roots.clone(), |
| 2604 | allowlisted_items_predicate, |
| 2605 | ) |
| 2606 | .collect::<ItemSet>(); |
| 2607 | |
| 2608 | let codegen_items = if self.options().allowlist_recursively { |
| 2609 | AllowlistedItemsTraversal::new( |
| 2610 | self, |
| 2611 | roots, |
| 2612 | traversal::codegen_edges, |
| 2613 | ) |
| 2614 | .collect::<ItemSet>() |
| 2615 | } else { |
| 2616 | allowlisted.clone() |
| 2617 | }; |
| 2618 | |
| 2619 | self.allowlisted = Some(allowlisted); |
| 2620 | self.codegen_items = Some(codegen_items); |
| 2621 | |
| 2622 | for item in self.options().allowlisted_functions.unmatched_items() { |
| 2623 | unused_regex_diagnostic(item, "--allowlist-function" , self); |
| 2624 | } |
| 2625 | |
| 2626 | for item in self.options().allowlisted_vars.unmatched_items() { |
| 2627 | unused_regex_diagnostic(item, "--allowlist-var" , self); |
| 2628 | } |
| 2629 | |
| 2630 | for item in self.options().allowlisted_types.unmatched_items() { |
| 2631 | unused_regex_diagnostic(item, "--allowlist-type" , self); |
| 2632 | } |
| 2633 | |
| 2634 | for item in self.options().allowlisted_items.unmatched_items() { |
| 2635 | unused_regex_diagnostic(item, "--allowlist-items" , self); |
| 2636 | } |
| 2637 | } |
| 2638 | |
| 2639 | /// Convenient method for getting the prefix to use for most traits in |
| 2640 | /// codegen depending on the `use_core` option. |
| 2641 | pub(crate) fn trait_prefix(&self) -> Ident { |
| 2642 | if self.options().use_core { |
| 2643 | self.rust_ident_raw("core" ) |
| 2644 | } else { |
| 2645 | self.rust_ident_raw("std" ) |
| 2646 | } |
| 2647 | } |
| 2648 | |
| 2649 | /// Call if a bindgen complex is generated |
| 2650 | pub(crate) fn generated_bindgen_complex(&self) { |
| 2651 | self.generated_bindgen_complex.set(true) |
| 2652 | } |
| 2653 | |
| 2654 | /// Whether we need to generate the bindgen complex type |
| 2655 | pub(crate) fn need_bindgen_complex_type(&self) -> bool { |
| 2656 | self.generated_bindgen_complex.get() |
| 2657 | } |
| 2658 | |
| 2659 | /// Call if a bindgen float16 is generated |
| 2660 | pub(crate) fn generated_bindgen_float16(&self) { |
| 2661 | self.generated_bindgen_float16.set(true) |
| 2662 | } |
| 2663 | |
| 2664 | /// Whether we need to generate the bindgen float16 type |
| 2665 | pub(crate) fn need_bindgen_float16_type(&self) -> bool { |
| 2666 | self.generated_bindgen_float16.get() |
| 2667 | } |
| 2668 | |
| 2669 | /// Compute which `enum`s have an associated `typedef` definition. |
| 2670 | fn compute_enum_typedef_combos(&mut self) { |
| 2671 | let _t = self.timer("compute_enum_typedef_combos" ); |
| 2672 | assert!(self.enum_typedef_combos.is_none()); |
| 2673 | |
| 2674 | let mut enum_typedef_combos = HashSet::default(); |
| 2675 | for item in &self.items { |
| 2676 | if let Some(ItemKind::Module(module)) = |
| 2677 | item.as_ref().map(Item::kind) |
| 2678 | { |
| 2679 | // Find typedefs in this module, and build set of their names. |
| 2680 | let mut names_of_typedefs = HashSet::default(); |
| 2681 | for child_id in module.children() { |
| 2682 | if let Some(ItemKind::Type(ty)) = |
| 2683 | self.items[child_id.0].as_ref().map(Item::kind) |
| 2684 | { |
| 2685 | if let (Some(name), TypeKind::Alias(type_id)) = |
| 2686 | (ty.name(), ty.kind()) |
| 2687 | { |
| 2688 | // We disregard aliases that refer to the enum |
| 2689 | // itself, such as in `typedef enum { ... } Enum;`. |
