1 | //! A higher level Clang API built on top of the generated bindings in the |
2 | //! `clang_sys` module. |
3 | |
4 | #![allow (non_upper_case_globals, dead_code)] |
5 | #![deny (clippy::missing_docs_in_private_items)] |
6 | |
7 | use crate::ir::context::BindgenContext; |
8 | use clang_sys::*; |
9 | use std::cmp; |
10 | |
11 | use std::ffi::{CStr, CString}; |
12 | use std::fmt; |
13 | use std::fs::OpenOptions; |
14 | use std::hash::Hash; |
15 | use std::hash::Hasher; |
16 | use std::os::raw::{c_char, c_int, c_longlong, c_uint, c_ulong, c_ulonglong}; |
17 | use std::sync::OnceLock; |
18 | use std::{mem, ptr, slice}; |
19 | |
20 | /// Type representing a clang attribute. |
21 | /// |
22 | /// Values of this type can be used to check for different attributes using the `has_attrs` |
23 | /// function. |
24 | pub(crate) struct Attribute { |
25 | name: &'static [u8], |
26 | kind: Option<CXCursorKind>, |
27 | token_kind: CXTokenKind, |
28 | } |
29 | |
30 | impl Attribute { |
31 | /// A `warn_unused_result` attribute. |
32 | pub(crate) const MUST_USE: Self = Self { |
33 | name: b"warn_unused_result" , |
34 | // FIXME(emilio): clang-sys doesn't expose `CXCursor_WarnUnusedResultAttr` (from clang 9). |
35 | kind: Some(440), |
36 | token_kind: CXToken_Identifier, |
37 | }; |
38 | |
39 | /// A `_Noreturn` attribute. |
40 | pub(crate) const NO_RETURN: Self = Self { |
41 | name: b"_Noreturn" , |
42 | kind: None, |
43 | token_kind: CXToken_Keyword, |
44 | }; |
45 | |
46 | /// A `[[noreturn]]` attribute. |
47 | pub(crate) const NO_RETURN_CPP: Self = Self { |
48 | name: b"noreturn" , |
49 | kind: None, |
50 | token_kind: CXToken_Identifier, |
51 | }; |
52 | } |
53 | |
54 | /// A cursor into the Clang AST, pointing to an AST node. |
55 | /// |
56 | /// We call the AST node pointed to by the cursor the cursor's "referent". |
57 | #[derive (Copy, Clone)] |
58 | pub(crate) struct Cursor { |
59 | x: CXCursor, |
60 | } |
61 | |
62 | impl fmt::Debug for Cursor { |
63 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
64 | write!( |
65 | fmt, |
66 | "Cursor( {} kind: {}, loc: {}, usr: {:?})" , |
67 | self.spelling(), |
68 | kind_to_str(self.kind()), |
69 | self.location(), |
70 | self.usr() |
71 | ) |
72 | } |
73 | } |
74 | |
75 | impl Cursor { |
76 | /// Get the Unified Symbol Resolution for this cursor's referent, if |
77 | /// available. |
78 | /// |
79 | /// The USR can be used to compare entities across translation units. |
80 | pub(crate) fn usr(&self) -> Option<String> { |
81 | let s = unsafe { cxstring_into_string(clang_getCursorUSR(self.x)) }; |
82 | if s.is_empty() { |
83 | None |
84 | } else { |
85 | Some(s) |
86 | } |
87 | } |
88 | |
89 | /// Is this cursor's referent a declaration? |
90 | pub(crate) fn is_declaration(&self) -> bool { |
91 | unsafe { clang_isDeclaration(self.kind()) != 0 } |
92 | } |
93 | |
94 | /// Is this cursor's referent an anonymous record or so? |
95 | pub(crate) fn is_anonymous(&self) -> bool { |
96 | unsafe { clang_Cursor_isAnonymous(self.x) != 0 } |
97 | } |
98 | |
99 | /// Get this cursor's referent's spelling. |
100 | pub(crate) fn spelling(&self) -> String { |
101 | unsafe { cxstring_into_string(clang_getCursorSpelling(self.x)) } |
102 | } |
103 | |
104 | /// Get this cursor's referent's display name. |
105 | /// |
106 | /// This is not necessarily a valid identifier. It includes extra |
107 | /// information, such as parameters for a function, etc. |
108 | pub(crate) fn display_name(&self) -> String { |
109 | unsafe { cxstring_into_string(clang_getCursorDisplayName(self.x)) } |
110 | } |
111 | |
112 | /// Get the mangled name of this cursor's referent. |
113 | pub(crate) fn mangling(&self) -> String { |
114 | unsafe { cxstring_into_string(clang_Cursor_getMangling(self.x)) } |
115 | } |
116 | |
117 | /// Gets the C++ manglings for this cursor, or an error if the manglings |
118 | /// are not available. |
119 | pub(crate) fn cxx_manglings(&self) -> Result<Vec<String>, ()> { |
120 | use clang_sys::*; |
121 | unsafe { |
122 | let manglings = clang_Cursor_getCXXManglings(self.x); |
123 | if manglings.is_null() { |
124 | return Err(()); |
125 | } |
126 | let count = (*manglings).Count as usize; |
127 | |
128 | let mut result = Vec::with_capacity(count); |
129 | for i in 0..count { |
130 | let string_ptr = (*manglings).Strings.add(i); |
131 | result.push(cxstring_to_string_leaky(*string_ptr)); |
132 | } |
133 | clang_disposeStringSet(manglings); |
134 | Ok(result) |
135 | } |
136 | } |
137 | |
138 | /// Returns whether the cursor refers to a built-in definition. |
139 | pub(crate) fn is_builtin(&self) -> bool { |
140 | let (file, _, _, _) = self.location().location(); |
141 | file.name().is_none() |
142 | } |
143 | |
144 | /// Get the `Cursor` for this cursor's referent's lexical parent. |
145 | /// |
146 | /// The lexical parent is the parent of the definition. The semantic parent |
147 | /// is the parent of the declaration. Generally, the lexical parent doesn't |
148 | /// have any effect on semantics, while the semantic parent does. |
149 | /// |
150 | /// In the following snippet, the `Foo` class would be the semantic parent |
151 | /// of the out-of-line `method` definition, while the lexical parent is the |
152 | /// translation unit. |
153 | /// |
154 | /// ```c++ |
155 | /// class Foo { |
156 | /// void method(); |
157 | /// }; |
158 | /// |
159 | /// void Foo::method() { /* ... */ } |
160 | /// ``` |
161 | pub(crate) fn lexical_parent(&self) -> Cursor { |
162 | unsafe { |
163 | Cursor { |
164 | x: clang_getCursorLexicalParent(self.x), |
165 | } |
166 | } |
167 | } |
168 | |
169 | /// Get the referent's semantic parent, if one is available. |
170 | /// |
171 | /// See documentation for `lexical_parent` for details on semantic vs |
172 | /// lexical parents. |
173 | pub(crate) fn fallible_semantic_parent(&self) -> Option<Cursor> { |
174 | let sp = unsafe { |
175 | Cursor { |
176 | x: clang_getCursorSemanticParent(self.x), |
177 | } |
178 | }; |
179 | if sp == *self || !sp.is_valid() { |
180 | return None; |
181 | } |
182 | Some(sp) |
183 | } |
184 | |
185 | /// Get the referent's semantic parent. |
186 | /// |
187 | /// See documentation for `lexical_parent` for details on semantic vs |
188 | /// lexical parents. |
189 | pub(crate) fn semantic_parent(&self) -> Cursor { |
190 | self.fallible_semantic_parent().unwrap() |
191 | } |
192 | |
193 | /// Return the number of template arguments used by this cursor's referent, |
194 | /// if the referent is either a template instantiation. Returns `None` |
195 | /// otherwise. |
196 | /// |
197 | /// NOTE: This may not return `Some` for partial template specializations, |
198 | /// see #193 and #194. |
199 | pub(crate) fn num_template_args(&self) -> Option<u32> { |
200 | // XXX: `clang_Type_getNumTemplateArguments` is sort of reliable, while |
201 | // `clang_Cursor_getNumTemplateArguments` is totally unreliable. |
202 | // Therefore, try former first, and only fallback to the latter if we |
203 | // have to. |
204 | self.cur_type() |
205 | .num_template_args() |
206 | .or_else(|| { |
207 | let n: c_int = |
208 | unsafe { clang_Cursor_getNumTemplateArguments(self.x) }; |
209 | |
210 | if n >= 0 { |
211 | Some(n as u32) |
212 | } else { |
213 | debug_assert_eq!(n, -1); |
214 | None |
215 | } |
216 | }) |
217 | .or_else(|| { |
218 | let canonical = self.canonical(); |
219 | if canonical != *self { |
220 | canonical.num_template_args() |
221 | } else { |
222 | None |
223 | } |
224 | }) |
225 | } |
226 | |
227 | /// Get a cursor pointing to this referent's containing translation unit. |
228 | /// |
229 | /// Note that we shouldn't create a `TranslationUnit` struct here, because |
230 | /// bindgen assumes there will only be one of them alive at a time, and |
231 | /// disposes it on drop. That can change if this would be required, but I |
232 | /// think we can survive fine without it. |
233 | pub(crate) fn translation_unit(&self) -> Cursor { |
234 | assert!(self.is_valid()); |
235 | unsafe { |
236 | let tu = clang_Cursor_getTranslationUnit(self.x); |
237 | let cursor = Cursor { |
238 | x: clang_getTranslationUnitCursor(tu), |
239 | }; |
240 | assert!(cursor.is_valid()); |
241 | cursor |
242 | } |
243 | } |
244 | |
245 | /// Is the referent a top level construct? |
246 | pub(crate) fn is_toplevel(&self) -> bool { |
247 | let mut semantic_parent = self.fallible_semantic_parent(); |
248 | |
249 | while semantic_parent.is_some() && |
250 | (semantic_parent.unwrap().kind() == CXCursor_Namespace || |
251 | semantic_parent.unwrap().kind() == |
252 | CXCursor_NamespaceAlias || |
253 | semantic_parent.unwrap().kind() == CXCursor_NamespaceRef) |
254 | { |
255 | semantic_parent = |
256 | semantic_parent.unwrap().fallible_semantic_parent(); |
257 | } |
258 | |
259 | let tu = self.translation_unit(); |
260 | // Yes, this can happen with, e.g., macro definitions. |
261 | semantic_parent == tu.fallible_semantic_parent() |
262 | } |
263 | |
264 | /// There are a few kinds of types that we need to treat specially, mainly |
265 | /// not tracking the type declaration but the location of the cursor, given |
266 | /// clang doesn't expose a proper declaration for these types. |
267 | pub(crate) fn is_template_like(&self) -> bool { |
268 | matches!( |
269 | self.kind(), |
270 | CXCursor_ClassTemplate | |
271 | CXCursor_ClassTemplatePartialSpecialization | |
272 | CXCursor_TypeAliasTemplateDecl |
273 | ) |
274 | } |
275 | |
276 | /// Is this Cursor pointing to a function-like macro definition? |
277 | pub(crate) fn is_macro_function_like(&self) -> bool { |
278 | unsafe { clang_Cursor_isMacroFunctionLike(self.x) != 0 } |
279 | } |
280 | |
281 | /// Get the kind of referent this cursor is pointing to. |
282 | pub(crate) fn kind(&self) -> CXCursorKind { |
283 | self.x.kind |
284 | } |
285 | |
286 | /// Returns true if the cursor is a definition |
287 | pub(crate) fn is_definition(&self) -> bool { |
288 | unsafe { clang_isCursorDefinition(self.x) != 0 } |
