1 | //! Common context that is passed around during parsing and codegen. |
2 | |
3 | use super::super::time::Timer; |
4 | use super::analysis::{ |
5 | analyze, as_cannot_derive_set, CannotDerive, DeriveTrait, |
6 | HasDestructorAnalysis, HasFloat, HasTypeParameterInArray, |
7 | HasVtableAnalysis, HasVtableResult, SizednessAnalysis, SizednessResult, |
8 | UsedTemplateParameters, |
9 | }; |
10 | use super::derive::{ |
11 | CanDerive, CanDeriveCopy, CanDeriveDebug, CanDeriveDefault, CanDeriveEq, |
12 | CanDeriveHash, CanDeriveOrd, CanDerivePartialEq, CanDerivePartialOrd, |
13 | }; |
14 | use super::function::Function; |
15 | use super::int::IntKind; |
16 | use super::item::{IsOpaque, Item, ItemAncestors, ItemSet}; |
17 | use super::item_kind::ItemKind; |
18 | use super::module::{Module, ModuleKind}; |
19 | use super::template::{TemplateInstantiation, TemplateParameters}; |
20 | use super::traversal::{self, Edge, ItemTraversal}; |
21 | use super::ty::{FloatKind, Type, TypeKind}; |
22 | use crate::clang::{self, ABIKind, Cursor}; |
23 | use crate::codegen::CodegenError; |
24 | use crate::BindgenOptions; |
25 | use crate::{Entry, HashMap, HashSet}; |
26 | |
27 | use proc_macro2::{Ident, Span, TokenStream}; |
28 | use quote::ToTokens; |
29 | use std::borrow::Cow; |
30 | use std::cell::{Cell, RefCell}; |
31 | use std::collections::{BTreeSet, HashMap as StdHashMap}; |
32 | use std::fs::OpenOptions; |
33 | use std::io::Write; |
34 | use std::mem; |
35 | use std::path::Path; |
36 | |
37 | /// An identifier for some kind of IR item. |
38 | #[derive (Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)] |
39 | pub(crate) struct ItemId(usize); |
40 | |
41 | /// Declare a newtype around `ItemId` with conversion methods. |
42 | macro_rules! item_id_newtype { |
43 | ( |
44 | $( #[$attr:meta] )* |
45 | pub(crate) struct $name:ident(ItemId) |
46 | where |
47 | $( #[$checked_attr:meta] )* |
48 | checked = $checked:ident with $check_method:ident, |
49 | $( #[$expected_attr:meta] )* |
50 | expected = $expected:ident, |
51 | $( #[$unchecked_attr:meta] )* |
52 | unchecked = $unchecked:ident; |
53 | ) => { |
54 | $( #[$attr] )* |
55 | #[derive(Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)] |
56 | pub(crate) struct $name(ItemId); |
57 | |
58 | impl $name { |
59 | /// Create an `ItemResolver` from this ID. |
60 | #[allow(dead_code)] |
61 | pub(crate) fn into_resolver(self) -> ItemResolver { |
62 | let id: ItemId = self.into(); |
63 | id.into() |
64 | } |
65 | } |
66 | |
67 | impl<T> ::std::cmp::PartialEq<T> for $name |
68 | where |
69 | T: Copy + Into<ItemId> |
70 | { |
71 | fn eq(&self, rhs: &T) -> bool { |
72 | let rhs: ItemId = (*rhs).into(); |
73 | self.0 == rhs |
74 | } |
75 | } |
76 | |
77 | impl From<$name> for ItemId { |
78 | fn from(id: $name) -> ItemId { |
79 | id.0 |
80 | } |
81 | } |
82 | |
83 | impl<'a> From<&'a $name> for ItemId { |
84 | fn from(id: &'a $name) -> ItemId { |
85 | id.0 |
86 | } |
87 | } |
88 | |
89 | #[allow(dead_code)] |
90 | impl ItemId { |
91 | $( #[$checked_attr] )* |
92 | pub(crate) fn $checked(&self, ctx: &BindgenContext) -> Option<$name> { |
93 | if ctx.resolve_item(*self).kind().$check_method() { |
94 | Some($name(*self)) |
95 | } else { |
96 | None |
97 | } |
98 | } |
99 | |
100 | $( #[$expected_attr] )* |
101 | pub(crate) fn $expected(&self, ctx: &BindgenContext) -> $name { |
102 | self.$checked(ctx) |
103 | .expect(concat!( |
104 | stringify!($expected), |
105 | " called with ItemId that points to the wrong ItemKind" |
106 | )) |
107 | } |
108 | |
109 | $( #[$unchecked_attr] )* |
110 | pub(crate) fn $unchecked(&self) -> $name { |
111 | $name(*self) |
112 | } |
113 | } |
114 | } |
115 | } |
116 | |
117 | item_id_newtype! { |
118 | /// An identifier for an `Item` whose `ItemKind` is known to be |
119 | /// `ItemKind::Type`. |
120 | pub(crate) struct TypeId(ItemId) |
121 | where |
122 | /// Convert this `ItemId` into a `TypeId` if its associated item is a type, |
123 | /// otherwise return `None`. |
124 | checked = as_type_id with is_type, |
125 | |
126 | /// Convert this `ItemId` into a `TypeId`. |
127 | /// |
128 | /// If this `ItemId` does not point to a type, then panic. |
129 | expected = expect_type_id, |
130 | |
131 | /// Convert this `ItemId` into a `TypeId` without actually checking whether |
132 | /// this ID actually points to a `Type`. |
133 | unchecked = as_type_id_unchecked; |
134 | } |
135 | |
136 | item_id_newtype! { |
137 | /// An identifier for an `Item` whose `ItemKind` is known to be |
138 | /// `ItemKind::Module`. |
139 | pub(crate) struct ModuleId(ItemId) |
140 | where |
141 | /// Convert this `ItemId` into a `ModuleId` if its associated item is a |
142 | /// module, otherwise return `None`. |
143 | checked = as_module_id with is_module, |
144 | |
145 | /// Convert this `ItemId` into a `ModuleId`. |
146 | /// |
147 | /// If this `ItemId` does not point to a module, then panic. |
148 | expected = expect_module_id, |
149 | |
150 | /// Convert this `ItemId` into a `ModuleId` without actually checking |
151 | /// whether this ID actually points to a `Module`. |
152 | unchecked = as_module_id_unchecked; |
153 | } |
154 | |
155 | item_id_newtype! { |
156 | /// An identifier for an `Item` whose `ItemKind` is known to be |
157 | /// `ItemKind::Var`. |
158 | pub(crate) struct VarId(ItemId) |
159 | where |
160 | /// Convert this `ItemId` into a `VarId` if its associated item is a var, |
161 | /// otherwise return `None`. |
162 | checked = as_var_id with is_var, |
163 | |
164 | /// Convert this `ItemId` into a `VarId`. |
165 | /// |
166 | /// If this `ItemId` does not point to a var, then panic. |
167 | expected = expect_var_id, |
168 | |
169 | /// Convert this `ItemId` into a `VarId` without actually checking whether |
170 | /// this ID actually points to a `Var`. |
171 | unchecked = as_var_id_unchecked; |
172 | } |
173 | |
174 | item_id_newtype! { |
175 | /// An identifier for an `Item` whose `ItemKind` is known to be |
176 | /// `ItemKind::Function`. |
177 | pub(crate) struct FunctionId(ItemId) |
178 | where |
179 | /// Convert this `ItemId` into a `FunctionId` if its associated item is a function, |
180 | /// otherwise return `None`. |
181 | checked = as_function_id with is_function, |
182 | |
183 | /// Convert this `ItemId` into a `FunctionId`. |
184 | /// |
185 | /// If this `ItemId` does not point to a function, then panic. |
186 | expected = expect_function_id, |
187 | |
188 | /// Convert this `ItemId` into a `FunctionId` without actually checking whether |
189 | /// this ID actually points to a `Function`. |
190 | unchecked = as_function_id_unchecked; |
191 | } |
192 | |
193 | impl From<ItemId> for usize { |
194 | fn from(id: ItemId) -> usize { |
195 | id.0 |
196 | } |
197 | } |
198 | |
199 | impl ItemId { |
200 | /// Get a numeric representation of this ID. |
201 | pub(crate) fn as_usize(&self) -> usize { |
202 | (*self).into() |
203 | } |
204 | } |
205 | |
206 | impl<T> ::std::cmp::PartialEq<T> for ItemId |
207 | where |
208 | T: Copy + Into<ItemId>, |
209 | { |
210 | fn eq(&self, rhs: &T) -> bool { |
211 | let rhs: ItemId = (*rhs).into(); |
212 | self.0 == rhs.0 |
213 | } |
214 | } |
215 | |
216 | impl<T> CanDeriveDebug for T |
217 | where |
218 | T: Copy + Into<ItemId>, |
219 | { |
220 | fn can_derive_debug(&self, ctx: &BindgenContext) -> bool { |
221 | ctx.options().derive_debug && ctx.lookup_can_derive_debug(*self) |
222 | } |
223 | } |
224 | |
225 | impl<T> CanDeriveDefault for T |
226 | where |
227 | T: Copy + Into<ItemId>, |
228 | { |
229 | fn can_derive_default(&self, ctx: &BindgenContext) -> bool { |
230 | ctx.options().derive_default && ctx.lookup_can_derive_default(*self) |
231 | } |
232 | } |
233 | |
234 | impl<T> CanDeriveCopy for T |
235 | where |
236 | T: Copy + Into<ItemId>, |
237 | { |
238 | fn can_derive_copy(&self, ctx: &BindgenContext) -> bool { |
239 | ctx.options().derive_copy && ctx.lookup_can_derive_copy(*self) |
240 | } |
241 | } |
242 | |
243 | impl<T> CanDeriveHash for T |
244 | where |
245 | T: Copy + Into<ItemId>, |
246 | { |
247 | fn can_derive_hash(&self, ctx: &BindgenContext) -> bool { |
248 | ctx.options().derive_hash && ctx.lookup_can_derive_hash(*self) |
249 | } |
250 | } |
251 | |
252 | impl<T> CanDerivePartialOrd for T |
253 | where |
254 | T: Copy + Into<ItemId>, |
255 | { |
256 | fn can_derive_partialord(&self, ctx: &BindgenContext) -> bool { |
257 | ctx.options().derive_partialord && |
258 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
259 | CanDerive::Yes |
260 | } |
261 | } |
262 | |
263 | impl<T> CanDerivePartialEq for T |
264 | where |
265 | T: Copy + Into<ItemId>, |
266 | { |
267 | fn can_derive_partialeq(&self, ctx: &BindgenContext) -> bool { |
268 | ctx.options().derive_partialeq && |
269 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
270 | CanDerive::Yes |
271 | } |
272 | } |
273 | |
274 | impl<T> CanDeriveEq for T |
275 | where |
276 | T: Copy + Into<ItemId>, |
277 | { |
278 | fn can_derive_eq(&self, ctx: &BindgenContext) -> bool { |
279 | ctx.options().derive_eq && |
280 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
281 | CanDerive::Yes && |
282 | !ctx.lookup_has_float(*self) |
283 | } |
284 | } |
285 | |
286 | impl<T> CanDeriveOrd for T |
287 | where |
288 | T: Copy + Into<ItemId>, |
289 | { |
290 | fn can_derive_ord(&self, ctx: &BindgenContext) -> bool { |
291 | ctx.options().derive_ord && |
292 | ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
293 | CanDerive::Yes && |
294 | !ctx.lookup_has_float(*self) |
295 | } |
296 | } |
297 | |
298 | /// A key used to index a resolved type, so we only process it once. |
299 | /// |
300 | /// This is almost always a USR string (an unique identifier generated by |
301 | /// clang), but it can also be the canonical declaration if the type is unnamed, |
302 | /// in which case clang may generate the same USR for multiple nested unnamed |
303 | /// types. |
304 | #[derive (Eq, PartialEq, Hash, Debug)] |
305 | enum TypeKey { |
306 | Usr(String), |
307 | Declaration(Cursor), |
308 | } |
309 | |
310 | /// A context used during parsing and generation of structs. |
311 | #[derive (Debug)] |
312 | pub(crate) struct BindgenContext { |
313 | /// The map of all the items parsed so far, keyed off ItemId. |
314 | items: Vec<Option<Item>>, |
315 | |
316 | /// Clang USR to type map. This is needed to be able to associate types with |
317 | /// item ids during parsing. |
318 | types: HashMap<TypeKey, TypeId>, |
319 | |
320 | /// Maps from a cursor to the item ID of the named template type parameter |
321 | /// for that cursor. |
322 | type_params: HashMap<clang::Cursor, TypeId>, |
323 | |
324 | /// A cursor to module map. Similar reason than above. |
325 | modules: HashMap<Cursor, ModuleId>, |
326 | |
327 | /// The root module, this is guaranteed to be an item of kind Module. |
328 | root_module: ModuleId, |
329 | |
330 | /// Current module being traversed. |
331 | current_module: ModuleId, |
332 | |
333 | /// A HashMap keyed on a type definition, and whose value is the parent ID |
334 | /// of the declaration. |
335 | /// |
336 | /// This is used to handle the cases where the semantic and the lexical |
337 | /// parents of the cursor differ, like when a nested class is defined |
338 | /// outside of the parent class. |
339 | semantic_parents: HashMap<clang::Cursor, ItemId>, |
340 | |
341 | /// A stack with the current type declarations and types we're parsing. This |
342 | /// is needed to avoid infinite recursion when parsing a type like: |
343 | /// |
344 | /// struct c { struct c* next; }; |
345 | /// |
346 | /// This means effectively, that a type has a potential ID before knowing if |
347 | /// it's a correct type. But that's not important in practice. |
348 | /// |
349 | /// We could also use the `types` HashMap, but my intention with it is that |
350 | /// only valid types and declarations end up there, and this could |
351 | /// potentially break that assumption. |
352 | currently_parsed_types: Vec<PartialType>, |
353 | |
354 | /// A map with all the already parsed macro names. This is done to avoid |
355 | /// hard errors while parsing duplicated macros, as well to allow macro |
356 | /// expression parsing. |
357 | /// |
358 | /// This needs to be an std::HashMap because the cexpr API requires it. |
359 | parsed_macros: StdHashMap<Vec<u8>, cexpr::expr::EvalResult>, |
360 | |
361 | /// A map with all include locations. |
362 | /// |
363 | /// This is needed so that items are created in the order they are defined in. |
364 | /// |
365 | /// The key is the included file, the value is a pair of the source file and |
366 | /// the position of the `#include` directive in the source file. |
367 | includes: StdHashMap<String, (String, usize)>, |
368 | |
369 | /// A set of all the included filenames. |
370 | deps: BTreeSet<Box<str>>, |
371 | |
372 | /// The active replacements collected from replaces="xxx" annotations. |
373 | replacements: HashMap<Vec<String>, ItemId>, |
374 | |
375 | collected_typerefs: bool, |
376 | |
377 | in_codegen: bool, |
378 | |
379 | /// The translation unit for parsing. |
380 | translation_unit: clang::TranslationUnit, |
381 | |
382 | /// The translation unit for macro fallback parsing. |
383 | fallback_tu: Option<clang::FallbackTranslationUnit>, |
384 | |
385 | /// Target information that can be useful for some stuff. |
386 | target_info: clang::TargetInfo, |
387 | |
388 | /// The options given by the user via cli or other medium. |
389 | options: BindgenOptions, |
390 | |
391 | /// Whether a bindgen complex was generated |
392 | generated_bindgen_complex: Cell<bool>, |
393 | |
394 | /// Whether a bindgen float16 was generated |
395 | generated_bindgen_float16: Cell<bool>, |
396 | |
397 | /// The set of `ItemId`s that are allowlisted. This the very first thing |
398 | /// computed after parsing our IR, and before running any of our analyses. |
399 | allowlisted: Option<ItemSet>, |
400 | |