| 2690 | if type_id |
| 2691 | .into_resolver() |
| 2692 | .through_type_refs() |
| 2693 | .through_type_aliases() |
| 2694 | .resolve(self) |
| 2695 | .expect_type() |
| 2696 | .is_int() |
| 2697 | { |
| 2698 | names_of_typedefs.insert(name); |
| 2699 | } |
| 2700 | } |
| 2701 | } |
| 2702 | } |
| 2703 | |
| 2704 | // Find enums in this module, and record the ID of each one that |
| 2705 | // has a typedef. |
| 2706 | for child_id in module.children() { |
| 2707 | if let Some(ItemKind::Type(ty)) = |
| 2708 | self.items[child_id.0].as_ref().map(Item::kind) |
| 2709 | { |
| 2710 | if let (Some(name), true) = (ty.name(), ty.is_enum()) { |
| 2711 | if names_of_typedefs.contains(name) { |
| 2712 | enum_typedef_combos.insert(*child_id); |
| 2713 | } |
| 2714 | } |
| 2715 | } |
| 2716 | } |
| 2717 | } |
| 2718 | } |
| 2719 | |
| 2720 | self.enum_typedef_combos = Some(enum_typedef_combos); |
| 2721 | } |
| 2722 | |
| 2723 | /// Look up whether `id` refers to an `enum` whose underlying type is |
| 2724 | /// defined by a `typedef`. |
| 2725 | pub(crate) fn is_enum_typedef_combo(&self, id: ItemId) -> bool { |
| 2726 | assert!( |
| 2727 | self.in_codegen_phase(), |
| 2728 | "We only compute enum_typedef_combos when we enter codegen" , |
| 2729 | ); |
| 2730 | self.enum_typedef_combos.as_ref().unwrap().contains(&id) |
| 2731 | } |
| 2732 | |
| 2733 | /// Compute whether we can derive debug. |
| 2734 | fn compute_cannot_derive_debug(&mut self) { |
| 2735 | let _t = self.timer("compute_cannot_derive_debug" ); |
| 2736 | assert!(self.cannot_derive_debug.is_none()); |
| 2737 | if self.options.derive_debug { |
| 2738 | self.cannot_derive_debug = |
| 2739 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
| 2740 | self, |
| 2741 | DeriveTrait::Debug, |
| 2742 | )))); |
| 2743 | } |
| 2744 | } |
| 2745 | |
| 2746 | /// Look up whether the item with `id` can |
| 2747 | /// derive debug or not. |
| 2748 | pub(crate) fn lookup_can_derive_debug<Id: Into<ItemId>>( |
| 2749 | &self, |
| 2750 | id: Id, |
| 2751 | ) -> bool { |
| 2752 | let id = id.into(); |
| 2753 | assert!( |
| 2754 | self.in_codegen_phase(), |
| 2755 | "We only compute can_derive_debug when we enter codegen" |
| 2756 | ); |
| 2757 | |
| 2758 | // Look up the computed value for whether the item with `id` can |
| 2759 | // derive debug or not. |
| 2760 | !self.cannot_derive_debug.as_ref().unwrap().contains(&id) |
| 2761 | } |
| 2762 | |
| 2763 | /// Compute whether we can derive default. |
| 2764 | fn compute_cannot_derive_default(&mut self) { |
| 2765 | let _t = self.timer("compute_cannot_derive_default" ); |
| 2766 | assert!(self.cannot_derive_default.is_none()); |
| 2767 | if self.options.derive_default { |
| 2768 | self.cannot_derive_default = |
| 2769 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
| 2770 | self, |
| 2771 | DeriveTrait::Default, |
| 2772 | )))); |
| 2773 | } |
| 2774 | } |
| 2775 | |
| 2776 | /// Look up whether the item with `id` can |
| 2777 | /// derive default or not. |
| 2778 | pub(crate) fn lookup_can_derive_default<Id: Into<ItemId>>( |
| 2779 | &self, |
| 2780 | id: Id, |
| 2781 | ) -> bool { |
| 2782 | let id = id.into(); |
| 2783 | assert!( |
| 2784 | self.in_codegen_phase(), |
| 2785 | "We only compute can_derive_default when we enter codegen" |
| 2786 | ); |
| 2787 | |
| 2788 | // Look up the computed value for whether the item with `id` can |