289 | } |
290 | |
291 | /// Is the referent a template specialization? |
292 | pub(crate) fn is_template_specialization(&self) -> bool { |
293 | self.specialized().is_some() |
294 | } |
295 | |
296 | /// Is the referent a fully specialized template specialization without any |
297 | /// remaining free template arguments? |
298 | pub(crate) fn is_fully_specialized_template(&self) -> bool { |
299 | self.is_template_specialization() && |
300 | self.kind() != CXCursor_ClassTemplatePartialSpecialization && |
301 | self.num_template_args().unwrap_or(0) > 0 |
302 | } |
303 | |
304 | /// Is the referent a template specialization that still has remaining free |
305 | /// template arguments? |
306 | pub(crate) fn is_in_non_fully_specialized_template(&self) -> bool { |
307 | if self.is_toplevel() { |
308 | return false; |
309 | } |
310 | |
311 | let parent = self.semantic_parent(); |
312 | if parent.is_fully_specialized_template() { |
313 | return false; |
314 | } |
315 | |
316 | if !parent.is_template_like() { |
317 | return parent.is_in_non_fully_specialized_template(); |
318 | } |
319 | |
320 | true |
321 | } |
322 | |
323 | /// Is the referent any kind of template parameter? |
324 | pub(crate) fn is_template_parameter(&self) -> bool { |
325 | matches!( |
326 | self.kind(), |
327 | CXCursor_TemplateTemplateParameter | |
328 | CXCursor_TemplateTypeParameter | |
329 | CXCursor_NonTypeTemplateParameter |
330 | ) |
331 | } |
332 | |
333 | /// Does the referent's type or value depend on a template parameter? |
334 | pub(crate) fn is_dependent_on_template_parameter(&self) -> bool { |
335 | fn visitor( |
336 | found_template_parameter: &mut bool, |
337 | cur: Cursor, |
338 | ) -> CXChildVisitResult { |
339 | // If we found a template parameter, it is dependent. |
340 | if cur.is_template_parameter() { |
341 | *found_template_parameter = true; |
342 | return CXChildVisit_Break; |
343 | } |
344 | |
345 | // Get the referent and traverse it as well. |
346 | if let Some(referenced) = cur.referenced() { |
347 | if referenced.is_template_parameter() { |
348 | *found_template_parameter = true; |
349 | return CXChildVisit_Break; |
350 | } |
351 | |
352 | referenced |
353 | .visit(|next| visitor(found_template_parameter, next)); |
354 | if *found_template_parameter { |
355 | return CXChildVisit_Break; |
356 | } |
357 | } |
358 | |
359 | // Continue traversing the AST at the original cursor. |
360 | CXChildVisit_Recurse |
361 | } |
362 | |
363 | if self.is_template_parameter() { |
364 | return true; |
365 | } |
366 | |
367 | let mut found_template_parameter = false; |
368 | self.visit(|next| visitor(&mut found_template_parameter, next)); |
369 | |
370 | found_template_parameter |
371 | } |
372 | |
373 | /// Is this cursor pointing a valid referent? |
374 | pub(crate) fn is_valid(&self) -> bool { |
375 | unsafe { clang_isInvalid(self.kind()) == 0 } |
376 | } |
377 | |
378 | /// Get the source location for the referent. |
379 | pub(crate) fn location(&self) -> SourceLocation { |
380 | unsafe { |
381 | SourceLocation { |
382 | x: clang_getCursorLocation(self.x), |
383 | } |
384 | } |
385 | } |
386 | |
387 | /// Get the source location range for the referent. |
388 | pub(crate) fn extent(&self) -> CXSourceRange { |
389 | unsafe { clang_getCursorExtent(self.x) } |
390 | } |
391 | |
392 | /// Get the raw declaration comment for this referent, if one exists. |
393 | pub(crate) fn raw_comment(&self) -> Option<String> { |
394 | let s = unsafe { |
395 | cxstring_into_string(clang_Cursor_getRawCommentText(self.x)) |
396 | }; |
397 | if s.is_empty() { |
398 | None |
399 | } else { |
400 | Some(s) |
401 | } |
402 | } |
403 | |
404 | /// Get the referent's parsed comment. |
405 | pub(crate) fn comment(&self) -> Comment { |
406 | unsafe { |
407 | Comment { |
408 | x: clang_Cursor_getParsedComment(self.x), |
409 | } |
410 | } |
411 | } |
412 | |
413 | /// Get the referent's type. |
414 | pub(crate) fn cur_type(&self) -> Type { |
415 | unsafe { |
416 | Type { |
417 | x: clang_getCursorType(self.x), |
418 | } |
419 | } |
420 | } |
421 | |
422 | /// Given that this cursor's referent is a reference to another type, or is |
423 | /// a declaration, get the cursor pointing to the referenced type or type of |
424 | /// the declared thing. |
425 | pub(crate) fn definition(&self) -> Option<Cursor> { |
426 | unsafe { |
427 | let ret = Cursor { |
428 | x: clang_getCursorDefinition(self.x), |
429 | }; |
430 | |
431 | if ret.is_valid() && ret.kind() != CXCursor_NoDeclFound { |
432 | Some(ret) |
433 | } else { |
434 | None |
435 | } |
436 | } |
437 | } |
438 | |
439 | /// Given that this cursor's referent is reference type, get the cursor |
440 | /// pointing to the referenced type. |
441 | pub(crate) fn referenced(&self) -> Option<Cursor> { |
442 | unsafe { |
443 | let ret = Cursor { |
444 | x: clang_getCursorReferenced(self.x), |
445 | }; |
446 | |
447 | if ret.is_valid() { |
448 | Some(ret) |
449 | } else { |
450 | None |
451 | } |
452 | } |
453 | } |
454 | |
455 | /// Get the canonical cursor for this referent. |
456 | /// |
457 | /// Many types can be declared multiple times before finally being properly |
458 | /// defined. This method allows us to get the canonical cursor for the |
459 | /// referent type. |
460 | pub(crate) fn canonical(&self) -> Cursor { |
461 | unsafe { |
462 | Cursor { |
463 | x: clang_getCanonicalCursor(self.x), |
464 | } |
465 | } |
466 | } |
467 | |
468 | /// Given that this cursor points to either a template specialization or a |
469 | /// template instantiation, get a cursor pointing to the template definition |
470 | /// that is being specialized. |
471 | pub(crate) fn specialized(&self) -> Option<Cursor> { |
472 | unsafe { |
473 | let ret = Cursor { |
474 | x: clang_getSpecializedCursorTemplate(self.x), |
475 | }; |
476 | if ret.is_valid() { |
477 | Some(ret) |
478 | } else { |
479 | None |
480 | } |
481 | } |
482 | } |
483 | |
484 | /// Assuming that this cursor's referent is a template declaration, get the |
485 | /// kind of cursor that would be generated for its specializations. |
486 | pub(crate) fn template_kind(&self) -> CXCursorKind { |
487 | unsafe { clang_getTemplateCursorKind(self.x) } |
488 | } |
489 | |
490 | /// Traverse this cursor's referent and its children. |
491 | /// |
492 | /// Call the given function on each AST node traversed. |
493 | pub(crate) fn visit<Visitor>(&self, mut visitor: Visitor) |
494 | where |
495 | Visitor: FnMut(Cursor) -> CXChildVisitResult, |
496 | { |
497 | let data = &mut visitor as *mut Visitor; |
498 | unsafe { |
499 | clang_visitChildren(self.x, visit_children::<Visitor>, data.cast()); |
500 | } |
501 | } |
502 | |
503 | /// Traverse all of this cursor's children, sorted by where they appear in source code. |
504 | /// |
505 | /// Call the given function on each AST node traversed. |
506 | pub(crate) fn visit_sorted<Visitor>( |
507 | &self, |
508 | ctx: &mut BindgenContext, |
509 | mut visitor: Visitor, |
510 | ) where |
511 | Visitor: FnMut(&mut BindgenContext, Cursor), |
512 | { |
513 | // FIXME(#2556): The current source order stuff doesn't account well for different levels |
514 | // of includes, or includes that show up at the same byte offset because they are passed in |
515 | // via CLI. |
516 | const SOURCE_ORDER_ENABLED: bool = false; |
517 | if !SOURCE_ORDER_ENABLED { |
518 | return self.visit(|c| { |
519 | visitor(ctx, c); |
520 | CXChildVisit_Continue |
521 | }); |
522 | } |
523 | |
524 | let mut children = self.collect_children(); |
525 | for child in &children { |
526 | if child.kind() == CXCursor_InclusionDirective { |
527 | if let Some(included_file) = child.get_included_file_name() { |
528 | let location = child.location(); |
529 | let (source_file, _, _, offset) = location.location(); |
530 | |
531 | if let Some(source_file) = source_file.name() { |
532 | ctx.add_include(source_file, included_file, offset); |
533 | } |
534 | } |
535 | } |
536 | } |
537 | children |
538 | .sort_by(|child1, child2| child1.cmp_by_source_order(child2, ctx)); |
539 | for child in children { |
540 | visitor(ctx, child); |
541 | } |
542 | } |
543 | |
544 | /// Compare source order of two cursors, considering `#include` directives. |
545 | /// |
546 | /// Built-in items provided by the compiler (which don't have a source file), |
547 | /// are sorted first. Remaining files are sorted by their position in the source file. |
548 | /// If the items' source files differ, they are sorted by the position of the first |
549 | /// `#include` for their source file. If no source files are included, `None` is returned. |
550 | fn cmp_by_source_order( |
551 | &self, |
552 | other: &Self, |
553 | ctx: &BindgenContext, |
554 | ) -> cmp::Ordering { |
555 | let (file, _, _, offset) = self.location().location(); |
556 | let (other_file, _, _, other_offset) = other.location().location(); |
557 | |
558 | let (file, other_file) = match (file.name(), other_file.name()) { |
559 | (Some(file), Some(other_file)) => (file, other_file), |
560 | // Built-in definitions should come first. |
561 | (Some(_), None) => return cmp::Ordering::Greater, |
562 | (None, Some(_)) => return cmp::Ordering::Less, |
563 | (None, None) => return cmp::Ordering::Equal, |
564 | }; |
565 | |
566 | if file == other_file { |
567 | // Both items are in the same source file, compare by byte offset. |
568 | return offset.cmp(&other_offset); |
569 | } |
570 | |
571 | let include_location = ctx.included_file_location(&file); |
572 | let other_include_location = ctx.included_file_location(&other_file); |
573 | match (include_location, other_include_location) { |
574 | (Some((file2, offset2)), _) if file2 == other_file => { |
575 | offset2.cmp(&other_offset) |
576 | } |
577 | (Some(_), None) => cmp::Ordering::Greater, |
578 | (_, Some((other_file2, other_offset2))) if file == other_file2 => { |
579 | offset.cmp(&other_offset2) |
580 | } |
581 | (None, Some(_)) => cmp::Ordering::Less, |