401 | /// Cache for calls to `ParseCallbacks::blocklisted_type_implements_trait` |
402 | blocklisted_types_implement_traits: |
403 | RefCell<HashMap<DeriveTrait, HashMap<ItemId, CanDerive>>>, |
404 | |
405 | /// The set of `ItemId`s that are allowlisted for code generation _and_ that |
406 | /// we should generate accounting for the codegen options. |
407 | /// |
408 | /// It's computed right after computing the allowlisted items. |
409 | codegen_items: Option<ItemSet>, |
410 | |
411 | /// Map from an item's ID to the set of template parameter items that it |
412 | /// uses. See `ir::named` for more details. Always `Some` during the codegen |
413 | /// phase. |
414 | used_template_parameters: Option<HashMap<ItemId, ItemSet>>, |
415 | |
416 | /// The set of `TypeKind::Comp` items found during parsing that need their |
417 | /// bitfield allocation units computed. Drained in `compute_bitfield_units`. |
418 | need_bitfield_allocation: Vec<ItemId>, |
419 | |
420 | /// The set of enums that are defined by a pair of `enum` and `typedef`, |
421 | /// which is legal in C (but not C++). |
422 | /// |
423 | /// ```c++ |
424 | /// // in either order |
425 | /// enum Enum { Variants... }; |
426 | /// typedef int16_t Enum; |
427 | /// ``` |
428 | /// |
429 | /// The stored `ItemId` is that of the `TypeKind::Enum`, not of the |
430 | /// `TypeKind::Alias`. |
431 | /// |
432 | /// This is populated when we enter codegen by `compute_enum_typedef_combos` |
433 | /// and is always `None` before that and `Some` after. |
434 | enum_typedef_combos: Option<HashSet<ItemId>>, |
435 | |
436 | /// The set of (`ItemId`s of) types that can't derive debug. |
437 | /// |
438 | /// This is populated when we enter codegen by `compute_cannot_derive_debug` |
439 | /// and is always `None` before that and `Some` after. |
440 | cannot_derive_debug: Option<HashSet<ItemId>>, |
441 | |
442 | /// The set of (`ItemId`s of) types that can't derive default. |
443 | /// |
444 | /// This is populated when we enter codegen by `compute_cannot_derive_default` |
445 | /// and is always `None` before that and `Some` after. |
446 | cannot_derive_default: Option<HashSet<ItemId>>, |
447 | |
448 | /// The set of (`ItemId`s of) types that can't derive copy. |
449 | /// |
450 | /// This is populated when we enter codegen by `compute_cannot_derive_copy` |
451 | /// and is always `None` before that and `Some` after. |
452 | cannot_derive_copy: Option<HashSet<ItemId>>, |
453 | |
454 | /// The set of (`ItemId`s of) types that can't derive hash. |
455 | /// |
456 | /// This is populated when we enter codegen by `compute_can_derive_hash` |
457 | /// and is always `None` before that and `Some` after. |
458 | cannot_derive_hash: Option<HashSet<ItemId>>, |
459 | |
460 | /// The map why specified `ItemId`s of) types that can't derive hash. |
461 | /// |
462 | /// This is populated when we enter codegen by |
463 | /// `compute_cannot_derive_partialord_partialeq_or_eq` and is always `None` |
464 | /// before that and `Some` after. |
465 | cannot_derive_partialeq_or_partialord: Option<HashMap<ItemId, CanDerive>>, |
466 | |
467 | /// The sizedness of types. |
468 | /// |
469 | /// This is populated by `compute_sizedness` and is always `None` before |
470 | /// that function is invoked and `Some` afterwards. |
471 | sizedness: Option<HashMap<TypeId, SizednessResult>>, |
472 | |
473 | /// The set of (`ItemId's of`) types that has vtable. |
474 | /// |
475 | /// Populated when we enter codegen by `compute_has_vtable`; always `None` |
476 | /// before that and `Some` after. |
477 | have_vtable: Option<HashMap<ItemId, HasVtableResult>>, |
478 | |
479 | /// The set of (`ItemId's of`) types that has destructor. |
480 | /// |
481 | /// Populated when we enter codegen by `compute_has_destructor`; always `None` |
482 | /// before that and `Some` after. |
483 | have_destructor: Option<HashSet<ItemId>>, |
484 | |
485 | /// The set of (`ItemId's of`) types that has array. |
486 | /// |
487 | /// Populated when we enter codegen by `compute_has_type_param_in_array`; always `None` |
488 | /// before that and `Some` after. |
489 | has_type_param_in_array: Option<HashSet<ItemId>>, |
490 | |
491 | /// The set of (`ItemId's of`) types that has float. |
492 | /// |
493 | /// Populated when we enter codegen by `compute_has_float`; always `None` |
494 | /// before that and `Some` after. |
495 | has_float: Option<HashSet<ItemId>>, |
496 | } |
497 | |
498 | /// A traversal of allowlisted items. |
499 | struct AllowlistedItemsTraversal<'ctx> { |
500 | ctx: &'ctx BindgenContext, |
501 | traversal: ItemTraversal<'ctx, ItemSet, Vec<ItemId>>, |
502 | } |
503 | |
504 | impl<'ctx> Iterator for AllowlistedItemsTraversal<'ctx> { |
505 | type Item = ItemId; |
506 | |
507 | fn next(&mut self) -> Option<ItemId> { |
508 | loop { |
509 | let id: ItemId = self.traversal.next()?; |
510 | |
511 | if self.ctx.resolve_item(id).is_blocklisted(self.ctx) { |
512 | continue; |
513 | } |
514 | |
515 | return Some(id); |
516 | } |
517 | } |
518 | } |
519 | |
520 | impl<'ctx> AllowlistedItemsTraversal<'ctx> { |
521 | /// Construct a new allowlisted items traversal. |
522 | pub(crate) fn new<R>( |
523 | ctx: &'ctx BindgenContext, |
524 | roots: R, |
525 | predicate: for<'a> fn(&'a BindgenContext, Edge) -> bool, |
526 | ) -> Self |
527 | where |
528 | R: IntoIterator<Item = ItemId>, |
529 | { |
530 | AllowlistedItemsTraversal { |
531 | ctx, |
532 | traversal: ItemTraversal::new(ctx, roots, predicate), |
533 | } |
534 | } |
535 | } |
536 | |
537 | impl BindgenContext { |
538 | /// Construct the context for the given `options`. |
539 | pub(crate) fn new( |
540 | options: BindgenOptions, |
541 | input_unsaved_files: &[clang::UnsavedFile], |
542 | ) -> Self { |
543 | // TODO(emilio): Use the CXTargetInfo here when available. |
544 | // |
545 | // see: https://reviews.llvm.org/D32389 |
546 | let index = clang::Index::new(false, true); |
547 | |
548 | let parse_options = |
549 | clang_sys::CXTranslationUnit_DetailedPreprocessingRecord; |
550 | |
551 | let translation_unit = { |
552 | let _t = |
553 | Timer::new("translation_unit" ).with_output(options.time_phases); |
554 | |
555 | clang::TranslationUnit::parse( |
556 | &index, |
557 | "" , |
558 | &options.clang_args, |
559 | input_unsaved_files, |
560 | parse_options, |
561 | ).expect("libclang error; possible causes include: |
562 | - Invalid flag syntax |
563 | - Unrecognized flags |
564 | - Invalid flag arguments |
565 | - File I/O errors |
566 | - Host vs. target architecture mismatch |
567 | If you encounter an error missing from this list, please file an issue or a PR!" ) |
568 | }; |
569 | |
570 | let target_info = clang::TargetInfo::new(&translation_unit); |
571 | let root_module = Self::build_root_module(ItemId(0)); |
572 | let root_module_id = root_module.id().as_module_id_unchecked(); |
573 | |
574 | // depfiles need to include the explicitly listed headers too |
575 | let deps = options.input_headers.iter().cloned().collect(); |
576 | |
577 | BindgenContext { |
578 | items: vec![Some(root_module)], |
579 | includes: Default::default(), |
580 | deps, |
581 | types: Default::default(), |
582 | type_params: Default::default(), |
583 | modules: Default::default(), |
584 | root_module: root_module_id, |
585 | current_module: root_module_id, |
586 | semantic_parents: Default::default(), |
587 | currently_parsed_types: vec![], |
588 | parsed_macros: Default::default(), |
589 | replacements: Default::default(), |
590 | collected_typerefs: false, |
591 | in_codegen: false, |
592 | translation_unit, |
593 | fallback_tu: None, |
594 | target_info, |
595 | options, |
596 | generated_bindgen_complex: Cell::new(false), |
597 | generated_bindgen_float16: Cell::new(false), |
598 | allowlisted: None, |
599 | blocklisted_types_implement_traits: Default::default(), |
600 | codegen_items: None, |
601 | used_template_parameters: None, |
602 | need_bitfield_allocation: Default::default(), |
603 | enum_typedef_combos: None, |
604 | cannot_derive_debug: None, |
605 | cannot_derive_default: None, |
606 | cannot_derive_copy: None, |
607 | cannot_derive_hash: None, |
608 | cannot_derive_partialeq_or_partialord: None, |
609 | sizedness: None, |
610 | have_vtable: None, |
611 | have_destructor: None, |
612 | has_type_param_in_array: None, |
613 | has_float: None, |
614 | } |
615 | } |
616 | |
617 | /// Returns `true` if the target architecture is wasm32 |
618 | pub(crate) fn is_target_wasm32(&self) -> bool { |
619 | self.target_info.triple.starts_with("wasm32-" ) |
620 | } |
621 | |
622 | /// Creates a timer for the current bindgen phase. If time_phases is `true`, |
623 | /// the timer will print to stderr when it is dropped, otherwise it will do |
624 | /// nothing. |
625 | pub(crate) fn timer<'a>(&self, name: &'a str) -> Timer<'a> { |
626 | Timer::new(name).with_output(self.options.time_phases) |
627 | } |
628 | |
629 | /// Returns the pointer width to use for the target for the current |
630 | /// translation. |
631 | pub(crate) fn target_pointer_size(&self) -> usize { |
632 | self.target_info.pointer_width / 8 |
633 | } |
634 | |
635 | /// Returns the ABI, which is mostly useful for determining the mangling kind. |
636 | pub(crate) fn abi_kind(&self) -> ABIKind { |
637 | self.target_info.abi |
638 | } |
639 | |
640 | /// Get the stack of partially parsed types that we are in the middle of |
641 | /// parsing. |
642 | pub(crate) fn currently_parsed_types(&self) -> &[PartialType] { |
643 | &self.currently_parsed_types[..] |
644 | } |
645 | |
646 | /// Begin parsing the given partial type, and push it onto the |
647 | /// `currently_parsed_types` stack so that we won't infinite recurse if we |
648 | /// run into a reference to it while parsing it. |
649 | pub(crate) fn begin_parsing(&mut self, partial_ty: PartialType) { |
650 | self.currently_parsed_types.push(partial_ty); |
651 | } |
652 | |
653 | /// Finish parsing the current partial type, pop it off the |
654 | /// `currently_parsed_types` stack, and return it. |
655 | pub(crate) fn finish_parsing(&mut self) -> PartialType { |
656 | self.currently_parsed_types.pop().expect( |
657 | "should have been parsing a type, if we finished parsing a type" , |
658 | ) |
659 | } |
660 | |
661 | /// Add the location of the `#include` directive for the `included_file`. |
662 | pub(crate) fn add_include( |
663 | &mut self, |
664 | source_file: String, |
665 | included_file: String, |
666 | offset: usize, |
667 | ) { |
668 | self.includes |
669 | .entry(included_file) |
670 | .or_insert((source_file, offset)); |
671 | } |
672 | |
673 | /// Get the location of the first `#include` directive for the `included_file`. |
674 | pub(crate) fn included_file_location( |
675 | &self, |
676 | included_file: &str, |
677 | ) -> Option<(String, usize)> { |
678 | self.includes.get(included_file).cloned() |
679 | } |
680 | |
681 | /// Add an included file. |
682 | pub(crate) fn add_dep(&mut self, dep: Box<str>) { |
683 | self.deps.insert(dep); |
684 | } |
685 | |
686 | /// Get any included files. |
687 | pub(crate) fn deps(&self) -> &BTreeSet<Box<str>> { |
688 | &self.deps |
689 | } |
690 | |
691 | /// Define a new item. |
692 | /// |
693 | /// This inserts it into the internal items set, and its type into the |
694 | /// internal types set. |
695 | pub(crate) fn add_item( |
696 | &mut self, |
697 | item: Item, |
698 | declaration: Option<Cursor>, |
699 | location: Option<Cursor>, |
700 | ) { |
701 | debug!( |
702 | "BindgenContext::add_item( {:?}, declaration: {:?}, loc: {:?}" , |
703 | item, declaration, location |
704 | ); |
705 | debug_assert!( |
706 | declaration.is_some() || |
707 | !item.kind().is_type() || |
708 | item.kind().expect_type().is_builtin_or_type_param() || |
709 | item.kind().expect_type().is_opaque(self, &item) || |
710 | item.kind().expect_type().is_unresolved_ref(), |
711 | "Adding a type without declaration?" |
712 | ); |
713 | |
714 | let id = item.id(); |
715 | let is_type = item.kind().is_type(); |
716 | let is_unnamed = is_type && item.expect_type().name().is_none(); |
717 | let is_template_instantiation = |
718 | is_type && item.expect_type().is_template_instantiation(); |
719 | |
720 | if item.id() != self.root_module { |
721 | self.add_item_to_module(&item); |
722 | } |
723 | |
724 | if is_type && item.expect_type().is_comp() { |
725 | self.need_bitfield_allocation.push(id); |
726 | } |
727 | |
728 | let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
729 | assert!( |
730 | old_item.is_none(), |
731 | "should not have already associated an item with the given id" |
732 | ); |
733 | |
734 | // Unnamed items can have an USR, but they can't be referenced from |
735 | // other sites explicitly and the USR can match if the unnamed items are |
736 | // nested, so don't bother tracking them. |
737 | if !is_type || is_template_instantiation { |
738 | return; |
739 | } |
740 | if let Some(mut declaration) = declaration { |
741 | if !declaration.is_valid() { |
742 | if let Some(location) = location { |
743 | if location.is_template_like() { |
744 | declaration = location; |
745 | } |
746 | } |
747 | } |
748 | declaration = declaration.canonical(); |
749 | if !declaration.is_valid() { |
750 | // This could happen, for example, with types like `int*` or |
751 | // similar. |
752 | // |
753 | // Fortunately, we don't care about those types being |
754 | // duplicated, so we can just ignore them. |
755 | debug!( |
756 | "Invalid declaration {:?} found for type {:?}" , |
757 | declaration, |
758 | self.resolve_item_fallible(id) |
759 | .unwrap() |
760 | .kind() |
761 | .expect_type() |
762 | ); |
763 | return; |
764 | } |
765 | |
766 | let key = if is_unnamed { |
767 | TypeKey::Declaration(declaration) |
768 | } else if let Some(usr) = declaration.usr() { |
769 | TypeKey::Usr(usr) |
770 | } else { |
771 | warn!( |
772 | "Valid declaration with no USR: {:?}, {:?}" , |
773 | declaration, location |
774 | ); |