| 2789 | // derive default or not. |
| 2790 | !self.cannot_derive_default.as_ref().unwrap().contains(&id) |
| 2791 | } |
| 2792 | |
| 2793 | /// Compute whether we can derive copy. |
| 2794 | fn compute_cannot_derive_copy(&mut self) { |
| 2795 | let _t = self.timer("compute_cannot_derive_copy" ); |
| 2796 | assert!(self.cannot_derive_copy.is_none()); |
| 2797 | self.cannot_derive_copy = |
| 2798 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
| 2799 | self, |
| 2800 | DeriveTrait::Copy, |
| 2801 | )))); |
| 2802 | } |
| 2803 | |
| 2804 | /// Compute whether we can derive hash. |
| 2805 | fn compute_cannot_derive_hash(&mut self) { |
| 2806 | let _t = self.timer("compute_cannot_derive_hash" ); |
| 2807 | assert!(self.cannot_derive_hash.is_none()); |
| 2808 | if self.options.derive_hash { |
| 2809 | self.cannot_derive_hash = |
| 2810 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
| 2811 | self, |
| 2812 | DeriveTrait::Hash, |
| 2813 | )))); |
| 2814 | } |
| 2815 | } |
| 2816 | |
| 2817 | /// Look up whether the item with `id` can |
| 2818 | /// derive hash or not. |
| 2819 | pub(crate) fn lookup_can_derive_hash<Id: Into<ItemId>>( |
| 2820 | &self, |
| 2821 | id: Id, |
| 2822 | ) -> bool { |
| 2823 | let id = id.into(); |
| 2824 | assert!( |
| 2825 | self.in_codegen_phase(), |
| 2826 | "We only compute can_derive_debug when we enter codegen" |
| 2827 | ); |
| 2828 | |
| 2829 | // Look up the computed value for whether the item with `id` can |
| 2830 | // derive hash or not. |
| 2831 | !self.cannot_derive_hash.as_ref().unwrap().contains(&id) |
| 2832 | } |
| 2833 | |
| 2834 | /// Compute whether we can derive PartialOrd, PartialEq or Eq. |
| 2835 | fn compute_cannot_derive_partialord_partialeq_or_eq(&mut self) { |
| 2836 | let _t = self.timer("compute_cannot_derive_partialord_partialeq_or_eq" ); |
| 2837 | assert!(self.cannot_derive_partialeq_or_partialord.is_none()); |
| 2838 | if self.options.derive_partialord || |
| 2839 | self.options.derive_partialeq || |
| 2840 | self.options.derive_eq |
| 2841 | { |
| 2842 | self.cannot_derive_partialeq_or_partialord = |
| 2843 | Some(analyze::<CannotDerive>(( |
| 2844 | self, |
| 2845 | DeriveTrait::PartialEqOrPartialOrd, |
| 2846 | ))); |
| 2847 | } |
| 2848 | } |
| 2849 | |
| 2850 | /// Look up whether the item with `id` can derive `Partial{Eq,Ord}`. |
| 2851 | pub(crate) fn lookup_can_derive_partialeq_or_partialord< |
| 2852 | Id: Into<ItemId>, |
| 2853 | >( |
| 2854 | &self, |
| 2855 | id: Id, |
| 2856 | ) -> CanDerive { |
| 2857 | let id = id.into(); |
| 2858 | assert!( |
| 2859 | self.in_codegen_phase(), |
| 2860 | "We only compute can_derive_partialeq_or_partialord when we enter codegen" |
| 2861 | ); |
| 2862 | |
| 2863 | // Look up the computed value for whether the item with `id` can |
| 2864 | // derive partialeq or not. |
| 2865 | self.cannot_derive_partialeq_or_partialord |
| 2866 | .as_ref() |
| 2867 | .unwrap() |
| 2868 | .get(&id) |
| 2869 | .cloned() |
| 2870 | .unwrap_or(CanDerive::Yes) |
| 2871 | } |
| 2872 | |
| 2873 | /// Look up whether the item with `id` can derive `Copy` or not. |
| 2874 | pub(crate) fn lookup_can_derive_copy<Id: Into<ItemId>>( |
| 2875 | &self, |
| 2876 | id: Id, |
| 2877 | ) -> bool { |
| 2878 | assert!( |
| 2879 | self.in_codegen_phase(), |
| 2880 | "We only compute can_derive_debug when we enter codegen" |
| 2881 | ); |
| 2882 | |