582 | (Some((file2, offset2)), Some((other_file2, other_offset2))) => { |
583 | if file2 == other_file2 { |
584 | offset2.cmp(&other_offset2) |
585 | } else { |
586 | cmp::Ordering::Equal |
587 | } |
588 | } |
589 | (None, None) => cmp::Ordering::Equal, |
590 | } |
591 | } |
592 | |
593 | /// Collect all of this cursor's children into a vec and return them. |
594 | pub(crate) fn collect_children(&self) -> Vec<Cursor> { |
595 | let mut children = vec![]; |
596 | self.visit(|c| { |
597 | children.push(c); |
598 | CXChildVisit_Continue |
599 | }); |
600 | children |
601 | } |
602 | |
603 | /// Does this cursor have any children? |
604 | pub(crate) fn has_children(&self) -> bool { |
605 | let mut has_children = false; |
606 | self.visit(|_| { |
607 | has_children = true; |
608 | CXChildVisit_Break |
609 | }); |
610 | has_children |
611 | } |
612 | |
613 | /// Does this cursor have at least `n` children? |
614 | pub(crate) fn has_at_least_num_children(&self, n: usize) -> bool { |
615 | assert!(n > 0); |
616 | let mut num_left = n; |
617 | self.visit(|_| { |
618 | num_left -= 1; |
619 | if num_left == 0 { |
620 | CXChildVisit_Break |
621 | } else { |
622 | CXChildVisit_Continue |
623 | } |
624 | }); |
625 | num_left == 0 |
626 | } |
627 | |
628 | /// Returns whether the given location contains a cursor with the given |
629 | /// kind in the first level of nesting underneath (doesn't look |
630 | /// recursively). |
631 | pub(crate) fn contains_cursor(&self, kind: CXCursorKind) -> bool { |
632 | let mut found = false; |
633 | |
634 | self.visit(|c| { |
635 | if c.kind() == kind { |
636 | found = true; |
637 | CXChildVisit_Break |
638 | } else { |
639 | CXChildVisit_Continue |
640 | } |
641 | }); |
642 | |
643 | found |
644 | } |
645 | |
646 | /// Is the referent an inlined function? |
647 | pub(crate) fn is_inlined_function(&self) -> bool { |
648 | unsafe { clang_Cursor_isFunctionInlined(self.x) != 0 } |
649 | } |
650 | |
651 | /// Is the referent a defaulted function? |
652 | pub(crate) fn is_defaulted_function(&self) -> bool { |
653 | unsafe { clang_CXXMethod_isDefaulted(self.x) != 0 } |
654 | } |
655 | |
656 | /// Is the referent a deleted function? |
657 | pub(crate) fn is_deleted_function(&self) -> bool { |
658 | // Unfortunately, libclang doesn't yet have an API for checking if a |
659 | // member function is deleted, but the following should be a good |
660 | // enough approximation. |
661 | // Deleted functions are implicitly inline according to paragraph 4 of |
662 | // [dcl.fct.def.delete] in the C++ standard. Normal inline functions |
663 | // have a definition in the same translation unit, so if this is an |
664 | // inline function without a definition, and it's not a defaulted |
665 | // function, we can reasonably safely conclude that it's a deleted |
666 | // function. |
667 | self.is_inlined_function() && |
668 | self.definition().is_none() && |
669 | !self.is_defaulted_function() |
670 | } |
671 | |
672 | /// Is the referent a bit field declaration? |
673 | pub(crate) fn is_bit_field(&self) -> bool { |
674 | unsafe { clang_Cursor_isBitField(self.x) != 0 } |
675 | } |
676 | |
677 | /// Get a cursor to the bit field's width expression, or `None` if it's not |
678 | /// a bit field. |
679 | pub(crate) fn bit_width_expr(&self) -> Option<Cursor> { |
680 | if !self.is_bit_field() { |
681 | return None; |
682 | } |
683 | |
684 | let mut result = None; |
685 | self.visit(|cur| { |
686 | // The first child may or may not be a TypeRef, depending on whether |
687 | // the field's type is builtin. Skip it. |
688 | if cur.kind() == CXCursor_TypeRef { |
689 | return CXChildVisit_Continue; |
690 | } |
691 | |
692 | // The next expression or literal is the bit width. |
693 | result = Some(cur); |
694 | |
695 | CXChildVisit_Break |
696 | }); |
697 | |
698 | result |
699 | } |
700 | |
701 | /// Get the width of this cursor's referent bit field, or `None` if the |
702 | /// referent is not a bit field or if the width could not be evaluated. |
703 | pub(crate) fn bit_width(&self) -> Option<u32> { |
704 | // It is not safe to check the bit width without ensuring it doesn't |
705 | // depend on a template parameter. See |
706 | // https://github.com/rust-lang/rust-bindgen/issues/2239 |
707 | if self.bit_width_expr()?.is_dependent_on_template_parameter() { |
708 | return None; |
709 | } |
710 | |
711 | unsafe { |
712 | let w = clang_getFieldDeclBitWidth(self.x); |
713 | if w == -1 { |
714 | None |
715 | } else { |
716 | Some(w as u32) |
717 | } |
718 | } |
719 | } |
720 | |
721 | /// Get the integer representation type used to hold this cursor's referent |
722 | /// enum type. |
723 | pub(crate) fn enum_type(&self) -> Option<Type> { |
724 | unsafe { |
725 | let t = Type { |
726 | x: clang_getEnumDeclIntegerType(self.x), |
727 | }; |
728 | if t.is_valid() { |
729 | Some(t) |
730 | } else { |
731 | None |
732 | } |
733 | } |
734 | } |
735 | |
736 | /// Get the boolean constant value for this cursor's enum variant referent. |
737 | /// |
738 | /// Returns None if the cursor's referent is not an enum variant. |
739 | pub(crate) fn enum_val_boolean(&self) -> Option<bool> { |
740 | unsafe { |
741 | if self.kind() == CXCursor_EnumConstantDecl { |
742 | Some(clang_getEnumConstantDeclValue(self.x) != 0) |
743 | } else { |
744 | None |
745 | } |
746 | } |
747 | } |
748 | |
749 | /// Get the signed constant value for this cursor's enum variant referent. |
750 | /// |
751 | /// Returns None if the cursor's referent is not an enum variant. |
752 | pub(crate) fn enum_val_signed(&self) -> Option<i64> { |
753 | unsafe { |
754 | if self.kind() == CXCursor_EnumConstantDecl { |
755 | #[allow (clippy::unnecessary_cast)] |
756 | Some(clang_getEnumConstantDeclValue(self.x) as i64) |
757 | } else { |
758 | None |
759 | } |
760 | } |
761 | } |
762 | |
763 | /// Get the unsigned constant value for this cursor's enum variant referent. |
764 | /// |
765 | /// Returns None if the cursor's referent is not an enum variant. |
766 | pub(crate) fn enum_val_unsigned(&self) -> Option<u64> { |
767 | unsafe { |
768 | if self.kind() == CXCursor_EnumConstantDecl { |
769 | #[allow (clippy::unnecessary_cast)] |
770 | Some(clang_getEnumConstantDeclUnsignedValue(self.x) as u64) |
771 | } else { |
772 | None |
773 | } |
774 | } |
775 | } |
776 | |
777 | /// Does this cursor have the given attributes? |
778 | pub(crate) fn has_attrs<const N: usize>( |
779 | &self, |
780 | attrs: &[Attribute; N], |
781 | ) -> [bool; N] { |
782 | let mut found_attrs = [false; N]; |
783 | let mut found_count = 0; |
784 | |
785 | self.visit(|cur| { |
786 | let kind = cur.kind(); |
787 | for (idx, attr) in attrs.iter().enumerate() { |
788 | let found_attr = &mut found_attrs[idx]; |
789 | if !*found_attr { |
790 | // `attr.name` and` attr.token_kind` are checked against unexposed attributes only. |
791 | if attr.kind.map_or(false, |k| k == kind) || |
792 | (kind == CXCursor_UnexposedAttr && |
793 | cur.tokens().iter().any(|t| { |
794 | t.kind == attr.token_kind && |
795 | t.spelling() == attr.name |
796 | })) |
797 | { |
798 | *found_attr = true; |
799 | found_count += 1; |
800 | |
801 | if found_count == N { |
802 | return CXChildVisit_Break; |
803 | } |
804 | } |
805 | } |
806 | } |
807 | |
808 | CXChildVisit_Continue |
809 | }); |
810 | |
811 | found_attrs |
812 | } |
813 | |
814 | /// Given that this cursor's referent is a `typedef`, get the `Type` that is |
815 | /// being aliased. |
816 | pub(crate) fn typedef_type(&self) -> Option<Type> { |
817 | let inner = Type { |
818 | x: unsafe { clang_getTypedefDeclUnderlyingType(self.x) }, |
819 | }; |
820 | |
821 | if inner.is_valid() { |
822 | Some(inner) |
823 | } else { |
824 | None |
825 | } |
826 | } |
827 | |
828 | /// Get the linkage kind for this cursor's referent. |
829 | /// |
830 | /// This only applies to functions and variables. |
831 | pub(crate) fn linkage(&self) -> CXLinkageKind { |
832 | unsafe { clang_getCursorLinkage(self.x) } |
833 | } |
834 | |
835 | /// Get the visibility of this cursor's referent. |
836 | pub(crate) fn visibility(&self) -> CXVisibilityKind { |
837 | unsafe { clang_getCursorVisibility(self.x) } |
838 | } |
839 | |
840 | /// Given that this cursor's referent is a function, return cursors to its |
841 | /// parameters. |
842 | /// |
843 | /// Returns None if the cursor's referent is not a function/method call or |
844 | /// declaration. |
845 | pub(crate) fn args(&self) -> Option<Vec<Cursor>> { |
846 | // match self.kind() { |
847 | // CXCursor_FunctionDecl | |
848 | // CXCursor_CXXMethod => { |
849 | self.num_args().ok().map(|num| { |
850 | (0..num) |
851 | .map(|i| Cursor { |
852 | x: unsafe { clang_Cursor_getArgument(self.x, i as c_uint) }, |
853 | }) |
854 | .collect() |
855 | }) |
856 | } |
857 | |
858 | /// Given that this cursor's referent is a function/method call or |
859 | /// declaration, return the number of arguments it takes. |
860 | /// |
861 | /// Returns Err if the cursor's referent is not a function/method call or |
862 | /// declaration. |
863 | pub(crate) fn num_args(&self) -> Result<u32, ()> { |
864 | unsafe { |
865 | let w = clang_Cursor_getNumArguments(self.x); |
866 | if w == -1 { |
867 | Err(()) |
868 | } else { |
869 | Ok(w as u32) |
870 | } |
871 | } |
872 | } |
873 | |
874 | /// Get the access specifier for this cursor's referent. |
875 | pub(crate) fn access_specifier(&self) -> CX_CXXAccessSpecifier { |
876 | unsafe { clang_getCXXAccessSpecifier(self.x) } |
877 | } |
878 | |
879 | /// Is the cursor's referent publicly accessible in C++? |
880 | /// |
881 | /// Returns true if self.access_specifier() is `CX_CXXPublic` or |
882 | /// `CX_CXXInvalidAccessSpecifier`. |
883 | pub(crate) fn public_accessible(&self) -> bool { |
884 | let access = self.access_specifier(); |
885 | access == CX_CXXPublic || access == CX_CXXInvalidAccessSpecifier |
886 | } |
887 | |
888 | /// Is this cursor's referent a field declaration that is marked as |