775 | TypeKey::Declaration(declaration) |
776 | }; |
777 | |
778 | let old = self.types.insert(key, id.as_type_id_unchecked()); |
779 | debug_assert_eq!(old, None); |
780 | } |
781 | } |
782 | |
783 | /// Ensure that every item (other than the root module) is in a module's |
784 | /// children list. This is to make sure that every allowlisted item get's |
785 | /// codegen'd, even if its parent is not allowlisted. See issue #769 for |
786 | /// details. |
787 | fn add_item_to_module(&mut self, item: &Item) { |
788 | assert!(item.id() != self.root_module); |
789 | assert!(self.resolve_item_fallible(item.id()).is_none()); |
790 | |
791 | if let Some(ref mut parent) = self.items[item.parent_id().0] { |
792 | if let Some(module) = parent.as_module_mut() { |
793 | debug!( |
794 | "add_item_to_module: adding {:?} as child of parent module {:?}" , |
795 | item.id(), |
796 | item.parent_id() |
797 | ); |
798 | |
799 | module.children_mut().insert(item.id()); |
800 | return; |
801 | } |
802 | } |
803 | |
804 | debug!( |
805 | "add_item_to_module: adding {:?} as child of current module {:?}" , |
806 | item.id(), |
807 | self.current_module |
808 | ); |
809 | |
810 | self.items[(self.current_module.0).0] |
811 | .as_mut() |
812 | .expect("Should always have an item for self.current_module" ) |
813 | .as_module_mut() |
814 | .expect("self.current_module should always be a module" ) |
815 | .children_mut() |
816 | .insert(item.id()); |
817 | } |
818 | |
819 | /// Add a new named template type parameter to this context's item set. |
820 | pub(crate) fn add_type_param( |
821 | &mut self, |
822 | item: Item, |
823 | definition: clang::Cursor, |
824 | ) { |
825 | debug!( |
826 | "BindgenContext::add_type_param: item = {:?}; definition = {:?}" , |
827 | item, definition |
828 | ); |
829 | |
830 | assert!( |
831 | item.expect_type().is_type_param(), |
832 | "Should directly be a named type, not a resolved reference or anything" |
833 | ); |
834 | assert_eq!( |
835 | definition.kind(), |
836 | clang_sys::CXCursor_TemplateTypeParameter |
837 | ); |
838 | |
839 | self.add_item_to_module(&item); |
840 | |
841 | let id = item.id(); |
842 | let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
843 | assert!( |
844 | old_item.is_none(), |
845 | "should not have already associated an item with the given id" |
846 | ); |
847 | |
848 | let old_named_ty = self |
849 | .type_params |
850 | .insert(definition, id.as_type_id_unchecked()); |
851 | assert!( |
852 | old_named_ty.is_none(), |
853 | "should not have already associated a named type with this id" |
854 | ); |
855 | } |
856 | |
857 | /// Get the named type defined at the given cursor location, if we've |
858 | /// already added one. |
859 | pub(crate) fn get_type_param( |
860 | &self, |
861 | definition: &clang::Cursor, |
862 | ) -> Option<TypeId> { |
863 | assert_eq!( |
864 | definition.kind(), |
865 | clang_sys::CXCursor_TemplateTypeParameter |
866 | ); |
867 | self.type_params.get(definition).cloned() |
868 | } |
869 | |
870 | // TODO: Move all this syntax crap to other part of the code. |
871 | |
872 | /// Mangles a name so it doesn't conflict with any keyword. |
873 | #[rustfmt::skip] |
874 | pub(crate) fn rust_mangle<'a>(&self, name: &'a str) -> Cow<'a, str> { |
875 | if name.contains('@' ) || |
876 | name.contains('?' ) || |
877 | name.contains('$' ) || |
878 | matches!( |
879 | name, |
880 | "abstract" | "alignof" | "as" | "async" | "await" | "become" | |
881 | "box" | "break" | "const" | "continue" | "crate" | "do" | |
882 | "dyn" | "else" | "enum" | "extern" | "false" | "final" | |
883 | "fn" | "for" | "if" | "impl" | "in" | "let" | "loop" | |
884 | "macro" | "match" | "mod" | "move" | "mut" | "offsetof" | |
885 | "override" | "priv" | "proc" | "pub" | "pure" | "ref" | |
886 | "return" | "Self" | "self" | "sizeof" | "static" | |
887 | "struct" | "super" | "trait" | "true" | "try" | "type" | "typeof" | |
888 | "unsafe" | "unsized" | "use" | "virtual" | "where" | |
889 | "while" | "yield" | "str" | "bool" | "f32" | "f64" | |
890 | "usize" | "isize" | "u128" | "i128" | "u64" | "i64" | |
891 | "u32" | "i32" | "u16" | "i16" | "u8" | "i8" | "_" |
892 | ) |
893 | { |
894 | let mut s = name.to_owned(); |
895 | s = s.replace('@' , "_" ); |
896 | s = s.replace('?' , "_" ); |
897 | s = s.replace('$' , "_" ); |
898 | s.push('_' ); |
899 | return Cow::Owned(s); |
900 | } |
901 | Cow::Borrowed(name) |
902 | } |
903 | |
904 | /// Returns a mangled name as a rust identifier. |
905 | pub(crate) fn rust_ident<S>(&self, name: S) -> Ident |
906 | where |
907 | S: AsRef<str>, |
908 | { |
909 | self.rust_ident_raw(self.rust_mangle(name.as_ref())) |
910 | } |
911 | |
912 | /// Returns a mangled name as a rust identifier. |
913 | pub(crate) fn rust_ident_raw<T>(&self, name: T) -> Ident |
914 | where |
915 | T: AsRef<str>, |
916 | { |
917 | Ident::new(name.as_ref(), Span::call_site()) |
918 | } |
919 | |
920 | /// Iterate over all items that have been defined. |
921 | pub(crate) fn items(&self) -> impl Iterator<Item = (ItemId, &Item)> { |
922 | self.items.iter().enumerate().filter_map(|(index, item)| { |
923 | let item = item.as_ref()?; |
924 | Some((ItemId(index), item)) |
925 | }) |
926 | } |
927 | |
928 | /// Have we collected all unresolved type references yet? |
929 | pub(crate) fn collected_typerefs(&self) -> bool { |
930 | self.collected_typerefs |
931 | } |
932 | |
933 | /// Gather all the unresolved type references. |
934 | fn collect_typerefs( |
935 | &mut self, |
936 | ) -> Vec<(ItemId, clang::Type, clang::Cursor, Option<ItemId>)> { |
937 | debug_assert!(!self.collected_typerefs); |
938 | self.collected_typerefs = true; |
939 | let mut typerefs = vec![]; |
940 | |
941 | for (id, item) in self.items() { |
942 | let kind = item.kind(); |
943 | let ty = match kind.as_type() { |
944 | Some(ty) => ty, |
945 | None => continue, |
946 | }; |
947 | |
948 | if let TypeKind::UnresolvedTypeRef(ref ty, loc, parent_id) = |
949 | *ty.kind() |
950 | { |
951 | typerefs.push((id, *ty, loc, parent_id)); |
952 | }; |
953 | } |
954 | typerefs |
955 | } |
956 | |
957 | /// Collect all of our unresolved type references and resolve them. |
958 | fn resolve_typerefs(&mut self) { |
959 | let _t = self.timer("resolve_typerefs" ); |
960 | |
961 | let typerefs = self.collect_typerefs(); |
962 | |
963 | for (id, ty, loc, parent_id) in typerefs { |
964 | let _resolved = |
965 | { |
966 | let resolved = Item::from_ty(&ty, loc, parent_id, self) |
967 | .unwrap_or_else(|_| { |
968 | warn!("Could not resolve type reference, falling back \ |
969 | to opaque blob" ); |
970 | Item::new_opaque_type(self.next_item_id(), &ty, self) |
971 | }); |
972 | |
973 | let item = self.items[id.0].as_mut().unwrap(); |
974 | *item.kind_mut().as_type_mut().unwrap().kind_mut() = |
975 | TypeKind::ResolvedTypeRef(resolved); |
976 | resolved |
977 | }; |
978 | |
979 | // Something in the STL is trolling me. I don't need this assertion |
980 | // right now, but worth investigating properly once this lands. |
981 | // |
982 | // debug_assert!(self.items.get(&resolved).is_some(), "How?"); |
983 | // |
984 | // if let Some(parent_id) = parent_id { |
985 | // assert_eq!(self.items[&resolved].parent_id(), parent_id); |
986 | // } |
987 | } |
988 | } |
989 | |
990 | /// Temporarily loan `Item` with the given `ItemId`. This provides means to |
991 | /// mutably borrow `Item` while having a reference to `BindgenContext`. |
992 | /// |
993 | /// `Item` with the given `ItemId` is removed from the context, given |
994 | /// closure is executed and then `Item` is placed back. |
995 | /// |
996 | /// # Panics |
997 | /// |
998 | /// Panics if attempt to resolve given `ItemId` inside the given |
999 | /// closure is made. |
1000 | fn with_loaned_item<F, T>(&mut self, id: ItemId, f: F) -> T |
1001 | where |
1002 | F: (FnOnce(&BindgenContext, &mut Item) -> T), |
1003 | { |
1004 | let mut item = self.items[id.0].take().unwrap(); |
1005 | |
1006 | let result = f(self, &mut item); |
1007 | |
1008 | let existing = mem::replace(&mut self.items[id.0], Some(item)); |
1009 | assert!(existing.is_none()); |
1010 | |
1011 | result |
1012 | } |
1013 | |
1014 | /// Compute the bitfield allocation units for all `TypeKind::Comp` items we |
1015 | /// parsed. |
1016 | fn compute_bitfield_units(&mut self) { |
1017 | let _t = self.timer("compute_bitfield_units" ); |
1018 | |
1019 | assert!(self.collected_typerefs()); |
1020 | |
1021 | let need_bitfield_allocation = |
1022 | mem::take(&mut self.need_bitfield_allocation); |
1023 | for id in need_bitfield_allocation { |
1024 | self.with_loaned_item(id, |ctx, item| { |
1025 | let ty = item.kind_mut().as_type_mut().unwrap(); |
1026 | let layout = ty.layout(ctx); |
1027 | ty.as_comp_mut() |
1028 | .unwrap() |
1029 | .compute_bitfield_units(ctx, layout.as_ref()); |
1030 | }); |
1031 | } |
1032 | } |
1033 | |
1034 | /// Assign a new generated name for each anonymous field. |
1035 | fn deanonymize_fields(&mut self) { |
1036 | let _t = self.timer("deanonymize_fields" ); |
1037 | |
1038 | let comp_item_ids: Vec<ItemId> = self |
1039 | .items() |
1040 | .filter_map(|(id, item)| { |
1041 | if item.kind().as_type()?.is_comp() { |
1042 | return Some(id); |
1043 | } |
1044 | None |
1045 | }) |
1046 | .collect(); |
1047 | |
1048 | for id in comp_item_ids { |
1049 | self.with_loaned_item(id, |ctx, item| { |
1050 | item.kind_mut() |
1051 | .as_type_mut() |
1052 | .unwrap() |
1053 | .as_comp_mut() |
1054 | .unwrap() |
1055 | .deanonymize_fields(ctx); |
1056 | }); |
1057 | } |
1058 | } |
1059 | |
1060 | /// Iterate over all items and replace any item that has been named in a |
1061 | /// `replaces="SomeType"` annotation with the replacement type. |
1062 | fn process_replacements(&mut self) { |
1063 | let _t = self.timer("process_replacements" ); |
1064 | if self.replacements.is_empty() { |
1065 | debug!("No replacements to process" ); |
1066 | return; |
1067 | } |
1068 | |
1069 | // FIXME: This is linear, but the replaces="xxx" annotation was already |
1070 | // there, and for better or worse it's useful, sigh... |
1071 | // |
1072 | // We leverage the ResolvedTypeRef thing, though, which is cool :P. |
1073 | |
1074 | let mut replacements = vec![]; |
1075 | |
1076 | for (id, item) in self.items() { |
1077 | if item.annotations().use_instead_of().is_some() { |
1078 | continue; |
1079 | } |
1080 | |
1081 | // Calls to `canonical_name` are expensive, so eagerly filter out |
1082 | // items that cannot be replaced. |
1083 | let ty = match item.kind().as_type() { |
1084 | Some(ty) => ty, |
1085 | None => continue, |
1086 | }; |
1087 | |
1088 | match *ty.kind() { |
1089 | TypeKind::Comp(..) | |
1090 | TypeKind::TemplateAlias(..) | |
1091 | TypeKind::Enum(..) | |
1092 | TypeKind::Alias(..) => {} |
1093 | _ => continue, |
1094 | } |
1095 | |
1096 | let path = item.path_for_allowlisting(self); |
1097 | let replacement = self.replacements.get(&path[1..]); |
1098 | |
1099 | if let Some(replacement) = replacement { |
1100 | if *replacement != id { |
1101 | // We set this just after parsing the annotation. It's |
1102 | // very unlikely, but this can happen. |
1103 | if self.resolve_item_fallible(*replacement).is_some() { |
1104 | replacements.push(( |
1105 | id.expect_type_id(self), |
1106 | replacement.expect_type_id(self), |
1107 | )); |
1108 | } |
1109 | } |
1110 | } |
1111 | } |
1112 | |
1113 | for (id, replacement_id) in replacements { |
1114 | debug!("Replacing {:?} with {:?}" , id, replacement_id); |
1115 | let new_parent = { |
1116 | let item_id: ItemId = id.into(); |
1117 | let item = self.items[item_id.0].as_mut().unwrap(); |
1118 | *item.kind_mut().as_type_mut().unwrap().kind_mut() = |
1119 | TypeKind::ResolvedTypeRef(replacement_id); |
1120 | item.parent_id() |
1121 | }; |
1122 | |
1123 | // Relocate the replacement item from where it was declared, to |
1124 | // where the thing it is replacing was declared. |
1125 | // |
1126 | // First, we'll make sure that its parent ID is correct. |
1127 | |
1128 | let old_parent = self.resolve_item(replacement_id).parent_id(); |
1129 | if new_parent == old_parent { |
1130 | // Same parent and therefore also same containing |
1131 | // module. Nothing to do here. |
1132 | continue; |
1133 | } |
1134 | |
1135 | let replacement_item_id: ItemId = replacement_id.into(); |
1136 | self.items[replacement_item_id.0] |
1137 | .as_mut() |
1138 | .unwrap() |
1139 | .set_parent_for_replacement(new_parent); |
1140 | |
1141 | // Second, make sure that it is in the correct module's children |
1142 | // set. |
1143 | |
1144 | let old_module = { |
1145 | let immut_self = &*self; |
1146 | old_parent |
1147 | .ancestors(immut_self) |
1148 | .chain(Some(immut_self.root_module.into())) |
1149 | .find(|id| { |
1150 | let item = immut_self.resolve_item(*id); |
1151 | item.as_module().map_or(false, |m| { |
1152 | m.children().contains(&replacement_id.into()) |
1153 | }) |
1154 | }) |
1155 | }; |
1156 | let old_module = old_module |
1157 | .expect("Every replacement item should be in a module" ); |
1158 | |
1159 | let new_module = { |
1160 | let immut_self = &*self; |
1161 | new_parent |
1162 | .ancestors(immut_self) |
1163 | .find(|id| immut_self.resolve_item(*id).is_module()) |
1164 | }; |
1165 | let new_module = |
1166 | new_module.unwrap_or_else(|| self.root_module.into()); |
1167 | |
1168 | if new_module == old_module { |
1169 | // Already in the correct module. |
1170 | continue; |
1171 | } |
1172 | |
1173 | self.items[old_module.0] |
1174 | .as_mut() |
1175 | .unwrap() |
1176 | .as_module_mut() |
1177 | .unwrap() |
1178 | .children_mut() |
1179 | .remove(&replacement_id.into()); |
1180 | |
1181 | self.items[new_module.0] |
1182 | .as_mut() |
1183 | .unwrap() |
1184 | .as_module_mut() |
1185 | .unwrap() |
1186 | .children_mut() |
1187 | .insert(replacement_id.into()); |
1188 | } |
1189 | } |
1190 | |
1191 | /// Enter the code generation phase, invoke the given callback `cb`, and |