| 2883 | // Look up the computed value for whether the item with `id` can |
| 2884 | // derive `Copy` or not. |
| 2885 | let id = id.into(); |
| 2886 | |
| 2887 | !self.lookup_has_type_param_in_array(id) && |
| 2888 | !self.cannot_derive_copy.as_ref().unwrap().contains(&id) |
| 2889 | } |
| 2890 | |
| 2891 | /// Compute whether the type has type parameter in array. |
| 2892 | fn compute_has_type_param_in_array(&mut self) { |
| 2893 | let _t = self.timer("compute_has_type_param_in_array" ); |
| 2894 | assert!(self.has_type_param_in_array.is_none()); |
| 2895 | self.has_type_param_in_array = |
| 2896 | Some(analyze::<HasTypeParameterInArray>(self)); |
| 2897 | } |
| 2898 | |
| 2899 | /// Look up whether the item with `id` has type parameter in array or not. |
| 2900 | pub(crate) fn lookup_has_type_param_in_array<Id: Into<ItemId>>( |
| 2901 | &self, |
| 2902 | id: Id, |
| 2903 | ) -> bool { |
| 2904 | assert!( |
| 2905 | self.in_codegen_phase(), |
| 2906 | "We only compute has array when we enter codegen" |
| 2907 | ); |
| 2908 | |
| 2909 | // Look up the computed value for whether the item with `id` has |
| 2910 | // type parameter in array or not. |
| 2911 | self.has_type_param_in_array |
| 2912 | .as_ref() |
| 2913 | .unwrap() |
| 2914 | .contains(&id.into()) |
| 2915 | } |
| 2916 | |
| 2917 | /// Compute whether the type has float. |
| 2918 | fn compute_has_float(&mut self) { |
| 2919 | let _t = self.timer("compute_has_float" ); |
| 2920 | assert!(self.has_float.is_none()); |
| 2921 | if self.options.derive_eq || self.options.derive_ord { |
| 2922 | self.has_float = Some(analyze::<HasFloat>(self)); |
| 2923 | } |
| 2924 | } |
| 2925 | |
| 2926 | /// Look up whether the item with `id` has array or not. |
| 2927 | pub(crate) fn lookup_has_float<Id: Into<ItemId>>(&self, id: Id) -> bool { |
| 2928 | assert!( |
| 2929 | self.in_codegen_phase(), |
| 2930 | "We only compute has float when we enter codegen" |
| 2931 | ); |
| 2932 | |
| 2933 | // Look up the computed value for whether the item with `id` has |
| 2934 | // float or not. |
| 2935 | self.has_float.as_ref().unwrap().contains(&id.into()) |
| 2936 | } |
| 2937 | |
| 2938 | /// Check if `--no-partialeq` flag is enabled for this item. |
| 2939 | pub(crate) fn no_partialeq_by_name(&self, item: &Item) -> bool { |
| 2940 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
| 2941 | self.options().no_partialeq_types.matches(name) |
| 2942 | } |
| 2943 | |
| 2944 | /// Check if `--no-copy` flag is enabled for this item. |
| 2945 | pub(crate) fn no_copy_by_name(&self, item: &Item) -> bool { |
| 2946 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
| 2947 | self.options().no_copy_types.matches(name) |
| 2948 | } |
| 2949 | |
| 2950 | /// Check if `--no-debug` flag is enabled for this item. |
| 2951 | pub(crate) fn no_debug_by_name(&self, item: &Item) -> bool { |
| 2952 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
| 2953 | self.options().no_debug_types.matches(name) |
| 2954 | } |
| 2955 | |
| 2956 | /// Check if `--no-default` flag is enabled for this item. |
| 2957 | pub(crate) fn no_default_by_name(&self, item: &Item) -> bool { |
| 2958 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
| 2959 | self.options().no_default_types.matches(name) |
| 2960 | } |
| 2961 | |
| 2962 | /// Check if `--no-hash` flag is enabled for this item. |
| 2963 | pub(crate) fn no_hash_by_name(&self, item: &Item) -> bool { |