889 | /// `mutable`? |
890 | pub(crate) fn is_mutable_field(&self) -> bool { |
891 | unsafe { clang_CXXField_isMutable(self.x) != 0 } |
892 | } |
893 | |
894 | /// Get the offset of the field represented by the Cursor. |
895 | pub(crate) fn offset_of_field(&self) -> Result<usize, LayoutError> { |
896 | let offset = unsafe { clang_Cursor_getOffsetOfField(self.x) }; |
897 | |
898 | if offset < 0 { |
899 | Err(LayoutError::from(offset as i32)) |
900 | } else { |
901 | Ok(offset as usize) |
902 | } |
903 | } |
904 | |
905 | /// Is this cursor's referent a member function that is declared `static`? |
906 | pub(crate) fn method_is_static(&self) -> bool { |
907 | unsafe { clang_CXXMethod_isStatic(self.x) != 0 } |
908 | } |
909 | |
910 | /// Is this cursor's referent a member function that is declared `const`? |
911 | pub(crate) fn method_is_const(&self) -> bool { |
912 | unsafe { clang_CXXMethod_isConst(self.x) != 0 } |
913 | } |
914 | |
915 | /// Is this cursor's referent a member function that is virtual? |
916 | pub(crate) fn method_is_virtual(&self) -> bool { |
917 | unsafe { clang_CXXMethod_isVirtual(self.x) != 0 } |
918 | } |
919 | |
920 | /// Is this cursor's referent a member function that is pure virtual? |
921 | pub(crate) fn method_is_pure_virtual(&self) -> bool { |
922 | unsafe { clang_CXXMethod_isPureVirtual(self.x) != 0 } |
923 | } |
924 | |
925 | /// Is this cursor's referent a struct or class with virtual members? |
926 | pub(crate) fn is_virtual_base(&self) -> bool { |
927 | unsafe { clang_isVirtualBase(self.x) != 0 } |
928 | } |
929 | |
930 | /// Try to evaluate this cursor. |
931 | pub(crate) fn evaluate(&self) -> Option<EvalResult> { |
932 | EvalResult::new(*self) |
933 | } |
934 | |
935 | /// Return the result type for this cursor |
936 | pub(crate) fn ret_type(&self) -> Option<Type> { |
937 | let rt = Type { |
938 | x: unsafe { clang_getCursorResultType(self.x) }, |
939 | }; |
940 | if rt.is_valid() { |
941 | Some(rt) |
942 | } else { |
943 | None |
944 | } |
945 | } |
946 | |
947 | /// Gets the tokens that correspond to that cursor. |
948 | pub(crate) fn tokens(&self) -> RawTokens { |
949 | RawTokens::new(self) |
950 | } |
951 | |
952 | /// Gets the tokens that correspond to that cursor as `cexpr` tokens. |
953 | pub(crate) fn cexpr_tokens(self) -> Vec<cexpr::token::Token> { |
954 | self.tokens() |
955 | .iter() |
956 | .filter_map(|token| token.as_cexpr_token()) |
957 | .collect() |
958 | } |
959 | |
960 | /// Obtain the real path name of a cursor of InclusionDirective kind. |
961 | /// |
962 | /// Returns None if the cursor does not include a file, otherwise the file's full name |
963 | pub(crate) fn get_included_file_name(&self) -> Option<String> { |
964 | let file = unsafe { clang_sys::clang_getIncludedFile(self.x) }; |
965 | if file.is_null() { |
966 | None |
967 | } else { |
968 | Some(unsafe { |
969 | cxstring_into_string(clang_sys::clang_getFileName(file)) |
970 | }) |
971 | } |
972 | } |
973 | } |
974 | |
975 | /// A struct that owns the tokenizer result from a given cursor. |
976 | pub(crate) struct RawTokens<'a> { |
977 | cursor: &'a Cursor, |
978 | tu: CXTranslationUnit, |
979 | tokens: *mut CXToken, |
980 | token_count: c_uint, |
981 | } |
982 | |
983 | impl<'a> RawTokens<'a> { |
984 | fn new(cursor: &'a Cursor) -> Self { |
985 | let mut tokens = ptr::null_mut(); |
986 | let mut token_count = 0; |
987 | let range = cursor.extent(); |
988 | let tu = unsafe { clang_Cursor_getTranslationUnit(cursor.x) }; |
989 | unsafe { clang_tokenize(tu, range, &mut tokens, &mut token_count) }; |
990 | Self { |
991 | cursor, |
992 | tu, |
993 | tokens, |
994 | token_count, |
995 | } |
996 | } |
997 | |
998 | fn as_slice(&self) -> &[CXToken] { |
999 | if self.tokens.is_null() { |
1000 | return &[]; |
1001 | } |
1002 | unsafe { slice::from_raw_parts(self.tokens, self.token_count as usize) } |
1003 | } |
1004 | |
1005 | /// Get an iterator over these tokens. |
1006 | pub(crate) fn iter(&self) -> ClangTokenIterator { |
1007 | ClangTokenIterator { |
1008 | tu: self.tu, |
1009 | raw: self.as_slice().iter(), |
1010 | } |
1011 | } |
1012 | } |
1013 | |
1014 | impl<'a> Drop for RawTokens<'a> { |
1015 | fn drop(&mut self) { |
1016 | if !self.tokens.is_null() { |
1017 | unsafe { |
1018 | clang_disposeTokens( |
1019 | self.tu, |
1020 | self.tokens, |
1021 | self.token_count as c_uint, |
1022 | ); |
1023 | } |
1024 | } |
1025 | } |
1026 | } |
1027 | |
1028 | /// A raw clang token, that exposes only kind, spelling, and extent. This is a |
1029 | /// slightly more convenient version of `CXToken` which owns the spelling |
1030 | /// string and extent. |
1031 | #[derive (Debug)] |
1032 | pub(crate) struct ClangToken { |
1033 | spelling: CXString, |
1034 | /// The extent of the token. This is the same as the relevant member from |
1035 | /// `CXToken`. |
1036 | pub(crate) extent: CXSourceRange, |
1037 | /// The kind of the token. This is the same as the relevant member from |
1038 | /// `CXToken`. |
1039 | pub(crate) kind: CXTokenKind, |
1040 | } |
1041 | |
1042 | impl ClangToken { |
1043 | /// Get the token spelling, without being converted to utf-8. |
1044 | pub(crate) fn spelling(&self) -> &[u8] { |
1045 | let c_str = unsafe { |
1046 | CStr::from_ptr(clang_getCString(self.spelling) as *const _) |
1047 | }; |
1048 | c_str.to_bytes() |
1049 | } |
1050 | |
1051 | /// Converts a ClangToken to a `cexpr` token if possible. |
1052 | pub(crate) fn as_cexpr_token(&self) -> Option<cexpr::token::Token> { |
1053 | use cexpr::token; |
1054 | |
1055 | let kind = match self.kind { |
1056 | CXToken_Punctuation => token::Kind::Punctuation, |
1057 | CXToken_Literal => token::Kind::Literal, |
1058 | CXToken_Identifier => token::Kind::Identifier, |
1059 | CXToken_Keyword => token::Kind::Keyword, |
1060 | // NB: cexpr is not too happy about comments inside |
1061 | // expressions, so we strip them down here. |
1062 | CXToken_Comment => return None, |
1063 | _ => { |
1064 | warn!("Found unexpected token kind: {:?}" , self); |
1065 | return None; |
1066 | } |
1067 | }; |
1068 | |
1069 | Some(token::Token { |
1070 | kind, |
1071 | raw: self.spelling().to_vec().into_boxed_slice(), |
1072 | }) |
1073 | } |
1074 | } |
1075 | |
1076 | impl Drop for ClangToken { |
1077 | fn drop(&mut self) { |
1078 | unsafe { clang_disposeString(self.spelling) } |
1079 | } |
1080 | } |
1081 | |
1082 | /// An iterator over a set of Tokens. |
1083 | pub(crate) struct ClangTokenIterator<'a> { |
1084 | tu: CXTranslationUnit, |
1085 | raw: slice::Iter<'a, CXToken>, |
1086 | } |
1087 | |
1088 | impl<'a> Iterator for ClangTokenIterator<'a> { |
1089 | type Item = ClangToken; |
1090 | |
1091 | fn next(&mut self) -> Option<Self::Item> { |
1092 | let raw: &'a CXToken = self.raw.next()?; |
1093 | unsafe { |
1094 | let kind: i32 = clang_getTokenKind(*raw); |
1095 | let spelling: CXString = clang_getTokenSpelling(self.tu, *raw); |
1096 | let extent: CXSourceRange = clang_getTokenExtent(self.tu, *raw); |
1097 | Some(ClangToken { |
1098 | kind, |
1099 | extent, |
1100 | spelling, |
1101 | }) |
1102 | } |
1103 | } |
1104 | } |
1105 | |
1106 | /// Checks whether the name looks like an identifier, i.e. is alphanumeric |
1107 | /// (including '_') and does not start with a digit. |
1108 | pub(crate) fn is_valid_identifier(name: &str) -> bool { |
1109 | let mut chars: Chars<'_> = name.chars(); |
1110 | let first_valid: bool = chars |
1111 | .next() |
1112 | .map(|c| c.is_alphabetic() || c == '_' ) |
1113 | .unwrap_or(default:false); |
1114 | |
1115 | first_valid && chars.all(|c: char| c.is_alphanumeric() || c == '_' ) |
1116 | } |
1117 | |
1118 | extern "C" fn visit_children<Visitor>( |
1119 | cur: CXCursor, |
1120 | _parent: CXCursor, |
1121 | data: CXClientData, |
1122 | ) -> CXChildVisitResult |
1123 | where |
1124 | Visitor: FnMut(Cursor) -> CXChildVisitResult, |
1125 | { |
1126 | let func: &mut Visitor = unsafe { &mut *(data as *mut Visitor) }; |
1127 | let child: Cursor = Cursor { x: cur }; |
1128 | |
1129 | (*func)(child) |
1130 | } |
1131 | |
1132 | impl PartialEq for Cursor { |
1133 | fn eq(&self, other: &Cursor) -> bool { |
1134 | unsafe { clang_equalCursors(self.x, right:other.x) == 1 } |
1135 | } |
1136 | } |
1137 | |
1138 | impl Eq for Cursor {} |
1139 | |
1140 | impl Hash for Cursor { |
1141 | fn hash<H: Hasher>(&self, state: &mut H) { |
1142 | unsafe { clang_hashCursor(self.x) }.hash(state) |
1143 | } |
1144 | } |
1145 | |
1146 | /// The type of a node in clang's AST. |
1147 | #[derive (Clone, Copy)] |
1148 | pub(crate) struct Type { |
1149 | x: CXType, |
1150 | } |
1151 | |
1152 | impl PartialEq for Type { |
1153 | fn eq(&self, other: &Self) -> bool { |
1154 | unsafe { clang_equalTypes(self.x, right:other.x) != 0 } |
1155 | } |
1156 | } |
1157 | |
1158 | impl Eq for Type {} |
1159 | |
1160 | impl fmt::Debug for Type { |
1161 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
1162 | write!( |
1163 | fmt, |
1164 | "Type( {}, kind: {}, cconv: {}, decl: {:?}, canon: {:?})" , |
1165 | self.spelling(), |
1166 | type_to_str(self.kind()), |
1167 | self.call_conv(), |
1168 | self.declaration(), |
1169 | self.declaration().canonical() |
1170 | ) |
1171 | } |
1172 | } |
1173 | |
1174 | /// An error about the layout of a struct, class, or type. |
1175 | #[derive (Debug, Copy, Clone, Eq, PartialEq, Hash)] |
1176 | pub(crate) enum LayoutError { |
1177 | /// Asked for the layout of an invalid type. |
1178 | Invalid, |
1179 | /// Asked for the layout of an incomplete type. |
1180 | Incomplete, |
1181 | /// Asked for the layout of a dependent type. |
1182 | Dependent, |
1183 | /// Asked for the layout of a type that does not have constant size. |
1184 | NotConstantSize, |
1185 | /// Asked for the layout of a field in a type that does not have such a |
1186 | /// field. |
1187 | InvalidFieldName, |
1188 | /// An unknown layout error. |
1189 | Unknown, |
1190 | } |
1191 | |
1192 | impl ::std::convert::From<i32> for LayoutError { |