1192 | /// leave the code generation phase. |
1193 | pub(crate) fn gen<F, Out>( |
1194 | mut self, |
1195 | cb: F, |
1196 | ) -> Result<(Out, BindgenOptions), CodegenError> |
1197 | where |
1198 | F: FnOnce(&Self) -> Result<Out, CodegenError>, |
1199 | { |
1200 | self.in_codegen = true; |
1201 | |
1202 | self.resolve_typerefs(); |
1203 | self.compute_bitfield_units(); |
1204 | self.process_replacements(); |
1205 | |
1206 | self.deanonymize_fields(); |
1207 | |
1208 | self.assert_no_dangling_references(); |
1209 | |
1210 | // Compute the allowlisted set after processing replacements and |
1211 | // resolving type refs, as those are the final mutations of the IR |
1212 | // graph, and their completion means that the IR graph is now frozen. |
1213 | self.compute_allowlisted_and_codegen_items(); |
1214 | |
1215 | // Make sure to do this after processing replacements, since that messes |
1216 | // with the parentage and module children, and we want to assert that it |
1217 | // messes with them correctly. |
1218 | self.assert_every_item_in_a_module(); |
1219 | |
1220 | self.compute_has_vtable(); |
1221 | self.compute_sizedness(); |
1222 | self.compute_has_destructor(); |
1223 | self.find_used_template_parameters(); |
1224 | self.compute_enum_typedef_combos(); |
1225 | self.compute_cannot_derive_debug(); |
1226 | self.compute_cannot_derive_default(); |
1227 | self.compute_cannot_derive_copy(); |
1228 | self.compute_has_type_param_in_array(); |
1229 | self.compute_has_float(); |
1230 | self.compute_cannot_derive_hash(); |
1231 | self.compute_cannot_derive_partialord_partialeq_or_eq(); |
1232 | |
1233 | let ret = cb(&self)?; |
1234 | Ok((ret, self.options)) |
1235 | } |
1236 | |
1237 | /// When the `__testing_only_extra_assertions` feature is enabled, this |
1238 | /// function walks the IR graph and asserts that we do not have any edges |
1239 | /// referencing an ItemId for which we do not have an associated IR item. |
1240 | fn assert_no_dangling_references(&self) { |
1241 | if cfg!(feature = "__testing_only_extra_assertions" ) { |
1242 | for _ in self.assert_no_dangling_item_traversal() { |
1243 | // The iterator's next method does the asserting for us. |
1244 | } |
1245 | } |
1246 | } |
1247 | |
1248 | fn assert_no_dangling_item_traversal( |
1249 | &self, |
1250 | ) -> traversal::AssertNoDanglingItemsTraversal { |
1251 | assert!(self.in_codegen_phase()); |
1252 | assert!(self.current_module == self.root_module); |
1253 | |
1254 | let roots = self.items().map(|(id, _)| id); |
1255 | traversal::AssertNoDanglingItemsTraversal::new( |
1256 | self, |
1257 | roots, |
1258 | traversal::all_edges, |
1259 | ) |
1260 | } |
1261 | |
1262 | /// When the `__testing_only_extra_assertions` feature is enabled, walk over |
1263 | /// every item and ensure that it is in the children set of one of its |
1264 | /// module ancestors. |
1265 | fn assert_every_item_in_a_module(&self) { |
1266 | if cfg!(feature = "__testing_only_extra_assertions" ) { |
1267 | assert!(self.in_codegen_phase()); |
1268 | assert!(self.current_module == self.root_module); |
1269 | |
1270 | for (id, _item) in self.items() { |
1271 | if id == self.root_module { |
1272 | continue; |
1273 | } |
1274 | |
1275 | assert!( |
1276 | { |
1277 | let id = id |
1278 | .into_resolver() |
1279 | .through_type_refs() |
1280 | .through_type_aliases() |
1281 | .resolve(self) |
1282 | .id(); |
1283 | id.ancestors(self) |
1284 | .chain(Some(self.root_module.into())) |
1285 | .any(|ancestor| { |
1286 | debug!( |
1287 | "Checking if {:?} is a child of {:?}" , |
1288 | id, ancestor |
1289 | ); |
1290 | self.resolve_item(ancestor) |
1291 | .as_module() |
1292 | .map_or(false, |m| { |
1293 | m.children().contains(&id) |
1294 | }) |
1295 | }) |
1296 | }, |
1297 | " {:?} should be in some ancestor module's children set" , |
1298 | id |
1299 | ); |
1300 | } |
1301 | } |
1302 | } |
1303 | |
1304 | /// Compute for every type whether it is sized or not, and whether it is |
1305 | /// sized or not as a base class. |
1306 | fn compute_sizedness(&mut self) { |
1307 | let _t = self.timer("compute_sizedness" ); |
1308 | assert!(self.sizedness.is_none()); |
1309 | self.sizedness = Some(analyze::<SizednessAnalysis>(self)); |
1310 | } |
1311 | |
1312 | /// Look up whether the type with the given ID is sized or not. |
1313 | pub(crate) fn lookup_sizedness(&self, id: TypeId) -> SizednessResult { |
1314 | assert!( |
1315 | self.in_codegen_phase(), |
1316 | "We only compute sizedness after we've entered codegen" |
1317 | ); |
1318 | |
1319 | self.sizedness |
1320 | .as_ref() |
1321 | .unwrap() |
1322 | .get(&id) |
1323 | .cloned() |
1324 | .unwrap_or(SizednessResult::ZeroSized) |
1325 | } |
1326 | |
1327 | /// Compute whether the type has vtable. |
1328 | fn compute_has_vtable(&mut self) { |
1329 | let _t = self.timer("compute_has_vtable" ); |
1330 | assert!(self.have_vtable.is_none()); |
1331 | self.have_vtable = Some(analyze::<HasVtableAnalysis>(self)); |
1332 | } |
1333 | |
1334 | /// Look up whether the item with `id` has vtable or not. |
1335 | pub(crate) fn lookup_has_vtable(&self, id: TypeId) -> HasVtableResult { |
1336 | assert!( |
1337 | self.in_codegen_phase(), |
1338 | "We only compute vtables when we enter codegen" |
1339 | ); |
1340 | |
1341 | // Look up the computed value for whether the item with `id` has a |
1342 | // vtable or not. |
1343 | self.have_vtable |
1344 | .as_ref() |
1345 | .unwrap() |
1346 | .get(&id.into()) |
1347 | .cloned() |
1348 | .unwrap_or(HasVtableResult::No) |
1349 | } |
1350 | |
1351 | /// Compute whether the type has a destructor. |
1352 | fn compute_has_destructor(&mut self) { |
1353 | let _t = self.timer("compute_has_destructor" ); |
1354 | assert!(self.have_destructor.is_none()); |
1355 | self.have_destructor = Some(analyze::<HasDestructorAnalysis>(self)); |
1356 | } |
1357 | |
1358 | /// Look up whether the item with `id` has a destructor. |
1359 | pub(crate) fn lookup_has_destructor(&self, id: TypeId) -> bool { |
1360 | assert!( |
1361 | self.in_codegen_phase(), |
1362 | "We only compute destructors when we enter codegen" |
1363 | ); |
1364 | |
1365 | self.have_destructor.as_ref().unwrap().contains(&id.into()) |
1366 | } |
1367 | |
1368 | fn find_used_template_parameters(&mut self) { |
1369 | let _t = self.timer("find_used_template_parameters" ); |
1370 | if self.options.allowlist_recursively { |
1371 | let used_params = analyze::<UsedTemplateParameters>(self); |
1372 | self.used_template_parameters = Some(used_params); |
1373 | } else { |
1374 | // If you aren't recursively allowlisting, then we can't really make |
1375 | // any sense of template parameter usage, and you're on your own. |
1376 | let mut used_params = HashMap::default(); |
1377 | for &id in self.allowlisted_items() { |
1378 | used_params.entry(id).or_insert_with(|| { |
1379 | id.self_template_params(self) |
1380 | .into_iter() |
1381 | .map(|p| p.into()) |
1382 | .collect() |
1383 | }); |
1384 | } |
1385 | self.used_template_parameters = Some(used_params); |
1386 | } |
1387 | } |
1388 | |
1389 | /// Return `true` if `item` uses the given `template_param`, `false` |
1390 | /// otherwise. |
1391 | /// |
1392 | /// This method may only be called during the codegen phase, because the |
1393 | /// template usage information is only computed as we enter the codegen |
1394 | /// phase. |
1395 | /// |
1396 | /// If the item is blocklisted, then we say that it always uses the template |
1397 | /// parameter. This is a little subtle. The template parameter usage |
1398 | /// analysis only considers allowlisted items, and if any blocklisted item |
1399 | /// shows up in the generated bindings, it is the user's responsibility to |
1400 | /// manually provide a definition for them. To give them the most |
1401 | /// flexibility when doing that, we assume that they use every template |
1402 | /// parameter and always pass template arguments through in instantiations. |
1403 | pub(crate) fn uses_template_parameter( |
1404 | &self, |
1405 | item: ItemId, |
1406 | template_param: TypeId, |
1407 | ) -> bool { |
1408 | assert!( |
1409 | self.in_codegen_phase(), |
1410 | "We only compute template parameter usage as we enter codegen" |
1411 | ); |
1412 | |
1413 | if self.resolve_item(item).is_blocklisted(self) { |
1414 | return true; |
1415 | } |
1416 | |
1417 | let template_param = template_param |
1418 | .into_resolver() |
1419 | .through_type_refs() |
1420 | .through_type_aliases() |
1421 | .resolve(self) |
1422 | .id(); |
1423 | |
1424 | self.used_template_parameters |
1425 | .as_ref() |
1426 | .expect("should have found template parameter usage if we're in codegen" ) |
1427 | .get(&item) |
1428 | .map_or(false, |items_used_params| items_used_params.contains(&template_param)) |
1429 | } |
1430 | |
1431 | /// Return `true` if `item` uses any unbound, generic template parameters, |
1432 | /// `false` otherwise. |
1433 | /// |
1434 | /// Has the same restrictions that `uses_template_parameter` has. |
1435 | pub(crate) fn uses_any_template_parameters(&self, item: ItemId) -> bool { |
1436 | assert!( |
1437 | self.in_codegen_phase(), |
1438 | "We only compute template parameter usage as we enter codegen" |
1439 | ); |
1440 | |
1441 | self.used_template_parameters |
1442 | .as_ref() |
1443 | .expect( |
1444 | "should have template parameter usage info in codegen phase" , |
1445 | ) |
1446 | .get(&item) |
1447 | .map_or(false, |used| !used.is_empty()) |
1448 | } |
1449 | |
1450 | // This deserves a comment. Builtin types don't get a valid declaration, so |
1451 | // we can't add it to the cursor->type map. |
1452 | // |
1453 | // That being said, they're not generated anyway, and are few, so the |
1454 | // duplication and special-casing is fine. |
1455 | // |
1456 | // If at some point we care about the memory here, probably a map TypeKind |
1457 | // -> builtin type ItemId would be the best to improve that. |
1458 | fn add_builtin_item(&mut self, item: Item) { |
1459 | debug!("add_builtin_item: item = {:?}" , item); |
1460 | debug_assert!(item.kind().is_type()); |
1461 | self.add_item_to_module(&item); |
1462 | let id = item.id(); |
1463 | let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
1464 | assert!(old_item.is_none(), "Inserted type twice?" ); |
1465 | } |
1466 | |
1467 | fn build_root_module(id: ItemId) -> Item { |
1468 | let module = Module::new(Some("root" .into()), ModuleKind::Normal); |
1469 | Item::new(id, None, None, id, ItemKind::Module(module), None) |
1470 | } |
1471 | |
1472 | /// Get the root module. |
1473 | pub(crate) fn root_module(&self) -> ModuleId { |
1474 | self.root_module |
1475 | } |
1476 | |
1477 | /// Resolve a type with the given ID. |
1478 | /// |
1479 | /// Panics if there is no item for the given `TypeId` or if the resolved |
1480 | /// item is not a `Type`. |
1481 | pub(crate) fn resolve_type(&self, type_id: TypeId) -> &Type { |
1482 | self.resolve_item(type_id).kind().expect_type() |
1483 | } |
1484 | |
1485 | /// Resolve a function with the given ID. |
1486 | /// |
1487 | /// Panics if there is no item for the given `FunctionId` or if the resolved |
1488 | /// item is not a `Function`. |
1489 | pub(crate) fn resolve_func(&self, func_id: FunctionId) -> &Function { |
1490 | self.resolve_item(func_id).kind().expect_function() |
1491 | } |
1492 | |
1493 | /// Resolve the given `ItemId` as a type, or `None` if there is no item with |
1494 | /// the given ID. |
1495 | /// |
1496 | /// Panics if the ID resolves to an item that is not a type. |
1497 | pub(crate) fn safe_resolve_type(&self, type_id: TypeId) -> Option<&Type> { |
1498 | self.resolve_item_fallible(type_id) |
1499 | .map(|t| t.kind().expect_type()) |
1500 | } |
1501 | |
1502 | /// Resolve the given `ItemId` into an `Item`, or `None` if no such item |
1503 | /// exists. |
1504 | pub(crate) fn resolve_item_fallible<Id: Into<ItemId>>( |
1505 | &self, |
1506 | id: Id, |
1507 | ) -> Option<&Item> { |
1508 | self.items.get(id.into().0)?.as_ref() |
1509 | } |
1510 | |
1511 | /// Resolve the given `ItemId` into an `Item`. |
1512 | /// |
1513 | /// Panics if the given ID does not resolve to any item. |
1514 | pub(crate) fn resolve_item<Id: Into<ItemId>>(&self, item_id: Id) -> &Item { |
1515 | let item_id = item_id.into(); |
1516 | match self.resolve_item_fallible(item_id) { |
1517 | Some(item) => item, |
1518 | None => panic!("Not an item: {:?}" , item_id), |
1519 | } |
1520 | } |
1521 | |
1522 | /// Get the current module. |
1523 | pub(crate) fn current_module(&self) -> ModuleId { |
1524 | self.current_module |
1525 | } |
1526 | |
1527 | /// Add a semantic parent for a given type definition. |
1528 | /// |
1529 | /// We do this from the type declaration, in order to be able to find the |
1530 | /// correct type definition afterwards. |
1531 | /// |
1532 | /// TODO(emilio): We could consider doing this only when |
1533 | /// declaration.lexical_parent() != definition.lexical_parent(), but it's |
1534 | /// not sure it's worth it. |
1535 | pub(crate) fn add_semantic_parent( |
1536 | &mut self, |
1537 | definition: clang::Cursor, |
1538 | parent_id: ItemId, |
1539 | ) { |
1540 | self.semantic_parents.insert(definition, parent_id); |
1541 | } |
1542 | |
1543 | /// Returns a known semantic parent for a given definition. |
1544 | pub(crate) fn known_semantic_parent( |
1545 | &self, |
1546 | definition: clang::Cursor, |
1547 | ) -> Option<ItemId> { |
1548 | self.semantic_parents.get(&definition).cloned() |
1549 | } |
1550 | |
1551 | /// Given a cursor pointing to the location of a template instantiation, |
1552 | /// return a tuple of the form `(declaration_cursor, declaration_id, |
1553 | /// num_expected_template_args)`. |
1554 | /// |
1555 | /// Note that `declaration_id` is not guaranteed to be in the context's item |
1556 | /// set! It is possible that it is a partial type that we are still in the |
1557 | /// middle of parsing. |
1558 | fn get_declaration_info_for_template_instantiation( |
1559 | &self, |