| 2964 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
| 2965 | self.options().no_hash_types.matches(name) |
| 2966 | } |
| 2967 | |
| 2968 | /// Check if `--must-use-type` flag is enabled for this item. |
| 2969 | pub(crate) fn must_use_type_by_name(&self, item: &Item) -> bool { |
| 2970 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
| 2971 | self.options().must_use_types.matches(name) |
| 2972 | } |
| 2973 | |
| 2974 | /// Wrap some tokens in an `unsafe` block if the `--wrap-unsafe-ops` option is enabled. |
| 2975 | pub(crate) fn wrap_unsafe_ops(&self, tokens: impl ToTokens) -> TokenStream { |
| 2976 | if self.options.wrap_unsafe_ops { |
| 2977 | quote!(unsafe { #tokens }) |
| 2978 | } else { |
| 2979 | tokens.into_token_stream() |
| 2980 | } |
| 2981 | } |
| 2982 | |
| 2983 | /// Get the suffix to be added to `static` functions if the `--wrap-static-fns` option is |
| 2984 | /// enabled. |
| 2985 | pub(crate) fn wrap_static_fns_suffix(&self) -> &str { |
| 2986 | self.options() |
| 2987 | .wrap_static_fns_suffix |
| 2988 | .as_deref() |
| 2989 | .unwrap_or(crate::DEFAULT_NON_EXTERN_FNS_SUFFIX) |
| 2990 | } |
| 2991 | } |
| 2992 | |
| 2993 | /// A builder struct for configuring item resolution options. |
| 2994 | #[derive (Debug, Copy, Clone)] |
| 2995 | pub(crate) struct ItemResolver { |
| 2996 | id: ItemId, |
| 2997 | through_type_refs: bool, |
| 2998 | through_type_aliases: bool, |
| 2999 | } |
| 3000 | |
| 3001 | impl ItemId { |
| 3002 | /// Create an `ItemResolver` from this item ID. |
| 3003 | pub(crate) fn into_resolver(self) -> ItemResolver { |
| 3004 | self.into() |
| 3005 | } |
| 3006 | } |
| 3007 | |
| 3008 | impl<T> From<T> for ItemResolver |
| 3009 | where |
| 3010 | T: Into<ItemId>, |
| 3011 | { |
| 3012 | fn from(id: T) -> ItemResolver { |
| 3013 | ItemResolver::new(id) |
| 3014 | } |
| 3015 | } |
| 3016 | |
| 3017 | impl ItemResolver { |
| 3018 | /// Construct a new `ItemResolver` from the given ID. |
| 3019 | pub(crate) fn new<Id: Into<ItemId>>(id: Id) -> ItemResolver { |
| 3020 | let id = id.into(); |
| 3021 | ItemResolver { |
| 3022 | id, |
| 3023 | through_type_refs: false, |
| 3024 | through_type_aliases: false, |
| 3025 | } |
| 3026 | } |
| 3027 | |
| 3028 | /// Keep resolving through `Type::TypeRef` items. |
| 3029 | pub(crate) fn through_type_refs(mut self) -> ItemResolver { |
| 3030 | self.through_type_refs = true; |
| 3031 | self |
| 3032 | } |
| 3033 | |
| 3034 | /// Keep resolving through `Type::Alias` items. |
| 3035 | pub(crate) fn through_type_aliases(mut self) -> ItemResolver { |
| 3036 | self.through_type_aliases = true; |
| 3037 | self |
| 3038 | } |
| 3039 | |
| 3040 | /// Finish configuring and perform the actual item resolution. |
| 3041 | pub(crate) fn resolve(self, ctx: &BindgenContext) -> &Item { |
| 3042 | assert!(ctx.collected_typerefs()); |
| 3043 | |
| 3044 | let mut id = self.id; |
| 3045 | let mut seen_ids = HashSet::default(); |
| 3046 | loop { |
| 3047 | let item = ctx.resolve_item(id); |
| 3048 | |
| 3049 | // Detect cycles and bail out. These can happen in certain cases |
| 3050 | // involving incomplete qualified dependent types (#2085). |
| 3051 | if !seen_ids.insert(id) { |
| 3052 | return item; |
| 3053 | } |
| 3054 | |
| 3055 | let ty_kind = item.as_type().map(|t| t.kind()); |
| 3056 | match ty_kind { |
| 3057 | Some(&TypeKind::ResolvedTypeRef(next_id)) |