1193 | fn from(val: i32) -> Self { |
1194 | use self::LayoutError::*; |
1195 | |
1196 | match val { |
1197 | CXTypeLayoutError_Invalid => Invalid, |
1198 | CXTypeLayoutError_Incomplete => Incomplete, |
1199 | CXTypeLayoutError_Dependent => Dependent, |
1200 | CXTypeLayoutError_NotConstantSize => NotConstantSize, |
1201 | CXTypeLayoutError_InvalidFieldName => InvalidFieldName, |
1202 | _ => Unknown, |
1203 | } |
1204 | } |
1205 | } |
1206 | |
1207 | impl Type { |
1208 | /// Get this type's kind. |
1209 | pub(crate) fn kind(&self) -> CXTypeKind { |
1210 | self.x.kind |
1211 | } |
1212 | |
1213 | /// Get a cursor pointing to this type's declaration. |
1214 | pub(crate) fn declaration(&self) -> Cursor { |
1215 | unsafe { |
1216 | Cursor { |
1217 | x: clang_getTypeDeclaration(self.x), |
1218 | } |
1219 | } |
1220 | } |
1221 | |
1222 | /// Get the canonical declaration of this type, if it is available. |
1223 | pub(crate) fn canonical_declaration( |
1224 | &self, |
1225 | location: Option<&Cursor>, |
1226 | ) -> Option<CanonicalTypeDeclaration> { |
1227 | let mut declaration = self.declaration(); |
1228 | if !declaration.is_valid() { |
1229 | if let Some(location) = location { |
1230 | let mut location = *location; |
1231 | if let Some(referenced) = location.referenced() { |
1232 | location = referenced; |
1233 | } |
1234 | if location.is_template_like() { |
1235 | declaration = location; |
1236 | } |
1237 | } |
1238 | } |
1239 | |
1240 | let canonical = declaration.canonical(); |
1241 | if canonical.is_valid() && canonical.kind() != CXCursor_NoDeclFound { |
1242 | Some(CanonicalTypeDeclaration(*self, canonical)) |
1243 | } else { |
1244 | None |
1245 | } |
1246 | } |
1247 | |
1248 | /// Get a raw display name for this type. |
1249 | pub(crate) fn spelling(&self) -> String { |
1250 | let s = unsafe { cxstring_into_string(clang_getTypeSpelling(self.x)) }; |
1251 | // Clang 5.0 introduced changes in the spelling API so it returned the |
1252 | // full qualified name. Let's undo that here. |
1253 | if s.split("::" ).all(is_valid_identifier) { |
1254 | if let Some(s) = s.split("::" ).last() { |
1255 | return s.to_owned(); |
1256 | } |
1257 | } |
1258 | |
1259 | s |
1260 | } |
1261 | |
1262 | /// Is this type const qualified? |
1263 | pub(crate) fn is_const(&self) -> bool { |
1264 | unsafe { clang_isConstQualifiedType(self.x) != 0 } |
1265 | } |
1266 | |
1267 | #[inline ] |
1268 | fn is_non_deductible_auto_type(&self) -> bool { |
1269 | debug_assert_eq!(self.kind(), CXType_Auto); |
1270 | self.canonical_type() == *self |
1271 | } |
1272 | |
1273 | #[inline ] |
1274 | fn clang_size_of(&self, ctx: &BindgenContext) -> c_longlong { |
1275 | match self.kind() { |
1276 | // Work-around https://bugs.llvm.org/show_bug.cgi?id=40975 |
1277 | CXType_RValueReference | CXType_LValueReference => { |
1278 | ctx.target_pointer_size() as c_longlong |
1279 | } |
1280 | // Work-around https://bugs.llvm.org/show_bug.cgi?id=40813 |
1281 | CXType_Auto if self.is_non_deductible_auto_type() => -6, |
1282 | _ => unsafe { clang_Type_getSizeOf(self.x) }, |
1283 | } |
1284 | } |
1285 | |
1286 | #[inline ] |
1287 | fn clang_align_of(&self, ctx: &BindgenContext) -> c_longlong { |
1288 | match self.kind() { |
1289 | // Work-around https://bugs.llvm.org/show_bug.cgi?id=40975 |
1290 | CXType_RValueReference | CXType_LValueReference => { |
1291 | ctx.target_pointer_size() as c_longlong |
1292 | } |
1293 | // Work-around https://bugs.llvm.org/show_bug.cgi?id=40813 |
1294 | CXType_Auto if self.is_non_deductible_auto_type() => -6, |
1295 | _ => unsafe { clang_Type_getAlignOf(self.x) }, |
1296 | } |
1297 | } |
1298 | |
1299 | /// What is the size of this type? Paper over invalid types by returning `0` |
1300 | /// for them. |
1301 | pub(crate) fn size(&self, ctx: &BindgenContext) -> usize { |
1302 | let val = self.clang_size_of(ctx); |
1303 | if val < 0 { |
1304 | 0 |
1305 | } else { |
1306 | val as usize |
1307 | } |
1308 | } |
1309 | |
1310 | /// What is the size of this type? |
1311 | pub(crate) fn fallible_size( |
1312 | &self, |
1313 | ctx: &BindgenContext, |
1314 | ) -> Result<usize, LayoutError> { |
1315 | let val = self.clang_size_of(ctx); |
1316 | if val < 0 { |
1317 | Err(LayoutError::from(val as i32)) |
1318 | } else { |
1319 | Ok(val as usize) |
1320 | } |
1321 | } |
1322 | |
1323 | /// What is the alignment of this type? Paper over invalid types by |
1324 | /// returning `0`. |
1325 | pub(crate) fn align(&self, ctx: &BindgenContext) -> usize { |
1326 | let val = self.clang_align_of(ctx); |
1327 | if val < 0 { |
1328 | 0 |
1329 | } else { |
1330 | val as usize |
1331 | } |
1332 | } |
1333 | |
1334 | /// What is the alignment of this type? |
1335 | pub(crate) fn fallible_align( |
1336 | &self, |
1337 | ctx: &BindgenContext, |
1338 | ) -> Result<usize, LayoutError> { |
1339 | let val = self.clang_align_of(ctx); |
1340 | if val < 0 { |
1341 | Err(LayoutError::from(val as i32)) |
1342 | } else { |
1343 | Ok(val as usize) |
1344 | } |
1345 | } |
1346 | |
1347 | /// Get the layout for this type, or an error describing why it does not |
1348 | /// have a valid layout. |
1349 | pub(crate) fn fallible_layout( |
1350 | &self, |
1351 | ctx: &BindgenContext, |
1352 | ) -> Result<crate::ir::layout::Layout, LayoutError> { |
1353 | use crate::ir::layout::Layout; |
1354 | let size = self.fallible_size(ctx)?; |
1355 | let align = self.fallible_align(ctx)?; |
1356 | Ok(Layout::new(size, align)) |
1357 | } |
1358 | |
1359 | /// Get the number of template arguments this type has, or `None` if it is |
1360 | /// not some kind of template. |
1361 | pub(crate) fn num_template_args(&self) -> Option<u32> { |
1362 | let n = unsafe { clang_Type_getNumTemplateArguments(self.x) }; |
1363 | if n >= 0 { |
1364 | Some(n as u32) |
1365 | } else { |
1366 | debug_assert_eq!(n, -1); |
1367 | None |
1368 | } |
1369 | } |
1370 | |
1371 | /// If this type is a class template specialization, return its |
1372 | /// template arguments. Otherwise, return None. |
1373 | pub(crate) fn template_args(&self) -> Option<TypeTemplateArgIterator> { |
1374 | self.num_template_args().map(|n| TypeTemplateArgIterator { |
1375 | x: self.x, |
1376 | length: n, |
1377 | index: 0, |
1378 | }) |
1379 | } |
1380 | |
1381 | /// Given that this type is a function prototype, return the types of its parameters. |
1382 | /// |
1383 | /// Returns None if the type is not a function prototype. |
1384 | pub(crate) fn args(&self) -> Option<Vec<Type>> { |
1385 | self.num_args().ok().map(|num| { |
1386 | (0..num) |
1387 | .map(|i| Type { |
1388 | x: unsafe { clang_getArgType(self.x, i as c_uint) }, |
1389 | }) |
1390 | .collect() |
1391 | }) |
1392 | } |
1393 | |
1394 | /// Given that this type is a function prototype, return the number of arguments it takes. |
1395 | /// |
1396 | /// Returns Err if the type is not a function prototype. |
1397 | pub(crate) fn num_args(&self) -> Result<u32, ()> { |
1398 | unsafe { |
1399 | let w = clang_getNumArgTypes(self.x); |
1400 | if w == -1 { |
1401 | Err(()) |
1402 | } else { |
1403 | Ok(w as u32) |
1404 | } |
1405 | } |
1406 | } |
1407 | |
1408 | /// Given that this type is a pointer type, return the type that it points |
1409 | /// to. |
1410 | pub(crate) fn pointee_type(&self) -> Option<Type> { |
1411 | match self.kind() { |
1412 | CXType_Pointer | |
1413 | CXType_RValueReference | |
1414 | CXType_LValueReference | |
1415 | CXType_MemberPointer | |
1416 | CXType_BlockPointer | |
1417 | CXType_ObjCObjectPointer => { |
1418 | let ret = Type { |
1419 | x: unsafe { clang_getPointeeType(self.x) }, |
1420 | }; |
1421 | debug_assert!(ret.is_valid()); |
1422 | Some(ret) |
1423 | } |
1424 | _ => None, |
1425 | } |
1426 | } |
1427 | |
1428 | /// Given that this type is an array, vector, or complex type, return the |
1429 | /// type of its elements. |
1430 | pub(crate) fn elem_type(&self) -> Option<Type> { |
1431 | let current_type = Type { |
1432 | x: unsafe { clang_getElementType(self.x) }, |
1433 | }; |
1434 | if current_type.is_valid() { |
1435 | Some(current_type) |
1436 | } else { |
1437 | None |
1438 | } |
1439 | } |
1440 | |
1441 | /// Given that this type is an array or vector type, return its number of |
1442 | /// elements. |
1443 | pub(crate) fn num_elements(&self) -> Option<usize> { |
1444 | let num_elements_returned = unsafe { clang_getNumElements(self.x) }; |
1445 | if num_elements_returned != -1 { |
1446 | Some(num_elements_returned as usize) |
1447 | } else { |
1448 | None |
1449 | } |
1450 | } |
1451 | |
1452 | /// Get the canonical version of this type. This sees through `typedef`s and |
1453 | /// aliases to get the underlying, canonical type. |
1454 | pub(crate) fn canonical_type(&self) -> Type { |
1455 | unsafe { |
1456 | Type { |
1457 | x: clang_getCanonicalType(self.x), |
1458 | } |
1459 | } |
1460 | } |
1461 | |
1462 | /// Is this type a variadic function type? |
1463 | pub(crate) fn is_variadic(&self) -> bool { |
1464 | unsafe { clang_isFunctionTypeVariadic(self.x) != 0 } |
1465 | } |
1466 | |
1467 | /// Given that this type is a function type, get the type of its return |
1468 | /// value. |
1469 | pub(crate) fn ret_type(&self) -> Option<Type> { |
1470 | let rt = Type { |
1471 | x: unsafe { clang_getResultType(self.x) }, |
1472 | }; |
1473 | if rt.is_valid() { |
1474 | Some(rt) |
1475 | } else { |
1476 | None |
1477 | } |
1478 | } |
1479 | |
1480 | /// Given that this type is a function type, get its calling convention. If |
1481 | /// this is not a function type, `CXCallingConv_Invalid` is returned. |
1482 | pub(crate) fn call_conv(&self) -> CXCallingConv { |
1483 | unsafe { clang_getFunctionTypeCallingConv(self.x) } |
1484 | } |
1485 | |
1486 | /// For elaborated types (types which use `class`, `struct`, or `union` to |
1487 | /// disambiguate types from local bindings), get the underlying type. |
1488 | pub(crate) fn named(&self) -> Type { |
1489 | unsafe { |
1490 | Type { |
1491 | x: clang_Type_getNamedType(self.x), |