1560 | instantiation: &Cursor, |
1561 | ) -> Option<(Cursor, ItemId, usize)> { |
1562 | instantiation |
1563 | .cur_type() |
1564 | .canonical_declaration(Some(instantiation)) |
1565 | .and_then(|canon_decl| { |
1566 | self.get_resolved_type(&canon_decl).and_then( |
1567 | |template_decl_id| { |
1568 | let num_params = |
1569 | template_decl_id.num_self_template_params(self); |
1570 | if num_params == 0 { |
1571 | None |
1572 | } else { |
1573 | Some(( |
1574 | *canon_decl.cursor(), |
1575 | template_decl_id.into(), |
1576 | num_params, |
1577 | )) |
1578 | } |
1579 | }, |
1580 | ) |
1581 | }) |
1582 | .or_else(|| { |
1583 | // If we haven't already parsed the declaration of |
1584 | // the template being instantiated, then it *must* |
1585 | // be on the stack of types we are currently |
1586 | // parsing. If it wasn't then clang would have |
1587 | // already errored out before we started |
1588 | // constructing our IR because you can't instantiate |
1589 | // a template until it is fully defined. |
1590 | instantiation |
1591 | .referenced() |
1592 | .and_then(|referenced| { |
1593 | self.currently_parsed_types() |
1594 | .iter() |
1595 | .find(|partial_ty| *partial_ty.decl() == referenced) |
1596 | .cloned() |
1597 | }) |
1598 | .and_then(|template_decl| { |
1599 | let num_template_params = |
1600 | template_decl.num_self_template_params(self); |
1601 | if num_template_params == 0 { |
1602 | None |
1603 | } else { |
1604 | Some(( |
1605 | *template_decl.decl(), |
1606 | template_decl.id(), |
1607 | num_template_params, |
1608 | )) |
1609 | } |
1610 | }) |
1611 | }) |
1612 | } |
1613 | |
1614 | /// Parse a template instantiation, eg `Foo<int>`. |
1615 | /// |
1616 | /// This is surprisingly difficult to do with libclang, due to the fact that |
1617 | /// it doesn't provide explicit template argument information, except for |
1618 | /// function template declarations(!?!??!). |
1619 | /// |
1620 | /// The only way to do this is manually inspecting the AST and looking for |
1621 | /// TypeRefs and TemplateRefs inside. This, unfortunately, doesn't work for |
1622 | /// more complex cases, see the comment on the assertion below. |
1623 | /// |
1624 | /// To add insult to injury, the AST itself has structure that doesn't make |
1625 | /// sense. Sometimes `Foo<Bar<int>>` has an AST with nesting like you might |
1626 | /// expect: `(Foo (Bar (int)))`. Other times, the AST we get is completely |
1627 | /// flat: `(Foo Bar int)`. |
1628 | /// |
1629 | /// To see an example of what this method handles: |
1630 | /// |
1631 | /// ```c++ |
1632 | /// template<typename T> |
1633 | /// class Incomplete { |
1634 | /// T p; |
1635 | /// }; |
1636 | /// |
1637 | /// template<typename U> |
1638 | /// class Foo { |
1639 | /// Incomplete<U> bar; |
1640 | /// }; |
1641 | /// ``` |
1642 | /// |
1643 | /// Finally, template instantiations are always children of the current |
1644 | /// module. They use their template's definition for their name, so the |
1645 | /// parent is only useful for ensuring that their layout tests get |
1646 | /// codegen'd. |
1647 | fn instantiate_template( |
1648 | &mut self, |
1649 | with_id: ItemId, |
1650 | template: TypeId, |
1651 | ty: &clang::Type, |
1652 | location: clang::Cursor, |
1653 | ) -> Option<TypeId> { |
1654 | let num_expected_args = |
1655 | self.resolve_type(template).num_self_template_params(self); |
1656 | if num_expected_args == 0 { |
1657 | warn!( |
1658 | "Tried to instantiate a template for which we could not \ |
1659 | determine any template parameters" |
1660 | ); |
1661 | return None; |
1662 | } |
1663 | |
1664 | let mut args = vec![]; |
1665 | let mut found_const_arg = false; |
1666 | let mut children = location.collect_children(); |
1667 | |
1668 | if children.iter().all(|c| !c.has_children()) { |
1669 | // This is insanity... If clang isn't giving us a properly nested |
1670 | // AST for which template arguments belong to which template we are |
1671 | // instantiating, we'll need to construct it ourselves. However, |
1672 | // there is an extra `NamespaceRef, NamespaceRef, ..., TemplateRef` |
1673 | // representing a reference to the outermost template declaration |
1674 | // that we need to filter out of the children. We need to do this |
1675 | // filtering because we already know which template declaration is |
1676 | // being specialized via the `location`'s type, and if we do not |
1677 | // filter it out, we'll add an extra layer of template instantiation |
1678 | // on accident. |
1679 | let idx = children |
1680 | .iter() |
1681 | .position(|c| c.kind() == clang_sys::CXCursor_TemplateRef); |
1682 | if let Some(idx) = idx { |
1683 | if children |
1684 | .iter() |
1685 | .take(idx) |
1686 | .all(|c| c.kind() == clang_sys::CXCursor_NamespaceRef) |
1687 | { |
1688 | children = children.into_iter().skip(idx + 1).collect(); |
1689 | } |
1690 | } |
1691 | } |
1692 | |
1693 | for child in children.iter().rev() { |
1694 | match child.kind() { |
1695 | clang_sys::CXCursor_TypeRef | |
1696 | clang_sys::CXCursor_TypedefDecl | |
1697 | clang_sys::CXCursor_TypeAliasDecl => { |
1698 | // The `with_id` ID will potentially end up unused if we give up |
1699 | // on this type (for example, because it has const value |
1700 | // template args), so if we pass `with_id` as the parent, it is |
1701 | // potentially a dangling reference. Instead, use the canonical |
1702 | // template declaration as the parent. It is already parsed and |
1703 | // has a known-resolvable `ItemId`. |
1704 | let ty = Item::from_ty_or_ref( |
1705 | child.cur_type(), |
1706 | *child, |
1707 | Some(template.into()), |
1708 | self, |
1709 | ); |
1710 | args.push(ty); |
1711 | } |
1712 | clang_sys::CXCursor_TemplateRef => { |
1713 | let ( |
1714 | template_decl_cursor, |
1715 | template_decl_id, |
1716 | num_expected_template_args, |
1717 | ) = self.get_declaration_info_for_template_instantiation( |
1718 | child, |
1719 | )?; |
1720 | |
1721 | if num_expected_template_args == 0 || |
1722 | child.has_at_least_num_children( |
1723 | num_expected_template_args, |
1724 | ) |
1725 | { |
1726 | // Do a happy little parse. See comment in the TypeRef |
1727 | // match arm about parent IDs. |
1728 | let ty = Item::from_ty_or_ref( |
1729 | child.cur_type(), |
1730 | *child, |
1731 | Some(template.into()), |
1732 | self, |
1733 | ); |
1734 | args.push(ty); |
1735 | } else { |
1736 | // This is the case mentioned in the doc comment where |
1737 | // clang gives us a flattened AST and we have to |
1738 | // reconstruct which template arguments go to which |
1739 | // instantiation :( |
1740 | let args_len = args.len(); |
1741 | if args_len < num_expected_template_args { |
1742 | warn!( |
1743 | "Found a template instantiation without \ |
1744 | enough template arguments" |
1745 | ); |
1746 | return None; |
1747 | } |
1748 | |
1749 | let mut sub_args: Vec<_> = args |
1750 | .drain(args_len - num_expected_template_args..) |
1751 | .collect(); |
1752 | sub_args.reverse(); |
1753 | |
1754 | let sub_name = Some(template_decl_cursor.spelling()); |
1755 | let sub_inst = TemplateInstantiation::new( |
1756 | // This isn't guaranteed to be a type that we've |
1757 | // already finished parsing yet. |
1758 | template_decl_id.as_type_id_unchecked(), |
1759 | sub_args, |
1760 | ); |
1761 | let sub_kind = |
1762 | TypeKind::TemplateInstantiation(sub_inst); |
1763 | let sub_ty = Type::new( |
1764 | sub_name, |
1765 | template_decl_cursor |
1766 | .cur_type() |
1767 | .fallible_layout(self) |
1768 | .ok(), |
1769 | sub_kind, |
1770 | false, |
1771 | ); |
1772 | let sub_id = self.next_item_id(); |
1773 | let sub_item = Item::new( |
1774 | sub_id, |
1775 | None, |
1776 | None, |
1777 | self.current_module.into(), |
1778 | ItemKind::Type(sub_ty), |
1779 | Some(child.location()), |
1780 | ); |
1781 | |
1782 | // Bypass all the validations in add_item explicitly. |
1783 | debug!( |
1784 | "instantiate_template: inserting nested \ |
1785 | instantiation item: {:?}" , |
1786 | sub_item |
1787 | ); |
1788 | self.add_item_to_module(&sub_item); |
1789 | debug_assert_eq!(sub_id, sub_item.id()); |
1790 | self.items[sub_id.0] = Some(sub_item); |
1791 | args.push(sub_id.as_type_id_unchecked()); |
1792 | } |
1793 | } |
1794 | _ => { |
1795 | warn!( |
1796 | "Found template arg cursor we can't handle: {:?}" , |
1797 | child |
1798 | ); |
1799 | found_const_arg = true; |
1800 | } |
1801 | } |
1802 | } |
1803 | |
1804 | if found_const_arg { |
1805 | // This is a dependently typed template instantiation. That is, an |
1806 | // instantiation of a template with one or more const values as |
1807 | // template arguments, rather than only types as template |
1808 | // arguments. For example, `Foo<true, 5>` versus `Bar<bool, int>`. |
1809 | // We can't handle these instantiations, so just punt in this |
1810 | // situation... |
1811 | warn!( |
1812 | "Found template instantiated with a const value; \ |
1813 | bindgen can't handle this kind of template instantiation!" |
1814 | ); |
1815 | return None; |
1816 | } |
1817 | |
1818 | if args.len() != num_expected_args { |
1819 | warn!( |
1820 | "Found a template with an unexpected number of template \ |
1821 | arguments" |
1822 | ); |
1823 | return None; |
1824 | } |
1825 | |
1826 | args.reverse(); |
1827 | let type_kind = TypeKind::TemplateInstantiation( |
1828 | TemplateInstantiation::new(template, args), |
1829 | ); |
1830 | let name = ty.spelling(); |
1831 | let name = if name.is_empty() { None } else { Some(name) }; |
1832 | let ty = Type::new( |
1833 | name, |
1834 | ty.fallible_layout(self).ok(), |
1835 | type_kind, |
1836 | ty.is_const(), |
1837 | ); |
1838 | let item = Item::new( |
1839 | with_id, |
1840 | None, |
1841 | None, |
1842 | self.current_module.into(), |
1843 | ItemKind::Type(ty), |
1844 | Some(location.location()), |
1845 | ); |
1846 | |
1847 | // Bypass all the validations in add_item explicitly. |
1848 | debug!("instantiate_template: inserting item: {:?}" , item); |
1849 | self.add_item_to_module(&item); |
1850 | debug_assert_eq!(with_id, item.id()); |
1851 | self.items[with_id.0] = Some(item); |
1852 | Some(with_id.as_type_id_unchecked()) |
1853 | } |
1854 | |
1855 | /// If we have already resolved the type for the given type declaration, |
1856 | /// return its `ItemId`. Otherwise, return `None`. |
1857 | pub(crate) fn get_resolved_type( |
1858 | &self, |
1859 | decl: &clang::CanonicalTypeDeclaration, |
1860 | ) -> Option<TypeId> { |
1861 | self.types |
1862 | .get(&TypeKey::Declaration(*decl.cursor())) |
1863 | .or_else(|| { |
1864 | decl.cursor() |
1865 | .usr() |
1866 | .and_then(|usr| self.types.get(&TypeKey::Usr(usr))) |
1867 | }) |
1868 | .cloned() |
1869 | } |
1870 | |
1871 | /// Looks up for an already resolved type, either because it's builtin, or |
1872 | /// because we already have it in the map. |
1873 | pub(crate) fn builtin_or_resolved_ty( |
1874 | &mut self, |
1875 | with_id: ItemId, |
1876 | parent_id: Option<ItemId>, |
1877 | ty: &clang::Type, |
1878 | location: Option<clang::Cursor>, |
1879 | ) -> Option<TypeId> { |
1880 | use clang_sys::{CXCursor_TypeAliasTemplateDecl, CXCursor_TypeRef}; |
1881 | debug!( |
1882 | "builtin_or_resolved_ty: {:?}, {:?}, {:?}, {:?}" , |
1883 | ty, location, with_id, parent_id |
1884 | ); |
1885 | |
1886 | if let Some(decl) = ty.canonical_declaration(location.as_ref()) { |
1887 | if let Some(id) = self.get_resolved_type(&decl) { |
1888 | debug!( |
1889 | "Already resolved ty {:?}, {:?}, {:?} {:?}" , |
1890 | id, decl, ty, location |
1891 | ); |
1892 | // If the declaration already exists, then either: |
1893 | // |
1894 | // * the declaration is a template declaration of some sort, |
1895 | // and we are looking at an instantiation or specialization |
1896 | // of it, or |
1897 | // * we have already parsed and resolved this type, and |
1898 | // there's nothing left to do. |
1899 | if let Some(location) = location { |
1900 | if decl.cursor().is_template_like() && |
1901 | *ty != decl.cursor().cur_type() |
1902 | { |
1903 | // For specialized type aliases, there's no way to get the |
1904 | // template parameters as of this writing (for a struct |
1905 | // specialization we wouldn't be in this branch anyway). |
1906 | // |
1907 | // Explicitly return `None` if there aren't any |
1908 | // unspecialized parameters (contains any `TypeRef`) so we |
1909 | // resolve the canonical type if there is one and it's |
1910 | // exposed. |
1911 | // |
1912 | // This is _tricky_, I know :( |
1913 | if decl.cursor().kind() == |
1914 | CXCursor_TypeAliasTemplateDecl && |
1915 | !location.contains_cursor(CXCursor_TypeRef) && |
1916 | ty.canonical_type().is_valid_and_exposed() |
1917 | { |
1918 | return None; |
1919 | } |
1920 | |
1921 | return self |
1922 | .instantiate_template(with_id, id, ty, location) |
1923 | .or(Some(id)); |
1924 | } |
1925 | } |
1926 | |
1927 | return Some(self.build_ty_wrapper(with_id, id, parent_id, ty)); |
1928 | } |
1929 | } |
1930 | |
1931 | debug!("Not resolved, maybe builtin?" ); |
1932 | self.build_builtin_ty(ty) |
1933 | } |
1934 | |
1935 | /// Make a new item that is a resolved type reference to the `wrapped_id`. |
1936 | /// |
1937 | /// This is unfortunately a lot of bloat, but is needed to properly track |
1938 | /// constness et al. |
1939 | /// |
1940 | /// We should probably make the constness tracking separate, so it doesn't |
1941 | /// bloat that much, but hey, we already bloat the heck out of builtin |
1942 | /// types. |
1943 | pub(crate) fn build_ty_wrapper( |
1944 | &mut self, |
1945 | with_id: ItemId, |
1946 | wrapped_id: TypeId, |
1947 | parent_id: Option<ItemId>, |
1948 | ty: &clang::Type, |
1949 | ) -> TypeId { |
1950 | self.build_wrapper(with_id, wrapped_id, parent_id, ty, ty.is_const()) |
1951 | } |
1952 | |
1953 | /// A wrapper over a type that adds a const qualifier explicitly. |
1954 | /// |
1955 | /// Needed to handle const methods in C++, wrapping the type . |