| 3058 | if self.through_type_refs => |
| 3059 | { |
| 3060 | id = next_id.into(); |
| 3061 | } |
| 3062 | // We intentionally ignore template aliases here, as they are |
| 3063 | // more complicated, and don't represent a simple renaming of |
| 3064 | // some type. |
| 3065 | Some(&TypeKind::Alias(next_id)) |
| 3066 | if self.through_type_aliases => |
| 3067 | { |
| 3068 | id = next_id.into(); |
| 3069 | } |
| 3070 | _ => return item, |
| 3071 | } |
| 3072 | } |
| 3073 | } |
| 3074 | } |
| 3075 | |
| 3076 | /// A type that we are in the middle of parsing. |
| 3077 | #[derive (Clone, Copy, Debug, PartialEq, Eq)] |
| 3078 | pub(crate) struct PartialType { |
| 3079 | decl: Cursor, |
| 3080 | // Just an ItemId, and not a TypeId, because we haven't finished this type |
| 3081 | // yet, so there's still time for things to go wrong. |
| 3082 | id: ItemId, |
| 3083 | } |
| 3084 | |
| 3085 | impl PartialType { |
| 3086 | /// Construct a new `PartialType`. |
| 3087 | pub(crate) fn new(decl: Cursor, id: ItemId) -> PartialType { |
| 3088 | // assert!(decl == decl.canonical()); |
| 3089 | PartialType { decl, id } |
| 3090 | } |
| 3091 | |
| 3092 | /// The cursor pointing to this partial type's declaration location. |
| 3093 | pub(crate) fn decl(&self) -> &Cursor { |
| 3094 | &self.decl |
| 3095 | } |
| 3096 | |
| 3097 | /// The item ID allocated for this type. This is *NOT* a key for an entry in |
| 3098 | /// the context's item set yet! |
| 3099 | pub(crate) fn id(&self) -> ItemId { |
| 3100 | self.id |
| 3101 | } |
| 3102 | } |
| 3103 | |
| 3104 | impl TemplateParameters for PartialType { |
| 3105 | fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> { |
| 3106 | // Maybe at some point we will eagerly parse named types, but for now we |
| 3107 | // don't and this information is unavailable. |
| 3108 | vec![] |
| 3109 | } |
| 3110 | |
| 3111 | fn num_self_template_params(&self, _ctx: &BindgenContext) -> usize { |
| 3112 | // Wouldn't it be nice if libclang would reliably give us this |
| 3113 | // information‽ |
| 3114 | match self.decl().kind() { |
| 3115 | clang_sys::CXCursor_ClassTemplate | |
| 3116 | clang_sys::CXCursor_FunctionTemplate | |
| 3117 | clang_sys::CXCursor_TypeAliasTemplateDecl => { |
| 3118 | let mut num_params = 0; |
| 3119 | self.decl().visit(|c| { |
| 3120 | match c.kind() { |
| 3121 | clang_sys::CXCursor_TemplateTypeParameter | |
| 3122 | clang_sys::CXCursor_TemplateTemplateParameter | |
| 3123 | clang_sys::CXCursor_NonTypeTemplateParameter => { |
| 3124 | num_params += 1; |
| 3125 | } |
| 3126 | _ => {} |
| 3127 | }; |
| 3128 | clang_sys::CXChildVisit_Continue |
| 3129 | }); |
| 3130 | num_params |
| 3131 | } |
| 3132 | _ => 0, |
| 3133 | } |
| 3134 | } |
| 3135 | } |
| 3136 | |
| 3137 | fn unused_regex_diagnostic(item: &str, name: &str, _ctx: &BindgenContext) { |
| 3138 | warn!("unused option: {} {}" , name, item); |
| 3139 | |
| 3140 | #[cfg (feature = "experimental" )] |
| 3141 | if _ctx.options().emit_diagnostics { |
| 3142 | use crate::diagnostics::{Diagnostic, Level}; |
| 3143 | |
| 3144 | Diagnostic::default() |
| 3145 | .with_title( |
| 3146 | format!("Unused regular expression: `{}`." , item), |
| 3147 | Level::Warn, |
| 3148 | ) |
| 3149 | .add_annotation( |
| 3150 | format!("This regular expression was passed to `{}`." , name), |
| 3151 | Level::Note, |
| 3152 | ) |
| 3153 | .display(); |
| 3154 | } |
| 3155 | } |
| 3156 | |