1492 | } |
1493 | } |
1494 | } |
1495 | |
1496 | /// Is this a valid type? |
1497 | pub(crate) fn is_valid(&self) -> bool { |
1498 | self.kind() != CXType_Invalid |
1499 | } |
1500 | |
1501 | /// Is this a valid and exposed type? |
1502 | pub(crate) fn is_valid_and_exposed(&self) -> bool { |
1503 | self.is_valid() && self.kind() != CXType_Unexposed |
1504 | } |
1505 | |
1506 | /// Is this type a fully instantiated template? |
1507 | pub(crate) fn is_fully_instantiated_template(&self) -> bool { |
1508 | // Yep, the spelling of this containing type-parameter is extremely |
1509 | // nasty... But can happen in <type_traits>. Unfortunately I couldn't |
1510 | // reduce it enough :( |
1511 | self.template_args().map_or(false, |args| args.len() > 0) && |
1512 | !matches!( |
1513 | self.declaration().kind(), |
1514 | CXCursor_ClassTemplatePartialSpecialization | |
1515 | CXCursor_TypeAliasTemplateDecl | |
1516 | CXCursor_TemplateTemplateParameter |
1517 | ) |
1518 | } |
1519 | |
1520 | /// Is this type an associated template type? Eg `T::Associated` in |
1521 | /// this example: |
1522 | /// |
1523 | /// ```c++ |
1524 | /// template <typename T> |
1525 | /// class Foo { |
1526 | /// typename T::Associated member; |
1527 | /// }; |
1528 | /// ``` |
1529 | pub(crate) fn is_associated_type(&self) -> bool { |
1530 | // This is terrible :( |
1531 | fn hacky_parse_associated_type<S: AsRef<str>>(spelling: S) -> bool { |
1532 | static ASSOC_TYPE_RE: OnceLock<regex::Regex> = OnceLock::new(); |
1533 | ASSOC_TYPE_RE |
1534 | .get_or_init(|| { |
1535 | regex::Regex::new(r"typename type\-parameter\-\d+\-\d+::.+" ) |
1536 | .unwrap() |
1537 | }) |
1538 | .is_match(spelling.as_ref()) |
1539 | } |
1540 | |
1541 | self.kind() == CXType_Unexposed && |
1542 | (hacky_parse_associated_type(self.spelling()) || |
1543 | hacky_parse_associated_type( |
1544 | self.canonical_type().spelling(), |
1545 | )) |
1546 | } |
1547 | } |
1548 | |
1549 | /// The `CanonicalTypeDeclaration` type exists as proof-by-construction that its |
1550 | /// cursor is the canonical declaration for its type. If you have a |
1551 | /// `CanonicalTypeDeclaration` instance, you know for sure that the type and |
1552 | /// cursor match up in a canonical declaration relationship, and it simply |
1553 | /// cannot be otherwise. |
1554 | #[derive (Debug, Clone, Copy, PartialEq, Eq)] |
1555 | pub(crate) struct CanonicalTypeDeclaration(Type, Cursor); |
1556 | |
1557 | impl CanonicalTypeDeclaration { |
1558 | /// Get the type. |
1559 | pub(crate) fn ty(&self) -> &Type { |
1560 | &self.0 |
1561 | } |
1562 | |
1563 | /// Get the type's canonical declaration cursor. |
1564 | pub(crate) fn cursor(&self) -> &Cursor { |
1565 | &self.1 |
1566 | } |
1567 | } |
1568 | |
1569 | /// An iterator for a type's template arguments. |
1570 | pub(crate) struct TypeTemplateArgIterator { |
1571 | x: CXType, |
1572 | length: u32, |
1573 | index: u32, |
1574 | } |
1575 | |
1576 | impl Iterator for TypeTemplateArgIterator { |
1577 | type Item = Type; |
1578 | fn next(&mut self) -> Option<Type> { |
1579 | if self.index < self.length { |
1580 | let idx: u32 = self.index as c_uint; |
1581 | self.index += 1; |
1582 | Some(Type { |
1583 | x: unsafe { clang_Type_getTemplateArgumentAsType(self.x, index:idx) }, |
1584 | }) |
1585 | } else { |
1586 | None |
1587 | } |
1588 | } |
1589 | } |
1590 | |
1591 | impl ExactSizeIterator for TypeTemplateArgIterator { |
1592 | fn len(&self) -> usize { |
1593 | assert!(self.index <= self.length); |
1594 | (self.length - self.index) as usize |
1595 | } |
1596 | } |
1597 | |
1598 | /// A `SourceLocation` is a file, line, column, and byte offset location for |
1599 | /// some source text. |
1600 | pub(crate) struct SourceLocation { |
1601 | x: CXSourceLocation, |
1602 | } |
1603 | |
1604 | impl SourceLocation { |
1605 | /// Get the (file, line, column, byte offset) tuple for this source |
1606 | /// location. |
1607 | pub(crate) fn location(&self) -> (File, usize, usize, usize) { |
1608 | unsafe { |
1609 | let mut file: *mut c_void = mem::zeroed(); |
1610 | let mut line: u32 = 0; |
1611 | let mut col: u32 = 0; |
1612 | let mut off: u32 = 0; |
1613 | clang_getFileLocation( |
1614 | self.x, &mut file, &mut line, &mut col, &mut off, |
1615 | ); |
1616 | (File { x: file }, line as usize, col as usize, off as usize) |
1617 | } |
1618 | } |
1619 | } |
1620 | |
1621 | impl fmt::Display for SourceLocation { |
1622 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1623 | let (file: File, line: usize, col: usize, _) = self.location(); |
1624 | if let Some(name: String) = file.name() { |
1625 | write!(f, " {}: {}: {}" , name, line, col) |
1626 | } else { |
1627 | "builtin definitions" .fmt(f) |
1628 | } |
1629 | } |
1630 | } |
1631 | |
1632 | impl fmt::Debug for SourceLocation { |
1633 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1634 | write!(f, " {}" , self) |
1635 | } |
1636 | } |
1637 | |
1638 | /// A comment in the source text. |
1639 | /// |
1640 | /// Comments are sort of parsed by Clang, and have a tree structure. |
1641 | pub(crate) struct Comment { |
1642 | x: CXComment, |
1643 | } |
1644 | |
1645 | impl Comment { |
1646 | /// What kind of comment is this? |
1647 | pub(crate) fn kind(&self) -> CXCommentKind { |
1648 | unsafe { clang_Comment_getKind(self.x) } |
1649 | } |
1650 | |
1651 | /// Get this comment's children comment |
1652 | pub(crate) fn get_children(&self) -> CommentChildrenIterator { |
1653 | CommentChildrenIterator { |
1654 | parent: self.x, |
1655 | length: unsafe { clang_Comment_getNumChildren(self.x) }, |
1656 | index: 0, |
1657 | } |
1658 | } |
1659 | |
1660 | /// Given that this comment is the start or end of an HTML tag, get its tag |
1661 | /// name. |
1662 | pub(crate) fn get_tag_name(&self) -> String { |
1663 | unsafe { cxstring_into_string(clang_HTMLTagComment_getTagName(self.x)) } |
1664 | } |
1665 | |
1666 | /// Given that this comment is an HTML start tag, get its attributes. |
1667 | pub(crate) fn get_tag_attrs(&self) -> CommentAttributesIterator { |
1668 | CommentAttributesIterator { |
1669 | x: self.x, |
1670 | length: unsafe { clang_HTMLStartTag_getNumAttrs(self.x) }, |
1671 | index: 0, |
1672 | } |
1673 | } |
1674 | } |
1675 | |
1676 | /// An iterator for a comment's children |
1677 | pub(crate) struct CommentChildrenIterator { |
1678 | parent: CXComment, |
1679 | length: c_uint, |
1680 | index: c_uint, |
1681 | } |
1682 | |
1683 | impl Iterator for CommentChildrenIterator { |
1684 | type Item = Comment; |
1685 | fn next(&mut self) -> Option<Comment> { |
1686 | if self.index < self.length { |
1687 | let idx: u32 = self.index; |
1688 | self.index += 1; |
1689 | Some(Comment { |
1690 | x: unsafe { clang_Comment_getChild(self.parent, index:idx) }, |
1691 | }) |
1692 | } else { |
1693 | None |
1694 | } |
1695 | } |
1696 | } |
1697 | |
1698 | /// An HTML start tag comment attribute |
1699 | pub(crate) struct CommentAttribute { |
1700 | /// HTML start tag attribute name |
1701 | pub(crate) name: String, |
1702 | /// HTML start tag attribute value |
1703 | pub(crate) value: String, |
1704 | } |
1705 | |
1706 | /// An iterator for a comment's attributes |
1707 | pub(crate) struct CommentAttributesIterator { |
1708 | x: CXComment, |
1709 | length: c_uint, |
1710 | index: c_uint, |
1711 | } |
1712 | |
1713 | impl Iterator for CommentAttributesIterator { |
1714 | type Item = CommentAttribute; |
1715 | fn next(&mut self) -> Option<CommentAttribute> { |
1716 | if self.index < self.length { |
1717 | let idx: u32 = self.index; |
1718 | self.index += 1; |
1719 | Some(CommentAttribute { |
1720 | name: unsafe { |
1721 | cxstring_into_string(clang_HTMLStartTag_getAttrName( |
1722 | self.x, index:idx, |
1723 | )) |
1724 | }, |
1725 | value: unsafe { |
1726 | cxstring_into_string(clang_HTMLStartTag_getAttrValue( |
1727 | self.x, index:idx, |
1728 | )) |
1729 | }, |
1730 | }) |
1731 | } else { |
1732 | None |
1733 | } |
1734 | } |
1735 | } |
1736 | |
1737 | /// A source file. |
1738 | pub(crate) struct File { |
1739 | x: CXFile, |
1740 | } |
1741 | |
1742 | impl File { |
1743 | /// Get the name of this source file. |
1744 | pub(crate) fn name(&self) -> Option<String> { |
1745 | if self.x.is_null() { |
1746 | return None; |
1747 | } |
1748 | Some(unsafe { cxstring_into_string(clang_getFileName(self.x)) }) |
1749 | } |
1750 | } |
1751 | |
1752 | fn cxstring_to_string_leaky(s: CXString) -> String { |
1753 | if s.data.is_null() { |
1754 | return "" .to_owned(); |
1755 | } |
1756 | let c_str: &CStr = unsafe { CStr::from_ptr(clang_getCString(string:s) as *const _) }; |
1757 | c_str.to_string_lossy().into_owned() |
1758 | } |
1759 | |
1760 | fn cxstring_into_string(s: CXString) -> String { |
1761 | let ret: String = cxstring_to_string_leaky(s); |
1762 | unsafe { clang_disposeString(string:s) }; |
1763 | ret |
1764 | } |
1765 | |
1766 | /// An `Index` is an environment for a set of translation units that will |
1767 | /// typically end up linked together in one final binary. |
1768 | pub(crate) struct Index { |
1769 | x: CXIndex, |
1770 | } |
1771 | |
1772 | impl Index { |
1773 | /// Construct a new `Index`. |
1774 | /// |
1775 | /// The `pch` parameter controls whether declarations in pre-compiled |
1776 | /// headers are included when enumerating a translation unit's "locals". |
1777 | /// |
1778 | /// The `diag` parameter controls whether debugging diagnostics are enabled. |
1779 | pub(crate) fn new(pch: bool, diag: bool) -> Index { |
1780 | unsafe { |
1781 | Index { |
1782 | x: clang_createIndex(exclude:pch as c_int, display:diag as c_int), |
1783 | } |
1784 | } |
1785 | } |
1786 | } |
1787 | |
1788 | impl fmt::Debug for Index { |
1789 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
1790 | write!(fmt, "Index {{ }}" ) |
1791 | } |
1792 | } |
1793 | |
1794 | impl Drop for Index { |
1795 | fn drop(&mut self) { |
1796 | unsafe { |
1797 | clang_disposeIndex(self.x); |
1798 | } |
1799 | } |
1800 | } |
1801 | |