1956 | pub(crate) fn build_const_wrapper( |
1957 | &mut self, |
1958 | with_id: ItemId, |
1959 | wrapped_id: TypeId, |
1960 | parent_id: Option<ItemId>, |
1961 | ty: &clang::Type, |
1962 | ) -> TypeId { |
1963 | self.build_wrapper( |
1964 | with_id, wrapped_id, parent_id, ty, /* is_const = */ true, |
1965 | ) |
1966 | } |
1967 | |
1968 | fn build_wrapper( |
1969 | &mut self, |
1970 | with_id: ItemId, |
1971 | wrapped_id: TypeId, |
1972 | parent_id: Option<ItemId>, |
1973 | ty: &clang::Type, |
1974 | is_const: bool, |
1975 | ) -> TypeId { |
1976 | let spelling = ty.spelling(); |
1977 | let layout = ty.fallible_layout(self).ok(); |
1978 | let location = ty.declaration().location(); |
1979 | let type_kind = TypeKind::ResolvedTypeRef(wrapped_id); |
1980 | let ty = Type::new(Some(spelling), layout, type_kind, is_const); |
1981 | let item = Item::new( |
1982 | with_id, |
1983 | None, |
1984 | None, |
1985 | parent_id.unwrap_or_else(|| self.current_module.into()), |
1986 | ItemKind::Type(ty), |
1987 | Some(location), |
1988 | ); |
1989 | self.add_builtin_item(item); |
1990 | with_id.as_type_id_unchecked() |
1991 | } |
1992 | |
1993 | /// Returns the next item ID to be used for an item. |
1994 | pub(crate) fn next_item_id(&mut self) -> ItemId { |
1995 | let ret = ItemId(self.items.len()); |
1996 | self.items.push(None); |
1997 | ret |
1998 | } |
1999 | |
2000 | fn build_builtin_ty(&mut self, ty: &clang::Type) -> Option<TypeId> { |
2001 | use clang_sys::*; |
2002 | let type_kind = match ty.kind() { |
2003 | CXType_NullPtr => TypeKind::NullPtr, |
2004 | CXType_Void => TypeKind::Void, |
2005 | CXType_Bool => TypeKind::Int(IntKind::Bool), |
2006 | CXType_Int => TypeKind::Int(IntKind::Int), |
2007 | CXType_UInt => TypeKind::Int(IntKind::UInt), |
2008 | CXType_Char_S => TypeKind::Int(IntKind::Char { is_signed: true }), |
2009 | CXType_Char_U => TypeKind::Int(IntKind::Char { is_signed: false }), |
2010 | CXType_SChar => TypeKind::Int(IntKind::SChar), |
2011 | CXType_UChar => TypeKind::Int(IntKind::UChar), |
2012 | CXType_Short => TypeKind::Int(IntKind::Short), |
2013 | CXType_UShort => TypeKind::Int(IntKind::UShort), |
2014 | CXType_WChar => TypeKind::Int(IntKind::WChar), |
2015 | CXType_Char16 => TypeKind::Int(IntKind::U16), |
2016 | CXType_Char32 => TypeKind::Int(IntKind::U32), |
2017 | CXType_Long => TypeKind::Int(IntKind::Long), |
2018 | CXType_ULong => TypeKind::Int(IntKind::ULong), |
2019 | CXType_LongLong => TypeKind::Int(IntKind::LongLong), |
2020 | CXType_ULongLong => TypeKind::Int(IntKind::ULongLong), |
2021 | CXType_Int128 => TypeKind::Int(IntKind::I128), |
2022 | CXType_UInt128 => TypeKind::Int(IntKind::U128), |
2023 | CXType_Float16 | CXType_Half => TypeKind::Float(FloatKind::Float16), |
2024 | CXType_Float => TypeKind::Float(FloatKind::Float), |
2025 | CXType_Double => TypeKind::Float(FloatKind::Double), |
2026 | CXType_LongDouble => TypeKind::Float(FloatKind::LongDouble), |
2027 | CXType_Float128 => TypeKind::Float(FloatKind::Float128), |
2028 | CXType_Complex => { |
2029 | let float_type = |
2030 | ty.elem_type().expect("Not able to resolve complex type?" ); |
2031 | let float_kind = match float_type.kind() { |
2032 | CXType_Float16 | CXType_Half => FloatKind::Float16, |
2033 | CXType_Float => FloatKind::Float, |
2034 | CXType_Double => FloatKind::Double, |
2035 | CXType_LongDouble => FloatKind::LongDouble, |
2036 | CXType_Float128 => FloatKind::Float128, |
2037 | _ => panic!( |
2038 | "Non floating-type complex? {:?}, {:?}" , |
2039 | ty, float_type, |
2040 | ), |
2041 | }; |
2042 | TypeKind::Complex(float_kind) |
2043 | } |
2044 | _ => return None, |
2045 | }; |
2046 | |
2047 | let spelling = ty.spelling(); |
2048 | let is_const = ty.is_const(); |
2049 | let layout = ty.fallible_layout(self).ok(); |
2050 | let location = ty.declaration().location(); |
2051 | let ty = Type::new(Some(spelling), layout, type_kind, is_const); |
2052 | let id = self.next_item_id(); |
2053 | let item = Item::new( |
2054 | id, |
2055 | None, |
2056 | None, |
2057 | self.root_module.into(), |
2058 | ItemKind::Type(ty), |
2059 | Some(location), |
2060 | ); |
2061 | self.add_builtin_item(item); |
2062 | Some(id.as_type_id_unchecked()) |
2063 | } |
2064 | |
2065 | /// Get the current Clang translation unit that is being processed. |
2066 | pub(crate) fn translation_unit(&self) -> &clang::TranslationUnit { |
2067 | &self.translation_unit |
2068 | } |
2069 | |
2070 | /// Initialize fallback translation unit if it does not exist and |
2071 | /// then return a mutable reference to the fallback translation unit. |
2072 | pub(crate) fn try_ensure_fallback_translation_unit( |
2073 | &mut self, |
2074 | ) -> Option<&mut clang::FallbackTranslationUnit> { |
2075 | if self.fallback_tu.is_none() { |
2076 | let file = format!( |
2077 | " {}/.macro_eval.c" , |
2078 | match self.options().clang_macro_fallback_build_dir { |
2079 | Some(ref path) => path.as_os_str().to_str()?, |
2080 | None => "." , |
2081 | } |
2082 | ); |
2083 | |
2084 | let index = clang::Index::new(false, false); |
2085 | |
2086 | let mut header_names_to_compile = Vec::new(); |
2087 | let mut header_paths = Vec::new(); |
2088 | let mut header_contents = String::new(); |
2089 | for input_header in self.options.input_headers.iter() { |
2090 | let path = Path::new(input_header.as_ref()); |
2091 | if let Some(header_path) = path.parent() { |
2092 | if header_path == Path::new("" ) { |
2093 | header_paths.push("." ); |
2094 | } else { |
2095 | header_paths.push(header_path.as_os_str().to_str()?); |
2096 | } |
2097 | } else { |
2098 | header_paths.push("." ); |
2099 | } |
2100 | let header_name = path.file_name()?.to_str()?; |
2101 | header_names_to_compile |
2102 | .push(header_name.split(".h" ).next()?.to_string()); |
2103 | header_contents += |
2104 | format!(" \n#include < {header_name}>" ).as_str(); |
2105 | } |
2106 | let header_to_precompile = format!( |
2107 | " {}/ {}" , |
2108 | match self.options().clang_macro_fallback_build_dir { |
2109 | Some(ref path) => path.as_os_str().to_str()?, |
2110 | None => "." , |
2111 | }, |
2112 | header_names_to_compile.join("-" ) + "-precompile.h" |
2113 | ); |
2114 | let pch = header_to_precompile.clone() + ".pch" ; |
2115 | |
2116 | let mut header_to_precompile_file = OpenOptions::new() |
2117 | .create(true) |
2118 | .truncate(true) |
2119 | .write(true) |
2120 | .open(&header_to_precompile) |
2121 | .ok()?; |
2122 | header_to_precompile_file |
2123 | .write_all(header_contents.as_bytes()) |
2124 | .ok()?; |
2125 | |
2126 | let mut c_args = Vec::new(); |
2127 | c_args.push("-x" .to_string().into_boxed_str()); |
2128 | c_args.push("c-header" .to_string().into_boxed_str()); |
2129 | for header_path in header_paths { |
2130 | c_args.push(format!("-I {header_path}" ).into_boxed_str()); |
2131 | } |
2132 | c_args.extend( |
2133 | self.options |
2134 | .clang_args |
2135 | .iter() |
2136 | .filter(|next| { |
2137 | !self.options.input_headers.contains(next) && |
2138 | next.as_ref() != "-include" |
2139 | }) |
2140 | .cloned(), |
2141 | ); |
2142 | let mut tu = clang::TranslationUnit::parse( |
2143 | &index, |
2144 | &header_to_precompile, |
2145 | &c_args, |
2146 | &[], |
2147 | clang_sys::CXTranslationUnit_ForSerialization, |
2148 | )?; |
2149 | tu.save(&pch).ok()?; |
2150 | |
2151 | let mut c_args = vec![ |
2152 | "-include-pch" .to_string().into_boxed_str(), |
2153 | pch.clone().into_boxed_str(), |
2154 | ]; |
2155 | c_args.extend( |
2156 | self.options |
2157 | .clang_args |
2158 | .clone() |
2159 | .iter() |
2160 | .filter(|next| { |
2161 | !self.options.input_headers.contains(next) && |
2162 | next.as_ref() != "-include" |
2163 | }) |
2164 | .cloned(), |
2165 | ); |
2166 | self.fallback_tu = Some(clang::FallbackTranslationUnit::new( |
2167 | file, |
2168 | header_to_precompile, |
2169 | pch, |
2170 | &c_args, |
2171 | )?); |
2172 | } |
2173 | |
2174 | self.fallback_tu.as_mut() |
2175 | } |
2176 | |
2177 | /// Have we parsed the macro named `macro_name` already? |
2178 | pub(crate) fn parsed_macro(&self, macro_name: &[u8]) -> bool { |
2179 | self.parsed_macros.contains_key(macro_name) |
2180 | } |
2181 | |
2182 | /// Get the currently parsed macros. |
2183 | pub(crate) fn parsed_macros( |
2184 | &self, |
2185 | ) -> &StdHashMap<Vec<u8>, cexpr::expr::EvalResult> { |
2186 | debug_assert!(!self.in_codegen_phase()); |
2187 | &self.parsed_macros |
2188 | } |
2189 | |
2190 | /// Mark the macro named `macro_name` as parsed. |
2191 | pub(crate) fn note_parsed_macro( |
2192 | &mut self, |
2193 | id: Vec<u8>, |
2194 | value: cexpr::expr::EvalResult, |
2195 | ) { |
2196 | self.parsed_macros.insert(id, value); |
2197 | } |
2198 | |
2199 | /// Are we in the codegen phase? |
2200 | pub(crate) fn in_codegen_phase(&self) -> bool { |
2201 | self.in_codegen |
2202 | } |
2203 | |
2204 | /// Mark the type with the given `name` as replaced by the type with ID |
2205 | /// `potential_ty`. |
2206 | /// |
2207 | /// Replacement types are declared using the `replaces="xxx"` annotation, |
2208 | /// and implies that the original type is hidden. |
2209 | pub(crate) fn replace(&mut self, name: &[String], potential_ty: ItemId) { |
2210 | match self.replacements.entry(name.into()) { |
2211 | Entry::Vacant(entry) => { |
2212 | debug!( |
2213 | "Defining replacement for {:?} as {:?}" , |
2214 | name, potential_ty |
2215 | ); |
2216 | entry.insert(potential_ty); |
2217 | } |
2218 | Entry::Occupied(occupied) => { |
2219 | warn!( |
2220 | "Replacement for {:?} already defined as {:?}; \ |
2221 | ignoring duplicate replacement definition as {:?}" , |
2222 | name, |
2223 | occupied.get(), |
2224 | potential_ty |
2225 | ); |
2226 | } |
2227 | } |
2228 | } |
2229 | |
2230 | /// Has the item with the given `name` and `id` been replaced by another |
2231 | /// type? |
2232 | pub(crate) fn is_replaced_type<Id: Into<ItemId>>( |
2233 | &self, |
2234 | path: &[String], |
2235 | id: Id, |
2236 | ) -> bool { |
2237 | let id = id.into(); |
2238 | matches!(self.replacements.get(path), Some(replaced_by) if *replaced_by != id) |
2239 | } |
2240 | |
2241 | /// Is the type with the given `name` marked as opaque? |
2242 | pub(crate) fn opaque_by_name(&self, path: &[String]) -> bool { |
2243 | debug_assert!( |
2244 | self.in_codegen_phase(), |
2245 | "You're not supposed to call this yet" |
2246 | ); |
2247 | self.options.opaque_types.matches(path[1..].join("::" )) |
2248 | } |
2249 | |
2250 | /// Get the options used to configure this bindgen context. |
2251 | pub(crate) fn options(&self) -> &BindgenOptions { |
2252 | &self.options |
2253 | } |
2254 | |
2255 | /// Tokenizes a namespace cursor in order to get the name and kind of the |
2256 | /// namespace. |
2257 | fn tokenize_namespace( |
2258 | &self, |
2259 | cursor: &clang::Cursor, |
2260 | ) -> (Option<String>, ModuleKind) { |
2261 | assert_eq!( |
2262 | cursor.kind(), |
2263 | ::clang_sys::CXCursor_Namespace, |
2264 | "Be a nice person" |
2265 | ); |
2266 | |
2267 | let mut module_name = None; |
2268 | let spelling = cursor.spelling(); |
2269 | if !spelling.is_empty() { |
2270 | module_name = Some(spelling) |
2271 | } |
2272 | |
2273 | let mut kind = ModuleKind::Normal; |
2274 | let mut looking_for_name = false; |
2275 | for token in cursor.tokens().iter() { |
2276 | match token.spelling() { |
2277 | b"inline" => { |
2278 | debug_assert!( |
2279 | kind != ModuleKind::Inline, |
2280 | "Multiple inline keywords?" |
2281 | ); |
2282 | kind = ModuleKind::Inline; |
2283 | // When hitting a nested inline namespace we get a spelling |
2284 | // that looks like ["inline", "foo"]. Deal with it properly. |
2285 | looking_for_name = true; |
2286 | } |
2287 | // The double colon allows us to handle nested namespaces like |
2288 | // namespace foo::bar { } |
2289 | // |
2290 | // libclang still gives us two namespace cursors, which is cool, |
2291 | // but the tokenization of the second begins with the double |
2292 | // colon. That's ok, so we only need to handle the weird |
2293 | // tokenization here. |
2294 | b"namespace" | b"::" => { |
2295 | looking_for_name = true; |
2296 | } |
2297 | b"{" => { |
2298 | // This should be an anonymous namespace. |
2299 | assert!(looking_for_name); |
2300 | break; |
2301 | } |
2302 | name => { |
2303 | if looking_for_name { |
2304 | if module_name.is_none() { |
2305 | module_name = Some( |
2306 | String::from_utf8_lossy(name).into_owned(), |
2307 | ); |
2308 | } |
2309 | break; |
2310 | } else { |
2311 | // This is _likely_, but not certainly, a macro that's |
2312 | // been placed just before the namespace keyword. |
2313 | // Unfortunately, clang tokens don't let us easily see |
2314 | // through the ifdef tokens, so we don't know what this |
2315 | // token should really be. Instead of panicking though, |
2316 | // we warn the user that we assumed the token was blank, |
2317 | // and then move on. |
2318 | // |
2319 | // See also https://github.com/rust-lang/rust-bindgen/issues/1676. |
2320 | warn!( |
2321 | "Ignored unknown namespace prefix ' {}' at {:?} in {:?}" , |
2322 | String::from_utf8_lossy(name), |
2323 | token, |
2324 | cursor |
2325 | ); |
2326 | } |
2327 | } |
2328 | } |
2329 | } |
2330 | |
2331 | (module_name, kind) |
2332 | } |
2333 | |
2334 | /// Given a CXCursor_Namespace cursor, return the item ID of the |
2335 | /// corresponding module, or create one on the fly. |
2336 | pub(crate) fn module(&mut self, cursor: clang::Cursor) -> ModuleId { |
2337 | use clang_sys::*; |
2338 | assert_eq!(cursor.kind(), CXCursor_Namespace, "Be a nice person" ); |
2339 | let cursor = cursor.canonical(); |
2340 | if let Some(id) = self.modules.get(&cursor) { |
2341 | return *id; |
2342 | } |
2343 | |
2344 | let (module_name, kind) = self.tokenize_namespace(&cursor); |
2345 | |
2346 | let module_id = self.next_item_id(); |
2347 | let module = Module::new(module_name, kind); |
2348 | let module = Item::new( |
2349 | module_id, |
2350 | None, |
2351 | None, |