1802 | /// A translation unit (or "compilation unit"). |
1803 | pub(crate) struct TranslationUnit { |
1804 | x: CXTranslationUnit, |
1805 | } |
1806 | |
1807 | impl fmt::Debug for TranslationUnit { |
1808 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
1809 | write!(fmt, "TranslationUnit {{ }}" ) |
1810 | } |
1811 | } |
1812 | |
1813 | impl TranslationUnit { |
1814 | /// Parse a source file into a translation unit. |
1815 | pub(crate) fn parse( |
1816 | ix: &Index, |
1817 | file: &str, |
1818 | cmd_args: &[Box<str>], |
1819 | unsaved: &[UnsavedFile], |
1820 | opts: CXTranslationUnit_Flags, |
1821 | ) -> Option<TranslationUnit> { |
1822 | let fname = CString::new(file).unwrap(); |
1823 | let _c_args: Vec<CString> = cmd_args |
1824 | .iter() |
1825 | .map(|s| CString::new(s.as_bytes()).unwrap()) |
1826 | .collect(); |
1827 | let c_args: Vec<*const c_char> = |
1828 | _c_args.iter().map(|s| s.as_ptr()).collect(); |
1829 | let mut c_unsaved: Vec<CXUnsavedFile> = |
1830 | unsaved.iter().map(|f| f.x).collect(); |
1831 | let tu = unsafe { |
1832 | clang_parseTranslationUnit( |
1833 | ix.x, |
1834 | fname.as_ptr(), |
1835 | c_args.as_ptr(), |
1836 | c_args.len() as c_int, |
1837 | c_unsaved.as_mut_ptr(), |
1838 | c_unsaved.len() as c_uint, |
1839 | opts, |
1840 | ) |
1841 | }; |
1842 | if tu.is_null() { |
1843 | None |
1844 | } else { |
1845 | Some(TranslationUnit { x: tu }) |
1846 | } |
1847 | } |
1848 | |
1849 | /// Get the Clang diagnostic information associated with this translation |
1850 | /// unit. |
1851 | pub(crate) fn diags(&self) -> Vec<Diagnostic> { |
1852 | unsafe { |
1853 | let num = clang_getNumDiagnostics(self.x) as usize; |
1854 | let mut diags = vec![]; |
1855 | for i in 0..num { |
1856 | diags.push(Diagnostic { |
1857 | x: clang_getDiagnostic(self.x, i as c_uint), |
1858 | }); |
1859 | } |
1860 | diags |
1861 | } |
1862 | } |
1863 | |
1864 | /// Get a cursor pointing to the root of this translation unit's AST. |
1865 | pub(crate) fn cursor(&self) -> Cursor { |
1866 | unsafe { |
1867 | Cursor { |
1868 | x: clang_getTranslationUnitCursor(self.x), |
1869 | } |
1870 | } |
1871 | } |
1872 | |
1873 | /// Save a translation unit to the given file. |
1874 | pub(crate) fn save(&mut self, file: &str) -> Result<(), CXSaveError> { |
1875 | let file = if let Ok(cstring) = CString::new(file) { |
1876 | cstring |
1877 | } else { |
1878 | return Err(CXSaveError_Unknown); |
1879 | }; |
1880 | let ret = unsafe { |
1881 | clang_saveTranslationUnit( |
1882 | self.x, |
1883 | file.as_ptr(), |
1884 | clang_defaultSaveOptions(self.x), |
1885 | ) |
1886 | }; |
1887 | if ret != 0 { |
1888 | Err(ret) |
1889 | } else { |
1890 | Ok(()) |
1891 | } |
1892 | } |
1893 | |
1894 | /// Is this the null translation unit? |
1895 | pub(crate) fn is_null(&self) -> bool { |
1896 | self.x.is_null() |
1897 | } |
1898 | } |
1899 | |
1900 | impl Drop for TranslationUnit { |
1901 | fn drop(&mut self) { |
1902 | unsafe { |
1903 | clang_disposeTranslationUnit(self.x); |
1904 | } |
1905 | } |
1906 | } |
1907 | |
1908 | /// Translation unit used for macro fallback parsing |
1909 | pub(crate) struct FallbackTranslationUnit { |
1910 | file_path: String, |
1911 | header_path: String, |
1912 | pch_path: String, |
1913 | idx: Box<Index>, |
1914 | tu: TranslationUnit, |
1915 | } |
1916 | |
1917 | impl fmt::Debug for FallbackTranslationUnit { |
1918 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
1919 | write!(fmt, "FallbackTranslationUnit {{ }}" ) |
1920 | } |
1921 | } |
1922 | |
1923 | impl FallbackTranslationUnit { |
1924 | /// Create a new fallback translation unit |
1925 | pub(crate) fn new( |
1926 | file: String, |
1927 | header_path: String, |
1928 | pch_path: String, |
1929 | c_args: &[Box<str>], |
1930 | ) -> Option<Self> { |
1931 | // Create empty file |
1932 | OpenOptions::new() |
1933 | .write(true) |
1934 | .create(true) |
1935 | .truncate(true) |
1936 | .open(&file) |
1937 | .ok()?; |
1938 | |
1939 | let f_index = Box::new(Index::new(true, false)); |
1940 | let f_translation_unit = TranslationUnit::parse( |
1941 | &f_index, |
1942 | &file, |
1943 | c_args, |
1944 | &[], |
1945 | CXTranslationUnit_None, |
1946 | )?; |
1947 | Some(FallbackTranslationUnit { |
1948 | file_path: file, |
1949 | header_path, |
1950 | pch_path, |
1951 | tu: f_translation_unit, |
1952 | idx: f_index, |
1953 | }) |
1954 | } |
1955 | |
1956 | /// Get reference to underlying translation unit. |
1957 | pub(crate) fn translation_unit(&self) -> &TranslationUnit { |
1958 | &self.tu |
1959 | } |
1960 | |
1961 | /// Reparse a translation unit. |
1962 | pub(crate) fn reparse( |
1963 | &mut self, |
1964 | unsaved_contents: &str, |
1965 | ) -> Result<(), CXErrorCode> { |
1966 | let unsaved = &[UnsavedFile::new(&self.file_path, unsaved_contents)]; |
1967 | let mut c_unsaved: Vec<CXUnsavedFile> = |
1968 | unsaved.iter().map(|f| f.x).collect(); |
1969 | let ret = unsafe { |
1970 | clang_reparseTranslationUnit( |
1971 | self.tu.x, |
1972 | unsaved.len() as c_uint, |
1973 | c_unsaved.as_mut_ptr(), |
1974 | clang_defaultReparseOptions(self.tu.x), |
1975 | ) |
1976 | }; |
1977 | if ret != 0 { |
1978 | Err(ret) |
1979 | } else { |
1980 | Ok(()) |
1981 | } |
1982 | } |
1983 | } |
1984 | |
1985 | impl Drop for FallbackTranslationUnit { |
1986 | fn drop(&mut self) { |
1987 | let _ = std::fs::remove_file(&self.file_path); |
1988 | let _ = std::fs::remove_file(&self.header_path); |
1989 | let _ = std::fs::remove_file(&self.pch_path); |
1990 | } |
1991 | } |
1992 | |
1993 | /// A diagnostic message generated while parsing a translation unit. |
1994 | pub(crate) struct Diagnostic { |
1995 | x: CXDiagnostic, |
1996 | } |
1997 | |
1998 | impl Diagnostic { |
1999 | /// Format this diagnostic message as a string, using the given option bit |
2000 | /// flags. |
2001 | pub(crate) fn format(&self) -> String { |
2002 | unsafe { |
2003 | let opts: i32 = clang_defaultDiagnosticDisplayOptions(); |
2004 | cxstring_into_string(clang_formatDiagnostic(self.x, flags:opts)) |
2005 | } |
2006 | } |
2007 | |
2008 | /// What is the severity of this diagnostic message? |
2009 | pub(crate) fn severity(&self) -> CXDiagnosticSeverity { |
2010 | unsafe { clang_getDiagnosticSeverity(self.x) } |
2011 | } |
2012 | } |
2013 | |
2014 | impl Drop for Diagnostic { |
2015 | /// Destroy this diagnostic message. |
2016 | fn drop(&mut self) { |
2017 | unsafe { |
2018 | clang_disposeDiagnostic(self.x); |
2019 | } |
2020 | } |
2021 | } |
2022 | |
2023 | /// A file which has not been saved to disk. |
2024 | pub(crate) struct UnsavedFile { |
2025 | x: CXUnsavedFile, |
2026 | /// The name of the unsaved file. Kept here to avoid leaving dangling pointers in |
2027 | /// `CXUnsavedFile`. |
2028 | pub(crate) name: CString, |
2029 | contents: CString, |
2030 | } |
2031 | |
2032 | impl UnsavedFile { |
2033 | /// Construct a new unsaved file with the given `name` and `contents`. |
2034 | pub(crate) fn new(name: &str, contents: &str) -> UnsavedFile { |
2035 | let name: CString = CString::new(name.as_bytes()).unwrap(); |
2036 | let contents: CString = CString::new(contents.as_bytes()).unwrap(); |
2037 | let x: CXUnsavedFile = CXUnsavedFile { |
2038 | Filename: name.as_ptr(), |
2039 | Contents: contents.as_ptr(), |
2040 | Length: contents.as_bytes().len() as c_ulong, |
2041 | }; |
2042 | UnsavedFile { x, name, contents } |
2043 | } |
2044 | } |
2045 | |
2046 | impl fmt::Debug for UnsavedFile { |
2047 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
2048 | write!( |
2049 | fmt, |
2050 | "UnsavedFile(name: {:?}, contents: {:?})" , |
2051 | self.name, self.contents |
2052 | ) |
2053 | } |
2054 | } |
2055 | |
2056 | /// Convert a cursor kind into a static string. |
2057 | pub(crate) fn kind_to_str(x: CXCursorKind) -> String { |
2058 | unsafe { cxstring_into_string(clang_getCursorKindSpelling(kind:x)) } |
2059 | } |
2060 | |
2061 | /// Convert a type kind to a static string. |
2062 | pub(crate) fn type_to_str(x: CXTypeKind) -> String { |
2063 | unsafe { cxstring_into_string(clang_getTypeKindSpelling(type_:x)) } |
2064 | } |
2065 | |
2066 | /// Dump the Clang AST to stdout for debugging purposes. |
2067 | pub(crate) fn ast_dump(c: &Cursor, depth: isize) -> CXChildVisitResult { |
2068 | fn print_indent<S: AsRef<str>>(depth: isize, s: S) { |
2069 | for _ in 0..depth { |
2070 | print!(" " ); |
2071 | } |
2072 | println!(" {}" , s.as_ref()); |
2073 | } |
2074 | |
2075 | fn print_cursor<S: AsRef<str>>(depth: isize, prefix: S, c: &Cursor) { |
2076 | let prefix = prefix.as_ref(); |
2077 | print_indent( |
2078 | depth, |
2079 | format!(" {}kind = {}" , prefix, kind_to_str(c.kind())), |
2080 | ); |
2081 | print_indent( |
2082 | depth, |
2083 | format!(" {}spelling = \"{}\"" , prefix, c.spelling()), |
2084 | ); |
2085 | print_indent(depth, format!(" {}location = {}" , prefix, c.location())); |
2086 | print_indent( |
2087 | depth, |
2088 | format!(" {}is-definition? {}" , prefix, c.is_definition()), |
2089 | ); |
2090 | print_indent( |
2091 | depth, |
2092 | format!(" {}is-declaration? {}" , prefix, c.is_declaration()), |
2093 | ); |
2094 | print_indent( |
2095 | depth, |
2096 | format!( |
2097 | " {}is-inlined-function? {}" , |
2098 | prefix, |
2099 | c.is_inlined_function() |
2100 | ), |
2101 | ); |
2102 | |
2103 | let templ_kind = c.template_kind(); |
2104 | if templ_kind != CXCursor_NoDeclFound { |
2105 | print_indent( |
2106 | depth, |
2107 | format!( |
2108 | " {}template-kind = {}" , |
2109 | prefix, |
2110 | kind_to_str(templ_kind) |
2111 | ), |
2112 | ); |
2113 | } |
2114 | if let Some(usr) = c.usr() { |
2115 | print_indent(depth, format!(" {}usr = \"{}\"" , prefix, usr)); |
2116 | } |
2117 | if let Ok(num) = c.num_args() { |
2118 | print_indent(depth, format!(" {}number-of-args = {}" , prefix, num)); |
2119 | } |
2120 | if let Some(num) = c.num_template_args() { |
2121 | print_indent( |
2122 | depth, |
2123 | format!(" {}number-of-template-args = {}" , prefix, num), |
2124 | ); |
2125 | } |