2352 | self.current_module.into(), |
2353 | ItemKind::Module(module), |
2354 | Some(cursor.location()), |
2355 | ); |
2356 | |
2357 | let module_id = module.id().as_module_id_unchecked(); |
2358 | self.modules.insert(cursor, module_id); |
2359 | |
2360 | self.add_item(module, None, None); |
2361 | |
2362 | module_id |
2363 | } |
2364 | |
2365 | /// Start traversing the module with the given `module_id`, invoke the |
2366 | /// callback `cb`, and then return to traversing the original module. |
2367 | pub(crate) fn with_module<F>(&mut self, module_id: ModuleId, cb: F) |
2368 | where |
2369 | F: FnOnce(&mut Self), |
2370 | { |
2371 | debug_assert!(self.resolve_item(module_id).kind().is_module(), "Wat" ); |
2372 | |
2373 | let previous_id = self.current_module; |
2374 | self.current_module = module_id; |
2375 | |
2376 | cb(self); |
2377 | |
2378 | self.current_module = previous_id; |
2379 | } |
2380 | |
2381 | /// Iterate over all (explicitly or transitively) allowlisted items. |
2382 | /// |
2383 | /// If no items are explicitly allowlisted, then all items are considered |
2384 | /// allowlisted. |
2385 | pub(crate) fn allowlisted_items(&self) -> &ItemSet { |
2386 | assert!(self.in_codegen_phase()); |
2387 | assert!(self.current_module == self.root_module); |
2388 | |
2389 | self.allowlisted.as_ref().unwrap() |
2390 | } |
2391 | |
2392 | /// Check whether a particular blocklisted type implements a trait or not. |
2393 | /// Results may be cached. |
2394 | pub(crate) fn blocklisted_type_implements_trait( |
2395 | &self, |
2396 | item: &Item, |
2397 | derive_trait: DeriveTrait, |
2398 | ) -> CanDerive { |
2399 | assert!(self.in_codegen_phase()); |
2400 | assert!(self.current_module == self.root_module); |
2401 | |
2402 | *self |
2403 | .blocklisted_types_implement_traits |
2404 | .borrow_mut() |
2405 | .entry(derive_trait) |
2406 | .or_default() |
2407 | .entry(item.id()) |
2408 | .or_insert_with(|| { |
2409 | item.expect_type() |
2410 | .name() |
2411 | .and_then(|name| { |
2412 | if self.options.parse_callbacks.is_empty() { |
2413 | // Sized integer types from <stdint.h> get mapped to Rust primitive |
2414 | // types regardless of whether they are blocklisted, so ensure that |
2415 | // standard traits are considered derivable for them too. |
2416 | if self.is_stdint_type(name) { |
2417 | Some(CanDerive::Yes) |
2418 | } else { |
2419 | Some(CanDerive::No) |
2420 | } |
2421 | } else { |
2422 | self.options.last_callback(|cb| { |
2423 | cb.blocklisted_type_implements_trait( |
2424 | name, |
2425 | derive_trait, |
2426 | ) |
2427 | }) |
2428 | } |
2429 | }) |
2430 | .unwrap_or(CanDerive::No) |
2431 | }) |
2432 | } |
2433 | |
2434 | /// Is the given type a type from <stdint.h> that corresponds to a Rust primitive type? |
2435 | pub(crate) fn is_stdint_type(&self, name: &str) -> bool { |
2436 | match name { |
2437 | "int8_t" | "uint8_t" | "int16_t" | "uint16_t" | "int32_t" | |
2438 | "uint32_t" | "int64_t" | "uint64_t" | "uintptr_t" | |
2439 | "intptr_t" | "ptrdiff_t" => true, |
2440 | "size_t" | "ssize_t" => self.options.size_t_is_usize, |
2441 | _ => false, |
2442 | } |
2443 | } |
2444 | |
2445 | /// Get a reference to the set of items we should generate. |
2446 | pub(crate) fn codegen_items(&self) -> &ItemSet { |
2447 | assert!(self.in_codegen_phase()); |
2448 | assert!(self.current_module == self.root_module); |
2449 | self.codegen_items.as_ref().unwrap() |
2450 | } |
2451 | |
2452 | /// Compute the allowlisted items set and populate `self.allowlisted`. |
2453 | fn compute_allowlisted_and_codegen_items(&mut self) { |
2454 | assert!(self.in_codegen_phase()); |
2455 | assert!(self.current_module == self.root_module); |
2456 | assert!(self.allowlisted.is_none()); |
2457 | let _t = self.timer("compute_allowlisted_and_codegen_items" ); |
2458 | |
2459 | let roots = { |
2460 | let mut roots = self |
2461 | .items() |
2462 | // Only consider roots that are enabled for codegen. |
2463 | .filter(|&(_, item)| item.is_enabled_for_codegen(self)) |
2464 | .filter(|&(_, item)| { |
2465 | // If nothing is explicitly allowlisted, then everything is fair |
2466 | // game. |
2467 | if self.options().allowlisted_types.is_empty() && |
2468 | self.options().allowlisted_functions.is_empty() && |
2469 | self.options().allowlisted_vars.is_empty() && |
2470 | self.options().allowlisted_files.is_empty() && |
2471 | self.options().allowlisted_items.is_empty() |
2472 | { |
2473 | return true; |
2474 | } |
2475 | |
2476 | // If this is a type that explicitly replaces another, we assume |
2477 | // you know what you're doing. |
2478 | if item.annotations().use_instead_of().is_some() { |
2479 | return true; |
2480 | } |
2481 | |
2482 | // Items with a source location in an explicitly allowlisted file |
2483 | // are always included. |
2484 | if !self.options().allowlisted_files.is_empty() { |
2485 | if let Some(location) = item.location() { |
2486 | let (file, _, _, _) = location.location(); |
2487 | if let Some(filename) = file.name() { |
2488 | if self |
2489 | .options() |
2490 | .allowlisted_files |
2491 | .matches(filename) |
2492 | { |
2493 | return true; |
2494 | } |
2495 | } |
2496 | } |
2497 | } |
2498 | |
2499 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2500 | debug!("allowlisted_items: testing {:?}" , name); |
2501 | |
2502 | if self.options().allowlisted_items.matches(&name) { |
2503 | return true; |
2504 | } |
2505 | |
2506 | match *item.kind() { |
2507 | ItemKind::Module(..) => true, |
2508 | ItemKind::Function(_) => { |
2509 | self.options().allowlisted_functions.matches(&name) |
2510 | } |
2511 | ItemKind::Var(_) => { |
2512 | self.options().allowlisted_vars.matches(&name) |
2513 | } |
2514 | ItemKind::Type(ref ty) => { |
2515 | if self.options().allowlisted_types.matches(&name) { |
2516 | return true; |
2517 | } |
2518 | |
2519 | // Auto-allowlist types that don't need code |
2520 | // generation if not allowlisting recursively, to |
2521 | // make the #[derive] analysis not be lame. |
2522 | if !self.options().allowlist_recursively { |
2523 | match *ty.kind() { |
2524 | TypeKind::Void | |
2525 | TypeKind::NullPtr | |
2526 | TypeKind::Int(..) | |
2527 | TypeKind::Float(..) | |
2528 | TypeKind::Complex(..) | |
2529 | TypeKind::Array(..) | |
2530 | TypeKind::Vector(..) | |
2531 | TypeKind::Pointer(..) | |
2532 | TypeKind::Reference(..) | |
2533 | TypeKind::Function(..) | |
2534 | TypeKind::ResolvedTypeRef(..) | |
2535 | TypeKind::Opaque | |
2536 | TypeKind::TypeParam => return true, |
2537 | _ => {} |
2538 | } |
2539 | if self.is_stdint_type(&name) { |
2540 | return true; |
2541 | } |
2542 | } |
2543 | |
2544 | // Unnamed top-level enums are special and we |
2545 | // allowlist them via the `allowlisted_vars` filter, |
2546 | // since they're effectively top-level constants, |
2547 | // and there's no way for them to be referenced |
2548 | // consistently. |
2549 | let parent = self.resolve_item(item.parent_id()); |
2550 | if !parent.is_module() { |
2551 | return false; |
2552 | } |
2553 | |
2554 | let enum_ = match *ty.kind() { |
2555 | TypeKind::Enum(ref e) => e, |
2556 | _ => return false, |
2557 | }; |
2558 | |
2559 | if ty.name().is_some() { |
2560 | return false; |
2561 | } |
2562 | |
2563 | let mut prefix_path = |
2564 | parent.path_for_allowlisting(self).clone(); |
2565 | enum_.variants().iter().any(|variant| { |
2566 | prefix_path.push( |
2567 | variant.name_for_allowlisting().into(), |
2568 | ); |
2569 | let name = prefix_path[1..].join("::" ); |
2570 | prefix_path.pop().unwrap(); |
2571 | self.options().allowlisted_vars.matches(&name) |
2572 | || self |
2573 | .options() |
2574 | .allowlisted_items |
2575 | .matches(name) |
2576 | }) |
2577 | } |
2578 | } |
2579 | }) |
2580 | .map(|(id, _)| id) |
2581 | .collect::<Vec<_>>(); |
2582 | |
2583 | // The reversal preserves the expected ordering of traversal, |
2584 | // resulting in more stable-ish bindgen-generated names for |
2585 | // anonymous types (like unions). |
2586 | roots.reverse(); |
2587 | roots |
2588 | }; |
2589 | |
2590 | let allowlisted_items_predicate = |
2591 | if self.options().allowlist_recursively { |
2592 | traversal::all_edges |
2593 | } else { |
2594 | // Only follow InnerType edges from the allowlisted roots. |
2595 | // Such inner types (e.g. anonymous structs/unions) are |
2596 | // always emitted by codegen, and they need to be allowlisted |
2597 | // to make sure they are processed by e.g. the derive analysis. |
2598 | traversal::only_inner_type_edges |
2599 | }; |
2600 | |
2601 | let allowlisted = AllowlistedItemsTraversal::new( |
2602 | self, |
2603 | roots.clone(), |
2604 | allowlisted_items_predicate, |
2605 | ) |
2606 | .collect::<ItemSet>(); |
2607 | |
2608 | let codegen_items = if self.options().allowlist_recursively { |
2609 | AllowlistedItemsTraversal::new( |
2610 | self, |
2611 | roots, |
2612 | traversal::codegen_edges, |
2613 | ) |
2614 | .collect::<ItemSet>() |
2615 | } else { |
2616 | allowlisted.clone() |
2617 | }; |
2618 | |
2619 | self.allowlisted = Some(allowlisted); |
2620 | self.codegen_items = Some(codegen_items); |
2621 | |
2622 | for item in self.options().allowlisted_functions.unmatched_items() { |
2623 | unused_regex_diagnostic(item, "--allowlist-function" , self); |
2624 | } |
2625 | |
2626 | for item in self.options().allowlisted_vars.unmatched_items() { |
2627 | unused_regex_diagnostic(item, "--allowlist-var" , self); |
2628 | } |
2629 | |
2630 | for item in self.options().allowlisted_types.unmatched_items() { |
2631 | unused_regex_diagnostic(item, "--allowlist-type" , self); |
2632 | } |
2633 | |
2634 | for item in self.options().allowlisted_items.unmatched_items() { |
2635 | unused_regex_diagnostic(item, "--allowlist-items" , self); |
2636 | } |
2637 | } |
2638 | |
2639 | /// Convenient method for getting the prefix to use for most traits in |
2640 | /// codegen depending on the `use_core` option. |
2641 | pub(crate) fn trait_prefix(&self) -> Ident { |
2642 | if self.options().use_core { |
2643 | self.rust_ident_raw("core" ) |
2644 | } else { |
2645 | self.rust_ident_raw("std" ) |
2646 | } |
2647 | } |
2648 | |
2649 | /// Call if a bindgen complex is generated |
2650 | pub(crate) fn generated_bindgen_complex(&self) { |
2651 | self.generated_bindgen_complex.set(true) |
2652 | } |
2653 | |
2654 | /// Whether we need to generate the bindgen complex type |
2655 | pub(crate) fn need_bindgen_complex_type(&self) -> bool { |
2656 | self.generated_bindgen_complex.get() |
2657 | } |
2658 | |
2659 | /// Call if a bindgen float16 is generated |
2660 | pub(crate) fn generated_bindgen_float16(&self) { |
2661 | self.generated_bindgen_float16.set(true) |
2662 | } |
2663 | |
2664 | /// Whether we need to generate the bindgen float16 type |
2665 | pub(crate) fn need_bindgen_float16_type(&self) -> bool { |
2666 | self.generated_bindgen_float16.get() |
2667 | } |
2668 | |
2669 | /// Compute which `enum`s have an associated `typedef` definition. |
2670 | fn compute_enum_typedef_combos(&mut self) { |
2671 | let _t = self.timer("compute_enum_typedef_combos" ); |
2672 | assert!(self.enum_typedef_combos.is_none()); |
2673 | |
2674 | let mut enum_typedef_combos = HashSet::default(); |
2675 | for item in &self.items { |
2676 | if let Some(ItemKind::Module(module)) = |
2677 | item.as_ref().map(Item::kind) |
2678 | { |
2679 | // Find typedefs in this module, and build set of their names. |
2680 | let mut names_of_typedefs = HashSet::default(); |
2681 | for child_id in module.children() { |
2682 | if let Some(ItemKind::Type(ty)) = |
2683 | self.items[child_id.0].as_ref().map(Item::kind) |
2684 | { |
2685 | if let (Some(name), TypeKind::Alias(type_id)) = |
2686 | (ty.name(), ty.kind()) |
2687 | { |
2688 | // We disregard aliases that refer to the enum |
2689 | // itself, such as in `typedef enum { ... } Enum;`. |
2690 | if type_id |
2691 | .into_resolver() |
2692 | .through_type_refs() |
2693 | .through_type_aliases() |
2694 | .resolve(self) |
2695 | .expect_type() |
2696 | .is_int() |
2697 | { |
2698 | names_of_typedefs.insert(name); |
2699 | } |
2700 | } |
2701 | } |
2702 | } |
2703 | |
2704 | // Find enums in this module, and record the ID of each one that |
2705 | // has a typedef. |
2706 | for child_id in module.children() { |
2707 | if let Some(ItemKind::Type(ty)) = |
2708 | self.items[child_id.0].as_ref().map(Item::kind) |
2709 | { |
2710 | if let (Some(name), true) = (ty.name(), ty.is_enum()) { |
2711 | if names_of_typedefs.contains(name) { |
2712 | enum_typedef_combos.insert(*child_id); |
2713 | } |
2714 | } |
2715 | } |
2716 | } |
2717 | } |
2718 | } |
2719 | |
2720 | self.enum_typedef_combos = Some(enum_typedef_combos); |
2721 | } |
2722 | |
2723 | /// Look up whether `id` refers to an `enum` whose underlying type is |
2724 | /// defined by a `typedef`. |
2725 | pub(crate) fn is_enum_typedef_combo(&self, id: ItemId) -> bool { |
2726 | assert!( |
2727 | self.in_codegen_phase(), |
2728 | "We only compute enum_typedef_combos when we enter codegen" , |
2729 | ); |
2730 | self.enum_typedef_combos.as_ref().unwrap().contains(&id) |
2731 | } |
2732 | |
2733 | /// Compute whether we can derive debug. |
2734 | fn compute_cannot_derive_debug(&mut self) { |
2735 | let _t = self.timer("compute_cannot_derive_debug" ); |
2736 | assert!(self.cannot_derive_debug.is_none()); |
2737 | if self.options.derive_debug { |
2738 | self.cannot_derive_debug = |
2739 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
2740 | self, |
2741 | DeriveTrait::Debug, |
2742 | )))); |
2743 | } |
2744 | } |
2745 | |
2746 | /// Look up whether the item with `id` can |
2747 | /// derive debug or not. |
2748 | pub(crate) fn lookup_can_derive_debug<Id: Into<ItemId>>( |
2749 | &self, |
2750 | id: Id, |
2751 | ) -> bool { |
2752 | let id = id.into(); |
2753 | assert!( |
2754 | self.in_codegen_phase(), |
2755 | "We only compute can_derive_debug when we enter codegen" |
2756 | ); |
2757 | |
2758 | // Look up the computed value for whether the item with `id` can |
2759 | // derive debug or not. |
2760 | !self.cannot_derive_debug.as_ref().unwrap().contains(&id) |
2761 | } |
2762 | |
2763 | /// Compute whether we can derive default. |
2764 | fn compute_cannot_derive_default(&mut self) { |
2765 | let _t = self.timer("compute_cannot_derive_default" ); |
2766 | assert!(self.cannot_derive_default.is_none()); |
2767 | if self.options.derive_default { |
2768 | self.cannot_derive_default = |
2769 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
2770 | self, |
2771 | DeriveTrait::Default, |
2772 | )))); |
2773 | } |
2774 | } |
2775 | |
2776 | /// Look up whether the item with `id` can |
2777 | /// derive default or not. |
2778 | pub(crate) fn lookup_can_derive_default<Id: Into<ItemId>>( |
2779 | &self, |
2780 | id: Id, |
2781 | ) -> bool { |
2782 | let id = id.into(); |
2783 | assert!( |
2784 | self.in_codegen_phase(), |
2785 | "We only compute can_derive_default when we enter codegen" |
2786 | ); |
2787 | |
2788 | // Look up the computed value for whether the item with `id` can |
2789 | // derive default or not. |
2790 | !self.cannot_derive_default.as_ref().unwrap().contains(&id) |
2791 | } |
2792 | |
2793 | /// Compute whether we can derive copy. |
2794 | fn compute_cannot_derive_copy(&mut self) { |
2795 | let _t = self.timer("compute_cannot_derive_copy" ); |
2796 | assert!(self.cannot_derive_copy.is_none()); |
2797 | self.cannot_derive_copy = |
2798 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
2799 | self, |
2800 | DeriveTrait::Copy, |
2801 | )))); |
2802 | } |
2803 | |
2804 | /// Compute whether we can derive hash. |
2805 | fn compute_cannot_derive_hash(&mut self) { |
2806 | let _t = self.timer("compute_cannot_derive_hash" ); |
2807 | assert!(self.cannot_derive_hash.is_none()); |
2808 | if self.options.derive_hash { |
2809 | self.cannot_derive_hash = |
2810 | Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
2811 | self, |
2812 | DeriveTrait::Hash, |
2813 | )))); |
2814 | } |
2815 | } |
2816 | |
2817 | /// Look up whether the item with `id` can |
2818 | /// derive hash or not. |
2819 | pub(crate) fn lookup_can_derive_hash<Id: Into<ItemId>>( |
2820 | &self, |
2821 | id: Id, |
2822 | ) -> bool { |
2823 | let id = id.into(); |
2824 | assert!( |
2825 | self.in_codegen_phase(), |
2826 | "We only compute can_derive_debug when we enter codegen" |
2827 | ); |
2828 | |
2829 | // Look up the computed value for whether the item with `id` can |
2830 | // derive hash or not. |
2831 | !self.cannot_derive_hash.as_ref().unwrap().contains(&id) |
2832 | } |
2833 | |
2834 | /// Compute whether we can derive PartialOrd, PartialEq or Eq. |
2835 | fn compute_cannot_derive_partialord_partialeq_or_eq(&mut self) { |
2836 | let _t = self.timer("compute_cannot_derive_partialord_partialeq_or_eq" ); |
2837 | assert!(self.cannot_derive_partialeq_or_partialord.is_none()); |
2838 | if self.options.derive_partialord || |
2839 | self.options.derive_partialeq || |
2840 | self.options.derive_eq |
2841 | { |
2842 | self.cannot_derive_partialeq_or_partialord = |
2843 | Some(analyze::<CannotDerive>(( |
2844 | self, |
2845 | DeriveTrait::PartialEqOrPartialOrd, |
2846 | ))); |
2847 | } |
2848 | } |
2849 | |
2850 | /// Look up whether the item with `id` can derive `Partial{Eq,Ord}`. |
2851 | pub(crate) fn lookup_can_derive_partialeq_or_partialord< |
2852 | Id: Into<ItemId>, |
2853 | >( |
2854 | &self, |
2855 | id: Id, |
2856 | ) -> CanDerive { |
2857 | let id = id.into(); |
2858 | assert!( |
2859 | self.in_codegen_phase(), |
2860 | "We only compute can_derive_partialeq_or_partialord when we enter codegen" |
2861 | ); |
2862 | |
2863 | // Look up the computed value for whether the item with `id` can |
2864 | // derive partialeq or not. |
2865 | self.cannot_derive_partialeq_or_partialord |
2866 | .as_ref() |
2867 | .unwrap() |
2868 | .get(&id) |
2869 | .cloned() |
2870 | .unwrap_or(CanDerive::Yes) |
2871 | } |
2872 | |
2873 | /// Look up whether the item with `id` can derive `Copy` or not. |
2874 | pub(crate) fn lookup_can_derive_copy<Id: Into<ItemId>>( |
2875 | &self, |
2876 | id: Id, |
2877 | ) -> bool { |
2878 | assert!( |
2879 | self.in_codegen_phase(), |
2880 | "We only compute can_derive_debug when we enter codegen" |
2881 | ); |
2882 | |
2883 | // Look up the computed value for whether the item with `id` can |
2884 | // derive `Copy` or not. |
2885 | let id = id.into(); |
2886 | |
2887 | !self.lookup_has_type_param_in_array(id) && |
2888 | !self.cannot_derive_copy.as_ref().unwrap().contains(&id) |
2889 | } |
2890 | |
2891 | /// Compute whether the type has type parameter in array. |
2892 | fn compute_has_type_param_in_array(&mut self) { |
2893 | let _t = self.timer("compute_has_type_param_in_array" ); |
2894 | assert!(self.has_type_param_in_array.is_none()); |
2895 | self.has_type_param_in_array = |
2896 | Some(analyze::<HasTypeParameterInArray>(self)); |
2897 | } |
2898 | |
2899 | /// Look up whether the item with `id` has type parameter in array or not. |
2900 | pub(crate) fn lookup_has_type_param_in_array<Id: Into<ItemId>>( |
2901 | &self, |
2902 | id: Id, |
2903 | ) -> bool { |
2904 | assert!( |
2905 | self.in_codegen_phase(), |
2906 | "We only compute has array when we enter codegen" |
2907 | ); |
2908 | |
2909 | // Look up the computed value for whether the item with `id` has |
2910 | // type parameter in array or not. |
2911 | self.has_type_param_in_array |
2912 | .as_ref() |
2913 | .unwrap() |
2914 | .contains(&id.into()) |
2915 | } |
2916 | |
2917 | /// Compute whether the type has float. |
2918 | fn compute_has_float(&mut self) { |
2919 | let _t = self.timer("compute_has_float" ); |
2920 | assert!(self.has_float.is_none()); |
2921 | if self.options.derive_eq || self.options.derive_ord { |
2922 | self.has_float = Some(analyze::<HasFloat>(self)); |
2923 | } |
2924 | } |
2925 | |
2926 | /// Look up whether the item with `id` has array or not. |
2927 | pub(crate) fn lookup_has_float<Id: Into<ItemId>>(&self, id: Id) -> bool { |
2928 | assert!( |
2929 | self.in_codegen_phase(), |
2930 | "We only compute has float when we enter codegen" |
2931 | ); |
2932 | |
2933 | // Look up the computed value for whether the item with `id` has |
2934 | // float or not. |
2935 | self.has_float.as_ref().unwrap().contains(&id.into()) |
2936 | } |
2937 | |
2938 | /// Check if `--no-partialeq` flag is enabled for this item. |
2939 | pub(crate) fn no_partialeq_by_name(&self, item: &Item) -> bool { |
2940 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2941 | self.options().no_partialeq_types.matches(name) |
2942 | } |
2943 | |
2944 | /// Check if `--no-copy` flag is enabled for this item. |
2945 | pub(crate) fn no_copy_by_name(&self, item: &Item) -> bool { |
2946 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2947 | self.options().no_copy_types.matches(name) |
2948 | } |
2949 | |
2950 | /// Check if `--no-debug` flag is enabled for this item. |
2951 | pub(crate) fn no_debug_by_name(&self, item: &Item) -> bool { |
2952 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2953 | self.options().no_debug_types.matches(name) |
2954 | } |
2955 | |
2956 | /// Check if `--no-default` flag is enabled for this item. |
2957 | pub(crate) fn no_default_by_name(&self, item: &Item) -> bool { |
2958 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2959 | self.options().no_default_types.matches(name) |
2960 | } |
2961 | |
2962 | /// Check if `--no-hash` flag is enabled for this item. |
2963 | pub(crate) fn no_hash_by_name(&self, item: &Item) -> bool { |
2964 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2965 | self.options().no_hash_types.matches(name) |
2966 | } |
2967 | |
2968 | /// Check if `--must-use-type` flag is enabled for this item. |
2969 | pub(crate) fn must_use_type_by_name(&self, item: &Item) -> bool { |
2970 | let name = item.path_for_allowlisting(self)[1..].join("::" ); |
2971 | self.options().must_use_types.matches(name) |
2972 | } |
2973 | |
2974 | /// Wrap some tokens in an `unsafe` block if the `--wrap-unsafe-ops` option is enabled. |
2975 | pub(crate) fn wrap_unsafe_ops(&self, tokens: impl ToTokens) -> TokenStream { |
2976 | if self.options.wrap_unsafe_ops { |
2977 | quote!(unsafe { #tokens }) |
2978 | } else { |
2979 | tokens.into_token_stream() |
2980 | } |
2981 | } |
2982 | |
2983 | /// Get the suffix to be added to `static` functions if the `--wrap-static-fns` option is |
2984 | /// enabled. |
2985 | pub(crate) fn wrap_static_fns_suffix(&self) -> &str { |
2986 | self.options() |
2987 | .wrap_static_fns_suffix |
2988 | .as_deref() |
2989 | .unwrap_or(crate::DEFAULT_NON_EXTERN_FNS_SUFFIX) |
2990 | } |
2991 | } |
2992 | |
2993 | /// A builder struct for configuring item resolution options. |
2994 | #[derive (Debug, Copy, Clone)] |
2995 | pub(crate) struct ItemResolver { |
2996 | id: ItemId, |
2997 | through_type_refs: bool, |
2998 | through_type_aliases: bool, |
2999 | } |
3000 | |
3001 | impl ItemId { |
3002 | /// Create an `ItemResolver` from this item ID. |
3003 | pub(crate) fn into_resolver(self) -> ItemResolver { |
3004 | self.into() |
3005 | } |
3006 | } |
3007 | |
3008 | impl<T> From<T> for ItemResolver |
3009 | where |
3010 | T: Into<ItemId>, |
3011 | { |
3012 | fn from(id: T) -> ItemResolver { |
3013 | ItemResolver::new(id) |
3014 | } |
3015 | } |
3016 | |
3017 | impl ItemResolver { |
3018 | /// Construct a new `ItemResolver` from the given ID. |
3019 | pub(crate) fn new<Id: Into<ItemId>>(id: Id) -> ItemResolver { |
3020 | let id = id.into(); |
3021 | ItemResolver { |
3022 | id, |
3023 | through_type_refs: false, |
3024 | through_type_aliases: false, |
3025 | } |
3026 | } |
3027 | |
3028 | /// Keep resolving through `Type::TypeRef` items. |
3029 | pub(crate) fn through_type_refs(mut self) -> ItemResolver { |
3030 | self.through_type_refs = true; |
3031 | self |
3032 | } |
3033 | |
3034 | /// Keep resolving through `Type::Alias` items. |
3035 | pub(crate) fn through_type_aliases(mut self) -> ItemResolver { |
3036 | self.through_type_aliases = true; |
3037 | self |
3038 | } |
3039 | |
3040 | /// Finish configuring and perform the actual item resolution. |
3041 | pub(crate) fn resolve(self, ctx: &BindgenContext) -> &Item { |
3042 | assert!(ctx.collected_typerefs()); |
3043 | |
3044 | let mut id = self.id; |
3045 | let mut seen_ids = HashSet::default(); |
3046 | loop { |
3047 | let item = ctx.resolve_item(id); |
3048 | |
3049 | // Detect cycles and bail out. These can happen in certain cases |
3050 | // involving incomplete qualified dependent types (#2085). |
3051 | if !seen_ids.insert(id) { |
3052 | return item; |
3053 | } |
3054 | |
3055 | let ty_kind = item.as_type().map(|t| t.kind()); |
3056 | match ty_kind { |
3057 | Some(&TypeKind::ResolvedTypeRef(next_id)) |
3058 | if self.through_type_refs => |
3059 | { |
3060 | id = next_id.into(); |
3061 | } |
3062 | // We intentionally ignore template aliases here, as they are |
3063 | // more complicated, and don't represent a simple renaming of |
3064 | // some type. |
3065 | Some(&TypeKind::Alias(next_id)) |
3066 | if self.through_type_aliases => |
3067 | { |
3068 | id = next_id.into(); |
3069 | } |
3070 | _ => return item, |
3071 | } |
3072 | } |
3073 | } |
3074 | } |
3075 | |
3076 | /// A type that we are in the middle of parsing. |
3077 | #[derive (Clone, Copy, Debug, PartialEq, Eq)] |
3078 | pub(crate) struct PartialType { |
3079 | decl: Cursor, |
3080 | // Just an ItemId, and not a TypeId, because we haven't finished this type |
3081 | // yet, so there's still time for things to go wrong. |
3082 | id: ItemId, |
3083 | } |
3084 | |
3085 | impl PartialType { |
3086 | /// Construct a new `PartialType`. |
3087 | pub(crate) fn new(decl: Cursor, id: ItemId) -> PartialType { |
3088 | // assert!(decl == decl.canonical()); |
3089 | PartialType { decl, id } |
3090 | } |
3091 | |
3092 | /// The cursor pointing to this partial type's declaration location. |
3093 | pub(crate) fn decl(&self) -> &Cursor { |
3094 | &self.decl |
3095 | } |
3096 | |
3097 | /// The item ID allocated for this type. This is *NOT* a key for an entry in |
3098 | /// the context's item set yet! |
3099 | pub(crate) fn id(&self) -> ItemId { |
3100 | self.id |
3101 | } |
3102 | } |
3103 | |
3104 | impl TemplateParameters for PartialType { |
3105 | fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> { |
3106 | // Maybe at some point we will eagerly parse named types, but for now we |
3107 | // don't and this information is unavailable. |
3108 | vec![] |
3109 | } |
3110 | |
3111 | fn num_self_template_params(&self, _ctx: &BindgenContext) -> usize { |
3112 | // Wouldn't it be nice if libclang would reliably give us this |
3113 | // information‽ |
3114 | match self.decl().kind() { |
3115 | clang_sys::CXCursor_ClassTemplate | |
3116 | clang_sys::CXCursor_FunctionTemplate | |
3117 | clang_sys::CXCursor_TypeAliasTemplateDecl => { |
3118 | let mut num_params = 0; |
3119 | self.decl().visit(|c| { |
3120 | match c.kind() { |
3121 | clang_sys::CXCursor_TemplateTypeParameter | |
3122 | clang_sys::CXCursor_TemplateTemplateParameter | |
3123 | clang_sys::CXCursor_NonTypeTemplateParameter => { |
3124 | num_params += 1; |
3125 | } |
3126 | _ => {} |
3127 | }; |
3128 | clang_sys::CXChildVisit_Continue |
3129 | }); |
3130 | num_params |
3131 | } |
3132 | _ => 0, |
3133 | } |
3134 | } |
3135 | } |
3136 | |
3137 | fn unused_regex_diagnostic(item: &str, name: &str, _ctx: &BindgenContext) { |
3138 | warn!("unused option: {} {}" , name, item); |
3139 | |
3140 | #[cfg (feature = "experimental" )] |
3141 | if _ctx.options().emit_diagnostics { |
3142 | use crate::diagnostics::{Diagnostic, Level}; |
3143 | |
3144 | Diagnostic::default() |
3145 | .with_title( |
3146 | format!("Unused regular expression: `{}`." , item), |
3147 | Level::Warn, |
3148 | ) |
3149 | .add_annotation( |
3150 | format!("This regular expression was passed to `{}`." , name), |
3151 | Level::Note, |
3152 | ) |
3153 | .display(); |
3154 | } |
3155 | } |
3156 | |