2126 | |
2127 | if c.is_bit_field() { |
2128 | let width = match c.bit_width() { |
2129 | Some(w) => w.to_string(), |
2130 | None => "<unevaluable>" .to_string(), |
2131 | }; |
2132 | print_indent(depth, format!(" {}bit-width = {}" , prefix, width)); |
2133 | } |
2134 | |
2135 | if let Some(ty) = c.enum_type() { |
2136 | print_indent( |
2137 | depth, |
2138 | format!(" {}enum-type = {}" , prefix, type_to_str(ty.kind())), |
2139 | ); |
2140 | } |
2141 | if let Some(val) = c.enum_val_signed() { |
2142 | print_indent(depth, format!(" {}enum-val = {}" , prefix, val)); |
2143 | } |
2144 | if let Some(ty) = c.typedef_type() { |
2145 | print_indent( |
2146 | depth, |
2147 | format!(" {}typedef-type = {}" , prefix, type_to_str(ty.kind())), |
2148 | ); |
2149 | } |
2150 | if let Some(ty) = c.ret_type() { |
2151 | print_indent( |
2152 | depth, |
2153 | format!(" {}ret-type = {}" , prefix, type_to_str(ty.kind())), |
2154 | ); |
2155 | } |
2156 | |
2157 | if let Some(refd) = c.referenced() { |
2158 | if refd != *c { |
2159 | println!(); |
2160 | print_cursor( |
2161 | depth, |
2162 | String::from(prefix) + "referenced." , |
2163 | &refd, |
2164 | ); |
2165 | } |
2166 | } |
2167 | |
2168 | let canonical = c.canonical(); |
2169 | if canonical != *c { |
2170 | println!(); |
2171 | print_cursor( |
2172 | depth, |
2173 | String::from(prefix) + "canonical." , |
2174 | &canonical, |
2175 | ); |
2176 | } |
2177 | |
2178 | if let Some(specialized) = c.specialized() { |
2179 | if specialized != *c { |
2180 | println!(); |
2181 | print_cursor( |
2182 | depth, |
2183 | String::from(prefix) + "specialized." , |
2184 | &specialized, |
2185 | ); |
2186 | } |
2187 | } |
2188 | |
2189 | if let Some(parent) = c.fallible_semantic_parent() { |
2190 | println!(); |
2191 | print_cursor( |
2192 | depth, |
2193 | String::from(prefix) + "semantic-parent." , |
2194 | &parent, |
2195 | ); |
2196 | } |
2197 | } |
2198 | |
2199 | fn print_type<S: AsRef<str>>(depth: isize, prefix: S, ty: &Type) { |
2200 | let prefix = prefix.as_ref(); |
2201 | |
2202 | let kind = ty.kind(); |
2203 | print_indent(depth, format!(" {}kind = {}" , prefix, type_to_str(kind))); |
2204 | if kind == CXType_Invalid { |
2205 | return; |
2206 | } |
2207 | |
2208 | print_indent(depth, format!(" {}cconv = {}" , prefix, ty.call_conv())); |
2209 | |
2210 | print_indent( |
2211 | depth, |
2212 | format!(" {}spelling = \"{}\"" , prefix, ty.spelling()), |
2213 | ); |
2214 | let num_template_args = |
2215 | unsafe { clang_Type_getNumTemplateArguments(ty.x) }; |
2216 | if num_template_args >= 0 { |
2217 | print_indent( |
2218 | depth, |
2219 | format!( |
2220 | " {}number-of-template-args = {}" , |
2221 | prefix, num_template_args |
2222 | ), |
2223 | ); |
2224 | } |
2225 | if let Some(num) = ty.num_elements() { |
2226 | print_indent( |
2227 | depth, |
2228 | format!(" {}number-of-elements = {}" , prefix, num), |
2229 | ); |
2230 | } |
2231 | print_indent( |
2232 | depth, |
2233 | format!(" {}is-variadic? {}" , prefix, ty.is_variadic()), |
2234 | ); |
2235 | |
2236 | let canonical = ty.canonical_type(); |
2237 | if canonical != *ty { |
2238 | println!(); |
2239 | print_type(depth, String::from(prefix) + "canonical." , &canonical); |
2240 | } |
2241 | |
2242 | if let Some(pointee) = ty.pointee_type() { |
2243 | if pointee != *ty { |
2244 | println!(); |
2245 | print_type(depth, String::from(prefix) + "pointee." , &pointee); |
2246 | } |
2247 | } |
2248 | |
2249 | if let Some(elem) = ty.elem_type() { |
2250 | if elem != *ty { |
2251 | println!(); |
2252 | print_type(depth, String::from(prefix) + "elements." , &elem); |
2253 | } |
2254 | } |
2255 | |
2256 | if let Some(ret) = ty.ret_type() { |
2257 | if ret != *ty { |
2258 | println!(); |
2259 | print_type(depth, String::from(prefix) + "return." , &ret); |
2260 | } |
2261 | } |
2262 | |
2263 | let named = ty.named(); |
2264 | if named != *ty && named.is_valid() { |
2265 | println!(); |
2266 | print_type(depth, String::from(prefix) + "named." , &named); |
2267 | } |
2268 | } |
2269 | |
2270 | print_indent(depth, "(" ); |
2271 | print_cursor(depth, "" , c); |
2272 | |
2273 | println!(); |
2274 | let ty = c.cur_type(); |
2275 | print_type(depth, "type." , &ty); |
2276 | |
2277 | let declaration = ty.declaration(); |
2278 | if declaration != *c && declaration.kind() != CXCursor_NoDeclFound { |
2279 | println!(); |
2280 | print_cursor(depth, "type.declaration." , &declaration); |
2281 | } |
2282 | |
2283 | // Recurse. |
2284 | let mut found_children = false; |
2285 | c.visit(|s| { |
2286 | if !found_children { |
2287 | println!(); |
2288 | found_children = true; |
2289 | } |
2290 | ast_dump(&s, depth + 1) |
2291 | }); |
2292 | |
2293 | print_indent(depth, ")" ); |
2294 | |
2295 | CXChildVisit_Continue |
2296 | } |
2297 | |
2298 | /// Try to extract the clang version to a string |
2299 | pub(crate) fn extract_clang_version() -> String { |
2300 | unsafe { cxstring_into_string(clang_getClangVersion()) } |
2301 | } |
2302 | |
2303 | /// A wrapper for the result of evaluating an expression. |
2304 | #[derive (Debug)] |
2305 | pub(crate) struct EvalResult { |
2306 | x: CXEvalResult, |
2307 | ty: Type, |
2308 | } |
2309 | |
2310 | impl EvalResult { |
2311 | /// Evaluate `cursor` and return the result. |
2312 | pub(crate) fn new(cursor: Cursor) -> Option<Self> { |
2313 | // Work around https://bugs.llvm.org/show_bug.cgi?id=42532, see: |
2314 | // * https://github.com/rust-lang/rust-bindgen/issues/283 |
2315 | // * https://github.com/rust-lang/rust-bindgen/issues/1590 |
2316 | { |
2317 | let mut found_cant_eval = false; |
2318 | cursor.visit(|c| { |
2319 | if c.kind() == CXCursor_TypeRef && |
2320 | c.cur_type().canonical_type().kind() == CXType_Unexposed |
2321 | { |
2322 | found_cant_eval = true; |
2323 | return CXChildVisit_Break; |
2324 | } |
2325 | |
2326 | CXChildVisit_Recurse |
2327 | }); |
2328 | |
2329 | if found_cant_eval { |
2330 | return None; |
2331 | } |
2332 | } |
2333 | Some(EvalResult { |
2334 | x: unsafe { clang_Cursor_Evaluate(cursor.x) }, |
2335 | ty: cursor.cur_type().canonical_type(), |
2336 | }) |
2337 | } |
2338 | |
2339 | fn kind(&self) -> CXEvalResultKind { |
2340 | unsafe { clang_EvalResult_getKind(self.x) } |
2341 | } |
2342 | |
2343 | /// Try to get back the result as a double. |
2344 | pub(crate) fn as_double(&self) -> Option<f64> { |
2345 | match self.kind() { |
2346 | CXEval_Float => { |
2347 | Some(unsafe { clang_EvalResult_getAsDouble(self.x) }) |
2348 | } |
2349 | _ => None, |
2350 | } |
2351 | } |
2352 | |
2353 | /// Try to get back the result as an integer. |
2354 | pub(crate) fn as_int(&self) -> Option<i64> { |
2355 | if self.kind() != CXEval_Int { |
2356 | return None; |
2357 | } |
2358 | |
2359 | if unsafe { clang_EvalResult_isUnsignedInt(self.x) } != 0 { |
2360 | let value = unsafe { clang_EvalResult_getAsUnsigned(self.x) }; |
2361 | if value > i64::MAX as c_ulonglong { |
2362 | return None; |
2363 | } |
2364 | |
2365 | return Some(value as i64); |
2366 | } |
2367 | |
2368 | let value = unsafe { clang_EvalResult_getAsLongLong(self.x) }; |
2369 | if value > i64::MAX as c_longlong { |
2370 | return None; |
2371 | } |
2372 | if value < i64::MIN as c_longlong { |
2373 | return None; |
2374 | } |
2375 | #[allow (clippy::unnecessary_cast)] |
2376 | Some(value as i64) |
2377 | } |
2378 | |
2379 | /// Evaluates the expression as a literal string, that may or may not be |
2380 | /// valid utf-8. |
2381 | pub(crate) fn as_literal_string(&self) -> Option<Vec<u8>> { |
2382 | if self.kind() != CXEval_StrLiteral { |
2383 | return None; |
2384 | } |
2385 | |
2386 | let char_ty = self.ty.pointee_type().or_else(|| self.ty.elem_type())?; |
2387 | match char_ty.kind() { |
2388 | CXType_Char_S | CXType_SChar | CXType_Char_U | CXType_UChar => { |
2389 | let ret = unsafe { |
2390 | CStr::from_ptr(clang_EvalResult_getAsStr(self.x)) |
2391 | }; |
2392 | Some(ret.to_bytes().to_vec()) |
2393 | } |
2394 | // FIXME: Support generating these. |
2395 | CXType_Char16 => None, |
2396 | CXType_Char32 => None, |
2397 | CXType_WChar => None, |
2398 | _ => None, |
2399 | } |
2400 | } |
2401 | } |
2402 | |
2403 | impl Drop for EvalResult { |
2404 | fn drop(&mut self) { |
2405 | unsafe { clang_EvalResult_dispose(self.x) }; |
2406 | } |
2407 | } |
2408 | /// ABI kinds as defined in |
2409 | /// <https://github.com/llvm/llvm-project/blob/ddf1de20a3f7db3bca1ef6ba7e6cbb90aac5fd2d/clang/include/clang/Basic/TargetCXXABI.def> |
2410 | #[derive (Debug, Eq, PartialEq, Copy, Clone)] |
2411 | pub(crate) enum ABIKind { |
2412 | /// All the regular targets like Linux, Mac, WASM, etc. implement the Itanium ABI |
2413 | GenericItanium, |
2414 | /// The ABI used when compiling for the MSVC target |
2415 | Microsoft, |
2416 | } |
2417 | |
2418 | /// Target information obtained from libclang. |
2419 | #[derive (Debug)] |
2420 | pub(crate) struct TargetInfo { |
2421 | /// The target triple. |
2422 | pub(crate) triple: String, |
2423 | /// The width of the pointer _in bits_. |
2424 | pub(crate) pointer_width: usize, |
2425 | /// The ABI of the target |
2426 | pub(crate) abi: ABIKind, |
2427 | } |
2428 | |
2429 | impl TargetInfo { |
2430 | /// Tries to obtain target information from libclang. |
2431 | pub(crate) fn new(tu: &TranslationUnit) -> Self { |
2432 | let triple; |
2433 | let pointer_width; |
2434 | unsafe { |
2435 | let ti = clang_getTranslationUnitTargetInfo(tu.x); |
2436 | triple = cxstring_into_string(clang_TargetInfo_getTriple(ti)); |
2437 | pointer_width = clang_TargetInfo_getPointerWidth(ti); |
2438 | clang_TargetInfo_dispose(ti); |
2439 | } |
2440 | assert!(pointer_width > 0); |
2441 | assert_eq!(pointer_width % 8, 0); |
2442 | |
2443 | let abi = if triple.contains("msvc" ) { |
2444 | ABIKind::Microsoft |
2445 | } else { |
2446 | ABIKind::GenericItanium |
2447 | }; |
2448 | |
2449 | TargetInfo { |
2450 | triple, |
2451 | pointer_width: pointer_width as usize, |
2452 | abi, |
2453 | } |
2454 | } |
2455 | } |
2456 | |